JP2010151421A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2010151421A
JP2010151421A JP2008332635A JP2008332635A JP2010151421A JP 2010151421 A JP2010151421 A JP 2010151421A JP 2008332635 A JP2008332635 A JP 2008332635A JP 2008332635 A JP2008332635 A JP 2008332635A JP 2010151421 A JP2010151421 A JP 2010151421A
Authority
JP
Japan
Prior art keywords
air conditioning
air
compressor
indoor
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008332635A
Other languages
Japanese (ja)
Inventor
Satoshi Ishida
智 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008332635A priority Critical patent/JP2010151421A/en
Publication of JP2010151421A publication Critical patent/JP2010151421A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve operation efficiency of an air conditioning system including an air conditioning device and an outside air processing device. <P>SOLUTION: This air conditioning system (10) includes the air conditioner (20) and the outside air processor (50). In the air conditioning system (10), a control system (90) is structured of an air conditioning-side controller (91) and humidity adjustment-side controllers (92a, 92b). The control system (90) executes continuous operating motion for adjusting an air conditioning capacity of the air conditioner (20) according to indoor air conditioning load while continuously operating a compressor (41) for air conditioning. Further, the control system (90) executes efficiency improvement motion for intermittently operating the compressor (41) for air conditioning in a state that an operating capacity of the compressor (41) for air conditioning is forcibly increased, to improve a coefficient of performance of a refrigerating cycle executed in a refrigerant circuit (30) for air conditioning, when an operating state determining condition indicating that the coefficient of performance of the refrigerating cycle executed in the refrigerant circuit (30) for air conditioning is lowered during the continuous operating motion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

室内空気の温度を調節する空気調和装置と、室内へ供給される室外空気の温度と湿度を調節する外気処理装置とを備えた空調システムに関するものである。   The present invention relates to an air conditioning system including an air conditioner that adjusts the temperature of indoor air and an outdoor air processing device that adjusts the temperature and humidity of outdoor air supplied to the room.

従来より、空気調和装置と外気処理装置とを備えた空調システムが知られている。例えば、特許文献1には、冷凍サイクルを行う冷媒回路が設けられた空気調和装置と、デシカントロータを用いて空気の湿度を調節する外気処理装置とを備える空調システムが開示されている。また、特許文献2や特許文献3には、空気熱交換器の表面に担持された吸着剤を冷媒で加熱し又は冷却することによって空気の湿度を調節する外気処理装置と、冷凍サイクルを行う冷媒回路が設けられた空気調和装置とを備える空調システムが開示されている。この種の空調システムにおいて、空気調和装置は、取り込んだ室内空気の温度を調節し、温度を調節した室内空気を室内へ供給する。また、外気処理装置は、取り込んだ室外空気の温度と湿度を調節し、温度と湿度を調節した室外空気を室内へ供給する。
特開平09−318126号公報 特開2005−291585号公報 特開2006−329471号公報
2. Description of the Related Art Conventionally, an air conditioning system including an air conditioner and an outside air processing device is known. For example, Patent Literature 1 discloses an air conditioning system including an air conditioner provided with a refrigerant circuit that performs a refrigeration cycle, and an outside air processing device that adjusts the humidity of air using a desiccant rotor. Patent Documents 2 and 3 disclose an outside air treatment device that adjusts the humidity of air by heating or cooling an adsorbent carried on the surface of an air heat exchanger with a refrigerant, and a refrigerant that performs a refrigeration cycle. An air conditioning system including an air conditioner provided with a circuit is disclosed. In this type of air conditioning system, the air conditioner adjusts the temperature of the captured room air and supplies the room air whose temperature has been adjusted to the room. The outdoor air processing device adjusts the temperature and humidity of the taken outdoor air, and supplies the outdoor air adjusted in temperature and humidity to the room.
JP 09-318126 A JP 2005-291585 A JP 2006-329471 A

空気調和装置と外気処理装置とを備えた従来の空調システムにおいて、空気調和装置と外気処理装置は、室内空気の状態(即ち、室内空気の温度と湿度)が目標とする状態となるように、それぞれが個別に運転制御を行うことが多かった。このため、空調システム全体の運転効率を向上させる観点からは、空気調和装置や外気処理装置の運転制御が必ずしも最適とは言えない場合があった。   In a conventional air conditioning system including an air conditioner and an outside air treatment device, the air conditioner and the outside air treatment device are set so that the state of indoor air (that is, the temperature and humidity of the room air) is a target state. In many cases, each was individually controlled. For this reason, from the viewpoint of improving the operation efficiency of the entire air conditioning system, the operation control of the air conditioner and the outside air treatment device may not always be optimal.

本発明は、かかる点に鑑みてなされたものであり、その目的は、空気調和装置と外気処理装置とを備えた空調システムの運転効率を向上させることにある。   This invention is made | formed in view of this point, The objective is to improve the operating efficiency of the air conditioning system provided with the air conditioning apparatus and the external air processing apparatus.

第1の発明は、取り込んだ室内空気を少なくともその温度を調節してから室内へ供給する空気調和装置(20)と、取り込んだ室外空気をその温度及び湿度を調節してから室内へ供給する外気処理装置(50)とを備える一方、上記空気調和装置(20)は、空調用圧縮機(41)が接続されて冷凍サイクルを行う空調用冷媒回路(30)を備え、室内空気を上記空調用冷媒回路(30)の冷媒と熱交換させることによって室内空気の温度を調節するように構成されている空調システムを対象とする。そして、上記空調用圧縮機(41)を連続的に運転させながら上記空気調和装置(20)の空調能力を室内の空調負荷に応じて調節する連続運転動作を行う制御手段(90)を備えており、上記制御手段(90)は、上記連続運転動作中に上記空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が低くなっていることを示す所定の運転状態判定条件が成立すると、上記空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させるために上記空調用圧縮機(41)の運転容量を強制的に引き上げた状態で該空調用圧縮機(41)を間欠的に運転させる効率向上動作を行うように構成されるものである。   The first aspect of the invention is an air conditioner (20) for supplying indoor air after adjusting its temperature at least after adjusting the temperature, and outdoor air supplying indoor air after adjusting its temperature and humidity. The air conditioner (20) includes an air conditioning refrigerant circuit (30) connected to an air conditioning compressor (41) to perform a refrigeration cycle, and the room air is used for the air conditioning. It is intended for an air conditioning system configured to adjust the temperature of indoor air by exchanging heat with the refrigerant in the refrigerant circuit (30). And a control means (90) for continuously operating the air conditioning compressor (41) to adjust the air conditioning capability of the air conditioner (20) according to the indoor air conditioning load while continuously operating the air conditioning compressor (41). The control means (90), when a predetermined operating state determination condition is established that indicates that the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) during the continuous operation is low, In order to improve the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30), the air conditioning compressor (41) is intermittently operated with the operating capacity of the air conditioning compressor (41) forcedly increased. It is comprised so that the efficiency improvement operation | movement made to drive may be performed.

第1の発明において、空気調和装置(20)は、取り込んだ室内空気の少なくとも温度を調節し、温度を調節した室内空気を室内へ供給する。空気調和装置(20)では、空調用冷媒回路(30)において冷媒を循環させることによって冷凍サイクルが行われ、室内空気を空調用冷媒回路(30)の冷媒と熱交換させることによって室内空気の温度が調節される。空調システム(10)の制御手段(90)は、連続運転動作を行う。連続運転中の制御手段(90)は、空調用圧縮機(41)を連続的に運転させつつ、空気調和装置(20)の空調能力を室内の空調負荷に応じて調節する。   In the first invention, the air conditioner (20) adjusts at least the temperature of the taken-in room air and supplies the room air whose temperature has been adjusted to the room. In the air conditioner (20), the refrigeration cycle is performed by circulating the refrigerant in the air conditioning refrigerant circuit (30), and the room air temperature is exchanged with the refrigerant in the air conditioning refrigerant circuit (30). Is adjusted. The control means (90) of the air conditioning system (10) performs continuous operation. The control means (90) during continuous operation adjusts the air conditioning capability of the air conditioner (20) according to the indoor air conditioning load while continuously operating the air conditioning compressor (41).

一般に、冷凍サイクルを行う空気調和装置(20)の空調能力が低くなると、冷媒回路内における損失が大きくなり、冷凍サイクルの成績係数(COP)の低下を招くおそれがある。例えば、空気調和装置(20)の空調能力を引き下げるために圧縮機の運転容量を小さくして冷媒回路における冷媒の循環量を削減すると、圧縮機の効率が低下し、冷凍サイクルの成績係数が低下してしまう。   In general, if the air conditioning capacity of the air conditioner (20) that performs the refrigeration cycle decreases, loss in the refrigerant circuit increases, which may cause a decrease in the coefficient of performance (COP) of the refrigeration cycle. For example, reducing the compressor's operating capacity to reduce the air circulation capacity of the air conditioner (20) and reducing the amount of refrigerant circulating in the refrigerant circuit will reduce the efficiency of the compressor and reduce the coefficient of performance of the refrigeration cycle. Resulting in.

それに対し、第1の発明の制御手段(90)は、連続運転動作中に所定の運転状態判定条件が成立すると、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が低くなっていると判断し、効率向上動作を行う。効率向上動作中の制御手段(90)は、空調用圧縮機(41)の運転容量を強制的に引き上げ、それによって空調用冷媒回路(30)での損失を低減する。その結果、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が向上する。このとき、ただ単に空調用圧縮機(41)の運転容量を引き上げると、空気調和装置(20)の空調能力が増大し、室内の気温が低下し過ぎたり上昇し過ぎるおそれがある。そこで、効率向上動作中の制御手段(90)は、空調用圧縮機(41)の運転容量を強制的に引き上げるだけでなく、空調用圧縮機(41)を間欠的に運転させ、室内気温の低下し過ぎや上昇し過ぎを回避している。   On the other hand, the control means (90) of the first invention has a low coefficient of performance for the refrigeration cycle performed in the air conditioning refrigerant circuit (30) when a predetermined operating condition determination condition is satisfied during the continuous operation. The efficiency improvement operation is performed. The control means (90) during the efficiency improvement operation forcibly increases the operating capacity of the air conditioning compressor (41), thereby reducing the loss in the air conditioning refrigerant circuit (30). As a result, the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) is improved. At this time, if the operating capacity of the air conditioning compressor (41) is simply increased, the air conditioning capacity of the air conditioner (20) may increase, and the indoor temperature may be excessively decreased or increased. Therefore, the control means (90) during the efficiency improvement operation not only forcibly increases the operating capacity of the air conditioning compressor (41), but also operates the air conditioning compressor (41) intermittently to control the room temperature. Avoiding too low or too high.

また、第1の発明において、外気処理装置(50)は、取り込んだ室外空気の温度と湿度を調節し、温度と湿度を調節した室外空気を室内へ供給する。つまり、外気処理装置(50)は、室内の換気を行う。空気調和装置(20)の運転中には、常に室内を換気する必要がある。このため、空気調和装置(20)の運転中には外気処理装置(50)も運転される。   In the first invention, the outdoor air processing device (50) adjusts the temperature and humidity of the taken outdoor air, and supplies the outdoor air adjusted in temperature and humidity to the room. That is, the outside air processing device (50) performs indoor ventilation. During operation of the air conditioner (20), it is necessary to ventilate the room at all times. For this reason, the outside air processing device (50) is also operated during the operation of the air conditioner (20).

第2の発明は、取り込んだ室内空気を少なくともその温度を調節してから室内へ供給する空気調和装置(20)と、取り込んだ室外空気をその温度及び湿度を調節してから室内へ供給する外気処理装置(50)とを備える一方、上記空気調和装置(20)は、空調用圧縮機(41)が接続されて冷凍サイクルを行う空調用冷媒回路(30)を備え、室内空気を上記空調用冷媒回路(30)の冷媒と熱交換させることによって室内空気の温度を調節するように構成されている空調システムを対象とする。そして、上記空調用圧縮機(41)を連続的に運転させながら上記空気調和装置(20)の空調能力を室内の空調負荷に応じて調節する連続運転動作と、上記空調用圧縮機(41)を連続的に運転させた状態では上記空気調和装置(20)の空調能力が過剰な場合に該空調用圧縮機(41)を間欠的に運転させる間欠運転動作とを行う制御手段(90)を備えており、上記制御手段(90)は、上記間欠運転動作中における上記空調用圧縮機(41)の停止と起動の頻度が高いことを示す所定の発停頻度判定条件が成立すると、上記間欠運転動作を終了させて上記連続運転動作を開始させるために上記外気処理装置(50)の空調能力を強制的に引き下げる能力削減動作を行うように構成されるものである。   The second aspect of the invention is an air conditioner (20) for supplying indoor air after adjusting its temperature at least after adjusting the temperature, and outdoor air supplying indoor air after adjusting its temperature and humidity. The air conditioner (20) includes an air conditioning refrigerant circuit (30) connected to an air conditioning compressor (41) to perform a refrigeration cycle, and the room air is used for the air conditioning. It is intended for an air conditioning system configured to adjust the temperature of indoor air by exchanging heat with the refrigerant in the refrigerant circuit (30). And the continuous operation operation | movement which adjusts the air-conditioning capability of the said air conditioning apparatus (20) according to an indoor air-conditioning load, operating the said air-conditioning compressor (41) continuously, and the said air-conditioning compressor (41) Control means (90) for performing an intermittent operation operation for intermittently operating the air conditioning compressor (41) when the air conditioning capacity of the air conditioner (20) is excessive in a state where the air conditioning device (20) is excessively operated. The control means (90) includes the intermittent operation when a predetermined start / stop frequency determination condition indicating that the air-conditioning compressor (41) is frequently stopped and started during the intermittent operation is satisfied. In order to terminate the operation and start the continuous operation, the capacity reduction operation for forcibly reducing the air conditioning capacity of the outside air processing device (50) is performed.

第2の発明において、空気調和装置(20)は、取り込んだ室内空気の少なくとも温度を調節し、温度を調節した室内空気を室内へ供給する。空気調和装置(20)では、空調用冷媒回路(30)において冷媒を循環させることによって冷凍サイクルが行われ、室内空気を空調用冷媒回路(30)の冷媒と熱交換させることによって室内空気の温度が調節される。また、この発明において、外気処理装置(50)は、取り込んだ室外空気の温度と湿度を調節し、温度と湿度を調節した室外空気を室内へ供給する。   In the second invention, the air conditioner (20) adjusts at least the temperature of the taken-in room air and supplies the room air whose temperature has been adjusted to the room. In the air conditioner (20), the refrigeration cycle is performed by circulating the refrigerant in the air conditioning refrigerant circuit (30), and the room air temperature is exchanged with the refrigerant in the air conditioning refrigerant circuit (30). Is adjusted. In the present invention, the outdoor air processing device (50) adjusts the temperature and humidity of the taken outdoor air, and supplies the outdoor air adjusted in temperature and humidity to the room.

第2の発明において、空調システム(10)の制御手段(90)は、連続運転動作と間欠運転動作とを行う。連続運転動作中の制御手段(90)は、空調用圧縮機(41)を連続的に運転させつつ、空気調和装置(20)の空調能力を室内の空調負荷に応じて調節する。一方、間欠運転動作中の制御手段(90)は、空調用圧縮機(41)を間欠的に運転させる。連続運転動作中には制御手段(90)が空気調和装置(20)の空調能力を調節するが、それでも空気調和装置(20)の空調能力が室内の空調負荷に対して過剰になる場合があり、そのような場合に制御手段(90)が間欠運転動作を行う。制御手段(90)の間欠運転動作中には、空気調和装置(20)が温度調節した空気を間欠的に室内へ供給することとなり、室内気温の低下し過ぎや上昇し過ぎが回避される。   In the second invention, the control means (90) of the air conditioning system (10) performs a continuous operation and an intermittent operation. The control means (90) during the continuous operation adjusts the air conditioning capability of the air conditioner (20) according to the indoor air conditioning load while continuously operating the air conditioning compressor (41). On the other hand, the control means (90) during intermittent operation operates the air conditioning compressor (41) intermittently. During continuous operation, the control means (90) adjusts the air conditioning capacity of the air conditioner (20), but the air conditioning capacity of the air conditioner (20) may still be excessive with respect to the indoor air conditioning load. In such a case, the control means (90) performs intermittent operation. During the intermittent operation of the control means (90), the air whose temperature is adjusted by the air conditioner (20) is intermittently supplied into the room, and the room temperature is prevented from excessively decreasing or increasing.

一般に、圧縮機を起動した時点から暫くの間は、冷媒回路を構成する配管や機器の温度を定常状態にするために冷媒の温熱や冷熱が消費されるため、冷媒回路で行われる冷凍サイクルの成績係数が低くなる。このため、制御手段(90)が長時間に亘って間欠運転動作を行うと、空調用圧縮機(41)が起動される度に空調用冷媒回路(30)では成績係数の低い冷凍サイクルが行われることとなり、空調システム(10)の効率低下を招くおそれがある。   In general, for a while from the time of starting the compressor, the heat and cold of the refrigerant are consumed in order to bring the temperature of the piping and equipment constituting the refrigerant circuit to a steady state. The coefficient of performance is low. For this reason, if the control means (90) performs intermittent operation for a long time, the air conditioning refrigerant circuit (30) performs a refrigeration cycle with a low coefficient of performance each time the air conditioning compressor (41) is started. The air conditioning system (10) may be less efficient.

そこで、第2の発明の制御手段(90)は、間欠運転動作中に所定の発停頻度判定条件が成立すると、間欠運転動作中における空調用圧縮機(41)の停止と起動の頻度が高くなっていると判断し、能力削減動作を行う。能力削減動作中の制御手段(90)は、外気処理装置(50)の空調能力を強制的に引き下げる。外気処理装置(50)の空調能力が減少した状態で室内気温を維持するには、空気調和装置(20)の空調能力を高める必要がある。このため、制御手段(90)は、間欠運転動作を終了させて連続運転動作を開始させ、空気調和装置(20)の空調能力を引き上げる。制御手段(90)の連続運転動作中には、空調用圧縮機(41)が連続的に運転される。このため、空調用冷媒回路(30)では、冷媒が安定した状態で循環し続け、成績係数の高い冷凍サイクルが行われることとなる。   Therefore, the control means (90) of the second invention has a high frequency of stopping and starting the air conditioning compressor (41) during the intermittent operation when the predetermined start / stop frequency determination condition is satisfied during the intermittent operation. It is judged that it has become, and capacity reduction operation is performed. The control means (90) during the capacity reduction operation forcibly reduces the air conditioning capacity of the outside air processing device (50). In order to maintain the room temperature while the air conditioning capacity of the outside air processing device (50) is reduced, it is necessary to increase the air conditioning capacity of the air conditioner (20). For this reason, the control means (90) ends the intermittent operation and starts the continuous operation, thereby raising the air conditioning capability of the air conditioner (20). During the continuous operation of the control means (90), the air conditioning compressor (41) is continuously operated. For this reason, in the air conditioning refrigerant circuit (30), the refrigerant continues to circulate in a stable state, and a refrigeration cycle having a high coefficient of performance is performed.

第3の発明は、上記第1又は第2の発明において、上記外気処理装置(50)は、調湿用圧縮機(71)が接続されて冷凍サイクルを行う調湿用冷媒回路(60)と、該調湿用冷媒回路(60)の冷媒によって冷却され又は加熱される吸着剤とを備え、室外空気を上記吸着剤と接触させることによって室外空気の温度および湿度を調節するように構成されるものである。   According to a third invention, in the first or second invention, the outside air processing device (50) includes a humidity control refrigerant circuit (60) connected to a humidity control compressor (71) and performing a refrigeration cycle. An adsorbent that is cooled or heated by the refrigerant in the humidity control refrigerant circuit (60), and is configured to adjust the temperature and humidity of the outdoor air by bringing the outdoor air into contact with the adsorbent. Is.

第3の発明では、外気処理装置(50)に調湿用冷媒回路(60)が設けられる。調湿用冷媒回路(60)に接続された調湿用圧縮機(71)を駆動すると、調湿用冷媒回路(60)内を冷媒が循環して冷凍サイクルが行われる。外気処理装置(50)は、調湿用冷媒回路(60)の冷媒によって吸着剤の加熱または冷却を行い、加熱され又は冷却された吸着剤を室外空気と接触させることによって室外空気の温度と湿度を調節する。   In the third aspect, the humidity control refrigerant circuit (60) is provided in the outside air processing device (50). When the humidity control compressor (71) connected to the humidity control refrigerant circuit (60) is driven, the refrigerant circulates in the humidity control refrigerant circuit (60) to perform a refrigeration cycle. The outdoor air processing device (50) heats or cools the adsorbent with the refrigerant of the humidity control refrigerant circuit (60), and brings the heated or cooled adsorbent into contact with the outdoor air, thereby the temperature and humidity of the outdoor air. Adjust.

上記第1の発明において、制御手段(90)は、連続運転動作中に所定の運転状態判定条件が成立すると、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が低くなっていると判断し、効率向上動作を行う。効率向上動作中の制御手段(90)は、空調用圧縮機(41)の運転容量を強制的に引き上げることによって、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させる。また、効率向上動作中の制御手段(90)は、空調用圧縮機(41)の運転容量を引き上げると共に、空調用圧縮機(41)を間欠的に運転させる。従って、この発明によれば、室内気温の低下し過ぎや上昇し過ぎを回避しつつ、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させることによって空気調和装置(20)の運転効率を向上させることができる。   In the first invention, the control means (90) has a low coefficient of performance for a refrigeration cycle performed in the air conditioning refrigerant circuit (30) when a predetermined operating state determination condition is satisfied during the continuous operation. Judgment is made and the efficiency improvement operation is performed. The control means (90) during the efficiency improvement operation improves the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) by forcibly increasing the operating capacity of the air conditioning compressor (41). Further, the control means (90) during the efficiency improvement operation raises the operating capacity of the air conditioning compressor (41) and causes the air conditioning compressor (41) to operate intermittently. Therefore, according to the present invention, the air conditioner (20) is improved by improving the coefficient of performance of the refrigeration cycle performed in the air-conditioning refrigerant circuit (30) while avoiding an excessive decrease or increase in the room temperature. Driving efficiency can be improved.

ここで、空調用圧縮機(41)が間欠的に運転されると、空気調和装置(20)において温度調節された空気が間欠的に室内へ供給されることとなり、室内気温の変動が大きくなるおそれがある。これに対し、上記第1の発明では、空気調和装置(20)の運転中に、外気処理装置(50)が温度と湿度を調節した空気を室内へ供給する。このため、空調用圧縮機(41)を間欠的に運転させても、外気処理装置(50)が温度と湿度を調節した空気を室内へ供給することによって室内気温の変動が抑えられる。従って、この発明によれば、室内気温の変動を抑制して室内の快適性を確保しつつ、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させることによって空気調和装置(20)の運転効率を向上させることができる。   Here, when the air conditioning compressor (41) is intermittently operated, the air whose temperature is adjusted in the air conditioner (20) is intermittently supplied into the room, and the fluctuation of the room temperature increases. There is a fear. In contrast, in the first invention, the outside air processing device (50) supplies the air whose temperature and humidity are adjusted to the room during the operation of the air conditioner (20). For this reason, even if the compressor for air conditioning (41) is operated intermittently, the outside air processing device (50) supplies the air whose temperature and humidity are adjusted to the room, thereby suppressing the fluctuation of the room temperature. Therefore, according to the present invention, the air conditioner (20) is achieved by improving the coefficient of performance of the refrigeration cycle performed in the refrigerant circuit for air conditioning (30) while suppressing indoor temperature fluctuations and ensuring indoor comfort. ) Driving efficiency can be improved.

上記第2の発明において、制御手段(90)は、間欠運転動作中に所定の発停頻度判定条件が成立すると、間欠運転動作中における空調用圧縮機(41)の停止と起動の頻度が高くなっていると判断し、能力削減動作を行う。能力削減動作中の制御手段(90)は、外気処理装置(50)の空調能力を強制的に引き下げることによって、間欠運転動作を終了させて連続運転動作を開始させる。制御手段(90)の連続運転動作中において、空調用冷媒回路(30)では、冷媒が安定した状態で循環し続け、成績係数の高い冷凍サイクルが行われることとなる。従って、この発明によれば、制御手段(90)が間欠運転動作を実行し続ける場合に比べ、空調システム(10)の運転効率を向上させることができる。   In the second aspect, when the predetermined start / stop frequency determination condition is satisfied during the intermittent operation, the control means (90) has a high frequency of stopping and starting the air conditioning compressor (41) during the intermittent operation. It is judged that it has become, and capacity reduction operation is performed. The control means (90) during the capacity reduction operation forcibly lowers the air conditioning capacity of the outside air processing device (50), thereby terminating the intermittent operation and starting the continuous operation. During the continuous operation of the control means (90), in the refrigerant circuit for air conditioning (30), the refrigerant continues to circulate in a stable state, and a refrigeration cycle with a high coefficient of performance is performed. Therefore, according to the present invention, the operation efficiency of the air conditioning system (10) can be improved as compared with the case where the control means (90) continues to execute the intermittent operation.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。本実施形態の空調システム(10)は、空気調和装置である空調機(20)と、外気処理装置である外気処理機(50)とを備えている。また、この空調システム(10)では、空調機(20)に設けられた空調側コントローラ(91)と、外気処理機(50)に設けられた調湿側コントローラ(92a,92b)とが、制御手段である制御システム(90)を構成している。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The air conditioning system (10) of the present embodiment includes an air conditioner (20) that is an air conditioner and an outside air processor (50) that is an outside air processing device. In this air conditioning system (10), the air conditioning side controller (91) provided in the air conditioner (20) and the humidity control side controller (92a, 92b) provided in the outside air processing machine (50) are controlled. The control system (90) which is a means is comprised.

〈空調機の構成〉
空調システム(10)を構成する空調機(20)は、一台の室外ユニット(21)と、四台の室内ユニット(22a,22b,22c,22d)とを備えている。この空調機(20)では、室外ユニット(21)と各室内ユニット(22a〜22d)を配管で接続することによって、第1冷媒回路である空調用冷媒回路(30)が形成されている。なお、室外ユニット(21)及び室内ユニット(22a〜22d)の台数は、単なる例示である。
<Configuration of air conditioner>
The air conditioner (20) constituting the air conditioning system (10) includes one outdoor unit (21) and four indoor units (22a, 22b, 22c, 22d). In the air conditioner (20), an air conditioning refrigerant circuit (30) that is a first refrigerant circuit is formed by connecting the outdoor unit (21) and the indoor units (22a to 22d) with pipes. The numbers of outdoor units (21) and indoor units (22a to 22d) are merely examples.

室外ユニット(21)には、室外回路(40)と室外ファン(23)とが収容されている。室外回路(40)には、空調用圧縮機(41)と、アキュームレータ(42)と、四方切換弁(43)と、室外熱交換器(44)と、室外膨張弁(45)と、レシーバ(46)と、液側閉鎖弁(47)と、ガス側閉鎖弁(48)とが設けられている。   The outdoor unit (21) accommodates an outdoor circuit (40) and an outdoor fan (23). The outdoor circuit (40) includes an air conditioning compressor (41), an accumulator (42), a four-way switching valve (43), an outdoor heat exchanger (44), an outdoor expansion valve (45), and a receiver ( 46), a liquid side closing valve (47), and a gas side closing valve (48).

室外回路(40)において、空調用圧縮機(41)は、その吐出側が四方切換弁(43)の第1のポートに接続され、その吸入側がアキュームレータ(42)を介して四方切換弁(43)の第2のポートに接続されている。四方切換弁(43)の第3のポートは、室外熱交換器(44)のガス側端に接続されている。室外熱交換器(44)の液側端は、室外膨張弁(45)の一端に接続されている。室外膨張弁(45)の他端は、レシーバ(46)を介して液側閉鎖弁(47)に接続されている。四方切換弁(43)の第4のポートは、ガス側閉鎖弁(48)に接続されている。   In the outdoor circuit (40), the air-conditioning compressor (41) has a discharge side connected to the first port of the four-way switching valve (43), and a suction side connected to the four-way switching valve (43) via the accumulator (42). Connected to the second port. The third port of the four-way switching valve (43) is connected to the gas side end of the outdoor heat exchanger (44). The liquid side end of the outdoor heat exchanger (44) is connected to one end of the outdoor expansion valve (45). The other end of the outdoor expansion valve (45) is connected to the liquid side closing valve (47) via the receiver (46). The fourth port of the four-way switching valve (43) is connected to the gas side closing valve (48).

室外回路(40)には、高圧センサ(26)と低圧センサ(27)とが設けられている。高圧センサ(26)は、空調用圧縮機(41)の吐出側と四方切換弁(43)を繋ぐ配管に接続され、空調用圧縮機(41)から吐出された高圧冷媒の圧力を計測する。低圧センサ(27)は、アキュームレータ(42)と四方切換弁(43)を繋ぐ配管に接続され、空調用圧縮機(41)へ吸入される低圧冷媒の圧力を計測する。   The outdoor circuit (40) is provided with a high pressure sensor (26) and a low pressure sensor (27). The high pressure sensor (26) is connected to a pipe connecting the discharge side of the air conditioning compressor (41) and the four-way switching valve (43), and measures the pressure of the high pressure refrigerant discharged from the air conditioning compressor (41). The low pressure sensor (27) is connected to a pipe connecting the accumulator (42) and the four-way selector valve (43), and measures the pressure of the low pressure refrigerant sucked into the air conditioning compressor (41).

空調用圧縮機(41)は、いわゆる全密閉型の圧縮機である。空調用圧縮機(41)の電動機には、図外のインバータを介して電力が供給される。インバータから電動機へ供給される交流の周波数(即ち、空調用圧縮機(41)の運転周波数)を変化させると、電動機の回転速度が変化し、その結果、空調用圧縮機(41)の運転容量が変化する。   The air conditioning compressor (41) is a so-called hermetic compressor. Electric power is supplied to the motor of the air conditioning compressor (41) via an inverter (not shown). Changing the frequency of AC supplied from the inverter to the motor (that is, the operating frequency of the air conditioning compressor (41)) changes the rotational speed of the motor, and as a result, the operating capacity of the air conditioning compressor (41). Changes.

室外熱交換器(44)は、室外ファン(23)によって供給された室外空気を冷媒と熱交換させるフィン・アンド・チューブ型の熱交換器である。四方切換弁(43)は、第1のポートが第3のポートに連通し且つ第2のポートが第4のポートに連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートに連通し且つ第2のポートが第3のポートに連通する第2状態(図1に破線で示す状態)とに切り換わる。   The outdoor heat exchanger (44) is a fin-and-tube heat exchanger that exchanges heat between the outdoor air supplied by the outdoor fan (23) and the refrigerant. The four-way switching valve (43) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The state is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.

各室内ユニット(22a〜22d)には、室内回路(35a,35b,35c,35d)が一つずつ収容されている。また、各室内ユニット(22a〜22d)には、室内ファン(24a,24b,24c,24d)と、室内温度センサ(25a,25b,25c,25d)とが一つずつ設けられている。   Each indoor unit (22a-22d) accommodates one indoor circuit (35a, 35b, 35c, 35d). Each indoor unit (22a-22d) is provided with one indoor fan (24a, 24b, 24c, 24d) and one indoor temperature sensor (25a, 25b, 25c, 25d).

各室内回路(35a〜35d)には、室内熱交換器(36a,36b,36c,36d)と、室内膨張弁(37a,37b,37c,37d)とが一つずつ設けられている。室内熱交換器(36a〜36d)は、室内ファン(24a〜24d)によって供給された室内空気を冷媒と熱交換させるフィン・アンド・チューブ型の熱交換器である。   Each indoor circuit (35a to 35d) is provided with one indoor heat exchanger (36a, 36b, 36c, 36d) and one indoor expansion valve (37a, 37b, 37c, 37d). The indoor heat exchangers (36a to 36d) are fin-and-tube heat exchangers that exchange the indoor air supplied by the indoor fans (24a to 24d) with the refrigerant.

各室内回路(35a〜35d)において、室内熱交換器(36a〜36d)は、その一端が室内回路(35a〜35d)のガス側端に接続され、その他端が室内膨張弁(37a〜37d)を介して室内回路(35a〜35d)の液側端に接続されている。各室内回路(35a〜35d)は、それぞれの液側端が液側連絡配管(31)を介して室外回路(40)の液側閉鎖弁(47)に接続され、それぞれのガス側端がガス側連絡配管(32)を介して室外回路(40)のガス側閉鎖弁(48)に接続されている。   In each indoor circuit (35a-35d), one end of the indoor heat exchanger (36a-36d) is connected to the gas side end of the indoor circuit (35a-35d), and the other end is an indoor expansion valve (37a-37d). Is connected to the liquid side end of the indoor circuit (35a to 35d). Each indoor circuit (35a to 35d) has its liquid side end connected to the liquid side shut-off valve (47) of the outdoor circuit (40) via the liquid side connecting pipe (31), and each gas side end has a gas side. It is connected to the gas side shut-off valve (48) of the outdoor circuit (40) via the side connection pipe (32).

図示しないが、各室内ユニット(22a〜22d)には、空気の吸込口と吹出口が形成されている。各室内ユニット(22a〜22d)は、それぞれに形成された吸込口及び吹出口の全てが同一の室内空間に連通するように設置されている。つまり、各室内ユニット(22a〜22d)は、同一の室内空間から室内空気を吸い込み、室内熱交換器(36a〜36d)を通過した室内空気を同一の室内空間へ吹き出す。   Although not shown, each indoor unit (22a to 22d) has an air inlet and an outlet. Each indoor unit (22a-22d) is installed so that all of the suction inlets and outlets formed in the respective indoor units communicate with the same indoor space. That is, each indoor unit (22a-22d) sucks indoor air from the same indoor space, and blows out the indoor air which passed the indoor heat exchanger (36a-36d) to the same indoor space.

〈外気処理機の構成〉
空調システム(10)を構成する外気処理機(50)は、一台の圧縮機ユニット(51)と、二台の調湿ユニット(52a,52b)とを備えている。この外気処理機(50)では、圧縮機ユニット(51)と各調湿ユニット(52a,52b)を配管で接続することによって、第2冷媒回路である調湿用冷媒回路(60)が形成されている。なお、圧縮機ユニット(51)及び調湿ユニットの台数は、単なる例示である。
<Configuration of outside air treatment machine>
The outside air processor (50) constituting the air conditioning system (10) includes one compressor unit (51) and two humidity control units (52a, 52b). In the outside air processor (50), the compressor unit (51) and the humidity control units (52a, 52b) are connected by piping to form a humidity control refrigerant circuit (60) as a second refrigerant circuit. ing. In addition, the number of compressor units (51) and humidity control units is merely an example.

圧縮機ユニット(51)には、圧縮機側回路(70)が収容されている。圧縮機側回路(70)には、調湿用圧縮機(71)と、アキュームレータ(72)と、高圧側閉鎖弁(73)と、低圧側閉鎖弁(74)とが設けられている。圧縮機側回路(70)において、調湿用圧縮機(71)は、その吐出側が高圧側閉鎖弁(73)に接続され、この吸入側がアキュームレータ(72)を介して低圧側閉鎖弁(74)に接続されている。   The compressor unit (51) accommodates a compressor side circuit (70). The compressor side circuit (70) is provided with a humidity control compressor (71), an accumulator (72), a high pressure side closing valve (73), and a low pressure side closing valve (74). In the compressor side circuit (70), the humidity control compressor (71) has its discharge side connected to the high pressure side closing valve (73), and this suction side connected to the low pressure side closing valve (74) via the accumulator (72). It is connected to the.

調湿用圧縮機(71)は、いわゆる全密閉型の圧縮機である。調湿用圧縮機(71)の電動機には、図外のインバータを介して電力が供給される。インバータから電動機へ供給される交流の周波数(即ち、調湿用圧縮機(71)の運転周波数)を変化させると、電動機の回転速度が変化し、その結果、調湿用圧縮機(71)の運転容量が変化する。   The humidity control compressor (71) is a so-called hermetic compressor. Electric power is supplied to the electric motor of the humidity control compressor (71) via an inverter (not shown). When the frequency of the alternating current supplied from the inverter to the electric motor (that is, the operating frequency of the humidity control compressor (71)) is changed, the rotational speed of the electric motor changes. As a result, the humidity control compressor (71) The operating capacity changes.

図2にも示すように、各調湿ユニット(52a,52b)には、調湿用回路(80a,80b)が一つずつ収容されている。各調湿用回路(80a,80b)には、四方切換弁(83a,83b)と、第1吸着熱交換器(81a,81b)と、第2吸着熱交換器(82a,82b)と、調湿用膨張弁(84a,84b)とが一つずつ設けられている。   As shown in FIG. 2, each humidity control unit (52a, 52b) accommodates one humidity control circuit (80a, 80b). Each humidity control circuit (80a, 80b) includes a four-way switching valve (83a, 83b), a first adsorption heat exchanger (81a, 81b), and a second adsorption heat exchanger (82a, 82b). One wet expansion valve (84a, 84b) is provided.

各調湿用回路(80a,80b)において、四方切換弁(83a,83b)は、その第1のポートが調湿用回路(80a,80b)の高圧側端に接続され、その第2のポートが調湿用回路(80a,80b)の低圧側端に接続されている。また、各調湿用回路(80a,80b)では、四方切換弁(83a,83b)の第3のポートから第4のポートに向かって順に、第1吸着熱交換器(81a,81b)と、調湿用膨張弁(84a,84b)と、第2吸着熱交換器(82a,82b)とが配置されている。各調湿用回路(80a,80b)は、それぞれの高圧側端が高圧側連絡配管(61)を介して圧縮機側回路(70)の高圧側閉鎖弁(73)に接続され、それぞれの低圧側端が低圧側連絡配管(62)を介して圧縮機側回路(70)の低圧側閉鎖弁(74)に接続されている。   In each humidity control circuit (80a, 80b), the four-way switching valve (83a, 83b) has its first port connected to the high-pressure end of the humidity control circuit (80a, 80b), and its second port. Is connected to the low-pressure side end of the humidity control circuit (80a, 80b). In each humidity control circuit (80a, 80b), in order from the third port of the four-way switching valve (83a, 83b) to the fourth port, the first adsorption heat exchanger (81a, 81b), A humidity control expansion valve (84a, 84b) and a second adsorption heat exchanger (82a, 82b) are arranged. Each humidity control circuit (80a, 80b) has its high-pressure end connected to the high-pressure side shut-off valve (73) of the compressor-side circuit (70) via the high-pressure side connecting pipe (61). The side end is connected to the low pressure side shut-off valve (74) of the compressor side circuit (70) via the low pressure side connecting pipe (62).

第1吸着熱交換器(81a,81b)と第2吸着熱交換器(82a,82b)は、何れもフィン・アンド・チューブ型の熱交換器の表面にゼオライト等の吸着剤を担持させたものである。これら吸着熱交換器(81a,82a,81b,82b)では、その表面に担持された吸着剤が冷媒によって加熱され又は冷却され、そこを通過する空気が吸着剤と接触する。各四方切換弁(83a,83b)は、第1のポートが第3のポートに連通し且つ第2のポートが第4のポートに連通する第1状態(図2(A)に示す状態)と、第1のポートが第4のポートに連通し且つ第2のポートが第3のポートに連通する第2状態(図2(B)に示す状態)とに切り換わる。   Each of the first adsorption heat exchanger (81a, 81b) and the second adsorption heat exchanger (82a, 82b) has an adsorbent such as zeolite supported on the surface of a fin-and-tube heat exchanger. It is. In these adsorption heat exchangers (81a, 82a, 81b, 82b), the adsorbent carried on the surface is heated or cooled by the refrigerant, and the air passing there comes into contact with the adsorbent. Each four-way switching valve (83a, 83b) has a first state (state shown in FIG. 2 (A)) in which the first port communicates with the third port and the second port communicates with the fourth port. The first port communicates with the fourth port and the second port communicates with the third port (the state shown in FIG. 2B).

各調湿ユニット(52a,52b)には、給気ファン(53a,53b)と排気ファン(54a,54b)とが収容されている。また、各調湿ユニット(52a,52b)には、空気通路が形成されている。各調湿ユニット(52a,52b)では、図外のダンパを開閉することによって、空気の流通経路が切り換え可能となっている。そして、各調湿ユニット(52a,52b)は、室内空気と室外空気を吸い込むと共に、吸着熱交換器(81a,82a,81b,82b)を通過した室内空気を室外へ排出し、吸着熱交換器(81a,82a,81b,82b)を通過した室外空気を室内へ供給するように構成されている。   Each humidity control unit (52a, 52b) accommodates an air supply fan (53a, 53b) and an exhaust fan (54a, 54b). Each humidity control unit (52a, 52b) has an air passage. In each humidity control unit (52a, 52b), the air circulation path can be switched by opening and closing a damper (not shown). Each humidity control unit (52a, 52b) sucks indoor air and outdoor air, and exhausts indoor air that has passed through the adsorption heat exchanger (81a, 82a, 81b, 82b) to the outside. The outdoor air that has passed (81a, 82a, 81b, 82b) is supplied to the room.

具体的に、各調湿ユニット(52a,52b)では、吸着熱交換器(81a,82a,81b,82b)の上流側における空気の流通経路が、室内空気が第1吸着熱交換器(81a,81b)へ送られて室外空気が第2吸着熱交換器(82a,82b)へ送られる状態(図2(A)に示す状態)と、室内空気が第2吸着熱交換器(82a,82b)へ送られて室外空気が第1吸着熱交換器(81a,81b)へ送られる状態(図2(B)に示す状態)とに切り換え可能となっている。また、各調湿ユニット(52a,52b)では、吸着熱交換器(81a,82a,81b,82b)の下流側における空気の流通経路が、第1吸着熱交換器(81a,81b)を通過した空気が排気ファン(54a,54b)へ送られて第2吸着熱交換器(82a,82b)を通過した空気が給気ファン(53a,53b)へ送られる状態(図2(A)に示す状態)と、第1吸着熱交換器(81a,81b)を通過した空気が給気ファン(53a,53b)へ送られて第2吸着熱交換器(82a,82b)を通過した空気が排気ファン(54a,54b)へ送られる状態(図2(B)に示す状態)とに切り換え可能となっている。   Specifically, in each humidity control unit (52a, 52b), the air flow path on the upstream side of the adsorption heat exchanger (81a, 82a, 81b, 82b), the indoor air is the first adsorption heat exchanger (81a, 81b), the outdoor air is sent to the second adsorption heat exchanger (82a, 82b) (the state shown in FIG. 2A), and the indoor air is the second adsorption heat exchanger (82a, 82b). The outdoor air can be switched to a state (the state shown in FIG. 2B) where the outdoor air is sent to the first adsorption heat exchanger (81a, 81b). In each humidity control unit (52a, 52b), the air flow path downstream of the adsorption heat exchanger (81a, 82a, 81b, 82b) has passed through the first adsorption heat exchanger (81a, 81b). State in which air is sent to the exhaust fan (54a, 54b) and passed through the second adsorption heat exchanger (82a, 82b) and sent to the air supply fan (53a, 53b) (state shown in FIG. 2A) ) And the air that has passed through the first adsorption heat exchanger (81a, 81b) is sent to the supply fan (53a, 53b) and the air that has passed through the second adsorption heat exchanger (82a, 82b) 54a, 54b) can be switched to the state (the state shown in FIG. 2B).

各調湿ユニット(52a,52b)には、室内温度センサ(55a,55b)と、室内湿度センサ(56a,56b)と、室外温度センサ(57a,57b)と、室外湿度センサ(58a,58b)とが設けられている。これらのセンサ(53a,54,…,53b,54b,…)は、空気の流通経路における吸着熱交換器(81a,82a,81b,82b)の上流側に設置されている。室内温度センサ(55a,55b)は、調湿ユニット(52a,52b)へ吸い込まれた室内空気の温度を計測する。室内湿度センサ(56a,56b)は、調湿ユニット(52a,52b)へ吸い込まれた室内空気の相対湿度を計測する。室外温度センサ(57a,57b)は、調湿ユニット(52a,52b)へ吸い込まれた室外空気の温度を計測する。室外湿度センサ(58a,58b)は、調湿ユニット(52a,52b)へ吸い込まれた室外空気の相対湿度を計測する。   Each humidity control unit (52a, 52b) includes an indoor temperature sensor (55a, 55b), an indoor humidity sensor (56a, 56b), an outdoor temperature sensor (57a, 57b), and an outdoor humidity sensor (58a, 58b). And are provided. These sensors (53a, 54, ..., 53b, 54b, ...) are installed upstream of the adsorption heat exchangers (81a, 82a, 81b, 82b) in the air flow path. The indoor temperature sensor (55a, 55b) measures the temperature of the indoor air sucked into the humidity control unit (52a, 52b). The indoor humidity sensor (56a, 56b) measures the relative humidity of the indoor air sucked into the humidity control unit (52a, 52b). The outdoor temperature sensor (57a, 57b) measures the temperature of the outdoor air sucked into the humidity control unit (52a, 52b). The outdoor humidity sensor (58a, 58b) measures the relative humidity of the outdoor air sucked into the humidity control unit (52a, 52b).

図示しないが、各調湿ユニット(52a,52b)には、室内空気の吸込口及び吹出口と、室外空気の吸込口及び吹出口とが形成されている。各調湿ユニット(52a,52b)は、それぞれに形成された室内空気の吸込口及び吹出口の全てが同一の室内空間に連通するように設置されている。つまり、各調湿ユニット(52a,52b)は、同一の室内空間から室内空気を吸い込んで室外へ排出し、取り込んだ室外空気を同一の室内空間へ供給する。   Although not shown, each humidity control unit (52a, 52b) is formed with an air inlet and outlet for indoor air and an air inlet and outlet for outdoor air. Each of the humidity control units (52a, 52b) is installed so that all of the indoor air inlets and outlets formed therein communicate with the same indoor space. That is, each humidity control unit (52a, 52b) sucks indoor air from the same indoor space and discharges it outside the room, and supplies the taken outdoor air to the same indoor space.

また、各調湿ユニット(52a,52b)に形成された室内空気の吸込口及び吹出口が連通する室内空間は、空調機(20)の各室内ユニット(22a〜22d)の吸込口及び吹出口が連通する室内空間と同一の空間である。つまり、本実施形態の空調システム(10)では、各調湿ユニット(52a,52b)に形成された室内空気の吸込口及び吹出口と、各室内ユニット(22a〜22d)に形成された吸込口及び吹出口とは、何れも共通の室内空間に連通している。   Moreover, the indoor space formed in each humidity control unit (52a, 52b) through which the indoor air inlet and outlet communicates is the inlet and outlet of each indoor unit (22a to 22d) of the air conditioner (20). It is the same space as the indoor space that communicates. In other words, in the air conditioning system (10) of the present embodiment, the indoor air inlet and outlet formed in each humidity control unit (52a, 52b) and the inlet formed in each indoor unit (22a to 22d). And the air outlet both communicate with a common indoor space.

〈制御システムの構成〉
上述したように、空調システム(10)の制御システム(90)は、空調側コントローラ(91)と調湿側コントローラ(92a,92b)とによって構成されている。
<Control system configuration>
As described above, the control system (90) of the air conditioning system (10) includes the air conditioning side controller (91) and the humidity control side controllers (92a, 92b).

空調側コントローラ(91)は、空調機(20)の室外ユニット(21)に収容されている。空調側コントローラ(91)には、低圧センサ(27)や高圧センサ(26)の計測値が入力される。空調側コントローラ(91)は、空調機(20)の運転動作を制御するように構成されている。空調機(20)の運転中において、空調側コントローラ(91)は、空調用圧縮機(41)に接続されたインバータの出力周波数(即ち、空調用圧縮機(41)の運転周波数)を制御することによって空調用圧縮機(41)の運転容量を調節し、それによって空調機(20)が発揮する空調能力を調節する。   The air conditioning controller (91) is accommodated in the outdoor unit (21) of the air conditioner (20). The measured values of the low pressure sensor (27) and the high pressure sensor (26) are input to the air conditioning side controller (91). The air conditioning controller (91) is configured to control the operation of the air conditioner (20). During operation of the air conditioner (20), the air conditioning controller (91) controls the output frequency of the inverter connected to the air conditioning compressor (41) (that is, the operating frequency of the air conditioning compressor (41)). By adjusting the operating capacity of the air conditioning compressor (41), the air conditioning capacity exhibited by the air conditioner (20) is adjusted accordingly.

図4に示すように、空調側コントローラ(91)には、空調能力制御部(95)と、効率制御部(96)とが設けられている。空調能力制御部(95)は、連続運転動作を行うように構成されている。連続運転動作は、空調用圧縮機(41)を連続的に運転させながら空調用圧縮機(41)の運転容量を室内の空調負荷に応じて調節する動作である。一方、効率制御部(96)は、効率向上動作を行うように構成されている。効率向上動作は、空調用冷媒回路(30)において行われる冷凍サイクルの成績係数(COP)が向上するように空調用圧縮機(41)の運転を制御する動作である。なお、空調側コントローラ(91)が行う制御動作の詳細は、後述する。   As shown in FIG. 4, the air conditioning side controller (91) is provided with an air conditioning capability control unit (95) and an efficiency control unit (96). The air conditioning capability control unit (95) is configured to perform a continuous operation. The continuous operation is an operation for adjusting the operation capacity of the air conditioning compressor (41) according to the air conditioning load in the room while continuously operating the air conditioning compressor (41). On the other hand, the efficiency control unit (96) is configured to perform an efficiency improvement operation. The efficiency improving operation is an operation of controlling the operation of the air conditioning compressor (41) so that the coefficient of performance (COP) of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) is improved. The details of the control operation performed by the air conditioning controller (91) will be described later.

調湿側コントローラ(92a,92b)は、外気処理機(50)の調湿ユニット(52a,52b)に一つずつ収容されている。第1の調湿ユニット(52a)に設けられた調湿側コントローラ(92a)には、第1の調湿ユニット(52a)に設けられた室内温度センサ(55a)、室内湿度センサ(56a)、室外温度センサ(57a)、及び室外湿度センサ(58a)の計測値が入力される。この調湿側コントローラ(92a)は、第1の調湿ユニット(52a)の運転動作を制御するように構成されている。第2の調湿ユニット(52b)に設けられた調湿側コントローラ(92b)には、第2の調湿ユニット(52b)に設けられた室内温度センサ(55b)、室内湿度センサ(56b)、室外温度センサ(57b)、及び室外湿度センサ(58b)の計測値が入力される。この調湿側コントローラ(92b)は、第2の調湿ユニット(52b)の運転動作を制御するように構成されている。   The humidity control controllers (92a, 92b) are housed one by one in the humidity control units (52a, 52b) of the outside air processor (50). The humidity control controller (92a) provided in the first humidity control unit (52a) includes an indoor temperature sensor (55a), an indoor humidity sensor (56a) provided in the first humidity control unit (52a), Measurement values of the outdoor temperature sensor (57a) and the outdoor humidity sensor (58a) are input. The humidity control side controller (92a) is configured to control the operation of the first humidity control unit (52a). The humidity controller (92b) provided in the second humidity control unit (52b) includes an indoor temperature sensor (55b), an indoor humidity sensor (56b) provided in the second humidity control unit (52b), Measurement values of the outdoor temperature sensor (57b) and the outdoor humidity sensor (58b) are input. This humidity control controller (92b) is configured to control the operation of the second humidity control unit (52b).

第1の調湿ユニット(52a)に設けられた調湿側コントローラ(92a)は、調湿用圧縮機(71)の運転制御を行うように構成されている。外気処理機(50)の運転中において、調湿側コントローラ(92a)は、調湿用圧縮機(71)に接続されたインバータの出力周波数(即ち、調湿用圧縮機(71)の運転周波数)を制御することによって調湿用圧縮機(71)の運転容量を調節し、それによって外気処理機(50)が発揮する空調能力を調節する。   The humidity control controller (92a) provided in the first humidity control unit (52a) is configured to control the operation of the humidity control compressor (71). During the operation of the outside air processor (50), the humidity controller (92a) outputs the output frequency of the inverter connected to the humidity control compressor (71) (that is, the operation frequency of the humidity control compressor (71)). ) Is adjusted to adjust the operating capacity of the humidity control compressor (71), thereby adjusting the air conditioning capacity exhibited by the outside air processor (50).

−運転動作−
空調システム(10)の運転動作について説明する。本実施形態の空調システム(10)において、空調機(20)では冷房運転と暖房運転が切り換え可能となり、外気処理機(50)では除湿運転と加湿運転が切り換え可能となっている。
-Driving action-
The operation of the air conditioning system (10) will be described. In the air conditioning system (10) of the present embodiment, the air conditioner (20) can be switched between a cooling operation and a heating operation, and the outside air processor (50) can be switched between a dehumidifying operation and a humidifying operation.

〈空調機の運転動作〉
上述したように、空調機(20)では、冷房運転と暖房運転とが切り換え可能となっている。冷房運転中と暖房運転中の何れにおいても、空調機(20)の空調用冷媒回路(30)では、冷媒を循環させることによって蒸気圧縮冷凍サイクルが行われる。
<Operation of air conditioner>
As described above, in the air conditioner (20), the cooling operation and the heating operation can be switched. In both the cooling operation and the heating operation, the air-conditioning refrigerant circuit (30) of the air conditioner (20) performs the vapor compression refrigeration cycle by circulating the refrigerant.

=== 冷房運転 ===
空調機(20)の冷房運転について説明する。冷房運転中の空調用冷媒回路(30)では、四方切換弁(43)が第1状態(図1に実線で示す状態)に設定され、室外膨張弁(45)が全開状態に設定され、各室内膨張弁(37a〜37d)の開度が適宜調節される。また、冷房運転中の空調用冷媒回路(30)では、室外熱交換器(44)が凝縮器として動作し、各室内熱交換器(36a〜36d)が蒸発器として動作する。
=== Cooling operation ===
The cooling operation of the air conditioner (20) will be described. In the air conditioning refrigerant circuit (30) during the cooling operation, the four-way switching valve (43) is set to the first state (the state indicated by the solid line in FIG. 1), the outdoor expansion valve (45) is set to the fully open state, The opening degree of the indoor expansion valve (37a to 37d) is adjusted as appropriate. In the air conditioning refrigerant circuit (30) during the cooling operation, the outdoor heat exchanger (44) operates as a condenser, and each of the indoor heat exchangers (36a to 36d) operates as an evaporator.

冷房運転中の空調用冷媒回路(30)における冷媒の流れを具体的に説明する。空調用圧縮機(41)から吐出された高圧冷媒は、四方切換弁(43)を通過後に室外熱交換器(44)へ流入し、室外空気へ放熱して凝縮する。室外熱交換器(44)から流出した冷媒は、室外膨張弁(45)とレシーバ(46)を通過後に液側連絡配管(31)へ流入し、各室内回路(35a〜35d)へ分配される。各室内回路(35a〜35d)へ流入した冷媒は、室内膨張弁(37a〜37d)を通過する際に減圧されて低圧冷媒となり、その後に室内熱交換器(36a〜36d)へ流入し、室内空気から吸熱して蒸発する。各室内回路(35a〜35d)において室内熱交換器(36a〜36d)から流出した冷媒は、ガス側連絡配管(32)へ流入して合流した後に室外回路(40)へ流入し、四方切換弁(43)を通過後に空調用圧縮機(41)へ吸入されて圧縮される。   The refrigerant flow in the air conditioning refrigerant circuit (30) during the cooling operation will be specifically described. The high-pressure refrigerant discharged from the air conditioning compressor (41) flows into the outdoor heat exchanger (44) after passing through the four-way switching valve (43), dissipates heat to the outdoor air, and condenses. The refrigerant flowing out of the outdoor heat exchanger (44) flows into the liquid side communication pipe (31) after passing through the outdoor expansion valve (45) and the receiver (46), and is distributed to each indoor circuit (35a to 35d). . The refrigerant flowing into each indoor circuit (35a to 35d) is reduced in pressure when passing through the indoor expansion valve (37a to 37d) to become a low pressure refrigerant, and then flows into the indoor heat exchanger (36a to 36d) It absorbs heat from the air and evaporates. In each indoor circuit (35a-35d), the refrigerant flowing out of the indoor heat exchanger (36a-36d) flows into the gas side connecting pipe (32), joins, and then flows into the outdoor circuit (40), where the four-way switching valve After passing through (43), it is sucked into the air conditioning compressor (41) and compressed.

上述したように、冷房運転中には、各室内熱交換器(36a〜36d)が蒸発器として動作する。各室内ユニット(22a〜22d)は、吸い込んだ室内空気を室内熱交換器(36a〜36d)において冷却した後に室内へ送り返す。   As described above, during the cooling operation, each indoor heat exchanger (36a to 36d) operates as an evaporator. Each indoor unit (22a-22d) cools the sucked indoor air in the indoor heat exchanger (36a-36d) and then sends it back into the room.

各室内ユニット(22a〜22d)の室内回路(35a〜35d)において、そこに設けられた室内膨張弁(37a〜37d)の開度は、室内熱交換器(36a〜36d)から流出する冷媒の過熱度が一定となるように調節される。また、各室内ユニット(22a〜22d)では、そこに設けられた室内温度センサ(25a〜25d)の計測値Trが室内気温の設定値Tr_setになると、そこに設けられた室内膨張弁(37a〜37d)が全閉され、その後にそこに設けられた室内温度センサ(25a〜25d)の計測値が室内気温の設定値Tr_setを上回ると(例えば、Tr>Tr+0.5℃になると)、そこに設けられた室内膨張弁(37a〜37d)が開かれて室内膨張弁(37a〜37d)の開度調節が再開される。   In the indoor circuit (35a-35d) of each indoor unit (22a-22d), the opening degree of the indoor expansion valve (37a-37d) provided there is the refrigerant flowing out of the indoor heat exchanger (36a-36d). The degree of superheat is adjusted to be constant. Further, in each indoor unit (22a-22d), when the measured value Tr of the indoor temperature sensor (25a-25d) provided therein becomes the set value Tr_set of the indoor air temperature, the indoor expansion valve (37a-37) provided there 37d) is fully closed and then the measured value of the indoor temperature sensor (25a to 25d) provided therein exceeds the set value Tr_set of the room temperature (for example, when Tr> Tr + 0.5 ° C.) The provided indoor expansion valves (37a to 37d) are opened, and the opening degree adjustment of the indoor expansion valves (37a to 37d) is resumed.

=== 暖房運転 ===
空調機(20)の暖房運転について説明する。暖房運転中の空調用冷媒回路(30)では、四方切換弁(43)が第2状態(図1に破線で示す状態)に設定され、室外膨張弁(45)及び各室内膨張弁(37a〜37d)の開度が適宜調節される。また、暖房運転中の空調用冷媒回路(30)では、各室内熱交換器(36a〜36d)が凝縮器として動作し、室外熱交換器(44)が蒸発器として動作する。
=== Heating operation ===
The heating operation of the air conditioner (20) will be described. In the air conditioning refrigerant circuit (30) during the heating operation, the four-way switching valve (43) is set to the second state (the state indicated by the broken line in FIG. 1), and the outdoor expansion valve (45) and each indoor expansion valve (37a to 37a) are set. The opening degree of 37d) is adjusted as appropriate. In the air conditioning refrigerant circuit (30) during the heating operation, each indoor heat exchanger (36a to 36d) operates as a condenser, and the outdoor heat exchanger (44) operates as an evaporator.

暖房運転中の空調用冷媒回路(30)における冷媒の流れを具体的に説明する。空調用圧縮機(41)から吐出された冷媒は、四方切換弁(43)を通過後にガス側連絡配管(32)へ流入し、各室内回路(35a〜35d)へ分配される。各室内回路(35a〜35d)へ流入した冷媒は、室内熱交換器(36a〜36d)へ流入し、室内空気へ放熱して凝縮する。各室内回路(35a〜35d)において室内熱交換器(36a〜36d)から流出した冷媒は、室内膨張弁(37a〜37d)を通過後に液側連絡配管(31)へ流入して合流してから室外回路(40)へ流入する。室外回路(40)へ流入した冷媒は、レシーバ(46)を通過後に室外膨張弁(45)へ流入し、室外膨張弁(45)を通過する際に減圧されて低圧冷媒となる。室外膨張弁(45)を通過した冷媒は、室外熱交換器(44)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(44)から流出した冷媒は、四方切換弁(43)を通過後に空調用圧縮機(41)へ吸入されて圧縮される。   The refrigerant flow in the air conditioning refrigerant circuit (30) during the heating operation will be specifically described. The refrigerant discharged from the air conditioning compressor (41) passes through the four-way switching valve (43) and then flows into the gas side communication pipe (32) and is distributed to the indoor circuits (35a to 35d). The refrigerant flowing into each indoor circuit (35a to 35d) flows into the indoor heat exchanger (36a to 36d), dissipates heat to the indoor air, and condenses. In each indoor circuit (35a-35d), the refrigerant flowing out of the indoor heat exchanger (36a-36d) flows through the indoor expansion valve (37a-37d) and then flows into the liquid side connecting pipe (31) to join. It flows into the outdoor circuit (40). The refrigerant flowing into the outdoor circuit (40) flows into the outdoor expansion valve (45) after passing through the receiver (46), and is reduced in pressure when passing through the outdoor expansion valve (45) to become a low-pressure refrigerant. The refrigerant that has passed through the outdoor expansion valve (45) flows into the outdoor heat exchanger (44), absorbs heat from the outdoor air, and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger (44) passes through the four-way switching valve (43) and is then sucked into the air conditioning compressor (41) and compressed.

上述したように、暖房運転中には、各室内熱交換器(36a〜36d)が凝縮器として動作する。各室内ユニット(22a〜22d)は、吸い込んだ室内空気を室内熱交換器(36a〜36d)において加熱した後に室内へ送り返す。   As described above, during the heating operation, each indoor heat exchanger (36a to 36d) operates as a condenser. Each indoor unit (22a-22d) heats the sucked indoor air in the indoor heat exchanger (36a-36d) and then sends it back into the room.

各室内ユニット(22a〜22d)の室内回路(35a〜35d)において、そこに設けられた室内膨張弁(37a〜37d)の開度は、室内熱交換器(36a〜36d)から流出する冷媒の過冷却度が一定となるように調節される。また、各室内ユニット(22a〜22d)では、そこに設けられた室内温度センサ(25a〜25d)の計測値Trが室内気温の設定値Tr_setになると、そこに設けられた室内膨張弁(37a〜37d)が全閉され、その後にそこに設けられた室内温度センサ(25a〜25d)の計測値が室内気温の設定値Tr_setを下回ると(例えば、Tr<Tr−0.5℃になると)、そこに設けられた室内膨張弁(37a〜37d)が開かれて室内膨張弁(37a〜37d)の開度調節が再開される。また、暖房運転中において、室外膨張弁(45)の開度は、室外熱交換器(44)から流出する冷媒の過熱度が一定となるように調節される。   In the indoor circuit (35a-35d) of each indoor unit (22a-22d), the opening degree of the indoor expansion valve (37a-37d) provided there is the refrigerant flowing out of the indoor heat exchanger (36a-36d). The degree of supercooling is adjusted to be constant. Further, in each indoor unit (22a-22d), when the measured value Tr of the indoor temperature sensor (25a-25d) provided therein becomes the set value Tr_set of the indoor air temperature, the indoor expansion valve (37a-37) provided there 37d) is fully closed, and then the measured value of the indoor temperature sensor (25a to 25d) provided therein falls below the set value Tr_set of the indoor air temperature (for example, when Tr <Tr−0.5 ° C.), The indoor expansion valves (37a to 37d) provided there are opened, and the opening degree adjustment of the indoor expansion valves (37a to 37d) is resumed. Further, during the heating operation, the opening degree of the outdoor expansion valve (45) is adjusted so that the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger (44) becomes constant.

〈外気処理機の運転動作〉
上述したように、外気処理機(50)では、除湿運転と加湿運転とが切り換え可能となっている。除湿運転中と加湿運転中の何れにおいても、外気処理機(50)の調湿用冷媒回路(60)では、冷媒を循環させることによって蒸気圧縮冷凍サイクルが行われる。
<Operation of outside air processor>
As described above, in the outside air processing device (50), the dehumidifying operation and the humidifying operation can be switched. In both the dehumidifying operation and the humidifying operation, the vapor conditioning refrigerant circuit (60) of the outdoor air processor (50) performs a vapor compression refrigeration cycle by circulating the refrigerant.

=== 除湿運転 ===
外気処理機(50)の除湿運転について、図2を参照しながら説明する。除湿運転中において、各調湿ユニット(52a,52b)は、第1動作と第2動作を交互に所定の時間毎(例えば3分間毎)に切り換えて行う。なお、各調湿ユニット(52a,52b)における第1動作と第2動作の相互切り換えのタイミングは、互いに同期している必要はない。
=== Dehumidifying operation ===
The dehumidifying operation of the outside air processor (50) will be described with reference to FIG. During the dehumidifying operation, each of the humidity control units (52a, 52b) alternately performs the first operation and the second operation every predetermined time (for example, every 3 minutes). Note that the timing of mutual switching between the first operation and the second operation in each humidity control unit (52a, 52b) does not need to be synchronized with each other.

図2(A)に示すように、第1動作中の調湿ユニット(52a,52b)では、四方切換弁(83a,83b)が第1状態に設定され、調湿用膨張弁(84a,84b)の開度が適宜調節される。そして、第1動作中の調湿用回路(80a,80b)では、第1吸着熱交換器(81a,81b)が凝縮器として動作し、第2吸着熱交換器(82a,82b)が蒸発器として動作する。第1吸着熱交換器(81a,81b)では、その表面に担持された吸着剤が冷媒によって加熱される。第2吸着熱交換器(82a,82b)では、その表面に担持された吸着剤が冷媒によって冷却される。   As shown in FIG. 2 (A), in the humidity control unit (52a, 52b) in the first operation, the four-way switching valve (83a, 83b) is set to the first state, and the humidity control expansion valve (84a, 84b). ) Is appropriately adjusted. In the humidity control circuit (80a, 80b) during the first operation, the first adsorption heat exchanger (81a, 81b) operates as a condenser, and the second adsorption heat exchanger (82a, 82b) is an evaporator. Works as. In the first adsorption heat exchanger (81a, 81b), the adsorbent supported on the surface is heated by the refrigerant. In the second adsorption heat exchanger (82a, 82b), the adsorbent carried on the surface is cooled by the refrigerant.

第1動作中の調湿用回路(80a,80b)における冷媒の流れを具体的に説明する。調湿用回路(80a,80b)の高圧側端には、調湿用圧縮機(71)から吐出された高圧冷媒が高圧側連絡配管(61)を通じて供給される。調湿用回路(80a,80b)へ流入した高圧冷媒は、四方切換弁(83a,83b)を通過後に第1吸着熱交換器(81a,81b)へ流入して凝縮する。第1吸着熱交換器(81a,81b)から流出した冷媒は、調湿用膨張弁(84a,84b)を通過する際に減圧されて低圧冷媒となり、その後に第2吸着熱交換器(82a,82b)へ流入して蒸発する。第2吸着熱交換器(82a,82b)から流出した冷媒は、四方切換弁(83a,83b)を通過後に低圧側連絡配管(62)へ流入し、その後に調湿用圧縮機(71)へ吸入されて圧縮される。   The flow of the refrigerant in the humidity control circuit (80a, 80b) during the first operation will be specifically described. The high-pressure refrigerant discharged from the humidity-control compressor (71) is supplied to the high-pressure side end of the humidity control circuit (80a, 80b) through the high-pressure side connection pipe (61). The high-pressure refrigerant flowing into the humidity control circuit (80a, 80b) flows into the first adsorption heat exchanger (81a, 81b) and condenses after passing through the four-way switching valve (83a, 83b). The refrigerant that has flowed out of the first adsorption heat exchanger (81a, 81b) is reduced in pressure when passing through the humidity control expansion valves (84a, 84b) to become a low-pressure refrigerant, and then the second adsorption heat exchanger (82a, 82b) and evaporates. The refrigerant that has flowed out of the second adsorption heat exchanger (82a, 82b) passes through the four-way switching valve (83a, 83b) and then flows into the low-pressure side connection pipe (62) and then to the humidity control compressor (71). Inhaled and compressed.

また、図2(A)に示すように、第1動作中の調湿ユニット(52a,52b)では、室内空気が第1吸着熱交換器(81a,81b)へ送られ、室外空気が第2吸着熱交換器(82a,82b)へ送られる。第1吸着熱交換器(81a,81b)では、加熱された吸着剤から脱離した水分が室内空気に付与される。第1吸着熱交換器(81a,81b)を通過する際に加湿された室内空気は、排気ファン(54a,54b)に吸い込まれ、その後に室外へ排出される。一方、第2吸着熱交換器(82a,82b)では、室外空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。また、第2吸着熱交換器(82a,82b)では、室外空気が冷媒によって冷却される。第2吸着熱交換器(82a,82b)を通過する際に除湿され且つ冷却された室外空気は、給気ファン(53a,53b)に吸い込まれ、その後に室内へ供給される。   Further, as shown in FIG. 2A, in the humidity control unit (52a, 52b) in the first operation, the indoor air is sent to the first adsorption heat exchanger (81a, 81b), and the outdoor air is second. It is sent to the adsorption heat exchanger (82a, 82b). In the first adsorption heat exchanger (81a, 81b), moisture desorbed from the heated adsorbent is given to the room air. The room air humidified when passing through the first adsorption heat exchanger (81a, 81b) is sucked into the exhaust fan (54a, 54b) and then discharged outside the room. On the other hand, in the second adsorption heat exchanger (82a, 82b), moisture in the outdoor air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant. In the second adsorption heat exchanger (82a, 82b), the outdoor air is cooled by the refrigerant. The outdoor air dehumidified and cooled when passing through the second adsorption heat exchanger (82a, 82b) is sucked into the air supply fan (53a, 53b) and then supplied into the room.

図2(B)に示すように、第2動作中の調湿ユニット(52a,52b)では、四方切換弁(83a,83b)が第2状態に設定され、調湿用膨張弁(84a,84b)の開度が適宜調節される。そして、第2動作中の調湿用回路(80a,80b)では、第2吸着熱交換器(82a,82b)が凝縮器として動作し、第1吸着熱交換器(81a,81b)が蒸発器として動作する。第2吸着熱交換器(82a,82b)では、その表面に担持された吸着剤が冷媒によって加熱される。第1吸着熱交換器(81a,81b)では、その表面に担持された吸着剤が冷媒によって冷却される。   As shown in FIG. 2B, in the humidity control unit (52a, 52b) in the second operation, the four-way switching valve (83a, 83b) is set to the second state, and the humidity control expansion valve (84a, 84b). ) Is appropriately adjusted. In the humidity control circuit (80a, 80b) during the second operation, the second adsorption heat exchanger (82a, 82b) operates as a condenser, and the first adsorption heat exchanger (81a, 81b) is an evaporator. Works as. In the second adsorption heat exchanger (82a, 82b), the adsorbent supported on the surface is heated by the refrigerant. In the first adsorption heat exchanger (81a, 81b), the adsorbent carried on the surface is cooled by the refrigerant.

第2動作中の調湿用回路(80a,80b)における冷媒の流れを具体的に説明する。調湿用回路(80a,80b)の高圧側端には、調湿用圧縮機(71)から吐出された高圧冷媒が高圧側連絡配管(61)を通じて供給される。調湿用回路(80a,80b)へ流入した高圧冷媒は、四方切換弁(83a,83b)を通過後に第2吸着熱交換器(82a,82b)へ流入して凝縮する。第2吸着熱交換器(82a,82b)から流出した冷媒は、調湿用膨張弁(84a,84b)を通過する際に減圧されて低圧冷媒となり、その後に第1吸着熱交換器(81a,81b)へ流入して蒸発する。第1吸着熱交換器(81a,81b)から流出した冷媒は、四方切換弁(83a,83b)を通過後に低圧側連絡配管(62)へ流入し、その後に調湿用圧縮機(71)へ吸入されて圧縮される。   The flow of the refrigerant in the humidity control circuit (80a, 80b) during the second operation will be specifically described. The high-pressure refrigerant discharged from the humidity-control compressor (71) is supplied to the high-pressure side end of the humidity control circuit (80a, 80b) through the high-pressure side connection pipe (61). The high-pressure refrigerant flowing into the humidity control circuit (80a, 80b) flows into the second adsorption heat exchanger (82a, 82b) and condenses after passing through the four-way switching valve (83a, 83b). The refrigerant flowing out of the second adsorption heat exchanger (82a, 82b) is reduced in pressure when passing through the humidity control expansion valves (84a, 84b) to become a low-pressure refrigerant, and then the first adsorption heat exchanger (81a, 81b) evaporates. The refrigerant that has flowed out of the first adsorption heat exchanger (81a, 81b) passes through the four-way switching valve (83a, 83b) and then flows into the low-pressure side connection pipe (62), and then to the humidity control compressor (71). Inhaled and compressed.

また、図2(B)に示すように、第2動作中の調湿ユニット(52a,52b)では、室内空気が第2吸着熱交換器(82a,82b)へ送られ、室外空気が第1吸着熱交換器(81a,81b)へ送られる。第2吸着熱交換器(82a,82b)では、加熱された吸着剤から脱離した水分が室内空気に付与される。第2吸着熱交換器(82a,82b)を通過する際に加湿された室内空気は、排気ファン(54a,54b)に吸い込まれ、その後に室外へ排出される。一方、第1吸着熱交換器(81a,81b)では、室外空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。また、第1吸着熱交換器(81a,81b)では、室外空気が冷媒によって冷却される。第1吸着熱交換器(81a,81b)を通過する際に除湿され且つ冷却された室外空気は、給気ファン(53a,53b)に吸い込まれ、その後に室内へ供給される。   Further, as shown in FIG. 2B, in the humidity control unit (52a, 52b) in the second operation, the indoor air is sent to the second adsorption heat exchanger (82a, 82b), and the outdoor air is the first. It is sent to the adsorption heat exchanger (81a, 81b). In the second adsorption heat exchanger (82a, 82b), moisture desorbed from the heated adsorbent is given to the room air. The room air humidified when passing through the second adsorption heat exchanger (82a, 82b) is sucked into the exhaust fan (54a, 54b) and then discharged to the outside. On the other hand, in the first adsorption heat exchanger (81a, 81b), moisture in the outdoor air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant. In the first adsorption heat exchanger (81a, 81b), outdoor air is cooled by the refrigerant. The outdoor air dehumidified and cooled when passing through the first adsorption heat exchanger (81a, 81b) is sucked into the air supply fan (53a, 53b) and then supplied into the room.

=== 加湿運転 ===
外気処理機(50)の加湿運転について、図3を参照しながら説明する。加湿運転中において、各調湿ユニット(52a,52b)は、第1動作と第2動作を交互に所定の時間毎(例えば3分間毎)に切り換えて行う。なお、各調湿ユニット(52a,52b)における第1動作と第2動作の相互切り換えのタイミングは、互いに同期している必要はない。
=== Humidification operation ===
The humidification operation of the outside air processor (50) will be described with reference to FIG. During the humidification operation, each of the humidity control units (52a, 52b) alternately performs the first operation and the second operation every predetermined time (for example, every 3 minutes). Note that the timing of mutual switching between the first operation and the second operation in each humidity control unit (52a, 52b) does not need to be synchronized with each other.

図3(A)に示すように、第1動作中の調湿ユニット(52a,52b)では、四方切換弁(83a,83b)が第1状態に設定され、調湿用膨張弁(84a,84b)の開度が適宜調節される。そして、第1動作中の調湿用回路(80a,80b)では、第1吸着熱交換器(81a,81b)が凝縮器として動作し、第2吸着熱交換器(82a,82b)が蒸発器として動作する。第1吸着熱交換器(81a,81b)では、その表面に担持された吸着剤が冷媒によって加熱される。第2吸着熱交換器(82a,82b)では、その表面に担持された吸着剤が冷媒によって冷却される。第1動作中の調湿用回路(80a,80b)における冷媒の流れは、除湿運転の第1動作中の調湿用回路(80a,80b)における冷媒の流れと同じである。   As shown in FIG. 3A, in the humidity control unit (52a, 52b) in the first operation, the four-way switching valve (83a, 83b) is set to the first state, and the humidity control expansion valve (84a, 84b). ) Is appropriately adjusted. In the humidity control circuit (80a, 80b) during the first operation, the first adsorption heat exchanger (81a, 81b) operates as a condenser, and the second adsorption heat exchanger (82a, 82b) is an evaporator. Works as. In the first adsorption heat exchanger (81a, 81b), the adsorbent supported on the surface is heated by the refrigerant. In the second adsorption heat exchanger (82a, 82b), the adsorbent carried on the surface is cooled by the refrigerant. The refrigerant flow in the humidity control circuit (80a, 80b) during the first operation is the same as the refrigerant flow in the humidity control circuit (80a, 80b) during the first operation of the dehumidifying operation.

また、図3(A)に示すように、第1動作中の調湿ユニット(52a,52b)では、室外空気が第1吸着熱交換器(81a,81b)へ送られ、室内空気が第2吸着熱交換器(82a,82b)へ送られる。第1吸着熱交換器(81a,81b)では、加熱された吸着剤から脱離した水分が室外空気に付与される。また、第1吸着熱交換器(81a,81b)では、室外空気が冷媒によって加熱される。第1吸着熱交換器(81a,81b)を通過する際に加湿され且つ加熱された室外空気は、給気ファン(53a,53b)に吸い込まれ、その後に室内へ供給される。一方、第2吸着熱交換器(82a,82b)では、室内空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第2吸着熱交換器(82a,82b)を通過する際に除湿された室内空気は、排気ファン(54a,54b)に吸い込まれ、その後に室外へ排出される。   Further, as shown in FIG. 3A, in the humidity control unit (52a, 52b) in the first operation, outdoor air is sent to the first adsorption heat exchanger (81a, 81b), and the indoor air is second. It is sent to the adsorption heat exchanger (82a, 82b). In the first adsorption heat exchanger (81a, 81b), moisture desorbed from the heated adsorbent is given to the outdoor air. In the first adsorption heat exchanger (81a, 81b), outdoor air is heated by the refrigerant. The outdoor air that is humidified and heated when passing through the first adsorption heat exchanger (81a, 81b) is sucked into the air supply fan (53a, 53b), and then supplied to the room. On the other hand, in the second adsorption heat exchanger (82a, 82b), moisture in the room air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant. The room air dehumidified when passing through the second adsorption heat exchanger (82a, 82b) is sucked into the exhaust fan (54a, 54b) and then discharged to the outside.

図3(B)に示すように、第2動作中の調湿ユニット(52a,52b)では、四方切換弁(83a,83b)が第2状態に設定され、調湿用膨張弁(84a,84b)の開度が適宜調節される。そして、第2動作中の調湿用回路(80a,80b)では、第2吸着熱交換器(82a,82b)が凝縮器として動作し、第1吸着熱交換器(81a,81b)が蒸発器として動作する。第2吸着熱交換器(82a,82b)では、その表面に担持された吸着剤が冷媒によって加熱される。第1吸着熱交換器(81a,81b)では、その表面に担持された吸着剤が冷媒によって冷却される。第2動作中の調湿用回路(80a,80b)における冷媒の流れは、除湿運転の第2動作中の調湿用回路(80a,80b)における冷媒の流れと同じである。   As shown in FIG. 3B, in the humidity control unit (52a, 52b) in the second operation, the four-way switching valve (83a, 83b) is set to the second state, and the humidity control expansion valve (84a, 84b). ) Is appropriately adjusted. In the humidity control circuit (80a, 80b) during the second operation, the second adsorption heat exchanger (82a, 82b) operates as a condenser, and the first adsorption heat exchanger (81a, 81b) is an evaporator. Works as. In the second adsorption heat exchanger (82a, 82b), the adsorbent supported on the surface is heated by the refrigerant. In the first adsorption heat exchanger (81a, 81b), the adsorbent carried on the surface is cooled by the refrigerant. The refrigerant flow in the humidity control circuit (80a, 80b) during the second operation is the same as the refrigerant flow in the humidity control circuit (80a, 80b) during the second operation of the dehumidifying operation.

また、図3(B)に示すように、第2動作中の調湿ユニット(52a,52b)では、室外空気が第2吸着熱交換器(82a,82b)へ送られ、室内空気が第1吸着熱交換器(81a,81b)へ送られる。第2吸着熱交換器(82a,82b)では、加熱された吸着剤から脱離した水分が室外空気に付与される。また、第2吸着熱交換器(82a,82b)では、室外空気が冷媒によって加熱される。第2吸着熱交換器(82a,82b)を通過する際に加湿され且つ加熱された室外空気は、給気ファン(53a,53b)に吸い込まれ、その後に室内へ供給される。一方、第1吸着熱交換器(81a,81b)では、室内空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第1吸着熱交換器(81a,81b)を通過する際に除湿された室内空気は、排気ファン(54a,54b)に吸い込まれ、その後に室外へ排出される。   Further, as shown in FIG. 3B, in the humidity control unit (52a, 52b) in the second operation, the outdoor air is sent to the second adsorption heat exchanger (82a, 82b), and the room air is the first. It is sent to the adsorption heat exchanger (81a, 81b). In the second adsorption heat exchanger (82a, 82b), moisture desorbed from the heated adsorbent is given to the outdoor air. In the second adsorption heat exchanger (82a, 82b), outdoor air is heated by the refrigerant. The outdoor air that is humidified and heated when passing through the second adsorption heat exchanger (82a, 82b) is sucked into the air supply fan (53a, 53b), and then supplied to the room. On the other hand, in the first adsorption heat exchanger (81a, 81b), moisture in the room air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant. The room air dehumidified when passing through the first adsorption heat exchanger (81a, 81b) is sucked into the exhaust fan (54a, 54b) and then discharged to the outside.

〈制御システムの動作〉
空調側コントローラ(91)と調湿側コントローラ(92a,92b)とによって構成された制御システム(90)の動作について説明する。
<Operation of control system>
The operation of the control system (90) constituted by the air conditioning controller (91) and the humidity controller (92a, 92b) will be described.

=== 空調側コントローラの制御動作 ===
空調側コントローラ(91)は、空調用冷媒回路(30)に設けられた四方切換弁(43)や室外膨張弁(45)に対する制御動作や、室外ファン(23)等に対する制御動作を行う。また、上述したように、空調側コントローラ(91)では、空調能力制御部(95)が連続運転動作を行い、効率制御部(96)が効率向上動作を行う。
=== Control action of air conditioning controller ===
The air conditioning controller (91) performs a control operation for the four-way switching valve (43) and the outdoor expansion valve (45) provided in the air conditioning refrigerant circuit (30), and a control operation for the outdoor fan (23) and the like. Further, as described above, in the air conditioning controller (91), the air conditioning capability control unit (95) performs a continuous operation, and the efficiency control unit (96) performs an efficiency improvement operation.

空調機(20)の冷房運転中に空調能力制御部(95)が行う制御動作について説明する。冷房運転中において、空調能力制御部(95)は、“低圧センサ(27)の計測値が目標範囲となるように空調用圧縮機(41)の運転容量を調節する動作”を連続運転動作として行う。具体的に、連続運転動作中の空調能力制御部(95)は、低圧センサ(27)の計測値が目標範囲を下回っていると、空調用圧縮機(41)の運転周波数を引き下げてその運転容量を削減し、低圧センサ(27)の計測値が目標範囲を上回っていると、空調用圧縮機(41)の運転周波数を上昇させてその運転容量を増大させ、低圧センサ(27)の計測値が目標範囲内になっていると、空調用圧縮機(41)の運転周波数を変化させずにその運転容量を一定に保つ。   The control operation performed by the air conditioning capability control unit (95) during the cooling operation of the air conditioner (20) will be described. During the cooling operation, the air conditioning capability control unit (95) sets “operation to adjust the operating capacity of the air conditioning compressor (41) so that the measured value of the low pressure sensor (27) is within the target range” as the continuous operation operation. Do. Specifically, the air conditioning capability control unit (95) during continuous operation operates when the measured value of the low pressure sensor (27) is below the target range, the operating frequency of the air conditioning compressor (41) is lowered to If the capacity is reduced and the measured value of the low-pressure sensor (27) exceeds the target range, the operating frequency of the compressor for air conditioning (41) is increased to increase its operating capacity, and the measurement of the low-pressure sensor (27) If the value is within the target range, the operating capacity is kept constant without changing the operating frequency of the air conditioning compressor (41).

空調機(20)の暖房運転中に空調能力制御部(95)が行う制御動作について説明する。暖房運転中において、空調能力制御部(95)は、“高圧センサ(26)の計測値が目標範囲となるように空調用圧縮機(41)の運転容量を調節する動作”を連続運転動作として行う。具体的に、連続運転動作中の空調能力制御部(95)は、高圧センサ(26)の計測値が目標範囲を上回っていると、空調用圧縮機(41)の運転周波数を低下させてその運転容量を削減し、高圧センサ(26)の計測値が目標範囲を下回っていると、空調用圧縮機(41)の運転周波数を上昇させてその運転容量を増大させ、高圧センサ(26)の計測値が目標範囲内になっていると、空調用圧縮機(41)の運転周波数を変化させずにその運転容量を一定に保つ。   The control operation performed by the air conditioning capability control unit (95) during the heating operation of the air conditioner (20) will be described. During the heating operation, the air conditioning capability control unit (95) sets “the operation to adjust the operation capacity of the air conditioning compressor (41) so that the measured value of the high pressure sensor (26) is within the target range” as the continuous operation operation. Do. Specifically, if the measured value of the high-pressure sensor (26) exceeds the target range, the air conditioning capability control unit (95) during the continuous operation operation reduces the operating frequency of the air conditioning compressor (41) If the operating capacity is reduced and the measured value of the high-pressure sensor (26) is below the target range, the operating frequency of the compressor for air conditioning (41) is increased to increase its operating capacity. If the measured value is within the target range, the operating capacity is kept constant without changing the operating frequency of the air conditioning compressor (41).

効率制御部(96)が行う効率向上動作について説明する。効率制御部(96)は、空調能力制御部(95)が連続運転動作を行っている状態において運転状態判定条件が成立すると、空調用冷媒回路で行われる冷凍サイクルの成績係数が低くなっていると判断し、効率向上動作を行う。効率制御部(96)は、“空調用圧縮機(41)の運転周波数を上昇させてその運転容量を強制的に増大させると共に、空調用圧縮機(41)を上昇後の運転周波数で間欠的に運転する動作”を効率向上動作として行う。なお、運転状態判定条件については後述する。   The efficiency improvement operation performed by the efficiency control unit (96) will be described. The efficiency control unit (96) has a low coefficient of performance for the refrigeration cycle performed in the air conditioning refrigerant circuit when the operating condition determination condition is satisfied in a state where the air conditioning capability control unit (95) is continuously operating. The efficiency improvement operation is performed. The efficiency control unit (96) increases the operating frequency of the air conditioning compressor (41) to forcibly increase its operating capacity and intermittently operates the air conditioning compressor (41) at the increased operating frequency. The operation to “operate” is performed as an efficiency improvement operation. The operation state determination condition will be described later.

効率向上動作について、図5を参照しながら説明する。空調能力制御部(95)の連続運転動作中に運転状態判定条件が成立している状態では、空調用圧縮機(41)の運転周波数が比較的低い値に設定され、空調機(20)の空調能力がQ1となる。一方、効率制御部(96)が効率向上動作を実行すると、空調用圧縮機(41)の運転周波数が強制的に引き上げられ、空調機(20)の空調能力がQ1からQ2にまで増大する。空調機(20)の空調能力がQ2になった状態で空調用圧縮機(41)を連続的に運転させると、室内気温が低下し過ぎたり上昇し過ぎて室内の快適性が損なわれる。そこで、効率向上動作中の効率制御部(96)は、空調用圧縮機(41)を上昇後の運転周波数で間欠的に運転させる。このため、効率制御部(96)の効率向上動作中においても、空調機(20)の空調能力の時間的な平均値は、空調能力制御部(95)の連続運転動作中における空調機(20)の空調能力Q1と同程度となり、室内気温が適正範囲に保たれる。   The efficiency improvement operation will be described with reference to FIG. When the operating condition determination condition is satisfied during the continuous operation of the air conditioning capability control unit (95), the operating frequency of the air conditioning compressor (41) is set to a relatively low value, and the air conditioner (20) Air conditioning capacity is Q1. On the other hand, when the efficiency control unit (96) performs the efficiency improvement operation, the operation frequency of the air conditioning compressor (41) is forcibly increased, and the air conditioning capacity of the air conditioner (20) increases from Q1 to Q2. If the air conditioning compressor (41) is continuously operated in a state where the air conditioning capacity of the air conditioner (20) is Q2, the indoor air temperature is too low or too high and indoor comfort is impaired. Therefore, the efficiency control unit (96) during the efficiency improvement operation intermittently operates the air conditioning compressor (41) at the increased operating frequency. Therefore, even during the efficiency improvement operation of the efficiency controller (96), the temporal average value of the air conditioning capacity of the air conditioner (20) is the air conditioner (20) during the continuous operation of the air conditioning capacity controller (95). ) Air-conditioning capacity Q1, and the room temperature is kept within an appropriate range.

運転状態判定条件について説明する。運転状態判定条件は、空調能力制御部(95)の連続運転動作中に空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が低くなっていることを示す条件である。本実施形態の空調側コントローラ(91)では、“空調用圧縮機(41)の運転周波数が所定の基準周波数以下となり、且つ空調用圧縮機(41)へ供給される電流値が所定の基準電流値以上になっている”という条件が、運転状態判定条件として設定されている。   The operating condition determination condition will be described. The operating state determination condition is a condition indicating that the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) during the continuous operation of the air conditioning capability control unit (95) is low. In the air conditioning side controller (91) of the present embodiment, “the operating frequency of the air conditioning compressor (41) is equal to or lower than a predetermined reference frequency and the current value supplied to the air conditioning compressor (41) is a predetermined reference current. The condition “is greater than or equal to the value” is set as the operating condition determination condition.

=== 調湿側コントローラの制御動作 ===
各調湿ユニット(52a,52b)に設けられた調湿側コントローラ(92a,92b)は、調湿用回路(80a,80b)に設けられた四方切換弁(83a,83b)や調湿用膨張弁(84a,84b)に対する制御動作を行う。また、第1調湿ユニット(52a)に設けられた調湿側コントローラ(92a)は、調湿用圧縮機(71)の運転周波数を調節する動作を行う。これらの各調湿側コントローラ(92a,92b)は、空調側コントローラ(91)が連続運転動作と効率向上動作の何れを行っている場合においても、同一の制御動作を行う。
=== Control action of humidity controller ===
The humidity controller (92a, 92b) provided in each humidity control unit (52a, 52b) is equipped with a four-way selector valve (83a, 83b) provided in the humidity control circuit (80a, 80b) and a humidity control expansion. Control operation is performed on the valves (84a, 84b). In addition, the humidity controller (92a) provided in the first humidity control unit (52a) performs an operation of adjusting the operating frequency of the humidity control compressor (71). Each of these humidity control controllers (92a, 92b) performs the same control operation regardless of whether the air conditioning controller (91) performs a continuous operation or an efficiency improvement operation.

第1調湿ユニット(52a)の調湿側コントローラ(92a)が調湿用圧縮機(71)の運転周波数を調節する動作について説明する。この調湿側コントローラ(92a)は、室内湿度センサ(56a)の計測値が目標範囲となるように、調湿用圧縮機(71)の運転周波数を調節する。   The operation in which the humidity controller (92a) of the first humidity control unit (52a) adjusts the operating frequency of the humidity control compressor (71) will be described. The humidity control controller (92a) adjusts the operating frequency of the humidity control compressor (71) so that the measured value of the indoor humidity sensor (56a) falls within the target range.

具体的に、除湿運転中に室内湿度センサ(56a)の計測値が目標範囲を下回っている場合と、加湿運転中に室内湿度センサ(56a)の計測値が目標範囲を上回っている場合には、調湿側コントローラ(92a)が、調湿用圧縮機(71)の運転周波数を低下させてその運転容量を削減する。また、除湿運転中に室内湿度センサ(56a)の計測値が目標範囲を上回っている場合と、加湿運転中に室内湿度センサ(56a)の計測値が目標範囲を下回っている場合には、調湿側コントローラ(92a)が、調湿用圧縮機(71)の運転周波数を上昇させてその運転容量を増大させる。また、除湿運転中および加湿運転中に室内湿度センサ(56a)の計測値が目標範囲内になっている場合には、調湿側コントローラ(92a)が、調湿用圧縮機(71)の運転周波数を変化させずにその運転容量を一定に保つ。   Specifically, when the measured value of the indoor humidity sensor (56a) is below the target range during the dehumidifying operation and when the measured value of the indoor humidity sensor (56a) is above the target range during the humidifying operation The humidity controller (92a) reduces the operating capacity of the humidity control compressor (71) by reducing the operating frequency. Also, if the measured value of the indoor humidity sensor (56a) is above the target range during dehumidifying operation or if the measured value of the indoor humidity sensor (56a) is below the target range during humidifying operation, The wet side controller (92a) increases the operating capacity by increasing the operating frequency of the humidity control compressor (71). When the measured value of the indoor humidity sensor (56a) is within the target range during the dehumidifying operation and humidifying operation, the humidity controller (92a) operates the humidity control compressor (71). Keep its operating capacity constant without changing the frequency.

−実施形態1の効果−
本実施形態の制御システム(90)において、空調側コントローラ(91)は、連続運転動作中に所定の運転状態判定条件が成立すると、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が低くなっていると判断し、効率向上動作を行う。効率向上動作中の空調側コントローラ(91)は、空調用圧縮機(41)の運転周波数を強制的に引き上げることによって、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させる。
-Effect of Embodiment 1-
In the control system (90) of the present embodiment, the air conditioning controller (91) has a coefficient of performance of a refrigeration cycle performed in the air conditioning refrigerant circuit (30) when a predetermined operating state determination condition is satisfied during the continuous operation. It is judged that it is low, and the efficiency improvement operation is performed. The air conditioning side controller (91) during the efficiency improvement operation improves the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) by forcibly raising the operating frequency of the air conditioning compressor (41).

空調側コントローラ(91)の効率向上動作によって空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が向上する理由について、図6を参照しながら説明する。   The reason why the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) is improved by the efficiency improvement operation of the air conditioning controller (91) will be described with reference to FIG.

冷凍サイクルを行う空調機(20)の空調能力が低い状態では、空調用圧縮機(41)の運転周波数が低くなっている。一般に、流体機械としての圧縮機は、その回転速度が低くなると圧縮室から漏れ出す冷媒の量が増えるため、その回転速度が低いほどその運転効率は低下する。このため、空調用圧縮機(41)の運転周波数が低くなると、空調用圧縮機(41)の効率が低下し、冷凍サイクルの成績係数が低下してしまう。つまり、図6に実線の曲線で示すように、空調機(20)の空調能力がある程度以下の領域では、空調機(20)の空調能力が低くなるほど空調用冷媒回路(30)で行われる冷凍サイクルの成績係数(COP)が低くなる。このため、空調側コントローラ(91)が効率向上動作を実行して空調用圧縮機(41)の運転周波数を強制的に引き上げると、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が向上する。   When the air conditioning capacity of the air conditioner (20) performing the refrigeration cycle is low, the operating frequency of the air conditioning compressor (41) is low. In general, when the rotational speed of a compressor as a fluid machine decreases, the amount of refrigerant leaking from the compression chamber increases. Therefore, the lower the rotational speed, the lower the operating efficiency. For this reason, when the operating frequency of the air conditioning compressor (41) is lowered, the efficiency of the air conditioning compressor (41) is lowered, and the coefficient of performance of the refrigeration cycle is lowered. That is, as shown by the solid curve in FIG. 6, in the region where the air conditioning capacity of the air conditioner (20) is below a certain level, the refrigeration performed in the air conditioning refrigerant circuit (30) as the air conditioning capacity of the air conditioner (20) decreases. The coefficient of performance (COP) of the cycle is lowered. For this reason, when the air conditioning controller (91) executes the efficiency improvement operation to forcibly increase the operating frequency of the air conditioning compressor (41), the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) is improves.

このように、空調機(20)では、空調機(20)の空調能力がある程度以下の領域において、空調機(20)の空調能力が低くなるほど空調用冷媒回路(30)で行われる冷凍サイクルの成績係数(COP)が低くなる。このため、空調機(20)の空調能力が低くて空調用冷媒回路(30)で行われる冷凍サイクルの成績係数も低い状態(図6の点Aの状態)で空調用圧縮機(41)を連続的に運転させる場合に比べ、空調機(20)の空調能力が高くて空調用冷媒回路(30)で行われる冷凍サイクルの成績係数も高い状態(図6の点Bの状態)で空調用圧縮機(41)を間欠的に運転させる場合には、点Bの状態を適切に設定することによって空調用圧縮機(41)における消費電力を低減できる。   Thus, in the air conditioner (20), in the region where the air conditioning capacity of the air conditioner (20) is below a certain level, the lower the air conditioning capacity of the air conditioner (20), the lower the refrigeration cycle performed by the refrigerant circuit for air conditioning (30). Coefficient of performance (COP) decreases. For this reason, the air conditioning compressor (41) is operated in a state where the air conditioning capacity of the air conditioner (20) is low and the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) is also low (state of point A in FIG. 6). Compared to continuous operation, the air conditioner (20) has a higher air conditioning capability and a higher coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) (state of point B in FIG. 6). When the compressor (41) is operated intermittently, the power consumption in the air conditioning compressor (41) can be reduced by appropriately setting the state of the point B.

ここで、ただ単に空調用圧縮機(41)の運転周波数を引き上げると、空調機(20)の空調能力が増大し、室内の気温が低下し過ぎたり上昇し過ぎるおそれがある。これに対し、本実施形態の制御システム(90)において、空調側コントローラ(91)は、空調用圧縮機(41)の運転周波数を引き上げると共に空調用圧縮機(41)を間欠的に運転させる。空調用圧縮機(41)を間欠的に運転させると、各室内ユニット(22a〜22d)から室内へ温度調節された空気が間欠的に供給されることとなり、室内気温の低下し過ぎや上昇し過ぎが回避される。   Here, simply raising the operating frequency of the air-conditioning compressor (41) increases the air-conditioning capacity of the air-conditioner (20), and the indoor air temperature may be excessively lowered or increased. In contrast, in the control system (90) of the present embodiment, the air conditioning controller (91) raises the operating frequency of the air conditioning compressor (41) and causes the air conditioning compressor (41) to operate intermittently. When the air conditioning compressor (41) is operated intermittently, the air whose temperature is adjusted is intermittently supplied from each indoor unit (22a to 22d) into the room, and the room temperature is excessively decreased or increased. Passing is avoided.

従って、本実施形態によれば、連続運転動作中に所定の運転状態判定条件が成立した場合に空調側コントローラ(91)が効率向上動作を実行することによって、室内気温の低下し過ぎや上昇し過ぎを回避しつつ空調機(20)の消費電力を削減することができる。   Therefore, according to the present embodiment, the air-conditioning controller (91) performs the efficiency improvement operation when a predetermined operation state determination condition is satisfied during the continuous operation operation, so that the room temperature is excessively decreased or increased. The power consumption of the air conditioner (20) can be reduced while avoiding the excess.

ところで、空調用圧縮機(41)が間欠的に運転されると、空調機(20)の各室内ユニット(22a〜22d)から室内へ温度調節された空気が間欠的に供給されることとなり、室内気温の変動が大きくなるおそれがある。これに対し、本実施形態の空調システム(10)では、空調機(20)の運転状態に拘わらず、外気処理機(50)が温度と湿度を調節した空気を室内へ供給する。このため、空調用圧縮機(41)を間欠的に運転させても、外気処理機(50)が温度と湿度を調節した空気を室内へ供給することによって室内気温の変動が抑えられる。従って、本実施形態によれば、室内気温の変動を抑制して室内の快適性を確保しつつ、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させることによって空調機(20)の消費電力を削減することができる。   By the way, when the compressor for air conditioning (41) is intermittently operated, the air whose temperature is adjusted is intermittently supplied from the indoor units (22a to 22d) of the air conditioner (20) to the room, There is a risk of fluctuations in room temperature. On the other hand, in the air conditioning system (10) of the present embodiment, the outside air processing unit (50) supplies air with adjusted temperature and humidity to the room regardless of the operating state of the air conditioner (20). For this reason, even if the compressor for air conditioning (41) is operated intermittently, the outside air processor (50) supplies the air whose temperature and humidity are adjusted to the room, thereby suppressing fluctuations in the room temperature. Therefore, according to the present embodiment, the air conditioner (20) is improved by improving the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30) while suppressing indoor temperature fluctuations and ensuring indoor comfort. ) Power consumption can be reduced.

−実施形態1の変形例1−
上記実施形態の空調側コントローラ(91)では、運転状態判定条件として次に示すような条件が設定されていてもよい。
-Modification 1 of Embodiment 1-
In the air conditioning side controller (91) of the above embodiment, the following conditions may be set as the operation state determination conditions.

具体的に、空調側コントローラ(91)では、“空調用冷媒回路(30)における冷媒の蒸発温度と凝縮温度のそれぞれが所定の温度範囲内の値となっており、且つ空調用圧縮機(41)の運転周波数が所定の基準周波数以下になっている”という条件が、運転判定条件として設定されていてもよい。   Specifically, in the air conditioning side controller (91), “each of the refrigerant evaporation temperature and the condensation temperature in the air conditioning refrigerant circuit (30) is a value within a predetermined temperature range, and the air conditioning compressor (41 The condition that “the operation frequency is equal to or lower than a predetermined reference frequency” may be set as the operation determination condition.

また、空調システム(10)では、各室内ユニット(22a〜22d)から空調側コントローラ(91)へ空調能力の要求値が送信される場合がある。このような場合において、空調側コントローラ(91)では、“各室内ユニット(22a〜22d)から受信した空調能力の要求値の合計が所定の基準空調能力以下になっている”という条件が、運転判定条件として設定されていてもよい。   In the air conditioning system (10), the required value of the air conditioning capacity may be transmitted from each indoor unit (22a to 22d) to the air conditioning controller (91). In such a case, the air conditioning controller (91) operates under the condition that “the sum of the required values of the air conditioning capacity received from each indoor unit (22a to 22d) is equal to or less than a predetermined reference air conditioning capacity”. It may be set as a determination condition.

また、空調側コントローラ(91)では、“各室内ユニット(22a〜22d)に設けられた室内温度センサ(25a〜25d)の計測値の変化に基づいて予測した室内の空調負荷が所定の基準空調負荷以下になっている”という条件が、運転判定条件として設定されていてもよい。   Further, the air conditioning controller (91) determines that the indoor air conditioning load predicted based on changes in the measured values of the indoor temperature sensors (25a to 25d) provided in the indoor units (22a to 22d) is a predetermined reference air conditioning. The condition “below the load” may be set as the operation determination condition.

また、空調側コントローラ(91)では、“各室内ユニット(22a〜22d)において得られる空調能力の合計値を空調用圧縮機(41)の消費電力で割って得られた値が所定の基準値以下になっている”という条件が、運転判定条件として設定されていてもよい。   In the air conditioning controller (91), the value obtained by dividing the total value of the air conditioning capacity obtained in each indoor unit (22a-22d) by the power consumption of the air conditioning compressor (41) is a predetermined reference value. The condition “being below” may be set as the operation determination condition.

−実施形態1の変形例2−
上記実施形態の制御システム(90)では、空調側コントローラ(91)ではなく何れか一方の調湿側コントローラ(92a,92b)が効率向上動作を実行するように構成されていてもよい。この場合、調湿側コントローラ(92a,92b)は、空調側コントローラ(91)の連続運転動作中に運転状態判定条件が成立するか否かを監視し、運転状態判定条件が成立すると効率向上動作を実行する。つまり、調湿側コントローラ(92a,92b)は、“空調用圧縮機(41)の運転周波数を上昇させてその運転容量を強制的に増大させると共に、空調用圧縮機(41)を上昇後の運転周波数で間欠的に運転する動作”を効率向上動作として行う。
-Modification 2 of Embodiment 1
In the control system (90) of the above-described embodiment, not one of the air conditioning side controllers (91) but one of the humidity control side controllers (92a, 92b) may be configured to execute the efficiency improvement operation. In this case, the humidity controller (92a, 92b) monitors whether the operating condition determination condition is satisfied during the continuous operation of the air conditioning controller (91). Execute. In other words, the humidity controller (92a, 92b) increases the operating frequency of the air conditioning compressor (41) to forcibly increase its operating capacity and raises the air conditioning compressor (41). The operation “operating intermittently at the operating frequency” is performed as the efficiency improvement operation.

《発明の実施形態2》
本発明の実施形態2について説明する。本実施形態の空調システム(10)は、上記実施形態1において、空調側コントローラ(91)の構成を変更したものである。ここでは、本実施形態の空調側コントローラ(91)について、上記実施形態1と異なる点を説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. The air conditioning system (10) of the present embodiment is obtained by changing the configuration of the air conditioning controller (91) in the first embodiment. Here, a different point from the said Embodiment 1 is demonstrated about the air-conditioning side controller (91) of this embodiment.

本実施形態の空調側コントローラ(91)において、空調能力制御部(95)は、連続運転動作に加えて間欠運転動作を行うように構成されている。連続運転動作は、空調用圧縮機(41)を連続的に運転させながら空調用圧縮機(41)の運転容量を室内の空調負荷に応じて調節する動作である。この連続運転動作は、実施形態1のものと同じである。間欠運転動作は、空調用圧縮機(41)を連続的に運転させた状態では空調機(20)の空調能力が過剰な場合に空調用圧縮機(41)を間欠的に運転させる動作である。   In the air conditioning controller (91) of the present embodiment, the air conditioning capability control unit (95) is configured to perform intermittent operation in addition to continuous operation. The continuous operation is an operation for adjusting the operation capacity of the air conditioning compressor (41) according to the air conditioning load in the room while continuously operating the air conditioning compressor (41). This continuous operation is the same as that of the first embodiment. The intermittent operation is an operation in which the air conditioning compressor (41) is intermittently operated when the air conditioning capacity of the air conditioner (20) is excessive in a state where the air conditioning compressor (41) is continuously operated. .

また、本実施形態の空調側コントローラ(91)において、効率制御部(96)は、効率向上動作に加えて能力削減動作を行うように構成されている。能力削減動作は、間欠運転動作中における空調用圧縮機(41)の停止と起動の頻度が高いことを示す所定の発停頻度判定条件が成立すると、間欠運転動作を終了させて連続運転動作を開始させるために外気処理機(50)の空調能力を強制的に引き下げる動作である。   In the air conditioning controller (91) of the present embodiment, the efficiency control unit (96) is configured to perform a capacity reduction operation in addition to the efficiency improvement operation. The capacity reduction operation terminates the intermittent operation and stops the continuous operation when a predetermined start / stop frequency determination condition indicating that the frequency of stopping and starting the air conditioning compressor (41) during the intermittent operation is high. This is an operation for forcibly reducing the air-conditioning capacity of the outside air processor (50) in order to start.

−制御システムの制御動作−
本実施形態の制御システム(90)が行う制御動作について説明する。
-Control system control operation-
A control operation performed by the control system (90) of the present embodiment will be described.

空調機(20)の冷房運転中に空調能力制御部(95)が行う制御動作について説明する。冷房運転中において、空調能力制御部(95)は、“低圧センサ(27)の計測値が目標範囲となるように空調用圧縮機(41)の運転容量を調節する動作”を連続運転動作として行う。この連続運転動作の具体的な内容は、上記実施形態1と同じである。また、冷房運転中において、連続運転動作中に空調用圧縮機(41)の運転容量を所定の切換基準値(例えば、空調用圧縮機(41)の運転容量の最小値)に設定しても低圧センサ(27)の計測値が目標範囲を下回る場合は、空調能力制御部(95)が、空調機(20)の冷房能力が過剰であると判断して間欠運転動作を行う。間欠運転動作中の空調能力制御部(95)は、低圧センサ(27)の計測値が目標範囲を下回ると空調用圧縮機(41)を停止させる。また、間欠運転動作中の空調能力制御部(95)は、空調用圧縮機(41)の停止中に室内気温が設定温度を上回ると、空調用圧縮機(41)を起動させる。   The control operation performed by the air conditioning capability control unit (95) during the cooling operation of the air conditioner (20) will be described. During the cooling operation, the air conditioning capability control unit (95) sets “operation to adjust the operating capacity of the air conditioning compressor (41) so that the measured value of the low pressure sensor (27) is within the target range” as the continuous operation operation. Do. The specific contents of the continuous operation are the same as those in the first embodiment. Further, during cooling operation, even if the operating capacity of the air conditioning compressor (41) is set to a predetermined switching reference value (for example, the minimum operating capacity of the air conditioning compressor (41)) during continuous operation. When the measured value of the low pressure sensor (27) is below the target range, the air conditioning capability control unit (95) determines that the cooling capability of the air conditioner (20) is excessive and performs an intermittent operation. The air conditioning capability control unit (95) during the intermittent operation operation stops the air conditioning compressor (41) when the measured value of the low pressure sensor (27) falls below the target range. Further, the air conditioning capability control section (95) during the intermittent operation operation starts the air conditioning compressor (41) when the room temperature exceeds the set temperature while the air conditioning compressor (41) is stopped.

空調機(20)の暖房運転中に空調能力制御部(95)が行う制御動作について説明する。暖房運転中において、空調能力制御部(95)は、“高圧センサ(26)の計測値が目標範囲となるように空調用圧縮機(41)の運転容量を調節する動作”を連続運転動作として行う。この連続運転動作の具体的な内容は、上記実施形態1と同じである。また、暖房運転中において、連続運転動作中に空調用圧縮機(41)の運転容量を所定の切換基準値(例えば、空調用圧縮機(41)の運転容量の最小値)に設定しても高圧センサ(26)の計測値が目標範囲を上回る場合は、空調能力制御部(95)が、空調機(20)の暖房能力が過剰であると判断して間欠運転動作を行う。間欠運転動作中の空調能力制御部(95)は、高圧センサ(26)の計測値が目標範囲を上回ると空調用圧縮機(41)を停止させる。また、間欠運転動作中の空調能力制御部(95)は、空調用圧縮機(41)の停止中に室内気温が設定温度を下回ると、空調用圧縮機(41)を起動させる。   The control operation performed by the air conditioning capability control unit (95) during the heating operation of the air conditioner (20) will be described. During the heating operation, the air conditioning capability control unit (95) sets “the operation to adjust the operation capacity of the air conditioning compressor (41) so that the measured value of the high pressure sensor (26) is within the target range” as the continuous operation operation. Do. The specific contents of the continuous operation are the same as those in the first embodiment. Further, during the heating operation, even if the operation capacity of the air conditioning compressor (41) is set to a predetermined switching reference value (for example, the minimum value of the operation capacity of the air conditioning compressor (41)) during the continuous operation operation. When the measured value of the high pressure sensor (26) exceeds the target range, the air conditioning capability control unit (95) determines that the heating capability of the air conditioner (20) is excessive and performs an intermittent operation. The air conditioning capability control unit (95) during the intermittent operation operation stops the air conditioning compressor (41) when the measured value of the high pressure sensor (26) exceeds the target range. Further, the air conditioning capability control unit (95) during the intermittent operation operation activates the air conditioning compressor (41) when the room temperature falls below the set temperature while the air conditioning compressor (41) is stopped.

効率制御部(96)が行う能力削減動作について説明する。効率制御部(96)は、空調能力制御部(95)が間欠運転動作を行っている状態において発停頻度判定条件が成立すると、間欠運転動作中における空調用圧縮機(41)の停止と起動の頻度が高くなっていると判断し、能力削減動作を行う。効率制御部(96)は、“間欠運転動作を終了させて連続運転動作を開始させるために、調湿用圧縮機(71)の運転周波数を強制的に引き下げて外気処理機(50)の空調能力を削減する動作”を能力削減動作として行う。なお、発停頻度判定条件については後述する。   The capability reduction operation performed by the efficiency control unit (96) will be described. The efficiency control unit (96) stops and starts the air conditioning compressor (41) during the intermittent operation when the start / stop frequency determination condition is satisfied while the air conditioning capability control unit (95) is performing the intermittent operation. It is determined that the frequency of the increase is high, and the capability reduction operation is performed. The efficiency control unit (96) says, “In order to end the intermittent operation and start the continuous operation, the operating frequency of the humidity control compressor (71) is forcibly lowered to air-condition the outside air processor (50). The operation of reducing the capability is performed as the capability reduction operation. The start / stop frequency determination condition will be described later.

効率制御部(96)は、空調機(20)が冷房運転を行い且つ外気処理機(50)が除湿運転を行っている状態と、空調機(20)が暖房運転を行い且つ外気処理機(50)が加湿運転を行っている状態とにおいて発停頻度判定条件が成立した場合に、能力削減動作を行う。   The efficiency control unit (96) includes a state where the air conditioner (20) is performing a cooling operation and the outside air processing unit (50) is performing a dehumidifying operation, and the air conditioner (20) is performing a heating operation and the outside air processing unit ( When the start / stop frequency determination condition is satisfied in the state where 50) is performing the humidifying operation, the capacity reduction operation is performed.

上述したように、除湿運転中の外気処理機(50)では、蒸発器として動作している吸着熱交換器(81a,82a,81b,82b)を室外空気が通過し、この吸着熱交換器(81a,82a,81b,82b)を通過する際に温度と絶対湿度が低下した室外空気が室内へ供給される。従って、除湿運転中の外気処理機(50)が室外空気を室内へ供給することによっても、室内気温の上昇が抑えられる。このため、効率制御部(96)が能力削減動作を行って除湿運転中の外気処理機(50)の空調能力を引き下げると、その後は室内気温が次第に上昇してゆく。室内気温が次第に上昇すると、それに伴って低圧センサ(27)の計測値が次第に上昇するため、空調能力制御部(95)が間欠運転動作を停止して連続運転動作を開始する。つまり、空調能力制御部(95)は、室内気温の上昇を抑えるために、空調用圧縮機(41)を間欠的に運転する状態から、空調用圧縮機(41)を連続的に運転する状態へと移行する。   As described above, in the outdoor air processor (50) during the dehumidifying operation, outdoor air passes through the adsorption heat exchanger (81a, 82a, 81b, 82b) operating as an evaporator, and this adsorption heat exchanger ( 81a, 82a, 81b, 82b), outdoor air whose temperature and absolute humidity have decreased is supplied to the room. Therefore, an increase in the room temperature can also be suppressed by the outdoor air processor (50) in the dehumidifying operation supplying outdoor air to the room. For this reason, when the efficiency control unit (96) performs the capacity reduction operation to lower the air conditioning capacity of the outside air processing machine (50) during the dehumidifying operation, the room temperature gradually increases thereafter. As the room temperature gradually rises, the measured value of the low pressure sensor (27) gradually rises accordingly, so that the air conditioning capability control unit (95) stops the intermittent operation and starts the continuous operation. That is, the air conditioning capacity control unit (95) continuously operates the air conditioning compressor (41) from the state in which the air conditioning compressor (41) is intermittently operated in order to suppress an increase in the room temperature. Migrate to

また、加湿運転中の外気処理機(50)では、凝縮器として動作している吸着熱交換器(81a,82a,81b,82b)を室外空気が通過し、この吸着熱交換器(81a,82a,…)を通過する際に温度と絶対湿度が上昇した室外空気が室内へ供給される。従って、加湿運転中の外気処理機(50)が室外空気を室内へ供給することによっても、室内気温の低下が抑えられる。このため、効率制御部(96)が能力削減動作を行って加湿運転中の外気処理機(50)の空調能力を引き下げると、その後は室内気温が次第に低下してゆく。室内気温が次第に低下すると、それに伴って高圧センサ(26)の計測値が次第に低下するため、空調能力制御部(95)が間欠運転動作を停止して連続運転動作を開始する。つまり、空調能力制御部(95)は、室内気温の低下を抑えるために、空調用圧縮機(41)を間欠的に運転する状態から、空調用圧縮機(41)を連続的に運転する状態へと移行する。   In addition, in the outside air processing machine (50) during the humidifying operation, outdoor air passes through the adsorption heat exchanger (81a, 82a, 81b, 82b) operating as a condenser, and this adsorption heat exchanger (81a, 82a ,...), Outdoor air whose temperature and absolute humidity have increased is supplied to the room. Therefore, a decrease in the room temperature can also be suppressed by supplying the outdoor air to the room by the outside air processing machine (50) during the humidifying operation. For this reason, if an efficiency control part (96) performs capacity | capacitance reduction operation | movement and lowers | hangs the air-conditioning capacity | capacitance of the external air processing machine (50) in humidification operation, after that, indoor temperature will fall gradually. When the room temperature gradually decreases, the measured value of the high-pressure sensor (26) gradually decreases accordingly, and the air conditioning capability control unit (95) stops the intermittent operation and starts the continuous operation. That is, the air-conditioning capacity control unit (95) continuously operates the air-conditioning compressor (41) from the state in which the air-conditioning compressor (41) is intermittently operated in order to suppress a decrease in the room temperature. Migrate to

発停頻度判定条件について説明する。発停頻度判定条件は、間欠運転動作中における空調用圧縮機(41)の停止と起動の頻度が高くなっていることを示す条件である。本実施形態の空調側コントローラ(91)では、“単位時間当たりの空調用圧縮機(41)の停止回数または起動回数が所定の基準回数に達した”という条件が、発停頻度判定条件として設定されている。   The start / stop frequency determination condition will be described. The start / stop frequency determination condition is a condition indicating that the frequency of stopping and starting the air conditioning compressor (41) during the intermittent operation is high. In the air conditioning controller (91) of the present embodiment, the condition that “the number of stops or start of the air conditioning compressor (41) per unit time has reached a predetermined reference number” is set as the start / stop frequency determination condition. Has been.

−実施形態2の効果−
本実施形態の制御システム(90)において、空調側コントローラ(91)は、間欠運転動作中に所定の発停頻度判定条件が成立すると、間欠運転動作中における空調用圧縮機(41)の停止と起動の頻度が高くなっていると判断し、能力削減動作を行う。空調側コントローラ(91)において、効率制御部(96)が能力削減動作を実行して外気処理機(50)の空調能力が低下すると、空調能力の不足分を補うために空調能力制御部(95)が間欠運転動作を停止して連続運転動作を開始する。その結果、本実施形態によれば、制御システム(90)が間欠運転動作を実行し続ける場合に比べ、空調システム(10)の運転効率を向上させることができる。
-Effect of Embodiment 2-
In the control system (90) of the present embodiment, the air conditioning controller (91) stops the air conditioning compressor (41) during the intermittent operation when the predetermined start / stop frequency determination condition is satisfied during the intermittent operation. It is judged that the frequency of activation is high, and the capacity reduction operation is performed. In the air-conditioning controller (91), when the efficiency control unit (96) performs the capacity reduction operation and the air-conditioning capacity of the outside air processor (50) decreases, the air-conditioning capacity control unit (95 ) Stops intermittent operation and starts continuous operation. As a result, according to the present embodiment, the operation efficiency of the air conditioning system (10) can be improved as compared with the case where the control system (90) continues to execute the intermittent operation.

ここで、空調側コントローラ(91)が能力削減動作を行うことによって空調システム(10)の運転効率が向上する理由について、図7を参照しながら説明する。   Here, the reason why the operating efficiency of the air conditioning system (10) is improved when the air conditioning controller (91) performs the capacity reduction operation will be described with reference to FIG.

上記実施形態1について説明した通り、空調機(20)の空調能力がある程度以下の領域では、空調機(20)の空調能力が低くなるほど空調用冷媒回路(30)で行われる冷凍サイクルの成績係数(COP)が低くなる(図7の実線の曲線を参照)。   As described in the first embodiment, in a region where the air conditioning capacity of the air conditioner (20) is below a certain level, the coefficient of performance of the refrigeration cycle performed in the refrigerant circuit for air conditioning (30) as the air conditioning capacity of the air conditioner (20) decreases. (COP) is lowered (see the solid curve in FIG. 7).

一方、外気処理機(50)では、図7に一点鎖線の曲線で示すように、調湿用冷媒回路(60)において行われる冷凍サイクルの成績係数(COP)が、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数に比べて比較的高くなっている。つまり、室内の冷房中には室内気温が室外気温よりも低くなっており、除湿運転中の外気処理機(50)では、吸着熱交換器(81a,82a,…)のうち凝縮器として動作する方を比較的低温の室内空気が通過し、蒸発器として動作する方を比較的高温の室外空気が通過する。また、室内の暖房中には室内気温が室外気温よりも高くなっており、加湿運転中の外気処理機(50)では、吸着熱交換器(81a,82a,…)のうち凝縮器として動作する方を比較的低温の室外空気が通過し、蒸発器として動作する方を比較的高温の室内空気が通過する。このため、調湿用冷媒回路(60)において行われる冷凍サイクルでは、空調用冷媒回路(30)において行われる冷凍サイクルに比べ、冷凍サイクルの高圧と低圧の差が小さくなる。その結果、調湿用圧縮機(71)の消費電力が少なくなり、調湿用冷媒回路(60)において行われる冷凍サイクルの成績係数が比較的高くなる。   On the other hand, in the outdoor air processor (50), as shown by a dashed line curve in FIG. 7, the coefficient of performance (COP) of the refrigeration cycle performed in the humidity control refrigerant circuit (60) is the refrigerant circuit for air conditioning (30). It is relatively high compared to the coefficient of performance of the refrigeration cycle performed in That is, the indoor air temperature is lower than the outdoor air temperature during indoor cooling, and the outdoor air processor (50) during the dehumidifying operation operates as a condenser among the adsorption heat exchangers (81a, 82a,...). The relatively cold room air passes through this direction, and the relatively hot outdoor air passes through the one that operates as an evaporator. In addition, the indoor air temperature is higher than the outdoor air temperature during indoor heating, and the outdoor air processor (50) during the humidifying operation operates as a condenser among the adsorption heat exchangers (81a, 82a,...). The relatively cold outdoor air passes through this direction, and the relatively hot indoor air passes through the one that operates as an evaporator. For this reason, in the refrigeration cycle performed in the humidity control refrigerant circuit (60), the difference between the high pressure and the low pressure of the refrigeration cycle is smaller than in the refrigeration cycle performed in the air conditioning refrigerant circuit (30). As a result, the power consumption of the humidity control compressor (71) is reduced, and the coefficient of performance of the refrigeration cycle performed in the humidity control refrigerant circuit (60) is relatively high.

このように、調湿用冷媒回路(60)において行われる冷凍サイクルの成績係数(COP)は、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数に比べて比較的高くなっている。このため、外気処理機(50)の空調能力を図7における点Cの状態から点Dの状態へ引き下げても、調湿用冷媒回路(60)において行われる冷凍サイクルの成績係数は、空調用冷媒回路(30)で行われる冷凍サイクルの成績係数に比べて依然として高くなる。   Thus, the coefficient of performance (COP) of the refrigeration cycle performed in the humidity control refrigerant circuit (60) is relatively higher than the coefficient of performance of the refrigeration cycle performed in the air conditioning refrigerant circuit (30). For this reason, even if the air conditioning capacity of the outside air processing machine (50) is lowered from the state of point C in FIG. 7 to the state of point D, the coefficient of performance of the refrigeration cycle performed in the humidity control refrigerant circuit (60) is It is still higher than the coefficient of performance of the refrigeration cycle performed in the refrigerant circuit (30).

一方、空調側コントローラ(91)の空調能力制御部(95)が間欠運転動作から連続運転動作へ移行して空調用圧縮機(41)が連続的に運転される状態になると、空調用圧縮機(41)の停止と起動を繰り返すことに伴う損失が減少し、空調機(20)の運転効率が向上する。   On the other hand, when the air conditioning capacity controller (95) of the air conditioning controller (91) shifts from the intermittent operation to the continuous operation and the air conditioning compressor (41) is continuously operated, the air conditioning compressor Loss due to repeated stop and start of (41) is reduced, and the operating efficiency of the air conditioner (20) is improved.

このため、効率制御部(96)が能力削減動作を行うことによって空調能力制御部(95)が間欠運転動作を停止して連続運転動作を開始すると、空調機(20)の運転効率が向上し、その結果、空調システム(10)の運転効率が向上する。   For this reason, when the air-conditioning capacity control unit (95) stops the intermittent operation and starts the continuous operation by performing the capacity reduction operation, the operation efficiency of the air conditioner (20) is improved. As a result, the operating efficiency of the air conditioning system (10) is improved.

−実施形態2の変形例−
上記実施形態の制御システム(90)では、空調側コントローラ(91)ではなく何れか一方の調湿側コントローラ(92a,92b)が能力削減動作を実行するように構成されていてもよい。この場合、調湿側コントローラ(92a,92b)は、空調側コントローラ(91)の間欠運転動作中に発停頻度判定条件が成立するか否かを監視し、発停頻度判定条件が成立すると能力削減動作を実行する。つまり、調湿側コントローラ(92a,92b)は、調湿用圧縮機(71)の運転周波数を低下させてその運転容量を強制的に減少させる。その結果、空調側コントローラ(91)では、間欠運転動作が停止されて連続運転動作が開始され、空調用圧縮機(41)が連続的に運転される。
-Modification of Embodiment 2-
In the control system (90) of the above embodiment, not one of the air conditioning side controllers (91) but one of the humidity control side controllers (92a, 92b) may be configured to execute the capacity reduction operation. In this case, the humidity controller (92a, 92b) monitors whether the start / stop frequency determination condition is satisfied during the intermittent operation of the air conditioning controller (91), and if the start / stop frequency determination condition is satisfied, Perform reduction action. That is, the humidity controller (92a, 92b) decreases the operating frequency of the humidity control compressor (71) to forcibly reduce its operating capacity. As a result, in the air conditioning side controller (91), the intermittent operation is stopped, the continuous operation is started, and the air conditioning compressor (41) is continuously operated.

《その他の実施形態》
図8に示すように、上記の実施形態では、各調湿ユニット(52a,52b)に調湿用圧縮機(71a,71b)が一台ずつ搭載されていてもよい。図8に示す空調システム(10)では、外気処理機(50)が二台の調湿ユニット(52a,52b)だけによって構成される。各調湿ユニット(52b)の調湿用回路(80a,80b)において、調湿用圧縮機(71a,71b)は、その吐出側が四方切換弁(83a,83b)の第1のポートに接続され、その吸入側がアキュームレータ(72a,72b)を介して四方切換弁(83a,83b)の第2のポートに接続される。
<< Other Embodiments >>
As shown in FIG. 8, in the above-described embodiment, one humidity control compressor (71a, 71b) may be mounted in each humidity control unit (52a, 52b). In the air conditioning system (10) shown in FIG. 8, the outside air processing machine (50) is configured by only two humidity control units (52a, 52b). In the humidity control circuit (80a, 80b) of each humidity control unit (52b), the humidity control compressor (71a, 71b) has its discharge side connected to the first port of the four-way switching valve (83a, 83b). The suction side is connected to the second port of the four-way switching valve (83a, 83b) via the accumulator (72a, 72b).

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、室内空気の温度を調節する空気調和装置と、室内へ供給される室外空気の温度と湿度を調節する外気処理装置とを備えた空調システムについて有用である。   As described above, the present invention is useful for an air conditioning system including an air conditioner that adjusts the temperature of indoor air and an outdoor air processing device that adjusts the temperature and humidity of outdoor air supplied to the room.

実施形態1の空調システムの概略構成を示す冷媒回路図である。It is a refrigerant circuit figure showing the schematic structure of the air-conditioning system of Embodiment 1. 除湿運転中の状態を示す調湿ユニットの概略構成図であって、(A)は第1動作中の状態を示すものであり、(B)は第2動作中の状態を示すものである。It is a schematic block diagram of the humidity control unit which shows the state in dehumidification driving | operation, Comprising: (A) shows the state in 1st operation | movement, (B) shows the state in 2nd operation | movement. 加湿運転中の状態を示す調湿ユニットの概略構成図であって、(A)は第1動作中の状態を示すものであり、(B)は第2動作中の状態を示すものである。It is a schematic block diagram of the humidity control unit which shows the state in humidification driving | operation, Comprising: (A) shows the state in 1st operation | movement, (B) shows the state in 2nd operation | movement. 空調側コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioning side controller. 空調機が発揮する空調能力の時間変化を示す時間と空調能力の関係図である。It is a related figure of time and air conditioning capability which show the time change of the air conditioning capability which an air conditioner exhibits. 実施形態1の空調システムにおける、空調機の空調能力と冷媒サイクルの成績係数の関係を示す関係図である。It is a related figure which shows the relationship between the air-conditioning capability of an air conditioner and the coefficient of performance of a refrigerant cycle in the air-conditioning system of Embodiment 1. 実施形態2の空調システムにおける、空調機の空調能力と冷媒サイクルの成績係数の関係、及び外気処理機の空調能力と冷媒サイクルの成績係数の関係を示す関係図である。In the air-conditioning system of Embodiment 2, it is a related figure which shows the relationship between the air-conditioning capability of an air conditioner, and the coefficient of performance of a refrigerant cycle, and the relationship between the air-conditioning capability of an external air processing machine, and the coefficient of performance of a refrigerant cycle. その他の実施形態の空調システムの概略構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows schematic structure of the air conditioning system of other embodiment.

符号の説明Explanation of symbols

10 空調システム
20 空調機(空気調和装置)
30 空調用冷媒回路
41 空調用圧縮機
50 外気処理機(外気処理装置)
60 調湿用冷媒回路
71 調湿用圧縮機
90 制御システム(制御手段)
10 Air conditioning system
20 Air conditioner (air conditioner)
30 Air conditioning refrigerant circuit
41 Air conditioning compressor
50 Outside air processing machine (outside air processing equipment)
60 Humidity conditioning refrigerant circuit
71 Humidity control compressor
90 Control system (control means)

Claims (3)

取り込んだ室内空気を少なくともその温度を調節してから室内へ供給する空気調和装置(20)と、取り込んだ室外空気をその温度及び湿度を調節してから室内へ供給する外気処理装置(50)とを備える一方、
上記空気調和装置(20)は、空調用圧縮機(41)が接続されて冷凍サイクルを行う空調用冷媒回路(30)を備え、室内空気を上記空調用冷媒回路(30)の冷媒と熱交換させることによって室内空気の温度を調節するように構成されている空調システムであって、
上記空調用圧縮機(41)を連続的に運転させながら上記空気調和装置(20)の空調能力を室内の空調負荷に応じて調節する連続運転動作を行う制御手段(90)を備えており、
上記制御手段(90)は、上記連続運転動作中に上記空調用冷媒回路(30)で行われる冷凍サイクルの成績係数が低くなっていることを示す所定の運転状態判定条件が成立すると、上記空調用冷媒回路(30)で行われる冷凍サイクルの成績係数を向上させるために上記空調用圧縮機(41)の運転容量を強制的に引き上げた状態で該空調用圧縮機(41)を間欠的に運転させる効率向上動作を行うように構成されている
ことを特徴とする空調システム。
An air conditioner (20) for supplying the indoor air after adjusting at least the temperature of the taken indoor air, and an outdoor air processing device (50) for supplying the outdoor air after adjusting the temperature and humidity to the room While comprising
The air conditioner (20) includes an air conditioning refrigerant circuit (30) connected to an air conditioning compressor (41) to perform a refrigeration cycle, and heat exchange of room air with the refrigerant of the air conditioning refrigerant circuit (30). An air conditioning system configured to regulate the temperature of the indoor air by allowing
Control means (90) for performing a continuous operation for adjusting the air conditioning capacity of the air conditioner (20) according to the indoor air conditioning load while continuously operating the air conditioning compressor (41),
The control means (90), when a predetermined operating state determination condition indicating that a coefficient of performance of a refrigeration cycle performed in the air conditioning refrigerant circuit (30) is low during the continuous operation is satisfied, In order to improve the coefficient of performance of the refrigerating cycle performed in the refrigerant circuit (30), the air conditioning compressor (41) is intermittently operated with the operating capacity of the air conditioning compressor (41) forcedly increased. An air conditioning system configured to perform an operation for improving efficiency of operation.
取り込んだ室内空気を少なくともその温度を調節してから室内へ供給する空気調和装置(20)と、取り込んだ室外空気をその温度及び湿度を調節してから室内へ供給する外気処理装置(50)とを備える一方、
上記空気調和装置(20)は、空調用圧縮機(41)が接続されて冷凍サイクルを行う空調用冷媒回路(30)を備え、室内空気を上記空調用冷媒回路(30)の冷媒と熱交換させることによって室内空気の温度を調節するように構成されている空調システムであって、
上記空調用圧縮機(41)を連続的に運転させながら上記空気調和装置(20)の空調能力を室内の空調負荷に応じて調節する連続運転動作と、上記空調用圧縮機(41)を連続的に運転させた状態では上記空気調和装置(20)の空調能力が過剰な場合に該空調用圧縮機(41)を間欠的に運転させる間欠運転動作とを行う制御手段(90)を備えており、
上記制御手段(90)は、上記間欠運転動作中における上記空調用圧縮機(41)の停止と起動の頻度が高いことを示す所定の発停頻度判定条件が成立すると、上記間欠運転動作を終了させて上記連続運転動作を開始させるために上記外気処理装置(50)の空調能力を強制的に引き下げる能力削減動作を行うように構成されている
ことを特徴とする空調システム。
An air conditioner (20) for supplying the indoor air after adjusting at least the temperature of the taken indoor air, and an outdoor air processing device (50) for supplying the outdoor air after adjusting the temperature and humidity to the room While comprising
The air conditioner (20) includes an air conditioning refrigerant circuit (30) connected to an air conditioning compressor (41) to perform a refrigeration cycle, and heat exchange of room air with the refrigerant of the air conditioning refrigerant circuit (30). An air conditioning system configured to regulate the temperature of the indoor air by allowing
Continuous operation operation that adjusts the air conditioning capacity of the air conditioner (20) according to the indoor air conditioning load while continuously operating the air conditioning compressor (41), and the air conditioning compressor (41) continuously. Control means (90) for performing an intermittent operation operation of intermittently operating the compressor (41) for air conditioning when the air conditioning capacity (20) of the air conditioner (20) is excessive in the state of being operated in an automatic manner And
The control means (90) terminates the intermittent operation when a predetermined start / stop frequency determination condition indicating that the air conditioning compressor (41) is frequently stopped and started during the intermittent operation is satisfied. The air conditioning system is configured to perform a capacity reduction operation for forcibly reducing the air conditioning capacity of the outside air processing device (50) in order to start the continuous operation.
請求項1又は2において、
上記外気処理装置(50)は、調湿用圧縮機(71)が接続されて冷凍サイクルを行う調湿用冷媒回路(60)と、該調湿用冷媒回路(60)の冷媒によって冷却され又は加熱される吸着剤とを備え、室外空気を上記吸着剤と接触させることによって室外空気の温度および湿度を調節するように構成されている
ことを特徴とする空調システム。
In claim 1 or 2,
The outside air processing device (50) is cooled by a humidity control refrigerant circuit (60) to which a humidity control compressor (71) is connected to perform a refrigeration cycle, and a refrigerant of the humidity control refrigerant circuit (60) or An air conditioning system comprising an adsorbent to be heated and configured to adjust the temperature and humidity of outdoor air by bringing outdoor air into contact with the adsorbent.
JP2008332635A 2008-12-26 2008-12-26 Air conditioning system Pending JP2010151421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332635A JP2010151421A (en) 2008-12-26 2008-12-26 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332635A JP2010151421A (en) 2008-12-26 2008-12-26 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2010151421A true JP2010151421A (en) 2010-07-08

Family

ID=42570717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332635A Pending JP2010151421A (en) 2008-12-26 2008-12-26 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2010151421A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220036A (en) * 2011-04-04 2012-11-12 Daikin Industries Ltd Air-conditioning system
JP2013210124A (en) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp Air conditioner
CN109237709A (en) * 2018-08-31 2019-01-18 青岛海尔空调电子有限公司 A kind of multi-connected machine control method
WO2020261982A1 (en) * 2019-06-26 2020-12-30 ダイキン工業株式会社 Air conditioning system
JP2022509252A (en) * 2018-11-30 2022-01-20 チンタオ ハイアール ウォッシング マシン カンパニー,リミテッド Control methods and clothing care equipment for clothing care equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220036A (en) * 2011-04-04 2012-11-12 Daikin Industries Ltd Air-conditioning system
JP2013210124A (en) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp Air conditioner
CN109237709A (en) * 2018-08-31 2019-01-18 青岛海尔空调电子有限公司 A kind of multi-connected machine control method
CN109237709B (en) * 2018-08-31 2020-12-08 青岛海尔空调电子有限公司 Multi-split control method
JP2022509252A (en) * 2018-11-30 2022-01-20 チンタオ ハイアール ウォッシング マシン カンパニー,リミテッド Control methods and clothing care equipment for clothing care equipment
JP7159473B2 (en) 2018-11-30 2022-10-24 チンタオ ハイアール ウォッシング マシン カンパニー,リミテッド CONTROL METHOD FOR CLOTH CARE DEVICE AND CLOTH CARE DEVICE
WO2020261982A1 (en) * 2019-06-26 2020-12-30 ダイキン工業株式会社 Air conditioning system
JP2021004724A (en) * 2019-06-26 2021-01-14 ダイキン工業株式会社 Air conditioning system
US11428422B2 (en) 2019-06-26 2022-08-30 Daikin Industries, Ltd. Air conditioning system

Similar Documents

Publication Publication Date Title
US9297546B2 (en) Humidity control apparatus and air-conditioning system
JP2010151337A (en) Air conditioning system
JP5229368B2 (en) Humidity control device
JP5487600B2 (en) Air conditioning system
JP2012141113A (en) Air conditioning/water heating device system
JP5369577B2 (en) Air conditioning system
JP2010151421A (en) Air conditioning system
JP2016138666A (en) Air conditioner
JP2010065977A (en) Air conditioning system
JP5849696B2 (en) Air conditioning system
JP2010127522A (en) Air conditioning system
JP5396799B2 (en) Humidity control system
JP2010133612A (en) Air conditioning system
JP2010078245A (en) Humidity control system
JP2009109125A (en) Humidity conditioner
JP2010084970A (en) Air conditioning system and heat exchange unit
JP2010078246A (en) Air conditioning system
JP2009109127A (en) Humidity conditioner
JP2009109096A (en) Humidity conditioner
JP5332465B2 (en) Humidity control system
JP6745895B2 (en) Air conditioning system
JP2014137207A (en) Air conditioning system
JP2009109150A (en) Humidity conditioner
JP5332466B2 (en) Humidity control system
JP5786774B2 (en) Humidity control device