JP2010153791A - Boron doped semiconductor nanowire and manufacturing method thereof - Google Patents

Boron doped semiconductor nanowire and manufacturing method thereof Download PDF

Info

Publication number
JP2010153791A
JP2010153791A JP2009236883A JP2009236883A JP2010153791A JP 2010153791 A JP2010153791 A JP 2010153791A JP 2009236883 A JP2009236883 A JP 2009236883A JP 2009236883 A JP2009236883 A JP 2009236883A JP 2010153791 A JP2010153791 A JP 2010153791A
Authority
JP
Japan
Prior art keywords
boron
nanowire
semiconductor nanowire
semiconductor
doped semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009236883A
Other languages
Japanese (ja)
Inventor
Naoki Fukada
直樹 深田
Keisuke Sato
慶介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009236883A priority Critical patent/JP2010153791A/en
Publication of JP2010153791A publication Critical patent/JP2010153791A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boron doped semiconductor nanowire whose diameter is uniform in the direction of growth axis, and also to provide its manufacturing method. <P>SOLUTION: The boron doped semiconductor nanowire of a uniform diameter in the direction of growth axis is manufactured by manufacturing steps including: a step (1) in which group IV semiconductor nanowire is grown on a substrate using semiconductor material gas; a step (2) in which a boron film is deposited on the surface of the semiconductor nanowire by introducing only diborane gas; and a step (3) in which the semiconductor nanowire with the boron film on the surface of which the boron film is deposited is thermally annealed at the temperature of melting point of semiconductor nanowire (main body) or lower. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体ナノワイヤ(本体)にホウ素がドープされてなる半導体ナノワイヤ(以下、ホウ素ドープ半導体ナノワイヤともいう)及びその製造方法に関し、より詳しくは、特許文献3に開示されるような次世代の縦型立体構造を有する金属・酸化膜・半導体電界効果型トランジスタ(MOSFET)のチャンネルとしての応用が期待されるホウ素ドープ半導体ナノワイヤ及びその製造方法に関するものである。   The present invention relates to a semiconductor nanowire obtained by doping boron into a semiconductor nanowire (main body) (hereinafter also referred to as boron-doped semiconductor nanowire) and a manufacturing method thereof, and more specifically, the next generation as disclosed in Patent Document 3. The present invention relates to a boron-doped semiconductor nanowire expected to be applied as a channel of a metal / oxide film / semiconductor field-effect transistor (MOSFET) having a vertical three-dimensional structure, and a method for manufacturing the same.

半導体バルクへ不純物をドープする技術は、半導体バルク特性を制御するために重要である。このような技術は、Si等において既に確立されており、主として、イオン注入法が用いられている。
一方、半導体ナノワイヤへ不純物をドープする技術も、同様にナノワイヤ特性を制御するために重要である(特許文献1、特許文献2)。ナノワイヤへ不純物をドープする技術としては、Si中に、アクセプタとなるホウ素(B)及びドナーとなるリン(P)をドープしたSiナノワイヤ(非特許文献1参照)、あるいは、Ge中に、同じくホウ素及びリンをドープしたGeナノワイヤをCVD法により得る方法が知られている(非特許文献2、非特許文献3参照)。
しかし、非特許文献2によれば、ホウ素をドーピングする際に、Si系ガス及び/又はGe系ガスとともにドーパントガスとしてジボラン(B)ガスを用いると、Siナノワイヤ、Geナノワイヤ、あるいはSiGeナノワイヤ表面への、Si及び/又はGeとホウ素との堆積を促進するため、成長軸方向(長さ方向)に対してテーパー(成長先端部が細く、成長開始部が太い)が生じ、成長軸方向に径の均一なナノワイヤを得ることができない。
The technique of doping impurities into the semiconductor bulk is important for controlling the semiconductor bulk characteristics. Such a technique has already been established in Si and the like, and an ion implantation method is mainly used.
On the other hand, the technique of doping semiconductor nanowires with impurities is also important for controlling the nanowire characteristics (Patent Documents 1 and 2). As a technique for doping impurities into the nanowire, Si nanowire doped with boron (B) serving as an acceptor and phosphorus (P) serving as a donor in Si (see Non-Patent Document 1), or similarly boron in Ge In addition, a method for obtaining Ge nanowire doped with phosphorus by a CVD method is known (see Non-Patent Document 2 and Non-Patent Document 3).
However, according to Non-Patent Document 2, when boron is doped, if diborane (B 2 H 6 ) gas is used as a dopant gas together with Si-based gas and / or Ge-based gas, Si nanowire, Ge nanowire, or SiGe In order to promote deposition of Si and / or Ge and boron on the nanowire surface, a taper (growth tip is thin and growth start is thick) occurs in the growth axis direction (length direction). Nanowires with a uniform diameter in the direction cannot be obtained.

本発明は、Bドーピングの際にドーパントガスとしてジボラン(B)ガスを用いても、半導体ナノワイヤ表面へのホウ素堆積が均一で、成長軸方向に径の均一なホウ素ドープ半導体ナノワイヤ及びその製造方法を提供することを目的とする。 The present invention relates to a boron-doped semiconductor nanowire having a uniform boron deposition on the surface of the semiconductor nanowire and having a uniform diameter in the growth axis direction even when diborane (B 2 H 6 ) gas is used as a dopant gas in the B doping. An object is to provide a manufacturing method.

〔発明の要約〕
上記目的を達成するため、本発明者らは種々検討したところ、半導体原料ガス(Si系ガスやGe系ガス)と、ドーパントガスのジボラン(B)ガスとを、同時ではなく別々に用いると、成長軸方向に径(太さ)の均一なホウ素ドープ半導体ナノワイヤが得られることを見出し、本発明を完成した。
すなわち、本発明は、成長軸方向に直径(太さ)の均一なホウ素ドープ半導体ナノワイヤを提供する。
また、本発明は、基板と、その基板上に立設されたホウ素ドープ半導体ナノワイヤとからなる基板付きホウ素ドープ半導体ナノワイヤも提供する。
更には、本発明は、次の工程を含んでいる、ホウ素ドープ半導体ナノワイヤの製造方法も提供する。
工程(1):半導体原料ガスを用いて、基板上にIV族半導体ナノワイヤを成長させる;
工程(2):ジボランガスのみを導入することにより、前記半導体ナノワイヤの表面にホウ素膜を堆積させる;
工程(3):表面にホウ素膜を堆積させた前記ホウ素膜付き半導体ナノワイヤを、半導体ナノワイヤ(本体)の融点以下の温度で熱アニールする。
[Summary of the Invention]
In order to achieve the above-mentioned object, the present inventors have made various studies. The semiconductor source gas (Si-based gas and Ge-based gas) and the dopant gas diborane (B 2 H 6 ) gas are not separately but separately. When used, it was found that a boron-doped semiconductor nanowire having a uniform diameter (thickness) in the growth axis direction was obtained, and the present invention was completed.
That is, the present invention provides a boron-doped semiconductor nanowire having a uniform diameter (thickness) in the growth axis direction.
The present invention also provides a boron-doped semiconductor nanowire with a substrate comprising a substrate and a boron-doped semiconductor nanowire standing on the substrate.
Furthermore, this invention also provides the manufacturing method of a boron dope semiconductor nanowire including the following processes.
Step (1): Group IV semiconductor nanowires are grown on a substrate using a semiconductor source gas;
Step (2): depositing a boron film on the surface of the semiconductor nanowire by introducing only diborane gas;
Step (3): The boron-coated semiconductor nanowire having a boron film deposited on the surface thereof is thermally annealed at a temperature not higher than the melting point of the semiconductor nanowire (main body).

本発明のナノワイヤは、成長軸方向に径が均一なホウ素ドープ半導体ナノワイヤであるので、次世代の縦型立体構造を有する金属・酸化膜・半導体電界効果型トランジスタ(MOSFET)のチャンネルとしての応用が期待できる。
本発明の製造方法によれば、半導体ナノワイヤ表面へのホウ素堆積が均一で、成長軸方向に径の均一なホウ素・ドープ半導体ナノワイヤを製造できる。また、本発明の製造方法は、(コストのかかる)リソグラフィーに代表されるトップダウン手法ではなく、(低コストの)ボトムアップ手法を用いるほか、イオン注入法によらず成長の際に同時にホウ素・ドーピングを行うので、安価なプロセスである。
Since the nanowire of the present invention is a boron-doped semiconductor nanowire having a uniform diameter in the growth axis direction, it can be applied as a channel of a metal / oxide film / semiconductor field effect transistor (MOSFET) having a next-generation vertical three-dimensional structure. I can expect.
According to the manufacturing method of the present invention, boron-doped semiconductor nanowires having a uniform boron deposition on the semiconductor nanowire surface and a uniform diameter in the growth axis direction can be manufactured. In addition, the manufacturing method of the present invention uses a bottom-up method (low cost) instead of a top-down method represented by (cost) lithography, and at the same time during the growth without using an ion implantation method, Doping is an inexpensive process.

3段階プロセスによる半導体ナノワイヤへのホウ素・ドーピングを説明する工程概略図。The process schematic explaining the boron doping to the semiconductor nanowire by a three-step process. ホウ素をドープする前のGeナノワイヤ(NW No.1)の走査型電子顕微鏡像。Scanning electron microscope image of Ge nanowire (NW No. 1) before doping with boron. 表面にホウ素を堆積したGeナノワイヤ(BCNW No.1)の走査型電子顕微鏡像。The scanning electron microscope image of Ge nanowire (BCNW No. 1) which deposited boron on the surface. 表面にホウ素を堆積したGeナノワイヤ(BCNW No.1)の透過電子顕微鏡像。The transmission electron microscope image of Ge nanowire (BCNW No. 1) which deposited boron on the surface. 表面にホウ素を堆積したGeナノワイヤをアニールした後のもの(BDNW/P No.3)の透過電子顕微鏡像。The transmission electron microscope image of the thing after annealing Ge nanowire which deposited boron on the surface (BDNW / P No. 3). 図5に対応するものの高分解能透過電子顕微鏡像。FIG. 6 is a high-resolution transmission electron microscope image corresponding to FIG. (a)は、(BCNW No.1)と(BDNW/P No.1、2、3)のラマン散乱スペクトルの測定例。(b)は(BDNW/P No.3)のGe中のホウ素局在振動ピーク付近の拡大図。(A) is a measurement example of the Raman scattering spectrum of (BCNW No. 1) and (BDNW / P No. 1, 2, 3). (B) is an enlarged view of the vicinity of a boron local vibration peak in Ge of (BDNW / P No. 3).

〔発明の更に詳しい説明〕
先ずは、本発明のホウ素ドープ半導体ナノワイヤの製造方法について詳しく説明する。前述の通り、本発明の製造方法は工程(1)〜(3)を含んでいる。
図1は、この3段階プロセスによる半導体ナノワイヤへのホウ素・ドーピングを説明する工程図であり、これらの工程は、真空チャンバー内で行われる。
図1に示すように、工程(1)は、基板1の上に金属触媒2を配置し、ボトムアップ式にて、基板1と金属触媒2との間に、成長軸方向に径が均一な(径の太さが3nm〜200nm程度)半導体ナノワイヤ3を形成させる工程である。
ここで用いる半導体原料ガスとしては、モノシラン(SiH)ガス、ジシラン(Si)ガス、トリシラン(Si)ガス、トリクロロシラン(SiHCl)ガス、テトラクロロシラン(SiCl)ガス、ゲルマン(GeH)ガス等を用いることができ、好ましくは、モノシラン(SiH)ガス、ジシラン(Si)ガス、ゲルマン(GeH)ガスである。
また、基板1としては、Si、Ge、SiO等を用いることができ、好ましくは、Si、Geである。
また、半導体ナノワイヤの成長に必要な金属触媒2として利用できる金属の種類としては、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、ガリウム(Ga)、アルミニウム(Al)等である。
[Detailed description of the invention]
First, the manufacturing method of the boron dope semiconductor nanowire of this invention is demonstrated in detail. As described above, the production method of the present invention includes steps (1) to (3).
FIG. 1 is a process diagram illustrating boron doping of semiconductor nanowires by this three-step process, and these processes are performed in a vacuum chamber.
As shown in FIG. 1, in the step (1), the metal catalyst 2 is disposed on the substrate 1 and the diameter is uniform in the growth axis direction between the substrate 1 and the metal catalyst 2 in a bottom-up manner. This is a step of forming the semiconductor nanowire 3 (having a diameter of about 3 nm to 200 nm).
As the semiconductor source gas used here, monosilane (SiH 4 ) gas, disilane (Si 2 H 6 ) gas, trisilane (Si 3 H 8 ) gas, trichlorosilane (SiHCl 3 ) gas, tetrachlorosilane (SiCl 4 ) gas, A germane (GeH 4 ) gas or the like can be used, and monosilane (SiH 4 ) gas, disilane (Si 2 H 6 ) gas, and germane (GeH 4 ) gas are preferable.
Further, Si, Ge, SiO 2 or the like can be used as the substrate 1, and Si or Ge is preferable.
The types of metals that can be used as the metal catalyst 2 necessary for the growth of semiconductor nanowires include gold (Au), platinum (Pt), silver (Ag), palladium (Pd), nickel (Ni), iron (Fe). Cobalt (Co), gallium (Ga), aluminum (Al), and the like.

工程(2)は、前記半導体ナノワイヤ3の表面に均一な厚みのホウ素膜4を形成する工程である。
ナノワイヤへドープされるホウ素の濃度は、ホウ素膜4の厚み(通常、1〜1000nm程度)により制御することができる。この膜厚さは、ホウ素膜原料であるジボランガスの供給量を、チャンバー内への流量及び時間を制御することで、所望の厚みにすることができる。因みに、ナノワイヤ中のホウ素の固溶度に相当するホウ素膜厚みが限界の膜厚であり、それ以上の厚膜のホウ素膜を堆積させても、ホウ素はナノワイヤの表面に残ってしまう。
Step (2) is a step of forming a boron film 4 having a uniform thickness on the surface of the semiconductor nanowire 3.
The concentration of boron doped into the nanowire can be controlled by the thickness of the boron film 4 (usually about 1 to 1000 nm). This thickness can be set to a desired thickness by controlling the flow rate and time of the diborane gas, which is a boron film raw material, into the chamber. Incidentally, the boron film thickness corresponding to the solid solubility of boron in the nanowire is the limit film thickness, and even if a thicker boron film is deposited, boron remains on the surface of the nanowire.

工程(3)は、半導体ナノワイヤ3に、ホウ素膜4からホウ素をドーピングする工程である。
ドーピング中の熱アニールの温度は、その半導体ナノワイヤ(本体)3の融点よりも低い温度(通常はその半導体ナノワイヤ本体の融点よりも50〜300℃低い温度、好ましくはその半導体ナノワイヤ本体の融点よりも50〜200℃低い温度)とする。この工程で、成長軸方向に径が均一な半導体ナノワイヤ中へホウ素がドープしていく。
なお、上記熱アニールの温度範囲を逸脱する場合、高温側ではナノワイヤの融解が起きて一次元構造を維持することが困難となる。一方、低温側にずれた場合には、ドーピングレートの低下が起こったり、或いは、ドープ自体が起こりにくくなる。
Step (3) is a step of doping the semiconductor nanowire 3 with boron from the boron film 4.
The temperature of the thermal annealing during doping is lower than the melting point of the semiconductor nanowire (main body) 3 (usually 50 to 300 ° C. lower than the melting point of the semiconductor nanowire main body, preferably higher than the melting point of the semiconductor nanowire main body. 50 to 200 ° C. lower temperature). In this step, boron is doped into the semiconductor nanowire having a uniform diameter in the growth axis direction.
When deviating from the temperature range of the thermal annealing, melting of the nanowire occurs on the high temperature side and it becomes difficult to maintain the one-dimensional structure. On the other hand, when it deviates to the low temperature side, the doping rate is lowered or the doping itself is difficult to occur.

工程(3)において、半導体ナノワイヤの直径方向(成長軸方向を横断する方向)におけるホウ素の分布(浸透深さ)は、熱アニールの温度及び時間を適宜制御して行なうことができる。
更に説明すれば、ホウ素膜厚さが一定の場合は、熱アニールの温度が高く、時間が長くなるほど、ホウ素の浸透深さが深くなる。
また、熱アニールの温度及び時間が一定の場合は、ホウ素膜厚さが厚くなるほど、ホウ素のドープ濃度が高くなる。
In step (3), the boron distribution (penetration depth) in the diameter direction of the semiconductor nanowire (direction crossing the growth axis direction) can be performed by appropriately controlling the temperature and time of thermal annealing.
More specifically, when the boron film thickness is constant, the thermal annealing temperature is higher and the longer the time, the deeper the boron penetration depth.
When the temperature and time of thermal annealing are constant, the boron doping concentration increases as the boron film thickness increases.

本発明で製造される半導体ナノワイヤ(本体)として好ましいものは、Si、Ge又はそれらの混晶であるSiGeのナノワイヤである。   A preferred semiconductor nanowire (main body) produced by the present invention is a SiGe nanowire that is Si, Ge, or a mixed crystal thereof.

上で述べた製造方法を用いて、本発明のホウ素ドープ半導体ナノワイヤ、すなわち、成長軸方向に直径(太さ)の均一なホウ素ドープ半導体ナノワイヤが得られる。
ここで、「ナノワイヤ」とは、ワイヤ径(太さ)が通常は3〜200nm、好ましくは3〜150nm、更に好ましくは5〜100nmであり、長さはワイヤ径の3倍以上のものを意味する。
また、「直径(太さ)の均一な」とは、ワイヤが先細りすることなく(換言すれば、テーパーが無い)、実質的に一定な太さを持つワイヤを意味する。定量的に表現すれば、ワイヤの最大径(通常はワイヤ成長起点側の端部)Rと、ワイヤの最小径(通常はワイヤ成長終点側の端部)rとの差が、ワイヤ長さ1μm(1000nm)当たりで通常は1nm未満(傾斜と見て表現すれば1/1000未満)、好ましくは0.6nm未満(傾斜6/10000未満)、更に好ましくは0.2nm未満(傾斜2/10000未満)、もっと好ましくは0.1nm未満(傾斜1/10000未満)である。
Using the manufacturing method described above, the boron-doped semiconductor nanowire of the present invention, that is, a boron-doped semiconductor nanowire having a uniform diameter (thickness) in the growth axis direction can be obtained.
Here, the “nanowire” means that the wire diameter (thickness) is usually from 3 to 200 nm, preferably from 3 to 150 nm, more preferably from 5 to 100 nm, and the length is more than 3 times the wire diameter. To do.
Further, “uniform in diameter (thickness)” means a wire having a substantially constant thickness without being tapered (in other words, having no taper). Expressed quantitatively, the difference between the maximum wire diameter (usually, the end on the wire growth start side) R and the minimum wire diameter (usually the end on the wire growth end side) r is the wire length of 1 μm. Usually less than 1 nm per (1000 nm) (less than 1/1000 in terms of inclination), preferably less than 0.6 nm (inclination less than 6/10000), more preferably less than 0.2 nm (inclination less than 2/10000) ), More preferably less than 0.1 nm (tilt less than 1/10000).

ホウ素ドープGeナノワイヤの製造例
工程(1)
Geナノワイヤの成長はCVD装置を用いて行った。図1のステップ(1)に示すように、1次元成長に必要な金属触媒の1−デカンチオール修飾金コロイド2を分散したSi基板1を、CVD装置の超高真空チャンバー(真空度:5×10−6〜5×10−7Pa、容積:24L)に入れ、基板温度を30×10℃に設定し、原料ガスであるゲルマン(GeH)ガスを10sccmの流量で導入した。GeHガス導入後の真空チャンバー内の圧力は、1×10−2Paから1×10Paの範囲であった。Si基板1と金コロイド2の間にGeナノワイヤ3がエピタキシャルに成長した。得られたGeナノワイヤの一例(NWNo.1)の走査型電子顕微鏡像を図2に示す。図2に示すように、長さ10μm以上(太さは50〜60nm)のGeナノワイヤが得られた。
更に、種々のチャンバー内圧力で調製したGeナノワイヤを走査型電子顕微鏡像に基づいて、所定の長さにおける最大直径R(根元側;nm)及び最小直径r(先端側;nm)と、それから計算した(R−r)/L(nm/μm)を表1に示した。表1から、最大直径Rと最小直径rの径の違いは1nmの範囲内に収まっていると共に、(R−r)/L(nm/μm)は1未満であることが分かる。
Example of manufacturing boron-doped Ge nanowires Step (1)
The growth of Ge nanowires was performed using a CVD apparatus. As shown in step (1) of FIG. 1, a Si substrate 1 in which a metal catalyst 1-decanethiol-modified gold colloid 2 necessary for one-dimensional growth is dispersed is applied to an ultrahigh vacuum chamber (vacuum degree: 5 ×) of a CVD apparatus. 10 −6 to 5 × 10 −7 Pa, volume: 24 L), the substrate temperature was set to 30 × 10 ° C., and germane (GeH 4 ) gas as a raw material gas was introduced at a flow rate of 10 sccm. The pressure in the vacuum chamber after introducing the GeH 4 gas was in the range of 1 × 10 −2 Pa to 1 × 10 3 Pa. Ge nanowires 3 were epitaxially grown between the Si substrate 1 and the gold colloid 2. A scanning electron microscope image of an example (NW No. 1) of the obtained Ge nanowire is shown in FIG. As shown in FIG. 2, Ge nanowires having a length of 10 μm or more (thickness: 50 to 60 nm) were obtained.
Further, Ge nanowires prepared at various chamber pressures are calculated from the maximum diameter R (root side; nm) and minimum diameter r (tip side; nm) at a predetermined length based on scanning electron microscope images. (R−r) / L (nm / μm) is shown in Table 1. From Table 1, it can be seen that the difference between the maximum diameter R and the minimum diameter r is within the range of 1 nm, and (R−r) / L (nm / μm) is less than 1.

工程(2)
次いで、基板温度300℃に保った状態で、ジボラン(B)ガスを10sccmの流量で導入し(Bガスの供給時間:15min及び10min)、Geナノワイヤの表面上にホウ素を堆積させた。得られたホウ素膜被覆ナノワイヤの走査型電子顕微鏡像から、所定の長さにおける最大直径R及び最小直径rを測り、それから(R−r)/L(nm/μm)を求めた結果を表2に示した。また、図3及び図4に、そのうちの一つのサンプル(BCNW No.1)の走査型電子顕微鏡及び透過電子顕微鏡像を夫々示した。
図2に比べて、図3ではホウ素が堆積した分、Geナノワイヤの直径が太くなっている(太さは80〜100nm)のが分かる。
Process (2)
Next, with the substrate temperature kept at 300 ° C., diborane (B 2 H 6 ) gas was introduced at a flow rate of 10 sccm (B 2 H 6 gas supply time: 15 min and 10 min), and boron was introduced onto the surface of the Ge nanowire. Deposited. Table 2 shows the results obtained by measuring the maximum diameter R and the minimum diameter r at a predetermined length from the scanning electron microscope image of the obtained boron film-coated nanowire, and calculating (R−r) / L (nm / μm) therefrom. It was shown to. 3 and 4 show a scanning electron microscope image and a transmission electron microscope image of one of the samples (BCNW No. 1), respectively.
Compared to FIG. 2, in FIG. 3, it can be seen that the diameter of the Ge nanowire is thicker (the thickness is 80 to 100 nm) by the amount of boron deposited.

工程3
最後に、Geナノワイヤ表面に堆積したホウ素をGeナノワイヤの結晶領域に導入し、かつ、電気的に活性化するために、Geの融点温度960℃を越えない高い温度800℃で加熱(アニール)した。そのときの条件及び結果を表3に示す。更に、図5に一つのサンプル(BDNW/P No.3)のアニール後の透過電子顕微鏡像を、また図6には図5に対応するものの高分解能透過電子顕微鏡像を示した。
成長軸方向への径の均一度を調べた結果では、最大直径Rと最小直径rとの差は2nmの範囲内に収まり、(R−r)/L(nm/μm)は約0.1(nm/μm)であった。
Process 3
Finally, boron deposited on the surface of the Ge nanowire was introduced into the crystalline region of the Ge nanowire and heated (annealed) at a high temperature of 800 ° C. not exceeding the melting point of Ge of 960 ° C. in order to be electrically activated. . Table 3 shows the conditions and results at that time. Further, FIG. 5 shows a transmission electron microscope image of one sample (BDNW / P No. 3) after annealing, and FIG. 6 shows a high-resolution transmission electron microscope image corresponding to FIG.
As a result of examining the uniformity of the diameter in the growth axis direction, the difference between the maximum diameter R and the minimum diameter r is within a range of 2 nm, and (R−r) / L (nm / μm) is about 0.1. (Nm / μm).


因みに、従来の報告例を見ると、2.5μmの長さのBドープGeナノワイヤの成長を行った場合に、最小直径r(先端側)が約50nm、最大直径R(根元側)が約500nmで、その差は約450nmであった。したがって、この場合の(R−r)/L(nm/μm)は約4.0(nm/μm)と計算された。

Incidentally, when a conventional report example is seen, when a B-doped Ge nanowire having a length of 2.5 μm is grown, the minimum diameter r (tip side) is about 50 nm, and the maximum diameter R (root side) is about 500 nm. The difference was about 450 nm. Therefore, (R−r) / L (nm / μm) in this case was calculated to be about 4.0 (nm / μm).

(ラマン散乱測定による評価)
Geナノワイヤ中にホウ素が実際にドープされ、電気的に活性化されているかを明らかにするためにラマン散乱測定を行った(図7)。アニール前は280cm−1にブロードなピークが観測されているだけであるが、アニール時間が増大するに伴って、300cm−1付近にシャープなピークが観測されるようになった。これはGeの光学フォノンピークであり、アニールにより結晶性が向上したことを示している。また、アニールに伴って546.3cm−1の位置にピークが観測されるようになった。このピークはGe中のホウ素局在振動ピークであり、ホウ素が確かにGeナノワイヤ中の結晶領域のGe置換位置にドープされたこと(p型ドーピングが達成されたこと)を示している。
(Evaluation by Raman scattering measurement)
Raman scattering measurements were performed to determine if boron was actually doped and electrically activated in the Ge nanowires (FIG. 7). Before the annealing, only a broad peak was observed at 280 cm −1 , but as the annealing time increased, a sharp peak was observed in the vicinity of 300 cm −1 . This is an optical phonon peak of Ge and indicates that the crystallinity is improved by annealing. Further, a peak was observed at a position of 546.3 cm −1 with the annealing. This peak is a boron local vibration peak in Ge, which shows that boron was indeed doped at the Ge substitution position of the crystalline region in the Ge nanowire (p-type doping was achieved).

Si集積回路の技術的な発展は、金属・酸化膜・半導体電界効果型トランジスタ(MOSFET)の微細化によってなされてきたが、従来通りのスケール則に従った素子寸法の微細化による高機能・高集積化には限界が指摘されている。これを打破する次世代半導体デバイス構造として、縦型立体構造を有するトランジスタが提案されている。
ナノワイヤの細い伝導チャネルを取り囲むようにソース、ゲート、ドレイン電極を垂直に配置した縦型構造では、トランジスタの高密度化・短チャンネル化が図れるとともに、ゲートからの電場をチャンネル周りの全ての方向から制御できる。そのため、チャンネル中のキャリア密度を効率的に制御でき、超低消費電力FETの実現に繋がると期待されている。
本発明で得られた基板(電極)付きのホウ素ドープGeナノワイヤ(BDNW/P No.1〜4)に他方の電極を、ホウ素ドープGeナノワイヤを挟み込むようにして取り付ければ、特許文献3に示すような縦型電界効果トランジスタを構成することができる。
このような素子において、その構成要素としての本発明のホウ素ドープ半導体(特に、Si、Ge、又はそれらの混晶であるSiGe)ナノワイヤが重要な役割を果たす。また、上記した本発明の縦型電界効果トランジスタは、素子の性能にばらつきのない安定した動作を可能にするであろう。
The technological development of Si integrated circuits has been made by miniaturization of metal, oxide film, and semiconductor field effect transistor (MOSFET), but it has high functionality and high performance by miniaturizing element dimensions according to the conventional scaling rule. There are limits to integration. As a next-generation semiconductor device structure that overcomes this problem, a transistor having a vertical three-dimensional structure has been proposed.
In the vertical structure in which the source, gate, and drain electrodes are vertically arranged so as to surround the narrow conduction channel of the nanowire, the density of the transistor can be increased and the channel length can be reduced, and the electric field from the gate can be observed from all directions around the channel. Can be controlled. Therefore, it is expected that the carrier density in the channel can be controlled efficiently, leading to the realization of an ultra low power consumption FET.
If the other electrode is attached to the boron-doped Ge nanowire (BDNW / P No. 1 to 4) with the substrate (electrode) obtained in the present invention so as to sandwich the boron-doped Ge nanowire, as shown in Patent Document 3 A vertical field effect transistor can be formed.
In such an element, the boron-doped semiconductor of the present invention (particularly, Si, Ge, or a mixed crystal thereof, SiGe) nanowires plays an important role. In addition, the vertical field effect transistor of the present invention described above will enable stable operation with no variation in device performance.

1:基板(Si基板)
2:金属触媒
3:半導体(Ge)ナノワイヤ
4:ホウ素(B)膜
5:ホウ素ドープ半導体(Ge)ナノワイヤ
1: Substrate (Si substrate)
2: Metal catalyst 3: Semiconductor (Ge) nanowire 4: Boron (B) film 5: Boron doped semiconductor (Ge) nanowire

特開2008−212920JP2008-212920 特開2008−177539JP 2008-177539 A 再表2006/038504Table 2006/038504

Y. Wang et al: Nano Lett. vol.5, 2139(2005)Y. Wang et al: Nano Lett. vol. 5, 2139 (2005) E. Tutuc et al: Appl. Phys. Lett. vol.88, 043113(2006)E. Tutuc et al: Appl. Phys. Lett. vol. 88, 043113 (2006) E. Tutuc et al: Appl. Phys. Lett. vol.89, 263101(2006).E. Tutuc et al: Appl. Phys. Lett. vol. 89, 263101 (2006).

Claims (6)

成長軸方向に直径の均一なホウ素ドープ半導体ナノワイヤ。   Boron-doped semiconductor nanowires with uniform diameter in the growth axis direction. ナノワイヤの直径をnmで表すときに、その直径の最大値(R)と最小値(r)との差(R−r)が、ナノワイヤの長さ1μm当たり1nm未満である、請求項1のホウ素ドープ半導体ナノワイヤ。   The boron of claim 1, wherein when the nanowire diameter is expressed in nm, the difference (R−r) between the maximum value (R) and the minimum value (r) of the diameter is less than 1 nm per 1 μm length of the nanowire. Doped semiconductor nanowires. 半導体ナノワイヤの本体は、Si、Ge若しくはSiGeナノワイヤである、請求項1又は2のホウ素ドープ半導体ナノワイヤ。 The boron-doped semiconductor nanowire of claim 1 or 2, wherein the body of the semiconductor nanowire is a Si, Ge or SiGe nanowire. 基板と、その基板上に立設された請求項1〜3のいずれかのホウ素ドープ半導体ナノワイヤと、からなる基板付きホウ素ドープ半導体ナノワイヤ。   A boron-doped semiconductor nanowire with a substrate, comprising: a substrate; and the boron-doped semiconductor nanowire according to any one of claims 1 to 3 erected on the substrate. 次の工程を含んでいる、ホウ素ドープ半導体ナノワイヤの製造方法。
工程(1):半導体原料ガスを用いて、基板上にIV族半導体ナノワイヤ本体を成長させる;
工程(2):ジボランガスのみを導入することにより、前記半導体ナノワイヤ本体の表面にホウ素膜を堆積させる;
工程(3):表面にホウ素膜を堆積させた前記ホウ素膜付き半導体ナノワイヤを、半導体ナノワイヤ本体の融点以下の温度で熱アニールする。
A method for producing a boron-doped semiconductor nanowire, comprising the following steps.
Step (1): Growing a group IV semiconductor nanowire body on a substrate using a semiconductor source gas;
Step (2): depositing a boron film on the surface of the semiconductor nanowire body by introducing only diborane gas;
Step (3): The boron-coated semiconductor nanowire having a boron film deposited on the surface thereof is thermally annealed at a temperature not higher than the melting point of the semiconductor nanowire body.
堆積するホウ素膜の厚みの制御は、ジボランガスの流量及び時間を制御して行なう、請求項5の製造方法。

6. The method according to claim 5, wherein the thickness of the boron film to be deposited is controlled by controlling the flow rate and time of diborane gas.

JP2009236883A 2008-11-20 2009-10-14 Boron doped semiconductor nanowire and manufacturing method thereof Pending JP2010153791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236883A JP2010153791A (en) 2008-11-20 2009-10-14 Boron doped semiconductor nanowire and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008296940 2008-11-20
JP2009236883A JP2010153791A (en) 2008-11-20 2009-10-14 Boron doped semiconductor nanowire and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010153791A true JP2010153791A (en) 2010-07-08

Family

ID=42572512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236883A Pending JP2010153791A (en) 2008-11-20 2009-10-14 Boron doped semiconductor nanowire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010153791A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956237A (en) * 2010-09-30 2011-01-26 安徽工业大学 Calcium germinate nanowire and preparation method thereof
US9190605B2 (en) 2012-01-10 2015-11-17 Samsung Electronics Co., Ltd. Nanopiezoelectric generator and method of manufacturing the same
JP2021533573A (en) * 2018-08-11 2021-12-02 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Doping technology
CN115215340A (en) * 2021-04-19 2022-10-21 四川物科金硅新材料科技有限责任公司 Nano silicon wire and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178127A (en) * 1989-12-06 1991-08-02 Seiko Instr Inc Manufacture of soi substrate
JP2008252086A (en) * 2007-03-12 2008-10-16 Interuniv Micro Electronica Centrum Vzw Tunnel field-effect transistor with gated tunnel barrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178127A (en) * 1989-12-06 1991-08-02 Seiko Instr Inc Manufacture of soi substrate
JP2008252086A (en) * 2007-03-12 2008-10-16 Interuniv Micro Electronica Centrum Vzw Tunnel field-effect transistor with gated tunnel barrier

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CSNC201008100681; 齋藤直之,他6名: '"イオン注入によるSiナノワイヤへの不純物ドーピングと電気的活性化"' 第69回応用物理学会学術講演会講演予稿集 Vol.2, 20080902, P.683, 社団法人応用物理学会 *
JPN6014006128; 齋藤直之,他6名: '"イオン注入によるSiナノワイヤへの不純物ドーピングと電気的活性化"' 第69回応用物理学会学術講演会講演予稿集 Vol.2, 20080902, P.683, 社団法人応用物理学会 *
JPN7014000519; Andrew B. Greytak et al.: '"Growth and transport properties of complementary germanium nanowire field-effect transistors"' Applied Physics Letters Vol.84, 20040506, P.4176, American Institute of Physics *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956237A (en) * 2010-09-30 2011-01-26 安徽工业大学 Calcium germinate nanowire and preparation method thereof
CN101956237B (en) * 2010-09-30 2013-01-09 安徽工业大学 Calcium germinate nanowire and preparation method thereof
US9190605B2 (en) 2012-01-10 2015-11-17 Samsung Electronics Co., Ltd. Nanopiezoelectric generator and method of manufacturing the same
JP2021533573A (en) * 2018-08-11 2021-12-02 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Doping technology
CN115215340A (en) * 2021-04-19 2022-10-21 四川物科金硅新材料科技有限责任公司 Nano silicon wire and preparation method thereof

Similar Documents

Publication Publication Date Title
Schmidt et al. Growth, thermodynamics, and electrical properties of silicon nanowires
Krylyuk et al. Tapering control of Si nanowires grown from SiCl4 at reduced pressure
Geng et al. Graphene single crystals: size and morphology engineering
JP4866534B2 (en) Improved deposition method for semiconductor films.
Wang et al. Epitaxial growth of silicon nanowires using an aluminium catalyst
Wu et al. Synthesis and electrical and mechanical properties of silicon and germanium nanowires
JP4773413B2 (en) Semiconductor wafer and method for manufacturing semiconductor wafer
He et al. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range
JP4728953B2 (en) Method for depositing polycrystalline Si-containing film
US20080152938A1 (en) Group iv nanoparticles and films thereof
Zhao et al. A low cost, green method to synthesize GaN nanowires
TW200936494A (en) Controlled doping of semiconductor nanowires
JP2010153791A (en) Boron doped semiconductor nanowire and manufacturing method thereof
Baik et al. High-yield TiO2 nanowire synthesis and single nanowire field-effect transistor fabrication
Kim et al. Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films
Cui et al. Optical and field emission properties of layer-structure GaN nanowires
TW200832529A (en) Formation of in-situ phosphorus doped epitaxial layer containing silicon and carbon
Zhang et al. Controlling catalyst-free formation and hole gas accumulation by fabricating Si/Ge Core–Shell and Si/Ge/Si Core− Double shell nanowires
Hasenöhrl et al. Zinc-doped gallium phosphide nanowires for photovoltaic structures
Lee et al. Device fabrication with solid–liquid–solid grown silicon nanowires
US20060040477A1 (en) Method and apparatus for forming expitaxial layers
Kendrick et al. Uniform p-type doping of silicon nanowires synthesized via vapor-liquid-solid growth with silicon tetrachloride
JP4165073B2 (en) Epitaxial silicon single crystal wafer and manufacturing method thereof
Xue et al. A study on self-assembled GaN nanobelts by a new method: structure, morphology, composition, and luminescence
Wang et al. Enhancement of p-type conductivity of monolayer hexagonal boron nitride by driving Mg incorporation through low-energy path with N-rich condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805