JP2010151603A - Underground radar - Google Patents

Underground radar Download PDF

Info

Publication number
JP2010151603A
JP2010151603A JP2008329856A JP2008329856A JP2010151603A JP 2010151603 A JP2010151603 A JP 2010151603A JP 2008329856 A JP2008329856 A JP 2008329856A JP 2008329856 A JP2008329856 A JP 2008329856A JP 2010151603 A JP2010151603 A JP 2010151603A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
unit
ground
waveform
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008329856A
Other languages
Japanese (ja)
Other versions
JP5236452B2 (en
Inventor
Takeshi Ujiie
氏家  健
Ryuji Kono
隆二 河野
Makoto Kawasaki
誠 河嵜
Yuichi Nakayama
裕一 中山
Keiichiro Mori
敬一朗 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Yokohama National University NUC
Original Assignee
Nippon Signal Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd, Yokohama National University NUC filed Critical Nippon Signal Co Ltd
Priority to JP2008329856A priority Critical patent/JP5236452B2/en
Publication of JP2010151603A publication Critical patent/JP2010151603A/en
Application granted granted Critical
Publication of JP5236452B2 publication Critical patent/JP5236452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground radar not only detecting the position of a buried object but also discriminating whether the underground buried object is a metal object or a nonmetal object, when examining a buried state prior to an underground drilling work. <P>SOLUTION: This underground radar 1 includes an electromagnetic wave transmission part 4 for transmitting an electromagnetic wave toward the underground, and an electromagnetic wave reception part 5 for receiving a reflected electromagnetic wave based on the transmitted electromagnetic wave, and detects a buried object 9 buried underground based on an electromagnetic wave received by the electromagnetic wave reception part 5. The radar 1 has a constitution including a correlation processing part 22 for performing mutual correlation processing between a reception waveform 19 of the electromagnetic wave received by the electromagnetic wave reception part 5 and a transmission waveform 12 of the electromagnetic wave transmitted from the electromagnetic wave transmission part 4, and autocorrelation processing of the reception waveform 19; and a discrimination part 7 for calculating the ratio between a mutual correlation value and an autocorrelation value acquired by the correlation processing part 22, and discriminating whether the underground buried object 9 buried underground is a metal object or a nonmetal object based on the calculated ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地中の埋設物を探知するための地中レーダに関し、詳しくは、埋設物が金属物体であるか非金属物体であるかを識別可能な地中レーダに係るものである。   The present invention relates to a ground penetrating radar for detecting a buried object in the ground, and more particularly to a ground penetrating radar that can identify whether a buried object is a metal object or a non-metal object.

鉄道軌道の改良工事や道路工事等において、例えば、土やコンクリート等の掘削作業を伴って行うことがある。この様な掘削作業に先立って、掘削作業エリアの、ガス管、水道管、電力ケーブル等の既設の設備の埋設状況を調査して、作業の安全確保を図ることがある。この様な埋設状況の調査は、一般的に、掘削作業エリアにおいて地中レーダを操作することによって行われている。   In railway track improvement work, road construction, etc., for example, excavation work such as soil or concrete may be performed. Prior to such excavation work, the safety of the work may be ensured by investigating the state of burial of existing equipment such as gas pipes, water pipes, and power cables in the excavation work area. Such burial status investigation is generally performed by operating a ground radar in an excavation work area.

この種の地中レーダとしては、例えば特許文献1に記載された様に、レーダ送信波を発生する送信機と、該送信波を送出する送信アンテナと、地中の埋設物からの反射波を受信する受信アンテナとを有して、受信波のデータに所定の演算処理をすることにより、埋設物の位置を探知する構成のものがある。
特許第3039509号公報
As this type of subsurface radar, for example, as described in Patent Document 1, a transmitter that generates a radar transmission wave, a transmission antenna that transmits the transmission wave, and a reflected wave from an underground object are used. There is a configuration that has a receiving antenna for receiving and detects the position of an embedded object by performing predetermined arithmetic processing on received wave data.
Japanese Patent No. 3039509

しかしながら、従来のこの種の地中レーダにおいては、埋設物の位置を探知するだけであるため、前述の様に掘削作業に先立って地中の埋設状況を調査して、埋設物の位置が分かっても、その埋設物が金属物体か非金属物体かを識別(例えば、金属管か塩化ビニル管かの識別等)することができなかった。したがって、埋設物が金属物体か非金属物体かに関わらず掘削作業がスムーズに行われるように、どちらにでも対応可能な掘削作業用の機械や工事道具等を準備しなければならず、結果として不要な準備をもしなければならない場合があり、準備にコストがかかるという問題がある。   However, since this type of conventional underground radar only detects the position of the buried object, as described above, the underground situation is investigated prior to excavation work, and the position of the buried object is known. However, it was impossible to identify whether the buried object was a metal object or a non-metal object (for example, identification of a metal tube or a vinyl chloride tube). Therefore, to ensure that excavation works smoothly regardless of whether the buried object is a metal object or a non-metal object, it is necessary to prepare machines and construction tools for excavation work that can handle both. There is a case where unnecessary preparation may be required, and preparation is expensive.

本発明者は、地中に向けて送出された電磁波の送信波形と送出された電磁波に基づいて反射された電磁波の受信波形との相互相関値及び受信波形の自己相関値を算出し、得られた自己相関値と相互相関値の比率に基づいて、地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別することができることを見出した。   The inventor calculates the cross-correlation value between the transmission waveform of the electromagnetic wave transmitted toward the ground and the reception waveform of the electromagnetic wave reflected based on the transmitted electromagnetic wave, and the autocorrelation value of the reception waveform. Based on the ratio between the autocorrelation value and the cross-correlation value, it was found that the buried object buried in the ground can be identified as a metal object or a non-metal object.

そこで、本発明は前述の問題点に対処し、埋設物が金属物体であるか非金属物体であるかを識別可能な地中レーダを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a ground penetrating radar that can identify whether a buried object is a metal object or a non-metal object.

上記目的を達成するために、本発明による地中レーダは、地中に向けて電磁波を送出する電磁波送信部と、送出された該電磁波に基づいて反射された電磁波を受信する電磁波受信部とを有し、該電磁波受信部によって受信された電磁波に基づき地中に埋設された埋設物を探知する地中レーダにおいて、前記電磁波受信部で受信された電磁波の受信波形と前記電磁波送信部から送出される電磁波の送信波形との相互相関処理、及び該受信波形の自己相関処理を行う相関処理部と、前記相関処理部により得られる相互相関値と自己相関値との比率を算出し、算出した前記比率に基づいて前記地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別する識別部と、を備えたものである。 In order to achieve the above object, an underground radar according to the present invention includes an electromagnetic wave transmission unit that transmits an electromagnetic wave toward the ground, and an electromagnetic wave reception unit that receives an electromagnetic wave reflected based on the transmitted electromagnetic wave. An underground radar for detecting an embedded object buried in the ground based on the electromagnetic wave received by the electromagnetic wave receiving unit, and the received waveform of the electromagnetic wave received by the electromagnetic wave receiving unit and the electromagnetic wave transmitting unit A correlation processing unit that performs a cross-correlation process with the transmission waveform of the electromagnetic wave and an auto-correlation process of the reception waveform, and calculates a ratio between the cross-correlation value and the auto-correlation value obtained by the correlation processing unit, An identification unit for identifying whether the buried object buried in the ground is a metal object or a non-metal object based on the ratio.

このような構成により、電磁波送出部によって、地中に向けて電磁波を送出させ、電磁波受信部によって、送出された該電磁波に基づいて反射された電磁波を受信させて地中に埋設された埋設物を探知させ、相関処理部によって、前記電磁波受信部で受信された電磁波の受信波形と前記電磁波送信部から送出される電磁波の送信波形との相互相関処理、及び該受信波形の自己相関処理を行わせ、識別部によって、前記相関処理部により得られる相互相関値と自己相関値との比率を算出させ、算出した該比率に基づいて前記地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別させる。これにより、地中の掘削作業に先立って埋設状況を調査する際に、埋設物の位置を探知するだけでなく、地中の埋設物が金属物体であるか非金属物体であるかを識別する。   With such a configuration, the electromagnetic wave sending unit sends the electromagnetic wave toward the ground, and the electromagnetic wave receiving unit receives the electromagnetic wave reflected based on the sent electromagnetic wave and is buried in the ground. The correlation processing unit performs cross-correlation processing between the reception waveform of the electromagnetic wave received by the electromagnetic wave reception unit and the transmission waveform of the electromagnetic wave transmitted from the electromagnetic wave transmission unit, and autocorrelation processing of the reception waveform. The identification unit calculates the ratio between the cross-correlation value and the autocorrelation value obtained by the correlation processing unit, and whether the buried object buried in the ground based on the calculated ratio is a metal object or not. Identify whether it is a metal object. As a result, when investigating the burial status prior to underground excavation work, not only the position of the buried object is detected, but also whether the underground buried object is a metal object or a non-metal object is identified. .

また、請求項2のように、前記電磁波送信部は、送出される電磁波の送信波形の信号を、地中に向けて送出する電磁波の出力を増幅させる送信波アンプ部と前記相関処理部とに分配する分配部を有する構成にするとよい。   According to a second aspect of the present invention, the electromagnetic wave transmission unit includes a transmission wave amplifier unit that amplifies an output of an electromagnetic wave to be transmitted toward the ground, and a correlation processing unit. It is preferable to have a configuration having a distribution unit for distribution.

さらに、請求項3のように、前記電磁波送信部は、電磁波を地中に向けて複数回送出する構成にしてもよい。   Furthermore, as in claim 3, the electromagnetic wave transmission unit may be configured to send the electromagnetic wave multiple times toward the ground.

さらにまた、請求項4のように、地中に向けて複数回送出された電磁波に基づいて異なる時刻に受信される各受信波形のデータをそれぞれ全て加算して平均値を算出する平均処理部を有する構成にしてもよい。   Furthermore, as in claim 4, an average processing unit for calculating the average value by adding all the data of each received waveform received at different times based on the electromagnetic wave transmitted multiple times toward the ground You may make it the structure which has.

また、請求項5のように、閾値を予め設定し、該閾値と算出した前記比率とを比較して、地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別する識別部を有する構成にしてもよい。   Further, as in claim 5, a threshold value is set in advance, and the threshold value is compared with the calculated ratio to identify whether the buried object buried in the ground is a metal object or a non-metal object. You may make it the structure which has the identification part to perform.

請求項1に係る発明によれば、電磁波送出部によって、地中に向けて電磁波を送出させ、電磁波受信部によって、送出された該電磁波に基づいて反射された電磁波を受信させて地中に埋設された埋設物を探知させ、相関処理部によって、前記電磁波受信部で受信された電磁波の受信波形と前記電磁波送信部から送出される電磁波の送信波形との相互相関処理、及び該受信波形の自己相関処理を行わせ、識別部によって、前記相関処理部により得られる相互相関値と自己相関値との比率を算出させ、算出した前記比率に基づいて前記地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別させる構成としたので、埋設物の位置を探知するとともに、埋設物が金属物体であるか非金属物体であるかを識別することができる。したがって、例えば地中の掘削作業に先立って、埋設物が非金属物体であることを識別した場合、非金属物体が埋設されている場合に対応した機械や工具等のみを用意すればよく、不要なコストをかけることなく工事の準備をすることができる。   According to the first aspect of the present invention, the electromagnetic wave transmitting unit transmits the electromagnetic wave toward the ground, and the electromagnetic wave receiving unit receives the electromagnetic wave reflected based on the transmitted electromagnetic wave, and is embedded in the ground. The correlation processing unit detects a buried object, and performs a cross-correlation process between the reception waveform of the electromagnetic wave received by the electromagnetic wave reception unit and the transmission waveform of the electromagnetic wave transmitted from the electromagnetic wave transmission unit, and self of the reception waveform Correlation processing is performed, the ratio between the cross-correlation value and autocorrelation value obtained by the correlation processing unit is calculated by the identification unit, and the embedded object embedded in the ground based on the calculated ratio is a metal object Therefore, the position of the embedded object can be detected and whether the embedded object is a metal object or a non-metal object can be identified. Therefore, for example, prior to excavation work in the ground, if it is identified that the buried object is a non-metallic object, it is not necessary to prepare only machines and tools that correspond to the case where the non-metallic object is buried. It is possible to prepare for construction without incurring significant costs.

また、請求項2に係る発明によれば、分配部によって、送出される電磁波の送信波形の信号を、地中に向けて送出する電磁波の出力を増幅させる送信波アンプ部と前記相関処理部とに分配することができる。したがって、相関処理部は容易に送信波形を得ることができる。   According to the second aspect of the invention, the transmission unit amplifies the output of the electromagnetic wave transmitted to the ground by the distribution unit, and the correlation processing unit Can be distributed. Therefore, the correlation processing unit can easily obtain a transmission waveform.

さらに、請求項3に係る発明によれば、前記電磁波送信部によって、電磁波を地中に向けて複数回送出することができる。したがって、電磁波受信部は、送出された電磁波に基づいて反射された電磁波を、時間をずらして複数回受信することができ、受信ミスを少なくすることができる。   Furthermore, according to the invention which concerns on Claim 3, an electromagnetic wave can be sent out several times toward the ground by the said electromagnetic wave transmission part. Therefore, the electromagnetic wave receiving unit can receive the electromagnetic wave reflected based on the transmitted electromagnetic wave a plurality of times at different times, and reduce reception errors.

さらにまた、請求項4に係る発明によれば、地中に向けて複数回送出された電磁波に基づいて異なる時刻に受信される各受信波形のデータを、平均処理部により、それぞれ全て加算して平均値を算出させる。これにより、受信波形の、例えば、地中レーダの電子回路内からの不規則なノイズ成分や、地表面からの不規則な反射波等に起因して生じるランダム性のあるノイズ成分を打ち消し合わせ、埋設物からの電磁波の反射波の信号成分を強め合わせることができる。したがって、受信波形のS/N比を向上させ、例えば、探知結果を画像表示したときの視認性を向上させることができる。   Furthermore, according to the invention according to claim 4, all the received waveform data received at different times based on the electromagnetic waves transmitted a plurality of times toward the ground are all added by the averaging processor. Let the average value be calculated. Thereby, for example, irregular noise components from the electronic circuit of the ground penetrating radar, random noise components caused by irregular reflected waves from the ground surface, and the like, The signal component of the reflected wave of the electromagnetic wave from the buried object can be strengthened. Therefore, the S / N ratio of the received waveform can be improved, and for example, the visibility when the detection result is displayed as an image can be improved.

また、請求項5に係る発明によれば、予め設定された閾値と算出された前記比率とを比較させることにより、地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別することができる。したがって、地中に埋設された埋設物が金属物体であるか非金属物体であるかを容易に識別することができる。   According to the invention according to claim 5, whether the buried object buried in the ground is a metal object or a non-metal object by comparing a preset threshold value with the calculated ratio. Can be identified. Therefore, it is possible to easily identify whether the buried object buried in the ground is a metal object or a non-metal object.

以下、本発明の一実施形態を添付図面に基づいて詳細に説明する。
図1は本発明による地中レーダの実施形態を示す構成図である。
図1において、本実施形態の地中レーダ1は、車輪部2と、地中レーダ本体3とで成り、地中レーダ本体3は、電磁波送信部4と、電磁波受信部5と、信号処理部6と、識別部7と、表示部8とを備えて成る。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing an embodiment of a ground penetrating radar according to the present invention.
In FIG. 1, a ground penetrating radar 1 according to this embodiment includes a wheel portion 2 and a ground penetrating radar main body 3. The ground penetrating radar main body 3 includes an electromagnetic wave transmitting portion 4, an electromagnetic wave receiving portion 5, and a signal processing portion. 6, an identification unit 7, and a display unit 8.

車輪部2は、地中レーダ本体3を、例えば地中の金属管や塩化ビニール管等の埋設物9の埋設状況を探知する場所まで容易に搬送可能にするもので、図1に示すように、例えば地中レーダ本体3の下方に取り付けられている。   The wheel unit 2 enables the underground radar main body 3 to be easily transported to a place where the buried state of the buried object 9 such as a metal pipe or a vinyl chloride pipe is detected, for example, as shown in FIG. For example, it is attached below the underground radar main body 3.

電磁波送信部4は、図1に示すように、電磁波を地中に向けて送出するもので、送出する電磁波の出力を増幅させる送信波アンプ10と、増幅された電磁波を地中に向けて送出する送信アンテナ部11とを備えている。ここで、送出される電磁波の送信波形12は、図2に示すように、時間とともに振幅(電圧)が変化する波形である。   As shown in FIG. 1, the electromagnetic wave transmission unit 4 transmits an electromagnetic wave toward the ground. The transmission wave amplifier 10 amplifies the output of the electromagnetic wave to be transmitted, and transmits the amplified electromagnetic wave toward the ground. And a transmitting antenna unit 11 for performing the above operation. Here, the transmission waveform 12 of the transmitted electromagnetic wave is a waveform whose amplitude (voltage) changes with time, as shown in FIG.

また、本実施形態においては、電磁波送信部4は、図1に示すように、例えば、ガウシアン波やインパルス波、チャープ波、FM―CW波などのように広域の周波数成分をもった波源を予め複数用意し、スイッチによって送出する電磁波の波源を切り替えて選択し波源信号を出力することが可能な波源選択部13と、選択された波源の周波数成分を制約して特定の周波数域において波源信号の出力を減衰させるフィルタを予め複数用意し、スイッチによってフィルタを切り替えて選択し、フィルタを通して所定の送信波形12の信号を出力することが可能なフィルタ選択部14とで構成された周波数特性変更手段15を備えている。さらに、電磁波送信部4は、フィルタ選択部14より入力された送信波形12の信号を送信波アンプ10と後述する相関処理部22とに分配して出力する分配部16を備えている。この電磁波送信部4により、送出する電磁波の波源及びフィルタを選択し、送信波形12の周波数特性を変更して、所定の送信波形12の電磁波を地中に向けて送出することができる。   In the present embodiment, as shown in FIG. 1, the electromagnetic wave transmission unit 4 uses a wave source having a wide frequency component such as a Gaussian wave, an impulse wave, a chirp wave, or an FM-CW wave in advance. A plurality of wave source selection units 13 that can select and output a wave source signal by switching a wave source of electromagnetic waves to be transmitted by a switch, and restrict a frequency component of the selected wave source to generate a wave source signal in a specific frequency range. A plurality of filters for attenuating the output are prepared in advance, and the frequency characteristic changing means 15 is configured by a filter selection unit 14 capable of selecting a filter by switching a switch and outputting a signal of a predetermined transmission waveform 12 through the filter. It has. Further, the electromagnetic wave transmission unit 4 includes a distribution unit 16 that distributes and outputs the signal of the transmission waveform 12 input from the filter selection unit 14 to the transmission wave amplifier 10 and a correlation processing unit 22 described later. The electromagnetic wave transmission unit 4 can select the wave source and filter of the electromagnetic wave to be transmitted, change the frequency characteristics of the transmission waveform 12, and transmit the electromagnetic wave of the predetermined transmission waveform 12 toward the ground.

なお、波源選択部13及びフィルタ選択部14はスイッチによって波源及びフィルタを選択する構成について説明したが、本発明はこれに限らず、例えば波源選択部13は波源を一つにして変調器を用いて波源のパラメータを変えて波源を選択してもよく、又フィルタ選択部14は一つのパッケージ化されたフィルタを用いて、該フィルタの構成素子の定数や配置のパラメータを変えてフィルタを選択する構成にしてもよい。   In addition, although the wave source selection unit 13 and the filter selection unit 14 have been described with respect to the configuration in which the wave source and the filter are selected by a switch, the present invention is not limited to this. For example, the wave source selection unit 13 uses a modulator with one wave source. The wave source may be selected by changing the parameters of the wave source, and the filter selection unit 14 uses a single packaged filter to select the filter by changing the constants and arrangement parameters of the constituent elements of the filter. It may be configured.

さらに、本実施形態においては、電磁波送信部4は、電磁波を地中に向けて複数回送出するように構成されている。このため、送出された電磁波に基づいて反射された電磁波を、時間をずらして複数回受信することができため、受信ミスを低減できる。また、異なる時刻に受信される各受信波形の信号を後述する平均処理部6で処理させるための複数のデータを容易に得ることができる。   Furthermore, in this embodiment, the electromagnetic wave transmission part 4 is comprised so that electromagnetic waves may be sent in multiple times toward the underground. For this reason, since the electromagnetic waves reflected based on the transmitted electromagnetic waves can be received a plurality of times at different times, reception errors can be reduced. Further, it is possible to easily obtain a plurality of data for processing the signals of the received waveforms received at different times by the average processing unit 6 described later.

電磁波受信部5は、送出された電磁波に基づいて反射された電磁波を受信して、出力を増幅させるもので、図1に示すように、反射された電磁波を受信する受信アンテナ部17と、受信した電磁波の出力を増幅させる受信波アンプ18とを備えている。ここで受信される電磁波の受信波形19は、図3及び図4に示すように、時間とともに受信波の振幅(電圧)が変化する波形である。   The electromagnetic wave receiving unit 5 receives an electromagnetic wave reflected based on the transmitted electromagnetic wave and amplifies the output. As shown in FIG. 1, a receiving antenna unit 17 that receives the reflected electromagnetic wave, And a reception wave amplifier 18 for amplifying the output of the electromagnetic wave. The received waveform 19 of the electromagnetic wave received here is a waveform in which the amplitude (voltage) of the received wave changes with time, as shown in FIGS.

信号処理部6は、受信波アンプ18から出力される信号を処理するものであり、図1に示すように、受信波形19の高調波ノイズを除去する波形処理部20と、波形処理部20からのアナログ信号をデジタル信号に変換するA/D変換部21とを備えている。なお、波形処理部20は、例えばローパスフィルタで構成されている。   The signal processing unit 6 processes a signal output from the reception wave amplifier 18. As illustrated in FIG. 1, the signal processing unit 6 removes harmonic noise from the reception waveform 19 and the waveform processing unit 20. The A / D converter 21 converts the analog signal into a digital signal. Note that the waveform processing unit 20 is configured by a low-pass filter, for example.

ここで、本実施形態において、信号処理部6は、図1に示すように、受信波アンプ18からの入力信号を処理する相関処理部22を備えている。この相関処理部22は、電磁波受信部5で受信された電磁波の受信波形19と電磁波送信部4の分配部16から送出(分配)される電磁波の送信波形12との相互相関処理、及び受信波形19の自己相関処理を行うものであり、得られる相互相関値と自己相関値のデータを後述する識別部7に出力する。また、受信波アンプ18からの受信波形19の信号を波形処理部20に送信する。なお、自己相関処理は、例えば、一波目の受信波形19を予め図示外のメモリに保存させ、その後、二波目以降の受信波形19と該メモリに保存された一波目の受信波形19との相関処理をすることにより行う。また、自己相関及び相互相関の処理結果としてその波形を、自己相関の波形23(図5,6参照)及び相互相関の波形24(図5,6参照)として後述する表示部8で確認することもできる。   Here, in the present embodiment, the signal processing unit 6 includes a correlation processing unit 22 that processes an input signal from the reception wave amplifier 18 as shown in FIG. The correlation processing unit 22 performs a cross-correlation process between the reception waveform 19 of the electromagnetic wave received by the electromagnetic wave reception unit 5 and the transmission waveform 12 of the electromagnetic wave transmitted (distributed) from the distribution unit 16 of the electromagnetic wave transmission unit 4 and the reception waveform. 19 auto-correlation processing is performed, and the obtained cross-correlation value and auto-correlation value data are output to the identification unit 7 described later. Further, the signal of the reception waveform 19 from the reception wave amplifier 18 is transmitted to the waveform processing unit 20. In the autocorrelation process, for example, the received waveform 19 of the first wave is stored in advance in a memory not shown, and then the received waveform 19 of the second and subsequent waves and the received waveform 19 of the first wave stored in the memory are stored. This is done by performing correlation processing with. Also, the autocorrelation and cross-correlation processing results are confirmed on the display unit 8 to be described later as autocorrelation waveforms 23 (see FIGS. 5 and 6) and cross-correlation waveforms 24 (see FIGS. 5 and 6). You can also.

また、本実施形態において、信号処理部6は、図1に示すように、平均処理部25をさらに備えている。この平均処理部25は、複数回送出された電磁波に基づいて異なる時刻に受信される各受信波形19のデータをそれぞれ全て加算して平均値を算出するものであり、平均化された受信波形19のデータを後述する識別部7に出力する。前述のように、電磁波送信部4は、電磁波を地中に向けて複数回送出する構成となっているため、送出された電磁波に基づいて反射された電磁波を、時間をずらして複数回受信して各受信波形19を得ることができている。なお、電磁波送信部4が、電磁波を一回送出する構成でもよく、この場合、平均処理部25は、受信波形19のデータについて、時間をずらした波形データを複数作成して、それぞれ全て加算して平均値を算出する。   In the present embodiment, the signal processing unit 6 further includes an average processing unit 25 as shown in FIG. This average processing unit 25 calculates the average value by adding all the data of each reception waveform 19 received at different times based on the electromagnetic waves sent out a plurality of times. Is output to the identification unit 7 described later. As described above, since the electromagnetic wave transmission unit 4 is configured to transmit the electromagnetic wave multiple times toward the ground, the electromagnetic wave reflected based on the transmitted electromagnetic wave is received multiple times at different times. Thus, each received waveform 19 can be obtained. Note that the electromagnetic wave transmission unit 4 may be configured to transmit the electromagnetic wave once. In this case, the average processing unit 25 creates a plurality of time-shifted waveform data for the received waveform 19 and adds all of them. To calculate the average value.

さらに、本実施形態において、地中レーダ本体3は、図1に示すように、識別部7を備えている。この識別部7は、地中に埋設された埋設物9が金属物体であるか非金属物体であるかの識別を行うものであり、相関処理部22により得られる相互相関値と自己相関値に基づいて、相互相関値と自己相関値に関する比率を相関比率として、例えば相関比率を次式
相関比率=100−(相互相関値/自己相関値)×100
により定義して算出し、相関比率の単位をパーセントとして示し、予め識別部7内に設定された該相関比率についての閾値と算出した該相関比率(%)とを比較することにより、金属物体と非金属物体の識別をする。そして、識別結果を後述する表示部8に出力して、確認できるようになっている。なお、識別部7は信号処理部6等の装置全体を制御するためのものでもあり、例えばCPUやFPGA(Field Programmable Gate Array)などのデバイスによって構成されている。
Furthermore, in this embodiment, the underground radar main body 3 includes an identification unit 7 as shown in FIG. The identification unit 7 identifies whether the buried object 9 embedded in the ground is a metal object or a non-metal object, and uses the cross-correlation value and the autocorrelation value obtained by the correlation processing unit 22. Based on the ratio between the cross-correlation value and the auto-correlation value as a correlation ratio, for example, the correlation ratio is expressed by the following formula: correlation ratio = 100− (cross-correlation value / auto-correlation value) × 100
By defining the unit of the correlation ratio as a percentage and comparing the threshold value for the correlation ratio set in the identification unit 7 in advance with the calculated correlation ratio (%), Identify non-metallic objects. Then, the identification result is output to the display unit 8 described later and can be confirmed. The identification unit 7 is also used to control the entire apparatus such as the signal processing unit 6 and is configured by a device such as a CPU or an FPGA (Field Programmable Gate Array).

表示部8は、前述の識別結果を表示し、加えて、平均処理部25から得られる平均化された受信波形19のデータに基づいて、例えば、視認性のよい探知結果を画像表示させることができる。また、前述のように自己相関の波形23及び相互相関の波形24をも表示させることができる。   The display unit 8 displays the above-described identification result, and in addition, based on the data of the averaged received waveform 19 obtained from the average processing unit 25, for example, a detection result with good visibility can be displayed as an image. it can. As described above, the autocorrelation waveform 23 and the cross-correlation waveform 24 can also be displayed.

次に、このように構成された地中レーダ1において、例えば、地中が、図7(a)に示すように、コンクリート(厚みt=5cm、比誘電率Er=6)を上層(地表面側)とし、土壌(比誘電率Er=36)を下層とした2層状であり、直径がそれぞれ10cmの円柱状樹脂管又は円柱状金属管を地表面から2mの深さの土壌層に埋設させた2つの場合について、それぞれ地中レーダを操作して予備的に実験をした結果に基づいて、埋設物9が金属物体であるか非金属物体であるかを識別する動作及び手順について説明する。   Next, in the underground radar 1 configured as described above, for example, the underground is made of concrete (thickness t = 5 cm, relative permittivity Er = 6) as an upper layer (ground surface) as shown in FIG. 2) with a soil (relative permittivity Er = 36) as a lower layer, and a cylindrical resin tube or columnar metal tube each having a diameter of 10 cm is embedded in a soil layer at a depth of 2 m from the ground surface. The operation and procedure for identifying whether the buried object 9 is a metal object or a non-metal object based on the results of preliminary experiments by operating the ground penetrating radar in each of the two cases will be described.

まず、図7(a)に示すように、探知エリアに地中レーダ1を設置し、送信する電磁波の周波数特性を波源選択部13及びフィルタ選択部14のスイッチを操作して、例えば、ガウシアン波形の送信波形12の信号を分配部16に送信し、分配部16によって、送信波形12の信号を送信波アンプ10に出力し、送信波アンプ10によって送信波形12の信号の出力を増幅させて、送信アンテナ部11より、地中に向けて電磁波を送出する。   First, as shown in FIG. 7A, the ground radar 1 is installed in the detection area, and the frequency characteristics of the electromagnetic wave to be transmitted are operated by operating the switches of the wave source selection unit 13 and the filter selection unit 14, for example, a Gaussian waveform. Of the transmission waveform 12 is transmitted to the distribution unit 16, the signal of the transmission waveform 12 is output to the transmission wave amplifier 10 by the distribution unit 16, and the output of the signal of the transmission waveform 12 is amplified by the transmission wave amplifier 10. An electromagnetic wave is transmitted from the transmission antenna unit 11 toward the ground.

次に、送出された電磁波に基づいて反射された電磁波を受信アンテナ部17により受信し、受信した電磁波の出力を受信波アンプ18により増幅させ、上記円柱状樹脂管又は上記円柱状金属管について、一波目の受信波形19の信号を得る。そして、得られた一波目の受信波形19のデータを前述の図示外のメモリに保存する。   Next, an electromagnetic wave reflected based on the transmitted electromagnetic wave is received by the receiving antenna unit 17, the output of the received electromagnetic wave is amplified by the reception wave amplifier 18, and the cylindrical resin tube or the cylindrical metal tube is A signal of the first received waveform 19 is obtained. Then, the obtained data of the received waveform 19 of the first wave is stored in the memory (not shown).

そして、二波目以降の送信波形12を、分配部16から送信波アンプ10と相関処理部22とに送信させ、送信波アンプ10によって送信波形12の信号の出力を増幅させて、送信アンテナ部11より、地中に向けて電磁波を送出する。そして、送出された電磁波に基づいて反射された電磁波を受信アンテナ部17により受信し、受信した電磁波の出力を受信波アンプ18により増幅させ、二波目以降の受信波形19の信号を相関処理部22に出力する。   Then, the transmission waveform 12 after the second wave is transmitted from the distribution unit 16 to the transmission wave amplifier 10 and the correlation processing unit 22, and the output of the signal of the transmission waveform 12 is amplified by the transmission wave amplifier 10. 11 sends out electromagnetic waves toward the ground. The electromagnetic wave reflected based on the transmitted electromagnetic wave is received by the reception antenna unit 17, the output of the received electromagnetic wave is amplified by the reception wave amplifier 18, and the signal of the reception waveform 19 after the second wave is correlated with the correlation processing unit. 22 for output.

さらに、相関処理部22によって、二波目以降の受信波形19と分配部16から分配された二波目以降の電磁波の送信波形12との相互相関処理をそれぞれ行い、同時に、受信された二波目以降の各受信波形19について、前述の図示外のメモリに予め保存された受信波形19との自己相関処理をそれぞれ行う。そして、得られる相互相関値と自己相関値のデータをそれぞれ識別部7に出力するとともに、受信波アンプ18からの二波目以降の受信波形19の信号を波形処理部20に送信する。   Further, the correlation processing unit 22 performs a cross-correlation process between the received waveform 19 after the second wave and the transmission waveform 12 of the second and subsequent electromagnetic waves distributed from the distributing unit 16, and simultaneously receives the received two waves. For each received waveform 19 after the first, autocorrelation processing with the received waveform 19 stored in advance in a memory (not shown) is performed. Then, the obtained cross correlation value and autocorrelation value data are output to the discriminating unit 7, and the signal of the reception waveform 19 after the second wave from the reception wave amplifier 18 is transmitted to the waveform processing unit 20.

さらにまた、波形処理部20によって、二波目以降の受信波形19の高調波ノイズを例えばローパスフィルタにより除去し、A/D変換部21により、波形処理部20からのアナログ信号をデジタル信号に変換し、平均処理部25にデジタル信号を出力する。そして、異なる時刻に受信された二波目以降の各受信波形19について、ノイズ除去後のデータをそれぞれ全て加算して平均値を算出し、識別部7を経由して表示部8に該データを送信し、視認性のよい探知結果を画像表示させる。また、自己相関及び相互相関の処理結果としてその波形を、自己相関の波形23及び相互相関の波形24として表示部8に画像表示させる。   Further, the waveform processing unit 20 removes the harmonic noise of the received waveform 19 after the second wave by, for example, a low-pass filter, and the A / D conversion unit 21 converts the analog signal from the waveform processing unit 20 into a digital signal. Then, a digital signal is output to the average processing unit 25. Then, for each received waveform 19 after the second wave received at different times, all the data after noise removal is added to calculate an average value, and the data is displayed on the display unit 8 via the identification unit 7. Transmit and display the detection result with good visibility. In addition, the waveform is displayed on the display unit 8 as an autocorrelation waveform 23 and a crosscorrelation waveform 24 as autocorrelation and crosscorrelation processing results.

ここで、相関処理部22より得られた相互相関値と自己相関値に基づいて、識別部7によって前述の相関比率を算出する。この相関比率は埋設物9が上記円柱状樹脂管の場合は約37%、埋設物9が上記円柱状金属管の場合は約5%という数値を得られた。このように、埋設物9が円柱状樹脂管の場合に得られる相関比率の方が円柱状金属管の場合に得られる相関比率より大きい値となることが分かる。なお、二波目以降の各受信波形19に基づいて、それぞれ相関比率を算出すると信頼性のあるデータを得ることができる。なお、例えば、二波目の受信波形19のみに基づいて、相関比率を算出してもよい。   Here, based on the cross-correlation value and autocorrelation value obtained from the correlation processing unit 22, the above-described correlation ratio is calculated by the identification unit 7. The correlation ratio was about 37% when the buried object 9 was the cylindrical resin tube, and about 5% when the buried object 9 was the cylindrical metal tube. Thus, it can be seen that the correlation ratio obtained when the buried object 9 is a cylindrical resin pipe is larger than the correlation ratio obtained when the buried object 9 is a cylindrical metal pipe. Note that reliable data can be obtained by calculating the correlation ratio based on the received waveforms 19 after the second wave. For example, the correlation ratio may be calculated based only on the second received waveform 19.

同様の手順で、埋設物9の条件(埋設深さ、形状、構造、材質)をそれぞれ変えて、予備的な実験を行った。その結果、埋設物9の埋設深さが1mと1.5mの場合においても、上記と略同等の相関比率をそれぞれ得ることが分かった。また、埋設物9が円柱金属管でなく、外径10cm、内径8cmの中空金属管や一辺10cmの角状金属の場合においても、上記円柱状金属管が埋設されている場合と略同等の相関比率を得ることが分かった。さらに、埋設物9が円柱状樹脂管でなく、直径10cmの球形状空洞や直径10cmの球形状の水や一辺10cmの角材(木材)とした場合においても、上記円柱状樹脂管が埋設されている場合と略同等の相関比率を得ることが分かった。   Preliminary experiments were carried out by changing the conditions (embedding depth, shape, structure, material) of the buried object 9 in the same procedure. As a result, it has been found that even when the embedment depth of the embedment 9 is 1 m and 1.5 m, a correlation ratio substantially equivalent to the above is obtained. Further, in the case where the embedded object 9 is not a cylindrical metal tube but a hollow metal tube having an outer diameter of 10 cm and an inner diameter of 8 cm or a square metal having a side of 10 cm, the correlation is almost the same as that in the case where the cylindrical metal tube is embedded. It turns out to get a ratio. Furthermore, even when the embedded object 9 is not a cylindrical resin pipe but a spherical cavity with a diameter of 10 cm, spherical water with a diameter of 10 cm, or square material (wood) with a side of 10 cm, the cylindrical resin pipe is embedded. It was found that the correlation ratio was almost the same as when

したがって、埋設物9の条件(埋設深さ、形状、構造、材質)に関わらず、埋設物9が非金属物体(樹脂、空気、水、木材等)の場合に得られる相関比率(上記埋設物の条件を変更した予備的な実験においては、約30〜37%)の方が金属物体の場合に得られる相関比率(上記埋設物の条件を変更した予備的な実験においては、約5〜8%)より明らかに大きい値となる。このように識別部7により上記相関比率を算出させ、例えば、その相関比率について、埋設物9が金属物体か非金属物体かを識別する閾値を、上記予備的な実験結果に基づいて予め識別部7内に設定し、以後の操作において前記閾値と算出された相関比率とを比較させることにより、埋設物9が金属物体であるか非金属物体であるかを識別し、識別結果を表示部8に表示する。   Therefore, regardless of the conditions (embedding depth, shape, structure, material) of the buried object 9, the correlation ratio obtained when the buried object 9 is a non-metallic object (resin, air, water, wood, etc.) In the preliminary experiment in which the conditions of the above are changed, the correlation ratio obtained in the case of a metal object is about 30 to 37% (in the preliminary experiment in which the conditions of the buried object are changed, about 5 to 8%). %) Is clearly larger. In this way, the correlation unit 7 calculates the correlation ratio. For example, a threshold value for identifying whether the embedded object 9 is a metal object or a non-metal object is determined in advance based on the preliminary experiment result. 7, the threshold value is compared with the calculated correlation ratio in the subsequent operation to identify whether the embedded object 9 is a metal object or a non-metal object, and the identification result is displayed on the display unit 8. To display.

また、同様の手順で、埋設物9を直径10cmの円柱状金属管と一辺10cmの角材(木材)と直径10cmの球形状の水の場合について、地中の条件(コンクリート及び土壌の比誘電率、コンクリート層の厚み)をそれぞれ変えて、予備的な実験を行った。その結果、土壌層の比誘電率(Er=36)は変更せず、コンクリート層の比誘電率Erを2.0、3.0、4.0にした場合においても、図8に示すように、前述と略同等の相関比率をそれぞれ得ることが分かった。さらに、コンクリート層の比誘電率を変更せず、土壌層の比誘電率Erを10と20にした場合や、コンクリート層と土壌層の比誘電率を変更せず、コンクリート層の厚みを50cm、100cm、150cmとした場合についても、前述と略同等の相関比率をそれぞれ得ることが分かった。   Moreover, in the same procedure, the buried object 9 is treated under the conditions of the ground (relative permittivity of concrete and soil) for a cylindrical metal tube with a diameter of 10 cm, a square material (wood) with a side of 10 cm, and spherical water with a diameter of 10 cm. Preliminary experiments were carried out by changing the thickness of the concrete layer. As a result, the relative permittivity (Er = 36) of the soil layer is not changed, and even when the relative permittivity Er of the concrete layer is 2.0, 3.0, and 4.0, as shown in FIG. It was found that correlation ratios substantially equivalent to those described above were obtained. Furthermore, when the relative permittivity Er of the soil layer is set to 10 and 20 without changing the relative permittivity of the concrete layer, or the relative permittivity of the concrete layer and the soil layer is not changed, the thickness of the concrete layer is 50 cm, It was also found that the correlation ratios approximately equivalent to those described above were obtained for the cases of 100 cm and 150 cm, respectively.

したがって、地中の条件(コンクリート及び土壌の比誘電率、コンクリート層の厚み等)に関わらず、埋設物9が非金属物体の場合に得られる相関比率(上記地中の条件を変更した予備的な実験においては、約24〜46%)の方が金属物体の場合に得られる相関比率(上記地中の条件を変更した予備的な実験においては、約2〜6%)より明らかに大きい値となる。   Therefore, regardless of the underground conditions (concrete dielectric constant of concrete and soil, the thickness of the concrete layer, etc.), the correlation ratio obtained when the buried object 9 is a non-metallic object (preliminary changes in the above-mentioned underground conditions) In the case of a simple experiment, about 24 to 46%) is clearly larger than the correlation ratio obtained in the case of a metal object (about 2 to 6% in the preliminary experiment in which the above ground conditions are changed). It becomes.

さらに、上記説明においては、地中の層は、図7(a)に示すように、地中がコンクリート層と土壌層の2層状であり、埋設物9が土壌層に埋設されている場合について述べたが、本発明はこれに限らず、図7(b)に示すように、地中が土壌層のみで、埋設物9が土壌層に埋設されている場合や、図7(c)に示すように、地中がコンクリート層と土壌層の2層状であるが、埋設物がコンクリート層に埋設されている場合についても、前述と同様に、埋設物が上記非金属物体の場合に得られる相関比率の方が上記金属物体の場合に得られる相関比率より明らかに大きい値を得ることが確認されている。   Furthermore, in the above description, as shown in FIG. 7 (a), the underground layer is a two-layered structure of a concrete layer and a soil layer, and the buried object 9 is embedded in the soil layer. As described above, the present invention is not limited to this. As shown in FIG. 7B, the underground is only a soil layer, and the buried object 9 is embedded in the soil layer. As shown in the figure, the underground is a two-layer structure of a concrete layer and a soil layer, but also when the buried object is buried in the concrete layer, the buried object is obtained in the case of the non-metallic object as described above. It has been confirmed that the correlation ratio is obviously larger than the correlation ratio obtained in the case of the metal object.

さらにまた、上記説明においては、埋設物の深さが1m、1.5m、2mの場合の識別手順について説明したが、本発明はこれに限らず、電磁波の出力レベルを上げることにより、出力レベルに対応した深さまで、埋設物を識別可能である。   Furthermore, in the above description, the identification procedure when the depth of the buried object is 1 m, 1.5 m, and 2 m has been described. However, the present invention is not limited to this, and the output level is increased by increasing the output level of electromagnetic waves. The buried object can be identified up to a depth corresponding to.

以上より、埋設物の埋設状況を探知しようとするエリアの地中の条件(比誘電率、コンクリート層の厚み、地中の層の状況)や埋設物の条件(埋設深さ、形状、構造、材質)に関わらず、前記相関比率に基づいて埋設物が金属物体であるか非金属物体であるかを識別することができる。   From the above, the underground conditions (relative permittivity, concrete layer thickness, underground layer conditions) of the area where the buried object is to be detected and the buried object conditions (burial depth, shape, structure, Regardless of the material, it is possible to identify whether the embedded object is a metal object or a non-metal object based on the correlation ratio.

なお、地中レーダ本体3に車輪部2を取り付けた場合について説明したが、これに限らず、車輪部2を設けずに地中レーダ本体3を引きずって搬送させる構成にしてもよい。また、送信アンテナ部11及び受信アンテナ部17を地表面と距離を隔てて設置した場合について、図1に示したが、これに限らず、地表面と送信アンテナ部11及び受信アンテナ部17が干渉しない程度に、地表面に近づけて設置してもよい。   In addition, although the case where the wheel part 2 was attached to the underground radar main body 3 was demonstrated, you may make it the structure which drags and conveys the underground radar main body 3 without providing this, without providing the wheel part 2. Moreover, although the case where the transmitting antenna unit 11 and the receiving antenna unit 17 are installed at a distance from the ground surface is shown in FIG. 1, the present invention is not limited to this, and the ground surface, the transmitting antenna unit 11 and the receiving antenna unit 17 interfere with each other. It may be installed as close to the ground surface as possible.

本発明による地中レーダの一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the ground penetrating radar by this invention. 地中に向けて送出する電磁波の送信波形の一例を示す説明図である。It is explanatory drawing which shows an example of the transmission waveform of the electromagnetic waves sent out toward the ground. 非金属の埋設物からの受信波形の一例を示す説明図である。It is explanatory drawing which shows an example of the received waveform from a nonmetallic embedded object. 金属の埋設物からの受信波形の一例を示す説明図である。It is explanatory drawing which shows an example of the received waveform from a metal embedment. 埋設物が非金属の場合の相互相関及び自己相関の波形の一例を示す説明図である。It is explanatory drawing which shows an example of the waveform of a cross correlation and autocorrelation in case an embedded object is a nonmetal. 埋設物が金属の場合の相互相関及び自己相関の波形の一例を示す説明図である。It is explanatory drawing which shows an example of the waveform of the cross correlation and autocorrelation in case an embedded object is a metal. 地中の状態と埋設物の埋設位置とを示す説明図であり、(a)は地中がコンクリートと土壌の2層で形成され、埋設物が土壌層に埋設されている状況図、(b)は地中が土壌で形成されて埋設されている状況図、(c)は地中がコンクリートと土壌の2層で形成され、埋設物がコンクリート層に埋設されている状況図である。It is explanatory drawing which shows the state of underground and the burial position of a buried object, (a) is the situation figure in which the underground is formed by two layers of concrete and soil, and the buried object is buried in the soil layer. ) Is a situation diagram in which the underground is formed and buried in soil, and (c) is a situation diagram in which the underground is formed of two layers of concrete and soil, and the buried object is buried in the concrete layer. コンクリート層の誘電率を変化させた場合の予備的実験結果を示す表である。It is a table | surface which shows the preliminary experiment result at the time of changing the dielectric constant of a concrete layer.

符号の説明Explanation of symbols

1…地中レーダ
4…電磁波送信部
5…電磁波受信部
6…信号処理部
7…識別部
9…埋設物
12…送信波形
19…受信波形
22…相関処理部
25…平均処理部
DESCRIPTION OF SYMBOLS 1 ... Subsurface radar 4 ... Electromagnetic wave transmission part 5 ... Electromagnetic wave reception part 6 ... Signal processing part 7 ... Identification part 9 ... Embedded object 12 ... Transmission waveform 19 ... Reception waveform 22 ... Correlation processing part 25 ... Average processing part

Claims (5)

地中に向けて電磁波を送出する電磁波送信部と、送出された該電磁波に基づいて反射された電磁波を受信する電磁波受信部とを有し、該電磁波受信部によって受信された電磁波に基づき地中に埋設された埋設物を探知する地中レーダにおいて、
前記電磁波受信部で受信された電磁波の受信波形と前記電磁波送信部から送出される電磁波の送信波形との相互相関処理、及び該受信波形の自己相関処理を行う相関処理部と、
前記相関処理部により得られる相互相関値と自己相関値との比率を算出し、算出した該比率に基づいて前記地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別する識別部と、
を備えたことを特徴とする地中レーダ。
An electromagnetic wave transmitting unit that transmits an electromagnetic wave toward the ground, and an electromagnetic wave receiving unit that receives an electromagnetic wave reflected based on the transmitted electromagnetic wave, and the underground based on the electromagnetic wave received by the electromagnetic wave receiving unit In the ground penetrating radar that detects buried objects buried in
A correlation processing unit that performs a cross-correlation process between a reception waveform of the electromagnetic wave received by the electromagnetic wave reception unit and a transmission waveform of the electromagnetic wave transmitted from the electromagnetic wave transmission unit, and an autocorrelation process of the reception waveform;
The ratio between the cross-correlation value and the autocorrelation value obtained by the correlation processing unit is calculated, and whether the embedded object buried in the ground is a metal object or a non-metal object based on the calculated ratio. An identifying part for identifying;
A ground penetrating radar characterized by comprising:
前記電磁波送信部は、送出される電磁波の送信波形の信号を、地中に向けて送出する電磁波の出力を増幅させる送信波アンプ部と前記相関処理部とに分配する分配部を有することを特徴とする請求項1に記載の地中レーダ。   The electromagnetic wave transmission unit includes a distribution unit that distributes a signal of a transmission waveform of the transmitted electromagnetic wave to a transmission wave amplifier unit that amplifies an output of the electromagnetic wave transmitted toward the ground and the correlation processing unit. The ground penetrating radar according to claim 1. 前記電磁波送信部は、電磁波を地中に向けて複数回送出する構成であることを特徴とする請求項1又は2に記載の地中レーダ。   The underground radar according to claim 1 or 2, wherein the electromagnetic wave transmission unit is configured to transmit the electromagnetic wave a plurality of times toward the ground. 地中に向けて複数回送出された電磁波に基づいて異なる時刻に受信される各受信波形のデータをそれぞれ全て加算して平均値を算出する平均処理部を有すること特徴とする請求項1〜3のいずれか1つに記載の地中レーダ。   4. An average processing unit for calculating an average value by adding all received waveform data received at different times based on electromagnetic waves transmitted a plurality of times toward the ground. The ground penetrating radar according to any one of the above. 前記識別部は、閾値を予め設定し、該閾値と算出した前記比率とを比較して、地中に埋設された埋設物が金属物体であるか非金属物体であるかを識別することを特徴とする請求項1〜4に記載の地中レーダ。   The identification unit sets a threshold value in advance, compares the threshold value with the calculated ratio, and identifies whether the embedded object embedded in the ground is a metal object or a non-metal object The ground penetrating radar according to claim 1.
JP2008329856A 2008-12-25 2008-12-25 Underground radar Expired - Fee Related JP5236452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329856A JP5236452B2 (en) 2008-12-25 2008-12-25 Underground radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329856A JP5236452B2 (en) 2008-12-25 2008-12-25 Underground radar

Publications (2)

Publication Number Publication Date
JP2010151603A true JP2010151603A (en) 2010-07-08
JP5236452B2 JP5236452B2 (en) 2013-07-17

Family

ID=42570876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329856A Expired - Fee Related JP5236452B2 (en) 2008-12-25 2008-12-25 Underground radar

Country Status (1)

Country Link
JP (1) JP5236452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447464C1 (en) * 2010-08-18 2012-04-10 Вячеслав Адамович Заренков Geophysical radar set
JP2015206637A (en) * 2014-04-18 2015-11-19 竹中エンジニアリング株式会社 passive infrared sensor
RU2709476C1 (en) * 2019-02-04 2019-12-18 Александр Николаевич Дубовицкий Method of increasing angular resolution of radar of subsurface probing
WO2021038816A1 (en) * 2019-08-30 2021-03-04 日本電信電話株式会社 Underground investigation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102347A (en) * 1990-12-27 1994-04-15 Thomson Csf Method and device for processing digitally coded pulse signal
JPH08297162A (en) * 1995-04-27 1996-11-12 Mitsubishi Electric Corp Bi-static radar equipment
JP2002181954A (en) * 2000-07-05 2002-06-26 Osaka Gas Co Ltd Concealed object probing method and device
JP2003090806A (en) * 2001-09-19 2003-03-28 Hitachi Ltd Radar device
JP2004132817A (en) * 2002-10-10 2004-04-30 Yokogawa Electric Corp Apparatus for detecting clogging of conduit
JP2006098112A (en) * 2004-09-28 2006-04-13 Kddi Corp Underground radar image processing method
JP2006157204A (en) * 2004-11-26 2006-06-15 Oki Electric Ind Co Ltd Optical code division multiplex transmission/reception method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102347A (en) * 1990-12-27 1994-04-15 Thomson Csf Method and device for processing digitally coded pulse signal
JPH08297162A (en) * 1995-04-27 1996-11-12 Mitsubishi Electric Corp Bi-static radar equipment
JP2002181954A (en) * 2000-07-05 2002-06-26 Osaka Gas Co Ltd Concealed object probing method and device
JP2003090806A (en) * 2001-09-19 2003-03-28 Hitachi Ltd Radar device
JP2004132817A (en) * 2002-10-10 2004-04-30 Yokogawa Electric Corp Apparatus for detecting clogging of conduit
JP2006098112A (en) * 2004-09-28 2006-04-13 Kddi Corp Underground radar image processing method
JP2006157204A (en) * 2004-11-26 2006-06-15 Oki Electric Ind Co Ltd Optical code division multiplex transmission/reception method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447464C1 (en) * 2010-08-18 2012-04-10 Вячеслав Адамович Заренков Geophysical radar set
JP2015206637A (en) * 2014-04-18 2015-11-19 竹中エンジニアリング株式会社 passive infrared sensor
RU2709476C1 (en) * 2019-02-04 2019-12-18 Александр Николаевич Дубовицкий Method of increasing angular resolution of radar of subsurface probing
WO2021038816A1 (en) * 2019-08-30 2021-03-04 日本電信電話株式会社 Underground investigation device
JPWO2021038816A1 (en) * 2019-08-30 2021-03-04
JP7201949B2 (en) 2019-08-30 2023-01-11 日本電信電話株式会社 Underground Exploration Device

Also Published As

Publication number Publication date
JP5236452B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5236452B2 (en) Underground radar
US20120229321A1 (en) Method and apparatus for using non-linear ground penetrating radar to detect objects located in the ground
MY185873A (en) Tracking system and method for use in surveying amusement park equipment
JP2006308593A (en) Apparatus and method for searching buried long object
US9057792B2 (en) Device and method for detection of water flow in ground
WO2005001513A3 (en) Apparatus and method for rapid detection of objects with time domain impulsive signals
AU2021249202B2 (en) Continuous-wave radar system for detecting ferrous and non-ferrous metals in saltwater environments
EP1348139B1 (en) Subsea navigation and survey
JP2009250616A (en) Radar signal processing device
JP5965715B2 (en) Ultrasonic transmission / reception apparatus, ultrasonic transmission / reception method, and ultrasonic transmission / reception program
JP6478578B2 (en) Exploration equipment
US8421622B2 (en) Monitoring system for moving object
US20150369910A1 (en) Electromagnetic pulse device
KR102001246B1 (en) Apparatus for detecting metal explosives buried underground by multi mode of time domain and frequency domain method
EP3260880B1 (en) Signal-processing device and processing method, recording medium, and target detection device and detection method
TW201740088A (en) Vibration detector, observation apparatus, and observation system
KR101551824B1 (en) Radar for detecting object under the ground and method for detecting the same
JP2007271314A (en) Pipe diameter estimation method in underground survey radar
RU2488845C1 (en) Parametric sonar system with function for acquiring acoustic image of targets
Ivashchuk et al. Evaluation of combined ground penetrating and Through-the-Wall Surveillance UWB technology
KR101903880B1 (en) Apparatus and method for detecting buried structure
JP4929039B2 (en) Ground survey method
JP3732020B2 (en) Method and apparatus for estimating electromagnetic wave propagation velocity in underground propulsion method
JP2011027545A (en) Weather radar system and rainfall rate calculation method for the same
JP3608198B2 (en) Marine exploration radar

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees