JP2010150870A - Recovery lock of pneumatic caisson - Google Patents

Recovery lock of pneumatic caisson Download PDF

Info

Publication number
JP2010150870A
JP2010150870A JP2008332516A JP2008332516A JP2010150870A JP 2010150870 A JP2010150870 A JP 2010150870A JP 2008332516 A JP2008332516 A JP 2008332516A JP 2008332516 A JP2008332516 A JP 2008332516A JP 2010150870 A JP2010150870 A JP 2010150870A
Authority
JP
Japan
Prior art keywords
pneumatic
pressure
caisson
slab
recovery lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332516A
Other languages
Japanese (ja)
Other versions
JP5188386B2 (en
Inventor
Yutaka Kashima
豊 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiho Construction Co Ltd
Original Assignee
Daiho Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiho Construction Co Ltd filed Critical Daiho Construction Co Ltd
Priority to JP2008332516A priority Critical patent/JP5188386B2/en
Publication of JP2010150870A publication Critical patent/JP2010150870A/en
Application granted granted Critical
Publication of JP5188386B2 publication Critical patent/JP5188386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovery lock which does not need a slab of reinforced concrete of a pneumatic caisson and which has a highly pressure-resistant space capable of being pressurized or decompressed for recovering a caisson excavator from a pneumatic work chamber for repair and inspection. <P>SOLUTION: The recovery lock is formed of a shell body of a nearly semi-cylindrical type pressure-resistant shape. The recovery lock forming an air tight space surrounds an opening with a pneumatic door of a pneumatic slab which partitions the pneumatic work chamber, and is removably fixed on the top surface of the pneumatic slab. The shell body is composed of a decomposed pieces enabling decomposition and airtight-assembly with respect to the entire surface which includes at least its nearly semi-cylindrical peripheral surface and its end surface in the axial direction. The nearly semi-cylindrical shell body provides a broad work area which continues from both sides of the opening with the pneumatic door to both ends in the axial direction, and is connected to a man lock in an airtight state in the work area. Preferably, a support member is installed between the axial direction end surface of the nearly-semi-cylindrical shell body and the opposing inner face of the side wall of the pneumatic caisson for reinforcing pressure resistance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はニューマチックケーソンの回収ロック、より詳しくは、ニューマチックケーソンの圧気作業室にその天井をなす圧気スラブを介して隣接し、ケーソン掘削機を圧気作業室から回収して修理、点検を行うために加減圧可能な整備作業空間を区画する回収ロックを有するニューマチックケーソンに関する。   The present invention is a pneumatic caisson recovery lock, more specifically, a pneumatic caisson's pressure working chamber is adjacent to the pressure working slab that forms the ceiling, and the caisson excavator is recovered from the pressure working room for repair and inspection. Therefore, the present invention relates to a pneumatic caisson having a recovery lock for partitioning a maintenance work space that can be pressurized or depressurized.

ニューマチックケーソンにおいては、従来ケーソン躯体の下部に掘削地盤の崩落や地下水の噴出を防ぐために高気圧に圧気した圧気作業室を区画する圧気スラブを設け、圧気スラブの下面すなわち圧気作業室の天井に設置したレールにケーソン掘削機を懸架して移動させ、掘削を行う。ケーソン躯体の沈下工事の初期段階では圧気作業室はいまだ大気圧またはそれに近い気圧にあるので、作業員が圧気作業室に入りケーソン掘削機に搭乗するなどして直接掘削操作を行うこともできるが、工事進行とともに圧気作業室は加圧されるため、減圧症防止のため安全基準による諸条件の下で作業員は操作を行うことになるので、安全性と能率の面から、掘削作業は地上からの遠隔制御操作によって行うことが近年の大勢となっている。しかしながら、一旦ケーソン掘削機が故障した場合の点検修理をも遠隔制御操作で実施するまでには至っていない。また、望ましくは、点検修理を行うにも作業員が圧気作業室に入る必要を回避可能とすることが求められる。   In the pneumatic caisson, a conventional pressurized slab is provided at the bottom of the caisson housing to divide the pressurized working chamber pressurized to high pressure to prevent the excavation ground from collapsing and groundwater jetting. The caisson excavator is suspended from the rail and moved to perform excavation. At the initial stage of the caisson housing subsidence, the pressurized working room is still at or near atmospheric pressure, so it is possible for workers to enter the pressurized working room and board the caisson excavator for direct excavation. Since the pressurized working room is pressurized as the construction progresses, workers will operate under various conditions according to safety standards to prevent decompression sickness, so excavation work is performed on the ground from the viewpoint of safety and efficiency. In recent years, it has been carried out by remote control operation from a remote control. However, inspection and repair once a caisson excavator has failed has not yet been implemented by remote control operation. Desirably, it is required to avoid the need for an operator to enter the pressure working chamber for inspection and repair.

その求めに応じて提案されたニューマチックケーソンにおいては、圧気作業室に隣接してケーソン掘削機を回収し作業員が大気圧環境下で点検修理を行う空間が構成される。そのため、この空間をなす回収ロックの下スラブとして圧気スラブを用い、その上方に平行に上スラブを形成する、鉄筋コンクリート等により構成される二重スラブ構造によって回収ロックを形成したものがある。この二重スラブ構造において、ケーソン掘削機を回収ロックに回収するためには、ケーソン掘削機が通過可能な開口部が下スラブを貫通して形成され、この開口部を開閉する開閉扉を介して圧気作業室と回収ロックの間でケーソン掘削機を移動させる吊上げ装置と、開閉扉を閉じてケーソン掘削機を回収ロックの床上で移動させる回収架台と、回収ロック内の気圧を調整する気圧調整手段とが設けられ、それによって、ケーソン掘削機の組立、点検、修理ないしはケーソン沈下工事完了後の解体等の、遠隔制御不能な作業を、作業員が圧気作業室の高気圧に曝されることなく遂行可能となる(特許文献1参照)。
特許第3470894号公報
In the pneumatic caisson proposed in response to the demand, a space is constructed in which the caisson excavator is collected adjacent to the pressure working room and the worker performs inspection and repair in an atmospheric pressure environment. For this reason, there is a type in which a pressure lock slab is used as a lower slab for the recovery lock that forms this space, and a recovery lock is formed by a double slab structure made of reinforced concrete or the like that forms an upper slab in parallel thereabove. In this double slab structure, in order to collect the caisson excavator in the recovery lock, an opening through which the caisson excavator can pass is formed through the lower slab, and through an open / close door that opens and closes the opening. A lifting device for moving the caisson excavator between the pressure working chamber and the recovery lock, a recovery platform for closing the door and moving the caisson excavator on the floor of the recovery lock, and an air pressure adjusting means for adjusting the atmospheric pressure in the recovery lock As a result, operations that cannot be remotely controlled, such as assembly, inspection, repair of the caisson excavator, or dismantling after completion of the caisson subsidence work, are carried out without the worker being exposed to the high pressure in the pressurized work room. This is possible (see Patent Document 1).
Japanese Patent No. 3470894

しかしながら、従来の二重スラブ構造による回収ロックは、上スラブが、下スラブを含むケーソン躯体と一体に鉄筋コンクリートによって製作するため、次のような問題を含んでいる。それは、図7(a)、(b)に例示するように、埋設されたニューマチックケーソンが例えばシールドトンネル掘削工事における立坑として用いられる場合、あるいは雨水貯留槽等として用いられる場合には、ニューマチックケーソンの沈設が完了した後に少なくとも回収ロックが不要となり、そのため少なくとも上スラブを撤去しなければならない場合が生じる。図7(a)は小口径のニューマチックケーソンを単独のシールドトンネル掘削発進用の立坑として、図7(b)は大口径のニューマチックケーソンを2本のシールドトンネル掘削発進用の立坑としてそれぞれ用いたときの、トンネル発進口Tと撤去すべき上スラブUの重複する位置関係を示す。いずれの場合も、鉄筋コンクリート製のスラブを撤去することは多大の労力と時間、費用等を要し、同時に多量のコンクリート塊と鉄筋屑という産業廃棄物を発生することとなり、全体構築物の工期の延引と全般的なコストの増大を余儀なくされる。   However, the recovery lock with the conventional double slab structure has the following problems because the upper slab is made of reinforced concrete integrally with the caisson housing including the lower slab. As illustrated in FIGS. 7 (a) and 7 (b), when an embedded pneumatic caisson is used as a shaft in, for example, shield tunnel excavation work, or when used as a rainwater storage tank, etc. After the caisson has been set up, at least the recovery lock is no longer necessary, so that at least the upper slab must be removed. Fig. 7 (a) shows a small-diameter pneumatic caisson as a single shield tunnel excavation start shaft, and Fig. 7 (b) shows a large-diameter pneumatic caisson as two shield tunnel excavation start shafts. The overlapping positional relationship between the tunnel start opening T and the upper slab U to be removed is shown. In either case, removing slabs made of reinforced concrete requires a great deal of labor, time, and costs, and at the same time, generates a large amount of concrete waste and recycle scrap industrial waste, extending the construction period of the entire structure. And increased overall costs.

本発明は上記の課題を解決するために提案されたものであり、ニューマチックケーソンにおいて二重スラブ構造によることなく有効な回収ロックを形成し、しかもその撤去作業も全体の工期延長を来たすことなく、作業も簡単で産業廃棄物を発生しない回収ロックを提供することを目的とする。   The present invention has been proposed in order to solve the above-mentioned problems. In the pneumatic caisson, an effective recovery lock is formed without using a double slab structure, and the removal work does not extend the entire construction period. The object is to provide a recovery lock that is easy to work and does not generate industrial waste.

上記の目的を達成するために、請求項1に記載の本発明は、ニューマチックケーソンの圧気作業室と圧気スラブを介して隣接し、圧気スラブの圧気扉付開口部を介して連通して、圧気作業室内で使用するケーソン掘削機を回収して修理点検作業を行うために大気圧と圧気圧との間で加減圧可能とした気密空間を区画する回収ロックにおいて、回収ロックは圧気スラブ上面に気密に定着し、断面をほぼ半円形ないし馬蹄形としたほぼ半円筒型耐圧形状の殻体で構成され、殻体は少なくともほぼ半円筒型の周面と軸線方向端面を含む全表面について分解と気密組立を可能とする複数の分解片でなることを特徴とする。
請求項2に記載の本発明は、請求項1記載のニューマチックケーソンの回収ロックにおいて、ほぼ半円筒型の殻体でなる回収ロックがマテリアルシャフトと圧気スラブの圧気扉付開口部との間に配置され、圧気扉付開口部の両側から殻体の軸線方向に広がる作業域を形成するとともに、作業域において、鋼板で加減圧可能な耐圧形状に形成されマンシャフトに接続したマンロックの圧気扉付出入通路と接続されることを特徴とする。
請求項3に記載の本発明は、請求項1または2記載のニューマチックケーソンの回収ロックにおいて、ほぼ半円筒型の殻体でなる回収ロックが軸線方向端面の外壁とニューマチックケーソンの内壁との間に支保材を設置してなり、支保材は支保構、無筋コンクリート、または繊維入りコンクリートでなることを特徴とする。
In order to achieve the above object, the present invention according to claim 1 is adjacent to a pneumatic working chamber of a pneumatic caisson via a pressurized slab, and communicates via an opening with a pressurized door of the pressurized slab, In a recovery lock that divides an airtight space that can be pressurized and depressurized between atmospheric pressure and atmospheric pressure to recover caisson excavators used in the pressurized air chamber and perform repairs and inspection work, the recovery lock is located on the upper surface of the compressed air slab. It is made up of an almost semi-cylindrical pressure-resistant shell with a semi-circular or horseshoe cross-section, and the shell is disassembled and air-tight over the entire surface, including at least a semi-cylindrical peripheral surface and an axial end face. It consists of a plurality of disassembled pieces that can be assembled.
According to a second aspect of the present invention, in the recovery lock of the pneumatic caisson according to the first aspect, the recovery lock formed of a substantially semi-cylindrical shell is provided between the material shaft and the opening with the pressure door of the pressure slab. A manlock pneumatic door that is arranged and forms a work area that extends in the axial direction of the shell from both sides of the opening with a pressure door, and that is formed in a pressure-resistant shape that can be pressurized or depressurized with a steel plate in the work area and connected to the man shaft It is connected to an access passage.
According to a third aspect of the present invention, in the recovery lock for the pneumatic caisson according to the first or second aspect, the recovery lock formed of a substantially semi-cylindrical shell is formed between the outer wall of the axial end surface and the inner wall of the pneumatic caisson. A support material is installed between the support materials, and the support material is made of support structure, unreinforced concrete, or fiber-containing concrete.

請求項1記載の本発明によれば、ニューマチックケーソンの圧気作業室と圧気スラブを介して隣接し、圧気スラブの圧気扉付開口部を介して連通して、圧気作業室内で使用するケーソン掘削機を回収して修理点検作業を行うために大気圧と圧気圧との間で加減圧可能とした気密空間を区画する回収ロックにおいて、回収ロックは圧気スラブ上面に気密に定着し、断面をほぼ半円形ないし馬蹄形としたほぼ半円筒型耐圧形状の殻体で構成され、殻体は少なくともほぼ半円筒型の周面と軸線方向端面を含む全表面について分解と気密組立を可能とする複数の分解片でなることを特徴とするので、回収ロック形成のために従来必要とした圧気スラブ上方の上スラブの設置が不要となり、二重スラブ構造を不要とする。同時に、回収ロックがその役目を終えて撤去を必要とする場合にも、従来の上スラブのように破壊による撤去ではなく、構成要素である分解片への分解、あるいは、少なくとも幾つかの運搬容易な寸法のブロックへの分解による撤去であるため、鉄筋コンクリートの破壊による撤去と比較すれば遥かに少ない労力と時間で済み、しかも産業廃棄物の生成がなく、他の地点における再組立てと再利用が可能となり、工期の短縮とコストの削減における利点は顕著となる。また、外形が弧状をなすため、内圧や外圧に対する耐圧性に富む。   According to the first aspect of the present invention, the caisson excavation used in the pneumatic working chamber is adjacent to the pneumatic working chamber of the pneumatic caisson via the pressurized pneumatic slab and communicates through the opening with the pressurized door of the pressurized slab. In a recovery lock that divides an airtight space that can be pressurized and depressurized between atmospheric pressure and pressure to recover the machine and perform repairs and inspection work, the recovery lock is airtightly fixed on the upper surface of the pressure slab, and the cross section is almost A semi-circular or horseshoe-shaped almost semi-cylindrical shell with a pressure-resistant shape, and the shell comprises at least a substantially semi-cylindrical peripheral surface and a plurality of disassembly capable of disassembly and airtight assembly over the entire surface including the axial end face. Since it is a single piece, it is not necessary to install an upper slab above the pressure slab which is conventionally required for forming a recovery lock, and a double slab structure is not required. At the same time, when the recovery lock has finished its function and needs to be removed, it is not removed by destruction like the conventional upper slab, but it can be disassembled into component disassembly pieces or at least some easy to carry The removal by breaking down into blocks of different dimensions requires far less labor and time compared to the removal by destruction of reinforced concrete, and there is no industrial waste generation and reassembly and reuse at other points. It becomes possible, and the advantages in shortening the construction period and reducing the cost are remarkable. In addition, since the outer shape is arcuate, the pressure resistance against internal pressure and external pressure is high.

請求項2に記載の本発明によれば、ほぼ半円筒型の殻体でなる回収ロックが、上下関係にあるマテリアルシャフトと圧気スラブの圧気扉付開口部との間に接続配置され、圧気扉付開口部の両側から殻体の軸線方向に広がる広い作業域を形成するとともに、作業域において、鋼板で加減圧可能な耐圧形状に形成されマンシャフトに接続したマンロックの圧気扉付出入通路と接続されることを特徴とするので、特にニューマチックケーソンが大口径で複数のケーソン掘削機の使用のために圧気スラブに複数の圧気扉付開口部が設けられている場合、圧気扉付開口部ごとに広い回収ロックを設置することができ、その広い作業域においてマンロックと接続されるため、作業性が極めて高くなる。   According to the second aspect of the present invention, the recovery lock made of a substantially semi-cylindrical shell is connected and disposed between the material shaft and the opening with the pressure door of the pressure slab in the vertical relationship, and the pressure door A wide working area that extends in the axial direction of the shell from both sides of the opening is formed, and in the working area, a pressure-proof shape that can be pressurized and depressurized with a steel plate is connected to the man shaft, and a manlock pneumatic door access passage Since the pneumatic caisson has a large diameter and is equipped with a plurality of openings with pressure doors in the pressure slab for use of a plurality of caisson excavators, the openings with pressure doors are particularly characterized. A wide recovery lock can be installed for each, and since it is connected to the manlock in the wide work area, workability becomes extremely high.

請求項3に記載の本発明は、ほぼ半円筒型の殻体でなる回収ロックが軸線方向端面の外壁とニューマチックケーソンの内壁との間に支保材を設置してなり、支保材は支保構、無筋コンクリート、または繊維入りコンクリートでなることを特徴とするので、耐圧性の低い平面でなるほぼ半円筒型回収ロックの軸線方向端面部分が支保材によって補強され、ほぼ半円筒型形状の本来の高耐圧性が更に高められて、圧気作業室と連通されたときに受ける高気圧の内圧と、ニューマチックケーソンの沈下促進用の水荷重としてケーソン内部に溜められる水からの外圧のいずれにも耐えることができる。   According to the third aspect of the present invention, the recovery lock formed of a substantially semi-cylindrical shell is provided with a support material between the outer wall of the axial end face and the inner wall of the pneumatic caisson, and the support material is a support structure. Because it is made of unreinforced concrete or fiber-reinforced concrete, the axial end face of the nearly semi-cylindrical recovery lock, which is a flat surface with low pressure resistance, is reinforced by a support material, High pressure resistance of the caisson is further enhanced to withstand both high pressure internal pressure received when communicating with a pressurized working chamber and external pressure from water stored inside the caisson as a water load for promoting the subsidence of the pneumatic caisson. be able to.

本発明が最も特徴とするのは、鉄筋コンクリートの二重スラブ構造によることなく、圧気スラブ上面に高耐圧性のほぼ半円筒型の回収ロックを、分解片の組立によって構築する点にあり、以下にそのための最良の実施例1〜3を添付の図1〜6に基づいて詳細に説明する。   The most characteristic feature of the present invention is that a high-pressure-resistant, almost semi-cylindrical recovery lock is constructed on the upper surface of the pneumatic slab by assembling the disassembled pieces without using a double slab structure of reinforced concrete. The best embodiments 1 to 3 will be described in detail with reference to FIGS.

図1〜4に示す本発明による実施例1は、図7(b)に例示した2連設トンネル掘削発進用の立坑として用いる比較的大口径のニューマチックケーソンにおける回収ロック10の構成にかかる。図において、ニューマチックケーソンAはその下端周囲に設けた刃口Fとともに圧気作業室Eを区画する圧気スラブBで下端を閉じ、圧気スラブBを貫通するが圧気扉Iで開閉される開口部Hを介してのみ、圧気作業室Eは圧気スラブB上面の大気圧に保たれたケーソン内空間と連通する。圧気作業室Eには、その天井に施設した走行レールCに沿って移動可能な複数のケーソン掘削機Dが配置され、それぞれ、図示しない地上の操作司令室から遠隔制御操作されて地盤Gを掘り下げる。地盤掘り下げとともに発生する土砂は、マテリアルシャフトJを通過し、開口部Hと圧気扉Iとを介して、上端のマテリアルロックKにより加減圧されて大気中と掘削地盤Gとの間を上下する図示しない昇降バケットにより、地上に排出される。圧気作業室E内のケーソン掘削機Dについて遠隔制御操作が不能な点検整備ないし修理の際には、作業員の健康保全のため、ケーソン掘削機Dを開口部Hと圧気扉Iを介して圧気作業室Eから回収ロック10内に回収し、圧気扉Iを閉じて回収ロック内を減圧して大気圧とし、大気圧環境下で修理等を行う。図示はしないが、気圧加減制御装置が望ましくは地上に設置され、操作司令室からの遠隔操作により圧気作業室E内の気圧を掘削地盤Gの安定化と地下水湧出防止等に必要な高気圧に維持する。   1-4 according to the present invention relates to the configuration of the recovery lock 10 in a pneumatic caisson having a relatively large diameter used as a shaft for starting two-hole tunnel excavation illustrated in FIG. 7B. In the figure, a pneumatic caisson A is closed with a pressure slab B that divides the pressure working chamber E together with a blade F provided around its lower end, and an opening H that passes through the pressure slab B but is opened and closed by a pressure door I. Only through the pressure working chamber E communicates with the caisson space maintained at the atmospheric pressure on the upper surface of the pressure slab B. A plurality of caisson excavators D that can move along the traveling rails C provided on the ceiling are arranged in the pressure working room E, and each is remotely controlled from a ground operation command room (not shown) to dig the ground G. . The earth and sand generated along with the ground digging passes through the material shaft J, and is pressurized and depressurized by the material lock K at the upper end through the opening H and the pressure air door I to move up and down between the atmosphere and the excavated ground G. It is discharged to the ground by the lifting bucket that does not. In the case of inspection maintenance or repair where the caisson excavator D in the pressure working room E cannot be remotely controlled, the caisson excavator D is pressurized via the opening H and the pressure door I for the health maintenance of workers. It collects in the recovery lock 10 from the working chamber E, closes the pressure door I, depressurizes the recovery lock to atmospheric pressure, and repairs it under atmospheric pressure environment. Although not shown, the pressure adjustment control device is preferably installed on the ground, and the atmospheric pressure in the pressure working room E is maintained at the high pressure necessary for stabilizing the excavation ground G and preventing groundwater discharge by remote control from the operation command room. To do.

圧気扉Iを開放して昇降バケットまたはケーソン掘削機Dが開口部Hを通過する間、ないしは掘削が継続して行われて昇降バケットが反復通過する間、開口部Hの外側つまり上部を圧気作業室Eと同じ高気圧状態とし、圧気扉Iを閉鎖して作業員が点検修理作業を行う間は大気圧状態とするため、本発明は開口部Hを、断面がほぼ半円形のほぼ半円筒型耐圧形状を有し、気密に組立て、分解可能な回収ロック10を構成する殻体12で覆い、開口部Hを取囲む長方形の底辺をアンカーボルト11により圧気スラブBの上面に気密に締結する。回収ロック10の内部は気圧加減制御装置に接続され、大気圧と、圧気作業室の高気圧とのいずれかに設定制御される。   While the pressure door I is opened and the elevating bucket or caisson excavator D passes through the opening H, or while excavation continues and the elevating bucket repeatedly passes, the outside of the opening H, that is, the upper part is pressurized. Since the atmospheric pressure is the same as that of the chamber E and the pressure door I is closed and the operator performs inspection and repair work, the opening H is formed in a substantially semi-cylindrical shape having a substantially semicircular cross section. The rectangular bottom that surrounds the opening H is fastened to the upper surface of the pressure slab B by an anchor bolt 11 in a pressure-resistant shape, which is airtightly assembled and covered with a shell 12 constituting a recoverable lock 10 that can be disassembled. The inside of the recovery lock 10 is connected to an atmospheric pressure adjustment control device, and is controlled to be set to either atmospheric pressure or high atmospheric pressure in a pressurized working chamber.

回収ロック10は、組立と分解が容易な、例えばプレストレストコンクリート製や鉄骨コンクリート製、好適には鋼製の分解片で構成されるほぼ半円筒形のいわゆるカマボコ型ないし馬蹄形の殻体12でなり、ここでは好適に使用される鋼製のものについて述べるが、分解片は、図3(a)、(b)に見られるように細長い鋼板13の両側辺に設けた円周リブ14と両端辺に設けた横リブ15とを備える周面材、および図2に見られるようにほぼ半円筒形殻体12の両端面の円周リブ14に締結される端面部殻体16とこの端面部殻体16の外面に取付けた支保柱または桁材を含む支保構をなす補強鋼板17とを備える端面材でなる。互いに隣接する周面材の円周リブ14同士と横リブ15同士は気密シールを介して接続され、ボルトナットにより互いに締結される。分解片の周面材と端面材とはそれぞれ運搬可能な寸法と重量に設定されてブロック化され、組立、分解、移動と再利用を容易とする。   The recovery lock 10 is a so-called kamaboko-shaped or horseshoe-shaped shell 12 that is easy to assemble and disassemble, for example, a semi-cylindrical shape made of prestressed concrete or steel concrete, preferably steel. Here, the steel that is preferably used will be described, but the disassembled pieces are circumferential ribs 14 provided on both sides of the elongated steel plate 13 as shown in FIGS. 3 (a) and 3 (b). A peripheral member provided with the lateral ribs 15 provided, and an end face shell 16 fastened to the circumferential ribs 14 on both end faces of the substantially semi-cylindrical shell 12 and the end face shell as shown in FIG. It consists of end face material provided with the reinforcing steel plate 17 which makes the support structure containing the support pillar or girder attached to 16 outer surfaces. The circumferential ribs 14 and the lateral ribs 15 of the circumferential members adjacent to each other are connected to each other through an airtight seal and are fastened to each other by bolts and nuts. The peripheral surface material and the end surface material of the disassembled piece are each set to a size and weight that can be transported and are made into blocks to facilitate assembly, disassembly, movement, and reuse.

ほぼ半円筒形の回収ロック10の長方形の底辺で囲まれた床面についても、ブロックとして適宜の寸法の例えば床鋼板による床殻体が形成され、補強用鋼桁が溶接されるが、圧気スラブBの上面が充分な床面を提供していれば、工期短縮とコスト削減のためには、床殻体は省略しても良い。   The floor surface surrounded by the rectangular bottom of the substantially semi-cylindrical recovery lock 10 is also formed with a floor shell body of, for example, floor steel plate having an appropriate size as a block, and a reinforcing steel girder is welded. If the upper surface of B provides a sufficient floor surface, the floor shell body may be omitted for shortening the construction period and reducing the cost.

各回収ロック10が覆う圧気スラブBの開口部Hに対応する上方位置でほぼ半円筒形殻体12をマテリアルシャフトJの下端に気密に接続し、地上に位置するマテリアルシャフトJ上端のマテリアルロックKを介して、地上のクレーン等により吊り下げられた土砂バケット(図示しない)の圧気作業室Eへの圧気状態での往復通過を可能とする。図示の場合、二つの開口部Hに対して二つの回収ロックl0がほぼ平行に配置され、その中間に、気圧加減制御装置に接続された鋼製円筒状のマンロックMが、安定設置用の架台Qを介して圧気スラブBの上面に設置され、ほぼ中央の圧力隔壁Oで二つに仕切られた一方の待機室Pから左右に突き出す出入通路Nの各々がそれぞれの回収ロック10の殻体12に気密に接続され、マンロックMの待機室Pに接続したマンシャフトLから待機室Pに入った作業員は回収ロック10の圧気が大気圧に減圧されるのを待ち、出入通路Nの圧気扉を開けて、回収ロック10内において一方の端面部殻体16に近接する開口部Hの両側から他方の端面部殻体16まで広がる作業域18に入り、前もって圧気作業室Eから回収してあるケーソン掘削機Dの点検修理に当たる。図では開口部Hを一方の端面部に接近させているが、これは他方の端面部側の作業域18を最大にし得るためであり、状況に応じて別の配置とし得ることは言うまでもない。なお、好適には、マンロックM、待機室P、出入通路Nは鋼製とする。マンシャフトLの作業員の昇降のため、内部にエレベーターを設置しても良い。   A substantially semi-cylindrical shell 12 is hermetically connected to the lower end of the material shaft J at an upper position corresponding to the opening H of the pressure slab B covered by each recovery lock 10, and a material lock K at the upper end of the material shaft J located on the ground. , The earth and sand bucket (not shown) suspended by a ground crane or the like can be reciprocated in a pressurized state to the pressurized working chamber E. In the case of the illustration, two recovery locks 10 are arranged substantially parallel to the two openings H, and a steel cylindrical manlock M connected to the atmospheric pressure control device is located between them for stable installation. Each of the entrance / exit passages N installed on the upper surface of the pressure slab B via the gantry Q and projecting left and right from one waiting chamber P divided into two by a central pressure bulkhead O is a shell of the respective recovery lock 10. The worker entering the standby chamber P from the man shaft L connected to the standby chamber P of the manlock M waits for the pressure in the recovery lock 10 to be reduced to the atmospheric pressure, and The pressure air door is opened to enter the work area 18 that extends from both sides of the opening H close to one end face shell 16 to the other end face shell 16 in the recovery lock 10 and is collected from the pressure work chamber E in advance. Of the caisson excavator D It hits the inspection repair. In the drawing, the opening H is brought close to one end surface portion, but this is for maximizing the work area 18 on the other end surface portion side, and it goes without saying that another arrangement may be adopted depending on the situation. Preferably, the manlock M, the standby chamber P, and the entrance / exit passage N are made of steel. An elevator may be installed inside the man shaft L for raising and lowering workers.

マンロックM内を圧力隔壁Oが仕切る他方の圧気室Rは、圧気スラブBを貫通する圧気シャフトSを介して圧気作業室Eと連通するが通常は圧気扉Iで閉止され、大気圧に維持されており、作業員の圧気作業室Eへの出入が必要な時は高気圧に加圧される。   The other pressure chamber R in which the pressure partition O divides the manlock M communicates with the pressure working chamber E via the pressure shaft S passing through the pressure slab B, but is normally closed by the pressure door I and maintained at atmospheric pressure. When the worker needs to enter and exit the pressurized working chamber E, the pressure is increased to high pressure.

図5は本発明による回収ロック10の第2の実施例を示し、ニューマチックケーソンAと回収ロック10ならびにマンロックMのそれぞれの構成要素と要件はまったく実施例1と同じであり、それらの詳細な説明は煩雑を避けるため省略するが、本実施例2の特徴点は、断面をほぼ半円形とするほぼ半円筒形の回収ロック10の軸方向両端の端面部殻体16と、対向するニューマチックケーソンAの側壁との間に補強材19を多数設置して、ほぼ半円筒形の周面部に比して耐圧性が低い平坦な端面部殻体16を補強したことにある。補強材19としては、支保柱、桁材のような支保構が用いられ、これらを長手方向に水平に、あるいは斜めに、端面部殻体16と側壁との間に複数設け固定する。補強材19の本数、配置等は規模に応じ適宜選択される。   FIG. 5 shows a second embodiment of the recovery lock 10 according to the present invention. The components and requirements of the pneumatic caisson A, the recovery lock 10 and the manlock M are exactly the same as those of the first embodiment, and their details Although the description is omitted to avoid complication, the feature of the second embodiment is that the end face shells 16 at both ends in the axial direction of the substantially semi-cylindrical recovery lock 10 having a substantially semicircular cross section are opposed to the new shell. A large number of reinforcing members 19 are installed between the side walls of the matic caisson A to reinforce the flat end surface shell 16 having a lower pressure resistance than the substantially semicircular circumferential surface portion. As the reinforcing member 19, a supporting structure such as a supporting column or a girder is used, and a plurality of these are provided and fixed between the end face shell 16 and the side wall horizontally or obliquely in the longitudinal direction. The number and arrangement of the reinforcing members 19 are appropriately selected according to the scale.

図6は本発明の回収ロック10の第3の実施例を示すが、実施例1および2と同一とする構成要素と要件の詳述は省略し、実施例3の特徴点について述べれば、断面をほぼ半円形とするほぼ半円筒形の回収ロック10の端面部殻体16の耐圧性補強をコンクリート支保体20で行う点である。このコンクリート支保体20は、回収ロック10の端面とニューマチックケーソンAの側壁との間の距離が短いとき、あるいは回収ロック10が側壁間の幅に接近するように長いときに用いて有利であり、通常は無筋コンクリートまたは繊維入りコンクリートを打設するが、特に高い耐圧性ないし強度を要するときは補強鉄筋を設置する場合もある。実施例1および2の構成と比較すれば、コンクリート支保体20は回収ロック10に対する内圧と外圧の双方について高い耐圧性を回収ロック10に付与する。   FIG. 6 shows a third embodiment of the recovery lock 10 according to the present invention, but the detailed description of the same components and requirements as those in the first and second embodiments is omitted, and the characteristic points of the third embodiment are described. The pressure support of the end face shell 16 of the substantially semi-cylindrical recovery lock 10 having a substantially semicircular shape is performed by the concrete support body 20. The concrete support 20 is advantageous when the distance between the end face of the recovery lock 10 and the side wall of the pneumatic caisson A is short or when the recovery lock 10 is long so as to approach the width between the side walls. Normally, unreinforced concrete or fiber-reinforced concrete is cast, but reinforcing bars may be installed when particularly high pressure resistance or strength is required. Compared with the configurations of the first and second embodiments, the concrete support body 20 imparts high pressure resistance to the recovery lock 10 with respect to both the internal pressure and the external pressure with respect to the recovery lock 10.

なお、上記実施例1ないし3のいずれにおいても回収ロック10を構成する殻体12の形状を、断面をほぼ半円形とするほぼ半円筒形耐圧形状としているが、この耐圧形状には、円を直径線に沿って切断した半円形、直径線に平行して直径線を含む位置(カマボコ形)又は含まない位置で切断したほぼ半円形、楕円形を短軸又は長軸に沿って切断した半楕円形、短軸又は長軸に平行していずれかの軸を含む位置(馬蹄形)または含まない位置で切断したほぼ半楕円形が含まれる。   In any of the first to third embodiments, the shape of the shell 12 constituting the recovery lock 10 is a substantially semi-cylindrical pressure-resistant shape having a substantially semicircular cross section. A semi-circle cut along the diameter line, a semi-circular shape cut along a short axis or a long axis, or a semi-circular shape cut along a diameter line parallel to the diameter line An elliptical shape, a substantially semi-elliptical shape cut at a position including any axis parallel to the short axis or the long axis (horse-shoe shape) or not including the axis is included.

本発明の実施例1による回収ロックを、マンロックとともにニューマチックケーソン内に設置した全体構成で示す縦断面図。The longitudinal cross-sectional view which shows the collection | recovery lock | rock by Example 1 of this invention with the whole structure installed in the pneumatic caisson with the manlock. 図1のII−II線に沿う全体構成の横断面図。The cross-sectional view of the whole structure which follows the II-II line | wire of FIG. 図2のIII−III線に沿う全体構成の縦断面図。The longitudinal cross-sectional view of the whole structure which follows the III-III line of FIG. (a)は本発明による回収ロックのやや拡大した断面図。(b)は図4(a)の回収ロックの部分側面図。(A) is a slightly enlarged cross-sectional view of a recovery lock according to the present invention. FIG. 4B is a partial side view of the recovery lock of FIG. 本発明の実施例2による全体構成の、図2と同様の横断面図。The cross-sectional view similar to FIG. 2 of the whole structure by Example 2 of this invention. 本発明の実施例3による全体構成の、図2と同様の横断面図。The cross-sectional view similar to FIG. 2 of the whole structure by Example 3 of this invention. (a)は本発明を適用しうるトンネル掘削用立坑の一従来例の縦断面図。(b)は本発明を適用しうるトンネル掘削用立坑の他の従来例の縦断面図。(A) is a longitudinal cross-sectional view of a conventional example of a tunnel excavation shaft to which the present invention can be applied. (B) is a longitudinal cross-sectional view of another conventional example of a tunnel excavation shaft to which the present invention can be applied.

符号の説明Explanation of symbols

A ニューマチックケーソン
B 圧気スラブ
C 走行レール
D ケーソン掘削機
E 圧気作業室
F 刃口
G 地盤
H 開口部
I 圧気扉
J マテリアルシャフト
K マテリアルロック
L マンシャフト
M マンロック
N 出入通路
O 圧力隔壁
P 待機室
Q 架台
R 圧気室
S 圧気シャフト
10 回収ロック
11 アンカーボルト
12 殻体
13 鋼板
14 円周リブ
15 横リブ
16 端面部殻体
17 補強鋼板(支保構)
18 作業域
19 補強材(支保材)
20 コンクリート支保体
A Pneumatic caisson B Pressure slab C Travel rail D Caisson excavator E Pressure working room F Blade edge G Ground H Opening I Pressure door J Material shaft K Material lock L Manshaft M Manlock N Access passage O Pressure bulkhead P Waiting room Q frame R pressure chamber S pressure shaft 10 recovery lock 11 anchor bolt 12 shell 13 steel plate 14 circumferential rib 15 lateral rib 16 end face shell 17 reinforcing steel plate (support structure)
18 Work area 19 Reinforcement material (support material)
20 Concrete support

Claims (3)

ニューマチックケーソンの圧気作業室と圧気スラブを介して隣接し、圧気スラブの圧気扉付開口を介して連通して、圧気作業室内で使用するケーソン掘削機を回収して修理点検作業を行うために大気圧と圧気圧との間で加減圧可能とした気密空間を区画する回収ロックにおいて、
回収ロックは圧気スラブ上面に気密に定着し、断面をほぼ半円形ないしほぼ馬蹄形としたほぼ半円筒型耐圧形状の殻体で構成され、殻体は少なくともほぼ半円筒型の周面と軸線方向端面を含む全表面について分解と気密組立を可能とする複数の分解片でなることを特徴とするニューマチックケーソンの回収ロック。
In order to collect the caisson excavator used in the pneumatic working chamber and perform repairs and inspection work by adjoining the pneumatic caisson's pneumatic working chamber via the pneumatic slab and communicating with the pneumatic slab through the opening with the pneumatic door. In the recovery lock that partitions the airtight space that can be pressurized or depressurized between atmospheric pressure and atmospheric pressure,
The recovery lock is hermetically fixed on the upper surface of the pneumatic slab, and is composed of a semi-cylindrical pressure-resistant shell with a substantially semicircular or horseshoe cross section. The shell is at least a semicylindrical circumferential surface and an axial end surface. A recovery lock for a pneumatic caisson comprising a plurality of disassembly pieces that enable disassembly and airtight assembly on the entire surface including
ほぼ半円筒型の殻体でなる回収ロックはマテリアルシャフトと圧気スラブの圧気扉付開口部との間に配置され、圧気扉付開口部の両側から殻体の軸線方向に広がる作業域を形成するとともに、作業域において、
鋼板で加減圧可能な耐圧形状に形成されマンシャフトに接続したマンロックの圧気扉付出入通路と接続されることを特徴とする、請求項1記載のニューマチックケーソンの回収ロック。
The recovery lock consisting of a semi-cylindrical shell is placed between the material shaft and the opening with the pressure door of the pressure slab, forming a work area that extends in the axial direction of the shell from both sides of the opening with the pressure door. And in the work area
2. The pneumatic caisson recovery lock according to claim 1, wherein said pneumatic caisson recovery lock is formed of a steel plate and is formed in a pressure-resistant shape capable of being pressurized and depressurized and connected to an access passage with a pressure lock door connected to a man shaft.
ほぼ半円筒型の殻体でなる回収ロックは軸線方向端面の外壁とニューマチックケーソンの内壁との間に支保材を設置してなり、支保材は支保構、無筋コンクリート、または繊維入りコンクリートでなることを特徴とする、請求項1または2記載のニューマチックケーソンの回収ロック。   The recovery lock, which is an almost semi-cylindrical shell, has a support material installed between the outer wall of the axial end face and the inner wall of the pneumatic caisson, and the support material is made of support structure, unreinforced concrete, or fiber-filled concrete. The recovery lock for a pneumatic caisson according to claim 1 or 2, characterized in that
JP2008332516A 2008-12-26 2008-12-26 Pneumatic caisson recovery lock Active JP5188386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332516A JP5188386B2 (en) 2008-12-26 2008-12-26 Pneumatic caisson recovery lock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332516A JP5188386B2 (en) 2008-12-26 2008-12-26 Pneumatic caisson recovery lock

Publications (2)

Publication Number Publication Date
JP2010150870A true JP2010150870A (en) 2010-07-08
JP5188386B2 JP5188386B2 (en) 2013-04-24

Family

ID=42570245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332516A Active JP5188386B2 (en) 2008-12-26 2008-12-26 Pneumatic caisson recovery lock

Country Status (1)

Country Link
JP (1) JP5188386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147871A (en) * 2020-03-19 2021-09-27 大豊建設株式会社 Lock structure, construction method of lock structure, and removal method of lock structure
JP7022185B1 (en) * 2020-10-09 2022-02-17 大豊建設株式会社 Hospital Locks, Hospital Lock Systems, and How to Build Hospital Locks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158244U (en) * 1984-09-19 1986-04-19
JP2004353394A (en) * 2003-05-30 2004-12-16 Shiraishi Corp Pneumatic caisson excavator recovery apparatus equipped with lock for carrying-in/out excavator, and pneumatic caisson excavator recovery system
JP2005226386A (en) * 2004-02-16 2005-08-25 Ohmoto Gumi Co Ltd Excavator carrying-in and carrying-out method and excavator recovery system for pneumatic caisson

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158244U (en) * 1984-09-19 1986-04-19
JP2004353394A (en) * 2003-05-30 2004-12-16 Shiraishi Corp Pneumatic caisson excavator recovery apparatus equipped with lock for carrying-in/out excavator, and pneumatic caisson excavator recovery system
JP2005226386A (en) * 2004-02-16 2005-08-25 Ohmoto Gumi Co Ltd Excavator carrying-in and carrying-out method and excavator recovery system for pneumatic caisson

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147871A (en) * 2020-03-19 2021-09-27 大豊建設株式会社 Lock structure, construction method of lock structure, and removal method of lock structure
JP7022185B1 (en) * 2020-10-09 2022-02-17 大豊建設株式会社 Hospital Locks, Hospital Lock Systems, and How to Build Hospital Locks

Also Published As

Publication number Publication date
JP5188386B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP4853429B2 (en) Support structure of lining board, method of supporting lining board
JP2013087514A (en) Movable type form device, and construction method of lining concrete
JP5285254B2 (en) Rebuilding method
JP5188386B2 (en) Pneumatic caisson recovery lock
JP2019148070A (en) Construction method of underground structure
JP2006225949A (en) Demolition method of building
CN111979935A (en) Dismantling construction method for bridge superstructure
JP4034790B2 (en) Pneumatic caisson and caisson housing settlement method
JP6940081B2 (en) Lock structure, how to build the lock structure, and how to remove the lock structure
JP3974457B2 (en) Caisson and caisson construction method
CN112726434B (en) Three-span deck reinforced concrete arch bridge dismantling method
JP5420035B1 (en) Large-sized material / equipment loading / unloading apparatus and loading / unloading method using this apparatus
JP4679948B2 (en) Pneumatic caisson
JP3606521B2 (en) Pneumatic caisson
JP4133268B2 (en) caisson
JP3908747B2 (en) Equipment for pneumatic caisson method
KR200433911Y1 (en) prefabricated guide wall for execution of Underground diaphragm wall
JP3578850B2 (en) Drilling rigs for building shafts or foundations for structures
JP5087501B2 (en) Tunnel leg reinforcement structure and reinforcement method
JP5127765B2 (en) Pneumatic caisson composite shaft
JP2010229749A (en) Box for tunnel
JP4500221B2 (en) Construction method of underground structure
JP6404508B1 (en) Rebuilding method
JP2022156485A (en) Airlock, and airlock system
JPH08269983A (en) Method for constructing basement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150