JP2010151700A - Apparatus and method for measuring electric field - Google Patents

Apparatus and method for measuring electric field Download PDF

Info

Publication number
JP2010151700A
JP2010151700A JP2008331763A JP2008331763A JP2010151700A JP 2010151700 A JP2010151700 A JP 2010151700A JP 2008331763 A JP2008331763 A JP 2008331763A JP 2008331763 A JP2008331763 A JP 2008331763A JP 2010151700 A JP2010151700 A JP 2010151700A
Authority
JP
Japan
Prior art keywords
electric field
suspension
measuring
field sensor
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008331763A
Other languages
Japanese (ja)
Inventor
Naohito Okubo
尚人 大久保
Sadayuki Endo
禎行 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008331763A priority Critical patent/JP2010151700A/en
Publication of JP2010151700A publication Critical patent/JP2010151700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus that facilitates evaluating easiness of charging of a suspension containing powder and solvent. <P>SOLUTION: An insulative glass tube 1, a conductive beaker 5 for reserving the suspension of the powder and the solvent, a grounded conductive pipe 7 for coupling a measurement pipe 1 with the beaker 5, an electric field sensor 2 provided in the vicinity of the glass tube 1, an electric field shielding case 4 surrounding the glass tube 1 and the electric field sensor 2, and a pump 6 for causing the suspension to circulate and flow are provided. Electric field intensity of the suspension flowing in the glass tube 1 is measured by the electric field sensor 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉体及び溶剤を含む懸濁液の流動により生じる電界強度を測定する装置並びに方法等に関するものである。   The present invention relates to an apparatus and method for measuring the electric field strength generated by the flow of a suspension containing powder and a solvent.

化学工業の分野等で用いられる撹拌槽では、撹拌過程や混合過程において、撹拌槽内の内容物の相対運動等によって静電気が発生することがある。この静電気は、撹拌槽内の内容物が溶解性の低い粉体(固体)と導電性の低い溶剤(液体)との懸濁液である場合に著しく発生し、導電性の低い内容物に蓄積されて、静電気帯電を引き起こす。   In a stirring tank used in the field of chemical industry and the like, static electricity may be generated by the relative movement of the contents in the stirring tank during the stirring process and the mixing process. This static electricity is remarkably generated when the content in the agitation tank is a suspension of a low-solubility powder (solid) and a low-conductivity solvent (liquid), and accumulates in the low-conductivity content. Cause electrostatic charge.

また、撹拌槽内の内容物が付着したり、撹拌槽が腐食することを防止するために、撹拌槽の鋼鉄製のタンクの内壁にガラス等の絶縁性材料がコーティング(被覆)されることもよくある。このような内壁にガラスがコーティングされた撹拌槽(以下、「GL撹拌槽」と記載することがある)では、溶解性の低い粉体と溶剤との撹拌や混合によって生じた静電気によって、コーティング層(ガラス層)に絶縁破壊が生じることがあった。すなわち、上記コーティング層に蓄積された電荷によって生じたコーティング層間の電圧が破壊電圧を超えると、絶縁破壊が生じ、コーティング層にピンホールや欠けが発生したり、コーティング材料が剥離するといった破壊現象が生じることがある。   In addition, in order to prevent the contents in the agitation tank from adhering or corrosion of the agitation tank, an insulating material such as glass is coated on the inner wall of the steel tank of the agitation tank. Often. In such an agitation tank in which glass is coated on the inner wall (hereinafter sometimes referred to as “GL agitation tank”), a coating layer is formed by static electricity generated by agitation and mixing of a powder having low solubility and a solvent. Dielectric breakdown sometimes occurred in the (glass layer). In other words, when the voltage between the coating layers generated by the charge accumulated in the coating layer exceeds the breakdown voltage, dielectric breakdown occurs, pinholes and chips occur in the coating layer, and the breakdown phenomenon such as peeling of the coating material occurs. May occur.

そこで、上記のような静電気を防止するために、前記粉体や溶剤等の内容物の帯電量を測定する技術がこれまで種々提案されている。例えば、撹拌槽内の内容物の帯電量を測定方法として、撹拌槽の外表面を導電シートで被覆するとともに、導電シートの一部を切り取って内壁を形成する絶縁性材料を露出させ、この露出部に電界センサを設けて、撹拌槽内の撹拌されている内容物の電界強度を電界センサによって測定する技術が提案されている(特許文献1)。
特開2005-241375
In order to prevent the static electricity as described above, various techniques for measuring the charge amount of the contents such as the powder and the solvent have been proposed. For example, as a method of measuring the amount of charge of the contents in the stirring tank, the outer surface of the stirring tank is covered with a conductive sheet, and a part of the conductive sheet is cut out to expose the insulating material that forms the inner wall. There has been proposed a technique in which an electric field sensor is provided in the section, and the electric field strength of the contents being stirred in the stirring tank is measured by the electric field sensor (Patent Document 1).
JP2005-241375

上記提案技術によれば、撹拌槽のどの部分が帯電しやすいかを電界強度によって予測することはできるものの、撹拌されている内容物そのものの帯電のしやすさを評価するには十分ではなかった。   According to the proposed technique, it is possible to predict which part of the stirring tank is likely to be charged based on the electric field strength, but it is not sufficient to evaluate the ease of charging of the stirred contents themselves. .

そこで本発明の目的は、粉体及び溶剤を含む懸濁液の帯電のしやすさを評価できる電界測定装置及び電界測定方法を提供することにある。   Accordingly, an object of the present invention is to provide an electric field measuring device and an electric field measuring method capable of evaluating the easiness of charging of a suspension containing powder and a solvent.

前記目的を達成する本発明の電界測定装置は、絶縁性の測定用管と、粉体及び溶剤を含む懸濁液を貯留する導電性の容器と、前記測定用管及び前記容器を結ぶ接地された導電性の配管と、前記測定用管の近傍に設けられた電界センサと、少なくとも前記測定用管を囲繞する電界遮蔽ケースと、前記の懸濁液を循環流動させるポンプとを備え、前記測定用管内を流動する前記の懸濁液の電界強度を電界センサによって測定することを特徴とする。   An electric field measuring apparatus according to the present invention that achieves the above object includes an insulating measuring tube, a conductive container that stores a suspension containing powder and a solvent, and a ground that connects the measuring tube and the container. A conductive pipe, an electric field sensor provided in the vicinity of the measurement pipe, an electric field shielding case surrounding at least the measurement pipe, and a pump for circulating and flowing the suspension. The electric field strength of the suspension flowing in the working tube is measured by an electric field sensor.

また本発明の電界測定方法は、粉体及び溶剤を含む懸濁液の循環流動状態における電界強度を測定方法であって、接地された導電性の配管から構成される循環路の途中に、電界遮蔽ケースで囲繞された絶縁性の測定用管を設け、前記の懸濁液を循環流動させて、測定用管内を流動する前記の懸濁液の電界強度を電界センサによって測定することを特徴とする。   The electric field measurement method of the present invention is a method for measuring the electric field strength in a circulating flow state of a suspension containing powder and a solvent, and the electric field is measured in the middle of a circulation path composed of a grounded conductive pipe. An insulating measurement tube surrounded by a shielding case is provided, the suspension is circulated and the electric field strength of the suspension flowing in the measurement tube is measured by an electric field sensor. To do.

ここで、測定精度をより向上させる観点からは、前記電界遮蔽ケース内に乾燥不活性ガスを充填するのが好ましい。   Here, from the viewpoint of further improving the measurement accuracy, it is preferable to fill the electric field shielding case with a dry inert gas.

本発明の電界測定装置及び電界測定方法によれば、粉体と溶剤との懸濁液の帯電のしやすさを容易に評価できるようになる。   According to the electric field measuring apparatus and electric field measuring method of the present invention, it becomes possible to easily evaluate the ease of charging of a suspension of powder and solvent.

以下、本発明に係る電界測定装置及び電界測定方法について図面に基づきさらに詳しく説明するが、本発明はこれらの実施形態に何ら限定されるものではない。   Hereinafter, the electric field measurement apparatus and the electric field measurement method according to the present invention will be described in more detail based on the drawings, but the present invention is not limited to these embodiments.

図1に、本発明に係る電界測定装置の一例を示す概説図を示す。図1の電界測定装置は、貯留容器としてのステンレス鋼製(導電性)のビーカー5と、測定用管としてのガラス管(絶縁性)1と、循環ポンプ6と、これらを接続し循環路を形成する導電性の配管7とを備える。ガラス管1の近接位置には電界センサ2が設けられ、電界センサ2にはアナログ/デジタル変換器(以下、「A/D変換器」と記載する)3が接続されている。そして、外部電界の影響を避けるため、ガラス管1及び電界センサ2はステンレス鋼製(導電性)の電気遮断ケース4で囲繞されている。また、湿度等の影響を避けるため、電気遮断ケース4内には乾燥窒素を流通させている。   FIG. 1 is a schematic diagram showing an example of an electric field measuring apparatus according to the present invention. The electric field measuring device in FIG. 1 is a stainless steel (conductive) beaker 5 as a storage container, a glass tube (insulating) 1 as a measuring tube, a circulation pump 6, and a circulation path by connecting them. And a conductive pipe 7 to be formed. An electric field sensor 2 is provided near the glass tube 1, and an analog / digital converter (hereinafter referred to as “A / D converter”) 3 is connected to the electric field sensor 2. And in order to avoid the influence of an external electric field, the glass tube 1 and the electric field sensor 2 are enclosed by the electrical interruption case 4 made from stainless steel (conductive). In order to avoid the influence of humidity and the like, dry nitrogen is circulated in the electric shielding case 4.

ビーカー5は、測定対象である懸濁液を循環途中で一時貯留する役割を果たすと共に、粉体や溶剤を投入・混合する容器としての役割をも果たす。この図では示していないが、ビーカー5の外周部にヒータ等の発熱部材を設け、懸濁液を一定温度に保持するようにするのが好ましい。望ましい保持温度としては20〜30℃の範囲である。ビーカー5の材質は導電性であれば限定はなく、ステンレス鋼の他、従来公知の材料を用いることができる。図1の装置では、ビーカー5に接続した導電性の配管7を接地することによって、ビーカー5を接地しているが、ビーカー5から直接接地してももちろん構わない。また安全性の観点などからは、ビーカー5内を窒素などの不活性ガスで置換しておくことが望ましい。   The beaker 5 plays a role of temporarily storing the suspension to be measured in the middle of circulation and also serving as a container for charging and mixing powder and solvent. Although not shown in this figure, it is preferable to provide a heating member such as a heater on the outer periphery of the beaker 5 so that the suspension is kept at a constant temperature. A desirable holding temperature is in the range of 20 to 30 ° C. The material of the beaker 5 is not limited as long as it is conductive, and conventionally known materials can be used in addition to stainless steel. In the apparatus of FIG. 1, the beaker 5 is grounded by grounding the conductive pipe 7 connected to the beaker 5. From the viewpoint of safety, it is desirable to replace the beaker 5 with an inert gas such as nitrogen.

測定用管としてのガラス管1は、その厚みに特に限定はないが、通常は0.3mm〜5mmの範囲が好ましい。ガラス管1が5mm以下であると電界強度の測定感度に優れる傾向にあり、0.3mm以上であると電界強度の測定が容易になる傾向があることから好ましい。また、ガラス管1の長さとしては2cm〜30cmの範囲が好ましい。ガラス管1が短いと電界強度の測定感度が鈍くなる一方、長いと電界強度が大きくなりすぎ測定できないおそれがあるからである。なお、本実施形態では測定用管としてガラス管を用いているが、絶縁性を有する管であればこれに限定されるものではなく従来公知のものが使用できる。ただし、測定用管内の液循環状態や内周壁への粉体の付着状態などを外部から観察できるようにするためには、透明な材質からなるのが望ましい。   The thickness of the glass tube 1 as a measurement tube is not particularly limited, but a range of 0.3 mm to 5 mm is usually preferable. When the glass tube 1 is 5 mm or less, it tends to be excellent in the measurement sensitivity of the electric field strength, and when it is 0.3 mm or more, the measurement of the electric field strength tends to be easy. The length of the glass tube 1 is preferably in the range of 2 cm to 30 cm. This is because if the glass tube 1 is short, the measurement sensitivity of the electric field strength becomes dull, while if it is long, the electric field strength becomes too high and measurement may not be possible. In the present embodiment, a glass tube is used as a measurement tube, but the tube is not limited to this as long as it has an insulating property, and a conventionally known tube can be used. However, in order to be able to observe from the outside the liquid circulation state in the measuring tube and the adhesion state of the powder to the inner peripheral wall, it is desirable to be made of a transparent material.

本発明で使用する配管7は導電性を有し接地される。これによって、懸濁液が配管内を循環流動することによって生じた静電気が大地に流れ、配管7の帯電が防止される。配管7の材料としては例えば金属材料などが挙げられる。   The pipe 7 used in the present invention has conductivity and is grounded. Thereby, static electricity generated by circulating and flowing the suspension in the pipe flows to the ground, and the pipe 7 is prevented from being charged. Examples of the material of the pipe 7 include a metal material.

電界センサ2としては、表面電位計(例えば、春日電機製KSD−109,0202,0303)を電界強度測定用に較正したものが挙げられる。電界センサ2によって検出された測定値は、A/D変換器3で変換されて、必要により不図示のコンピュータに入力される。電界センサ2からガラス管1までの距離は、電界センサ2の種類やガラス管1の厚み・長さ等から適宜決定すればよいが、通常、0.5cm〜5cmの範囲が好ましい。距離が0.5cm以上であると電界強度の測定に優れる傾向にあり、距離が5cm以下であると電界強度の測定が容易になる傾向がある。なお、電界センサ2によって検出された測定値の電界強度への換算については後述する。   Examples of the electric field sensor 2 include those obtained by calibrating a surface potentiometer (for example, KSD-109, 0202, 0303 manufactured by Kasuga Denki) for electric field strength measurement. The measurement value detected by the electric field sensor 2 is converted by the A / D converter 3 and input to a computer (not shown) as necessary. The distance from the electric field sensor 2 to the glass tube 1 may be appropriately determined based on the type of the electric field sensor 2, the thickness / length of the glass tube 1, and the like, but usually a range of 0.5 cm to 5 cm is preferable. When the distance is 0.5 cm or more, the electric field strength tends to be excellent, and when the distance is 5 cm or less, the electric field strength tends to be easily measured. The conversion of the measured value detected by the electric field sensor 2 into the electric field strength will be described later.

本発明で使用する電界遮蔽ケース4は導電性を有し、少なくともガラス管1を覆い接地されていればよい。これにより、電界センサ2による測定に外部電界の影響が及ばないようにできる。電界遮蔽ケース4の材料としては、前述のステンレス鋼製の他、従来公知の材料が使用できる。また、前述のように電界遮蔽ケース4内には乾燥窒素などの乾燥不活性ガスを流通させる。乾燥不活性ガスの流通量は電界遮蔽ケース4の内容量等にもよるが、通常は、数十cm/min程度で足りる。 The electric field shielding case 4 used in the present invention only needs to be electrically conductive and cover at least the glass tube 1 and be grounded. Thereby, it is possible to prevent the external electric field from affecting the measurement by the electric field sensor 2. As a material for the electric field shielding case 4, a conventionally known material can be used in addition to the aforementioned stainless steel. Further, as described above, a dry inert gas such as dry nitrogen is circulated in the electric field shielding case 4. The flow rate of the dry inert gas depends on the internal capacity of the electric field shielding case 4 or the like, but is usually about several tens of cm 3 / min.

前記の懸濁液を循環流動させるポンプ6としては特に限定はなく、従来公知のものを使用できる。ポンプ6による液体の循環量は、前記懸濁液の場合には粉体が沈降せず均一に分散した状態を維持でき、且つ循環流動における圧損が過度に大きくならない範囲が好ましい。貯留容器としてビーカーを用いるような測定装置の場合には、上記循環量は通常100〜500cm/min程度が好ましい。 The pump 6 for circulating and flowing the suspension is not particularly limited, and a conventionally known pump can be used. The amount of liquid circulated by the pump 6 is preferably in the range where the powder does not settle and can be kept uniformly dispersed in the case of the suspension, and the pressure loss in the circulation flow does not become excessively large. In the case of a measuring apparatus using a beaker as a storage container, the circulation amount is preferably about 100 to 500 cm 3 / min.

以上のような構成の電界測定装置を用いて、粉体と溶剤との懸濁液の電界強度を測定する方法について次に説明する。懸濁液の電界強度を測定する場合を例に測定方法を説明する。まず、所定量の溶剤をビーカー5に入れる。そして、ポンプ6を起動し溶剤を循環させる。溶剤の循環中、ガラス管1の近傍に設置した電界センサ2で電界強度を測定し、電界センサ2の指示値がゼロ付近で安定するまで溶剤の循環を続ける。   Next, a method for measuring the electric field strength of a suspension of powder and solvent using the electric field measuring apparatus having the above configuration will be described. The measurement method will be described taking the case of measuring the electric field strength of the suspension as an example. First, a predetermined amount of solvent is put into the beaker 5. And the pump 6 is started and a solvent is circulated. During the circulation of the solvent, the electric field intensity is measured with the electric field sensor 2 installed in the vicinity of the glass tube 1, and the circulation of the solvent is continued until the indicated value of the electric field sensor 2 is stabilized near zero.

電界センサ2の指示値がゼロ付近で安定したら、次にビーカー5上部の開口部からステンレス鋼製の漏斗を用いて所定量の粉体を一括又は分散してビーカー5内に投入し所定濃度の懸濁液を作製する。懸濁液が循環し始めると電界センサ2の指示値は上昇してくるので、安定したところの最大値を読み取る。電界センサ2の指示値がマイナスの場合は絶対値をとる。   When the indicated value of the electric field sensor 2 is stabilized near zero, next, a predetermined amount of powder is collectively or dispersed from the opening at the top of the beaker 5 using a stainless steel funnel, and is put into the beaker 5 to have a predetermined concentration. Make a suspension. When the suspension starts to circulate, the indicated value of the electric field sensor 2 rises, so the maximum value at a stable position is read. When the indicated value of the electric field sensor 2 is negative, the absolute value is taken.

電界センサ2によって測定された指示値の電界強度への換算は、例えば、電界較正用電極を用いて得られた換算式によって行えばよい。具体的には、電界較正用電極は、図2(b)に示すように、接地された接地電極8aと、電圧が印加される板状の電圧印加電極8bとを、所定間隔dを隔てて互いに対向するように、ポスト92(図2(a))で固定してなるものである。接地電極8aは、中央部分に電界センサを配置するためのホール81が設けられ、かつ、ホール81よりも大きい長方形(20mm×90mmの大きさ)の開口部91を有する板状部材9が重ねられている。接地電極8aと電圧印加電極8bとは、ステンレス鋼等の導電性材料によって形成された板状の電極である。   The conversion of the indicated value measured by the electric field sensor 2 into the electric field intensity may be performed by, for example, a conversion formula obtained using an electric field calibration electrode. Specifically, as shown in FIG. 2 (b), the electric field calibration electrode includes a grounded ground electrode 8a and a plate-like voltage applying electrode 8b to which a voltage is applied at a predetermined interval d. They are fixed by posts 92 (FIG. 2 (a)) so as to face each other. The ground electrode 8 a is provided with a hole 81 for arranging an electric field sensor in the center portion, and a plate-like member 9 having an opening 91 of a rectangle (20 mm × 90 mm) larger than the hole 81 is overlaid. ing. The ground electrode 8a and the voltage application electrode 8b are plate-like electrodes formed of a conductive material such as stainless steel.

このような構成の電界較正用電極を用いて、換算式を導出するためには、まず、ホール81の位置にあわせて電界センサ(表面電位計)の検出部を配置して、電界センサを、板状部材9の長方形の開口部91から露出する部分に密着させる。そして、電圧印加電極8bに電圧Vapを印加し電界センサの指示値V’を読み取る。   In order to derive the conversion formula using the electric field calibration electrode having such a configuration, first, the detection unit of the electric field sensor (surface potential meter) is arranged in accordance with the position of the hole 81, and the electric field sensor is The plate member 9 is brought into close contact with the portion exposed from the rectangular opening 91. Then, the voltage Vap is applied to the voltage application electrode 8b to read the indicated value V 'of the electric field sensor.

ここで、接地電極8aと電圧印加電極8bとの間の距離はdであるので、両電極間の電界強度E’は、理論的には、下記式(1)で算出される。
E’=Vap/d ・・・・・・(1)
Here, since the distance between the ground electrode 8a and the voltage application electrode 8b is d, the electric field strength E ′ between the two electrodes is theoretically calculated by the following formula (1).
E ′ = Vap / d (1)

一方、電界センサの指示値V’は、原理的に式(1)の電界強度E’に比例するので、指示値V’と電界強度E’との間には、下記式(2)の関係がある。
d’=V’/E’ ・・・・・・(2)
On the other hand, since the indication value V ′ of the electric field sensor is in principle proportional to the electric field intensity E ′ of the equation (1), the relationship of the following equation (2) is present between the indication value V ′ and the electric field strength E ′. There is.
d '= V' / E '(2)

したがって、上記電界センサを用いて、電界測定装置の電界強度測定を行った場合、実測値V及び式(2)に基づいて、電界強度Eは下記式(3)で換算される。
E=V/d’ ・・・・・・(3)
ここで、式(3)中、d’は、電界較正用電極を用いて、式(2)によって決定される定数である。
Therefore, when the electric field intensity of the electric field measuring device is measured using the electric field sensor, the electric field intensity E is converted by the following equation (3) based on the actual measurement value V and equation (2).
E = V / d '(3)
Here, in Expression (3), d ′ is a constant determined by Expression (2) using the electric field calibration electrode.

このようにして測定された懸濁液の電界強度に基づいて、撹拌装置で撹拌した場合の帯電のしやすさを予測することができる。これにより、例えば、予測される電界強度がGL撹拌槽のコーティング層を絶縁破壊するほどに高い場合は、粉体や溶剤の濃度を低くして帯電を抑えるようにして問題の発生を未然に防ぐことができるようになる。   Based on the electric field strength of the suspension thus measured, it is possible to predict the ease of charging when the suspension is stirred. Thus, for example, when the predicted electric field strength is high enough to cause dielectric breakdown of the coating layer of the GL agitation tank, the occurrence of problems can be prevented by reducing the concentration of powder and solvent to suppress charging. Will be able to.

本発明の測定装置で測定できる粉体及び溶剤を含む懸濁液に限定はないが、例えば、有機粉体や無機粉体などの粉体と有機溶剤との懸濁液などが挙げられる。前記粉体としては、懸濁流に浮遊する粒子であって、通常、0.1μm〜5mmの範囲であり、好ましくは10μm〜1mmの範囲のものである。粉体の材質としてはポリエチレン、ポリプロピレンなどのポリマー;酸化防止剤や紫外線防止剤などの有機化合物;ガラス、シリカ、アルミナなどの無機化合物などが挙げられる。前記溶剤としては、ヘキサン、ヘプタン、トルエンなどの炭化水素溶媒;メタノール、エタノール、プロピレングリコール、ポリエチレングリコールなどのアルコール;テトラヒドロフラン、ジエチルエーテル、プロピレングリコールジメチルエーテルなどのエーテル;酢酸エチル、酢酸ブチル、γ−ブチロラクトンなどのエステル溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン溶媒;ジメチルスルホキシド、N−メチルピロリドンなどの非プロトン性極性溶媒;水などが挙げられる。溶剤は複数の溶剤の混合物であってもよい。   The suspension containing the powder and solvent that can be measured by the measuring apparatus of the present invention is not limited, and examples thereof include a suspension of a powder such as organic powder and inorganic powder and an organic solvent. The powder is particles suspended in a suspension flow and is usually in the range of 0.1 μm to 5 mm, preferably in the range of 10 μm to 1 mm. Examples of the material of the powder include polymers such as polyethylene and polypropylene; organic compounds such as antioxidants and UV inhibitors; inorganic compounds such as glass, silica, and alumina. Examples of the solvent include hydrocarbon solvents such as hexane, heptane, and toluene; alcohols such as methanol, ethanol, propylene glycol, and polyethylene glycol; ethers such as tetrahydrofuran, diethyl ether, and propylene glycol dimethyl ether; ethyl acetate, butyl acetate, and γ-butyrolactone. Ester solvents such as methyl ethyl ketone, ketone solvents such as methyl isobutyl ketone; aprotic polar solvents such as dimethyl sulfoxide and N-methylpyrrolidone; and water. The solvent may be a mixture of a plurality of solvents.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

(換算式の導出)
図2(a),(b)に示す電界較正用電極を用いて換算式を導出した。具体的には、250mm×300mm角のステンレス鋼製の接地電極8aと電圧印加電極8bとを、2.99mmの間隔を隔てて互いに対向するように、テフロン(登録商標)製の4つのポスト92で固定して電界較正用電極とした。この電界較正用電極の接地電極8aを接地するとともに、接地電極8aの中央に設けられたホール81に、電界センサの検出部の位置を合わせて配置し、電圧印加電極8bに電圧Vapを印加し、そのときの電界センサの指示値V’を読み取った。また、前記の式(2)から電界強度Eを算出した。表1に測定及び算出した結果を示す。
(Derivation of conversion formula)
A conversion formula was derived using the electric field calibration electrodes shown in FIGS. Specifically, the four posts 92 made of Teflon (registered trademark) are arranged so that the 250 mm × 300 mm square stainless steel ground electrode 8 a and the voltage applying electrode 8 b face each other with a spacing of 2.99 mm. The electrode for electric field calibration was fixed. The ground electrode 8a of the electric field calibration electrode is grounded, and the position of the detection portion of the electric field sensor is aligned in the hole 81 provided in the center of the ground electrode 8a, and the voltage Vap is applied to the voltage application electrode 8b. The indicated value V ′ of the electric field sensor at that time was read. Further, the electric field strength E was calculated from the above equation (2). Table 1 shows the measurement and calculation results.

図3に、電界センサーの指示値Vと電界強度Eとの関係を示す図を示す。図3から、下記の換算式が導出される。
E(kV/cm)=0.8219×V(kV)
FIG. 3 shows a relationship between the indicated value V of the electric field sensor and the electric field strength E. The following conversion formula is derived from FIG.
E (kV / cm) = 0.8219 x V (kV)

(実験例ア)
1000mLのステンレス鋼製のビーカーと、吐出量200mL/minの循環ポンプと、測定用管としてのガラス管(内径:4mm、外径:6mm、長さ100mm)と、電界センサとしての表面電位計(春日電機製「KSD−109」)とを用い、図1に示す測定装置を構成した。電界センサ及びガラス管をステンレス鋼製の電界遮蔽ケースで覆い、電界センサとガラス管との距離は1.0cmとした。
溶剤としてのヘプタン500mLをビーカーに入れ、循環ポンプを起動させてヘプタンを循環させ、ガラス管の近傍に設置した電界センサの指示値がゼロ付近で安定するまで循環を続けた。
(Experimental example a)
A 1000 mL stainless steel beaker, a circulation pump with a discharge rate of 200 mL / min, a glass tube (inner diameter: 4 mm, outer diameter: 6 mm, length 100 mm) as a measurement tube, and a surface electrometer as an electric field sensor ( The measuring apparatus shown in FIG. 1 was constructed using “KSD-109” manufactured by Kasuga Electric. The electric field sensor and the glass tube were covered with a stainless steel electric field shielding case, and the distance between the electric field sensor and the glass tube was 1.0 cm.
500 mL of heptane as a solvent was put into a beaker, the circulation pump was started to circulate heptane, and the circulation was continued until the indicated value of the electric field sensor installed in the vicinity of the glass tube was stabilized near zero.

電界センサの指示値がゼロ付近で安定したら、次にビーカー上部の開口部からステンレス鋼製の漏斗を用いて、濃度5wt%となるようにポリプロピレン粉体をビーカー内に投入し懸濁液を作製した。そして懸濁液を循環させ、安定したところの電界センサの指示値の最大値を読み取った。読み取った指示値から、前記換算式を用いて懸濁液の電界強度Eを算出した。結果を表2に示す。また図4に、粉体濃度と電界強度の関係を示す図を示す。   When the indicated value of the electric field sensor stabilizes near zero, next, using a stainless steel funnel from the opening at the top of the beaker, polypropylene powder is poured into the beaker to a concentration of 5 wt% to prepare a suspension. did. Then, the suspension was circulated, and the maximum value of the indicated value of the electric field sensor was read. From the read instruction value, the electric field strength E of the suspension was calculated using the conversion formula. The results are shown in Table 2. FIG. 4 shows a relationship between the powder concentration and the electric field strength.

(実験例イ〜キ)
表2に示す溶剤と粉体とを用いた以外は、実験例アと同様にして電界センサの指示値を読み取り、前記換算式から懸濁液の電界強度Eを算出した。結果を表2に合わせて示すと共に、図4に、粉体濃度と電界強度の関係を示す図を示す。
(Experimental examples I to K)
The indication value of the electric field sensor was read in the same manner as in Experimental Example A except that the solvent and powder shown in Table 2 were used, and the electric field strength E of the suspension was calculated from the above conversion formula. The results are shown in Table 2 and FIG. 4 shows a relationship between the powder concentration and the electric field strength.

表2及び図4から明らかなように、溶剤としてヘプタンを用いた場合には電界強度Eは高くなり、溶剤としてアセトンを用いた場合には電界強度Eはほとんどゼロであった。実験例キは、実際のGL撹拌槽において撹拌処理を行ってGL層が絶縁破壊を起こしたと同一条件のものである。したがって、図4における破線よりも上側に電界強度Eがあるもの、例えば実験例ア及び実験例イのヘプタンとポリプロピレン粉体との組み合わせは、実際のGL撹拌槽において撹拌処理を行うとGL層の絶縁破壊を起こす可能性が高いと推測される。   As apparent from Table 2 and FIG. 4, the electric field strength E was high when heptane was used as the solvent, and the electric field strength E was almost zero when acetone was used as the solvent. The experiment example has the same conditions as when the GL layer has undergone dielectric breakdown by stirring in an actual GL stirring tank. Therefore, the combination of heptane and polypropylene powder in the experimental example A and the experimental example I with the electric field intensity E above the broken line in FIG. It is estimated that there is a high possibility of causing dielectric breakdown.

本発明の電界測定装置は、粉体及び溶剤を含む懸濁液の帯電のしやすさを評価できるので、実際のGL撹拌槽におけるGL層の絶縁破壊等の発生を未然に防ぐことができ有用である。   Since the electric field measuring device of the present invention can evaluate the ease of charging of a suspension containing powder and solvent, it can be useful in preventing the occurrence of dielectric breakdown of the GL layer in an actual GL stirring tank. It is.

本発明に係る電界測定装置の一例を示す概説図である。It is an outline figure showing an example of an electric field measuring device concerning the present invention. 電界校正用の電極の上面図及び縦断面図である。It is the upper side figure and longitudinal cross-sectional view of the electrode for electric field calibration. 電界センサーの指示値Vと電界強度Eとの関係を示す図である。It is a figure which shows the relationship between the instruction | indication value V and electric field strength E of an electric field sensor. 懸濁液中の粉体濃度と電界強度との関係を示す図である。It is a figure which shows the relationship between the powder density | concentration in suspension and electric field strength.

符号の説明Explanation of symbols

1 ガラス管(試験用管)
2 電界センサ
4 電気遮蔽ケース
5 ビーカー(容器)
6 ポンプ
7 配管
1 Glass tube (test tube)
2 Electric field sensor 4 Electrical shielding case 5 Beaker (container)
6 Pump 7 Piping

Claims (4)

絶縁性の測定用管と、粉体及び溶剤を含む懸濁液を貯留する導電性の容器と、前記測定用管及び前記容器を結ぶ接地された導電性の配管と、前記測定用管の近傍に設けられた電界センサと、少なくとも前記測定用管を囲繞する電界遮蔽ケースと、前記の懸濁液を循環流動させるポンプとを備え、
前記測定用管内を流動する前記の懸濁液の電界強度を電界センサによって測定することを特徴とする電界測定装置。
Insulating measuring tube, conductive container for storing suspension containing powder and solvent, grounded conductive pipe connecting the measuring tube and the container, and the vicinity of the measuring tube An electric field sensor provided in the electric field, an electric field shielding case surrounding at least the measurement tube, and a pump for circulating and flowing the suspension,
An electric field measuring apparatus for measuring an electric field intensity of the suspension flowing in the measuring pipe by an electric field sensor.
前記電界遮蔽ケース内には乾燥不活性ガスが充填されている請求項1記載の電界測定装置。   The electric field measuring apparatus according to claim 1, wherein the electric field shielding case is filled with a dry inert gas. 粉体及び溶剤を含む懸濁液の循環流動状態における電界強度を測定方法であって、
接地された導電性の配管から構成される循環路の途中に、電界遮蔽ケースで囲繞された絶縁性の測定用管を設け、前記の懸濁液を循環流動させて、測定用管内を流動する前記の懸濁液の電界強度を電界センサによって測定することを特徴とする電界測定方法。
A method for measuring electric field strength in a circulating flow state of a suspension containing powder and a solvent,
An insulating measurement pipe surrounded by an electric field shielding case is provided in the middle of a circulation path composed of a grounded conductive pipe, and the suspension is circulated to flow through the measurement pipe. An electric field measuring method, wherein the electric field strength of the suspension is measured by an electric field sensor.
前記電界遮蔽ケース内には乾燥不活性ガスを充填する請求項3記載の電界測定方法。   The electric field measurement method according to claim 3, wherein the electric field shielding case is filled with a dry inert gas.
JP2008331763A 2008-12-26 2008-12-26 Apparatus and method for measuring electric field Pending JP2010151700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331763A JP2010151700A (en) 2008-12-26 2008-12-26 Apparatus and method for measuring electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331763A JP2010151700A (en) 2008-12-26 2008-12-26 Apparatus and method for measuring electric field

Publications (1)

Publication Number Publication Date
JP2010151700A true JP2010151700A (en) 2010-07-08

Family

ID=42570951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331763A Pending JP2010151700A (en) 2008-12-26 2008-12-26 Apparatus and method for measuring electric field

Country Status (1)

Country Link
JP (1) JP2010151700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234863A (en) * 2012-05-07 2013-11-21 Toray Fine Chemicals Co Ltd Stirring test device and stirring test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234863A (en) * 2012-05-07 2013-11-21 Toray Fine Chemicals Co Ltd Stirring test device and stirring test method

Similar Documents

Publication Publication Date Title
US20100094468A1 (en) Level Sensor for Conductive Liquids
US8298390B2 (en) Electrochemical probes for corrosion monitoring in hydrogen sulfide systems and methods of avoiding the effect of electron-conducting deposits
TW200921082A (en) Apparatus, system, and associated method for monitoring surface corrosion
JP2011058864A (en) Method for non-destructive inspection of coil
US11680972B2 (en) Method of monitoring static charge
JP2010151700A (en) Apparatus and method for measuring electric field
CN111788478B (en) Corrosion measuring device
Fofana et al. Relationship between static electrification of transformer oils with turbidity and spectrophotometry measurements
Ebihara et al. Application of the dielectric barrier discharge to detect defects in a teflon coated metal surface
JP2002202339A (en) Method and device for inspecting insulating coating of coil
JP4782506B2 (en) Capacitive sensor
Tanaka et al. Characteristics of streaming electrification in pressboard pipe and the influence of an external electric field
JP2015155894A (en) Electric characteristics measurement device
Tang et al. Electrochemical studies on the performance of zinc used for alternating current mitigation
JP6416283B2 (en) Water tree test method and water tree test apparatus
JP5474381B2 (en) High sensitivity measuring device
CN207439456U (en) A kind of SF6 Temperature and Humidities platform
Chen et al. Simulation of flooding phenomenon in packed column using electrical capacitance tomography
KR101030342B1 (en) Electrostatic capacitance type sensor for detecting liquid level and system
JP7257439B2 (en) Electrochemical measuring device and electrochemical measuring method for metal material
JP4021859B2 (en) Electric field measuring apparatus and electric field measuring method
JP2013234863A (en) Stirring test device and stirring test method
CN207020117U (en) A kind of new electrical conductivity Water Test Kits
JP5643605B2 (en) Measuring apparatus and measuring method
TW202309536A (en) Measuring system and method of measuring static charges