JP2010150460A - Method of modifying surface of polymer compound - Google Patents

Method of modifying surface of polymer compound Download PDF

Info

Publication number
JP2010150460A
JP2010150460A JP2008332299A JP2008332299A JP2010150460A JP 2010150460 A JP2010150460 A JP 2010150460A JP 2008332299 A JP2008332299 A JP 2008332299A JP 2008332299 A JP2008332299 A JP 2008332299A JP 2010150460 A JP2010150460 A JP 2010150460A
Authority
JP
Japan
Prior art keywords
treatment
polymer compound
surface modification
fluorine gas
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008332299A
Other languages
Japanese (ja)
Inventor
Kazutaka Mori
一高 森
Hitoshi Takebayashi
仁 竹林
Makoto Motomiya
誠 本宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAMATSU TEISAN KK
Toyo Tanso Co Ltd
Original Assignee
TAKAMATSU TEISAN KK
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAMATSU TEISAN KK, Toyo Tanso Co Ltd filed Critical TAKAMATSU TEISAN KK
Priority to JP2008332299A priority Critical patent/JP2010150460A/en
Publication of JP2010150460A publication Critical patent/JP2010150460A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of modifying surface of polymer compound capable of improving printing property, adhering property and coating adhesiveness of the surface of a polymer compound containing an aromatic ring and/or alicyclic hydrocarbon group on a part of a monomer unit effectively in a short time. <P>SOLUTION: The method of modifying surface of polymer compound is performed by causing fluorine gas or a gaseous mixture containing fluorine gas to contact with the surface of a polymer compound containing an aromatic ring and/or alicyclic hydrocarbon group on a part of a monomer unit, wherein the treatment is performed such that a treatment factor (Pa s) obtained by integrating a partial pressure (Pa) of fluorine gas with a treatment time (s) is in the range of 8 to 108,000 (Pa s), the treatment time (s) is within 180 sec and a contact angle with respect to pure water after the surface modification is 40° or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、単量体単位の一部に芳香族環及び/または脂環式炭化水素基を含む高分子化合物の表面改質方法に関するものである。   The present invention relates to a method for modifying the surface of a polymer compound containing an aromatic ring and / or an alicyclic hydrocarbon group as part of a monomer unit.

単量体単位の一部に芳香族環及び/または脂環式炭化水素基を含む高分子化合物は、光学特性、電気特性、耐熱性等において優れた特性を有しており、多くの特化した分野に使用されている。しかしながら、これらの高分子化合物の表面は、疎水性を有しており、印刷性、接着性、塗装密着性が悪く、これらの特性の改善が求められている。印刷性、接着性、塗装密着性等を改善する方法として、コロナ放電処理、プラズマ処理、発煙硫酸処理、紫外線照射処理などの表面改質処理が一般的に知られているが、これらの表面改質処理によって、実用に要する印刷性、接着性、塗装密着性を得ることは困難であった。   Polymer compounds containing an aromatic ring and / or alicyclic hydrocarbon group as part of the monomer unit have excellent properties in optical properties, electrical properties, heat resistance, etc. Used in the field. However, the surface of these polymer compounds has hydrophobicity, and printability, adhesiveness, and paint adhesion are poor, and improvement of these characteristics is demanded. Surface modification treatments such as corona discharge treatment, plasma treatment, fuming sulfuric acid treatment, and ultraviolet irradiation treatment are generally known as methods for improving printability, adhesiveness, paint adhesion, and the like. It was difficult to obtain printability, adhesiveness and paint adhesion required for practical use by quality treatment.

また、処理直後に十分な効果が得られても、長期安定性が悪いため、時間の経過と共に、効果が低下していくという問題を有している。印刷性、接着性、塗装密着性を改善するためのその他の方法として、サンドブラスト処理が行われる場合があるが、このような処理によれば、ピンホールなどの欠陥が発生するおそれがあった。   In addition, even if a sufficient effect is obtained immediately after the treatment, the long-term stability is poor, so that the effect decreases with time. As another method for improving printability, adhesiveness, and paint adhesion, sandblasting may be performed. However, such processing may cause defects such as pinholes.

特許文献1及び特許文献2においては、高分子化合物の表面をフッ素ガスで処理することが開示されている。特許文献1においては、ポリイミドまたはポリアミドイミドフィルムの表面をフッ素化処理し、このフィルム表面をフッ素樹脂または金属と熱圧着する方法が開示されている。   Patent Documents 1 and 2 disclose that the surface of a polymer compound is treated with fluorine gas. Patent Document 1 discloses a method in which the surface of a polyimide or polyamideimide film is fluorinated and the film surface is thermocompression bonded with a fluororesin or metal.

また、特許文献2においては、水の接触角が40°以下となるように表面処理し、親水化することが開示されている。   Further, Patent Document 2 discloses that the surface treatment is performed so that the contact angle of water is 40 ° or less to make the surface hydrophilic.

しかしながら、これらの方法で表面改質処理をしても、印刷性、接着性、塗装密着性が、十分に向上しないという問題があった。
特開昭58−91728号公報 特開2001−294692号公報
However, there has been a problem that even when the surface modification treatment is performed by these methods, the printability, adhesiveness, and paint adhesion are not sufficiently improved.
JP 58-91728 A JP 2001-294692 A

本発明の目的は、印刷性、接着性、塗装密着性を短時間で効果的に改善することができる高分子化合物の表面改質方法を提供することにある。   An object of the present invention is to provide a surface modification method for a polymer compound that can effectively improve printability, adhesiveness, and coating adhesion in a short time.

本発明は、単量体単位の一部に芳香族環及び/または脂環式炭化水素基を含む高分子化合物の表面に、フッ素ガスまたはフッ素ガスを含む混合ガスを接触させて高分子化合物の表面を改質処理する方法であって、フッ素ガスの分圧(Pa)と処理時間(s)を積算した処理ファクター(Pa・s)が、8〜108000(Pa・s)の範囲内であり、かつ処理時間(s)が180秒以内であり、表面改質処理後の純水についての接触角が40°より大きくなるように処理することを特徴としている。   In the present invention, fluorine gas or a mixed gas containing fluorine gas is brought into contact with the surface of a polymer compound containing an aromatic ring and / or an alicyclic hydrocarbon group as a part of the monomer unit. A method for modifying the surface, wherein a treatment factor (Pa · s) obtained by integrating the partial pressure (Pa) of fluorine gas and the treatment time (s) is in the range of 8 to 108000 (Pa · s). The treatment time (s) is 180 seconds or less, and the treatment is performed such that the contact angle with respect to pure water after the surface modification treatment is larger than 40 °.

本発明によれば、印刷性、接着性、塗装密着性を短時間でかつ効果的に改善することができる。   According to the present invention, printability, adhesiveness, and paint adhesion can be improved in a short time and effectively.

本発明において、フッ素ガスの分圧(Pa)と処理時間(s)を積算した処理ファクターは、8〜108000(Pa・s)の範囲内としている。処理ファクターがこの範囲よりも小さすぎると、高分子化合物の表面を十分に改質することができず、良好な印刷性、接着性、塗装密着性が得られない。また、処理ファクターが大きすぎると、高分子化合物の表面に、処理による多量の分解物が堆積し、この結果、良好な印刷性、接着性、塗装密着性が得られない。処理ファクターのさらに好ましい範囲は、8〜72000(Pa・s)であり、さらに好ましくは、15〜72000(Pa・s)の範囲であり、特に好ましくは、40〜36000(Pa・s)の範囲である。   In the present invention, the processing factor obtained by integrating the partial pressure (Pa) of fluorine gas and the processing time (s) is in the range of 8 to 108000 (Pa · s). If the treatment factor is too smaller than this range, the surface of the polymer compound cannot be sufficiently modified, and good printability, adhesion, and paint adhesion cannot be obtained. On the other hand, if the treatment factor is too large, a large amount of decomposition products are deposited on the surface of the polymer compound, and as a result, good printability, adhesion and paint adhesion cannot be obtained. A more preferable range of the treatment factor is 8 to 72000 (Pa · s), more preferably 15 to 72000 (Pa · s), and particularly preferably 40 to 36000 (Pa · s). It is.

また、本発明において、処理時間(s)は、180秒以内である。処理時間(s)を180秒以内とし、かつ処理ファクターを上記のように設定することにより、短時間で、かつ効率良く高分子化合物の表面を改質することができ、良好な印刷性、接着性、塗装密着性を得ることができる。処理時間(s)のより好ましい範囲は、120秒以下であり、さらに好ましくは、60秒以下の範囲である。   In the present invention, the processing time (s) is within 180 seconds. By setting the treatment time (s) within 180 seconds and setting the treatment factor as described above, the surface of the polymer compound can be efficiently modified in a short time, and good printability and adhesion And paint adhesion can be obtained. A more preferable range of the processing time (s) is 120 seconds or less, and a more preferable range is 60 seconds or less.

また、本発明においては、表面処理後の純水についての接触角が40°より大きくなるように処理する。すなわち、表面改質処理後の高分子化合物の表面に接触した純水の接触角が40°より大きくなるように処理する。純水の接触角が40°より大きくなるように処理することにより、長期間安定した、良好な印刷性、接着性、塗装密着性を得ることができる。接触角が40°以下になるまで処理を行うと、高分子化合物の表面に多量の分解物が堆積し、印刷性、接着性、塗装密着性の改善が不十分となる。すなわち、接触角が40°以下になるまで処理を行うと、表面に多量の分解物が堆積し、この多量の分解物により、接触角が40°以下となるので、良好な印刷性、接着性、塗装密着性を得ることができない。   Moreover, in this invention, it processes so that the contact angle about the pure water after surface treatment may become larger than 40 degrees. That is, the treatment is performed so that the contact angle of pure water that has contacted the surface of the polymer compound after the surface modification treatment is larger than 40 °. By treating so that the contact angle of pure water is larger than 40 °, good printability, adhesiveness, and coating adhesion that are stable for a long time can be obtained. When the treatment is performed until the contact angle is 40 ° or less, a large amount of decomposition products are deposited on the surface of the polymer compound, and improvement in printability, adhesion, and paint adhesion becomes insufficient. That is, when the treatment is performed until the contact angle becomes 40 ° or less, a large amount of decomposition products are deposited on the surface, and the contact angle becomes 40 ° or less due to this large amount of decomposition products. The paint adhesion cannot be obtained.

本発明においては、高分子化合物の表面に、フッ素ガス、またはフッ素ガスを含む混合ガスを接触させて高分子化合物の表面を改質する。混合ガスとしては、フッ素ガスと、不活性ガス及び/または酸素ガスとの混合ガスが挙げられる。不活性ガスとしては、窒素ガス、アルゴンガスなどの不活性ガスが挙げられる。混合ガス中におけるフッ素ガスの量は、上記処理ファクターの範囲内となる量であればよいが、例えば、混合ガス中の体積%として、1.0×10−6〜100体積%の範囲が挙げられるが、フッ素ガスの有毒性や反応性の高さを考慮した場合の実用上好ましい範囲としては1.0×10−5〜30体積%の範囲が挙げられる。 In the present invention, the surface of the polymer compound is modified by bringing fluorine gas or a mixed gas containing fluorine gas into contact with the surface of the polymer compound. Examples of the mixed gas include a mixed gas of fluorine gas and inert gas and / or oxygen gas. Examples of the inert gas include inert gases such as nitrogen gas and argon gas. The amount of the fluorine gas in the mixed gas may be an amount that falls within the range of the above processing factor. For example, the volume% in the mixed gas may be in the range of 1.0 × 10 −6 to 100 volume%. However, a practically preferable range in consideration of the toxicity and high reactivity of fluorine gas includes a range of 1.0 × 10 −5 to 30% by volume.

本発明の高分子化合物は、上記本発明の表面改質方法により、表面改質されたことを特徴としている。   The polymer compound of the present invention is characterized by being surface-modified by the surface modification method of the present invention.

本発明の高分子化合物は、上記本発明の表面改質方法により処理されたものであるので、純水についての接触角、すなわち高分子化合物表面における純水の接触角が40°より大きく、かつ長期間安定した、良好な印刷性、接着性、塗装密着性を示すことができる。   Since the polymer compound of the present invention has been treated by the surface modification method of the present invention, the contact angle for pure water, that is, the contact angle of pure water on the polymer compound surface is greater than 40 °, and Good printability, adhesiveness, and coating adhesion that are stable for a long time can be exhibited.

本発明によれば、印刷性、接着性、塗装密着性を短時間でかつ効果的に改善することができる。   According to the present invention, printability, adhesiveness, and paint adhesion can be improved in a short time and effectively.

本発明における高分子化合物は、単量体単位の一部に、芳香族環及び/または脂環式炭化水素基を含む高分子化合物である。このような高分子化合物に本発明を適用することにより、高分子化合物の表面に、OH基やCOOH基などの親水基を適度に導入することができ、これによって、印刷性、接着性、塗装密着性などを高めることができる。上述のように、純水についての接触角が40°以下となるまで処理すると、高分子化合物の主鎖を切断する分解反応が生じ、表面に高分子化合物の分解物が堆積する。本発明においては、このような分解物の発生を極力低減し、高分子化合物の表面にOH基やCOOH基などの親水基を導入することにより、高分子化合物表面を改質している。   The polymer compound in the present invention is a polymer compound containing an aromatic ring and / or an alicyclic hydrocarbon group as part of a monomer unit. By applying the present invention to such a polymer compound, hydrophilic groups such as OH groups and COOH groups can be appropriately introduced on the surface of the polymer compound. Adhesion can be improved. As described above, when the treatment is performed until the contact angle with respect to pure water is 40 ° or less, a decomposition reaction that cuts the main chain of the polymer compound occurs, and a decomposition product of the polymer compound is deposited on the surface. In the present invention, the generation of such decomposition products is reduced as much as possible, and the surface of the polymer compound is modified by introducing hydrophilic groups such as OH groups and COOH groups on the surface of the polymer compound.

上記のようなOH基やCOOH基などの親水基の導入は、単量体単位の一部に芳香族環及び/または脂環式炭化水素基を含む高分子化合物において、特に効果的に導入することができる。   The introduction of hydrophilic groups such as OH groups and COOH groups as described above is particularly effective for polymer compounds containing aromatic rings and / or alicyclic hydrocarbon groups as part of the monomer units. be able to.

単量体単位の一部に含まれる芳香族環としては、ベンゼン環や、ナフタレン環及びアントラセン環などの縮合環などが挙げられる。また、硫黄、窒素及び酸素などのヘテロ原子を含むヘテロ環であってもよい。このようなヘテロ環としては、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環などが挙げられる。   Examples of the aromatic ring contained in a part of the monomer unit include a benzene ring and a condensed ring such as a naphthalene ring and an anthracene ring. Moreover, the heterocyclic ring containing hetero atoms, such as sulfur, nitrogen, and oxygen, may be sufficient. Examples of such a hetero ring include a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, a thiazole ring, and an imidazole ring.

単量体単位の一部に芳香族環を含む高分子化合物としては、アラミド樹脂、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエステル、液晶ポリマー(LCP)、ポリアリールスルホン(PAS)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)、ポリエーテルエーテルスルホン(PEES)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリエチレンテレフタレート(PET)、芳香族ポリイミド、ポリフェニレンエーテル(PPE)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、ポリフェニレンスルホオキシド(PPSO)、ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリベンゾイミダゾール(PBI)、ポリスチレン(PS)、ポリスルホン(PSU)、ポリパラキシレン等が挙げられる。   Polymer compounds containing an aromatic ring as part of the monomer unit include aramid resin, aromatic polyamide, aromatic polyimide, aromatic polyamideimide, aromatic polyester, liquid crystal polymer (LCP), polyarylsulfone (PAS). ), Polybutylene terephthalate (PBT), polycarbonate (PC), polyetheretherketone (PEEK), polyethersulfone (PES), polyetherethersulfone (PEES), polyetherketone (PEK), polyetherketoneketone (PEKK) ), Polyethylene terephthalate (PET), aromatic polyimide, polyphenylene ether (PPE), polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), polyphenylene sulfone Kishido (PPSO), polybenzoxazole (PBO), polybenzothiazole (PBT), polybenzimidazole (PBI), polystyrene (PS), polysulfone (PSU), poly-para-xylene.

また、脂環式炭化水素基としては、シクロオレフィン基や、ノルボルネン骨格などが挙げられる。脂環式炭化水素基を含む高分子化合物の具体例としては、シクロオレフィンコポリマーやポリシクロオレフィンなどがあり、シクロヘキサジエン系ポリマーやノルボルネン骨格ポリマー等が挙げられる。   Examples of the alicyclic hydrocarbon group include a cycloolefin group and a norbornene skeleton. Specific examples of the polymer compound containing an alicyclic hydrocarbon group include a cycloolefin copolymer and a polycycloolefin, and examples thereof include a cyclohexadiene-based polymer and a norbornene skeleton polymer.

高分子化合物の形状は、特に限定されるものではなく、例えば、シート、フィルム、糸、織布、不織布、多孔体、微多孔フィルム、最外層が該高分子化合物となるように多層に貼り合わされたラミネートシート、該高分子化合物を金属や高分子基体の上に、塗布や焼成、CVDなどによって形成したものが挙げられる。   The shape of the polymer compound is not particularly limited. For example, a sheet, a film, a thread, a woven fabric, a nonwoven fabric, a porous body, a microporous film, and an outermost layer are laminated in multiple layers so as to be the polymer compound. And a laminate sheet, and the polymer compound formed on a metal or polymer substrate by coating, firing, CVD, or the like.

また、高分子化合物は、共重合体や複合材料であってもよく、例えば、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、アクリロニトリル−スチレン共重合体(AS)などの共重合体が挙げられる。   The polymer compound may be a copolymer or a composite material, and examples thereof include copolymers such as acrylonitrile-butadiene-styrene copolymer (ABS) and acrylonitrile-styrene copolymer (AS). .

表面改質の際の温度は、特に限定されるものではないが、一般には、−20℃〜40℃の範囲内である。   The temperature during the surface modification is not particularly limited, but is generally in the range of −20 ° C. to 40 ° C.

一般には、フッ素ガス分圧を高くするほど、処理温度を低くし、処理時間を短くすることが可能となるため、工業的な大量生産には好ましい。   In general, the higher the fluorine gas partial pressure, the lower the processing temperature and the shorter the processing time, which is preferable for industrial mass production.

また、フッ素ガスと酸素ガスを混合して用いる場合、酸素ガス分圧を高めると、高分子化合物の表面に極性基を迅速に導入することができ、フッ素ガス分圧及び処理時間を低減させることができる。しかしながら、分解物も多量に発生しやすくなるので、精度良い管理が必要となる。分解物が発生しやすい高分子化合物に対しては、酸素ガス分圧を低減あるいは無くすることによって、分解反応を制限し、分解物を発生しにくくすることができる。   In addition, when a mixture of fluorine gas and oxygen gas is used, if the oxygen gas partial pressure is increased, polar groups can be rapidly introduced onto the surface of the polymer compound, and the fluorine gas partial pressure and processing time can be reduced. Can do. However, since a large amount of decomposition products are likely to be generated, accurate management is required. For a polymer compound that tends to generate decomposition products, by reducing or eliminating the oxygen gas partial pressure, it is possible to limit the decomposition reaction and make it difficult to generate decomposition products.

本発明における高分子化合物は、単量体単位の一部に、芳香族環及び/または脂環式炭化水素基を含んでいる。本発明によって、高分子化合物の表面に導入された極性基は、芳香族環や脂環式炭化水素基の立体障害によって、高分子化合物の内部に潜り込みにくく、表面に局在化するものと思われる。このため、1ヶ月以上の長期において安定的な表面改質効果が得られるものと思われる。   The polymer compound in the present invention contains an aromatic ring and / or an alicyclic hydrocarbon group in a part of the monomer unit. The polar group introduced on the surface of the polymer compound according to the present invention is not likely to enter the polymer compound due to the steric hindrance of the aromatic ring or alicyclic hydrocarbon group, and appears to be localized on the surface. It is. For this reason, it is considered that a stable surface modification effect can be obtained in a long period of one month or longer.

本発明に従い表面改質処理した後は、水や温水、アルカリ水溶液などにより、高分子化合物の表面に対して洗浄または中和反応を行ってもよい。本発明によれば、高分子化合物表面に極性基が導入されているので、このような洗浄においても、良好な表面改質の効果を維持することができる。   After the surface modification treatment according to the present invention, the surface of the polymer compound may be washed or neutralized with water, warm water, alkaline aqueous solution or the like. According to the present invention, since a polar group is introduced on the surface of the polymer compound, a good surface modification effect can be maintained even in such cleaning.

以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to the following examples.

なお、以下の実施例及び比較例における、剥離強度、接触角、及びクロスカット試験は、以下のようにして評価した。   The peel strength, contact angle, and crosscut test in the following examples and comparative examples were evaluated as follows.

(1)剥離試験
試験機として、定ひずみ型万能試験機(島津制作所製、AG−50KND)を用いて、90°ピール試験を2回行い、その平均値から剥離強度を求めた。
(1) Peel test Using a constant strain type universal tester (manufactured by Shimadzu Corporation, AG-50KND) as a test machine, a 90 ° peel test was performed twice, and the peel strength was determined from the average value.

(2)接触角測定
接触角測定機(エルマ販売株式会社製、G−1)を用いて、蒸留水0.9μl、室温、大気中において、測定を10点行い、その平均値から接触角を求めた。
(2) Contact angle measurement Using a contact angle measuring machine (Elma Sales Co., Ltd., G-1), 10 measurements are performed in 0.9 μl of distilled water, room temperature and air, and the contact angle is calculated from the average value. Asked.

(3)クロスカット試験
試料表面上に、塗膜の厚みが50μmとなるように塗料を塗装した後、大気中にて24時間乾燥させた。その後、1mm幅で25マスのクロスカットを塗膜の表面に形成した。
(3) Cross-cut test A paint was applied on the sample surface so that the thickness of the coating film was 50 µm, and then dried in the air for 24 hours. Then, a cross cut of 1 mm width and 25 squares was formed on the surface of the coating film.

次に、粘着テープ(セキスイセロテープ(登録商標)No.252、積水化学工業社製)を塗膜表面に貼り付けた後、この粘着テープを引き剥がし、残っているマスの数を測定した。試験は2回行い、その平均値を用いた。   Next, after affixing an adhesive tape (Sekisui Cello Tape (registered trademark) No. 252 manufactured by Sekisui Chemical Co., Ltd.) to the surface of the coating film, the adhesive tape was peeled off and the number of remaining cells was measured. The test was performed twice and the average value was used.

また、以下の実施例及び比較例においては、以下に示す高分子化合物を試料として用いた。   In the following examples and comparative examples, the following polymer compounds were used as samples.

PI:ポリイミド、東レ・デュポン社製 カプトン100V
LCP:全芳香族ポリエステル、液晶ポリマー
PET:ポリエチレンテレフタレート、東レ社製 ルミラーTIO
AURUM:熱可塑性ポリイミド、三井化学社製 AURUM PL450C
PS:ポリエスチレン、出光ユニテック社製 ザレックC132
PC:ポリカーボネート、旭硝子社製 レキサン8A13
PEEK:ポリエーテルエーテルケトン、住友ベークライト社製 PEEK FS−1100C
PPS:ポリフェニレンスルフィド、東洋プラスチック精工社製 TPS−PPS−2000
PES:ポリエーテルスルホン、住友化学社製、スミカエクセルPES3600P/G
APL:シクロオレフィンコポリマー、三井化学社製 APL8008T
ZEONOR:シクロオレフィンコポリマー、日本ゼオン社製 ZEONOR 1060R
PI: Polyimide, manufactured by Toray DuPont Kapton 100V
LCP: Totally aromatic polyester, liquid crystal polymer PET: Polyethylene terephthalate, Lumirror TIO manufactured by Toray Industries, Inc.
AURUM: Thermoplastic polyimide, AURUM PL450C manufactured by Mitsui Chemicals, Inc.
PS: Polystyrene, Idemitsu Unitech's Zalek C132
PC: Polycarbonate, Asahi Glass Co., Ltd. Lexan 8A13
PEEK: polyetheretherketone, manufactured by Sumitomo Bakelite Co., Ltd. PEEK FS-1100C
PPS: Polyphenylene sulfide, manufactured by Toyo Plastic Seiko Co., Ltd. TPS-PPS-2000
PES: Polyethersulfone, manufactured by Sumitomo Chemical Co., Ltd., SUMIKAEXCEL PES3600P / G
APL: cycloolefin copolymer, APL8008T manufactured by Mitsui Chemicals, Inc.
ZEONOR: cycloolefin copolymer, manufactured by Nippon Zeon Co., Ltd. ZEONOR 1060R

<実験1>
(実施例1)
PI、LCP、及びPETを対象試料とし、フッ素ガス分圧1.33Pa、酸素ガス分圧93100Paのフッ素ガスと酸素ガスの混合ガスを用いて表面改質処理を行った。処理温度25℃、処理時間60秒の条件とした。
<Experiment 1>
Example 1
Using PI, LCP, and PET as target samples, surface modification treatment was performed using a mixed gas of fluorine gas and oxygen gas having a fluorine gas partial pressure of 1.33 Pa and an oxygen gas partial pressure of 93100 Pa. The conditions were a treatment temperature of 25 ° C. and a treatment time of 60 seconds.

(実施例2)
PI、LCP、及びPETを対象試料とし、フッ素ガス分圧13.3Pa、酸素ガス分圧93100Paのフッ素ガスと酸素ガスの混合ガスを用いて表面改質処理を行った。処理温度25℃、処理時間60秒の条件とした。
(Example 2)
PI, LCP, and PET were used as target samples, and surface modification treatment was performed using a mixed gas of fluorine gas and oxygen gas having a fluorine gas partial pressure of 13.3 Pa and an oxygen gas partial pressure of 93100 Pa. The conditions were a treatment temperature of 25 ° C. and a treatment time of 60 seconds.

(実施例3)
PI、LCP、及びPETを対象試料とし、フッ素ガス分圧133.3Pa、酸素ガス分圧93100Paのフッ素ガスと酸素ガスの混合ガスを用いて表面改質処理を行った。処理温度25℃、処理時間60秒の条件とした。
(Example 3)
PI, LCP, and PET were used as target samples, and surface modification treatment was performed using a mixed gas of fluorine gas and oxygen gas having a fluorine gas partial pressure of 133.3 Pa and an oxygen gas partial pressure of 93100 Pa. The conditions were a treatment temperature of 25 ° C. and a treatment time of 60 seconds.

(実施例4)
PI、LCP、及びPETを対象試料とし、フッ素ガス分圧1332Pa、酸素ガス分圧93100Paのフッ素ガスと酸素ガスの混合ガスを用いて表面改質処理を行った。処理温度25℃、処理時間60秒の条件とした。
Example 4
PI, LCP, and PET were used as target samples, and surface modification treatment was performed using a mixed gas of fluorine gas and oxygen gas having a fluorine gas partial pressure of 1332 Pa and an oxygen gas partial pressure of 93100 Pa. The conditions were a treatment temperature of 25 ° C. and a treatment time of 60 seconds.

(比較例1)
各試料について、表面改質処理を行わなかった。
(Comparative Example 1)
Each sample was not subjected to surface modification treatment.

(比較例2)
フッ素ガス分圧を0.06Paとする以外は、実施例1と同様にして、表面改質処理を行った。
(Comparative Example 2)
Surface modification treatment was performed in the same manner as in Example 1 except that the fluorine gas partial pressure was 0.06 Pa.

(比較例3)
フッ素ガス分圧を2666Paとする以外は、実施例1と同様にして、表面改質処理を行った。
(Comparative Example 3)
Surface modification treatment was performed in the same manner as in Example 1 except that the fluorine gas partial pressure was 2666 Pa.

(比較例4)
フッ素ガス分圧を4000Paとし、処理時間を1800秒とする以外は、実施例1と同様にして、表面改質処理を行った。
(Comparative Example 4)
The surface modification treatment was performed in the same manner as in Example 1 except that the fluorine gas partial pressure was 4000 Pa and the treatment time was 1800 seconds.

実施例1〜4及び比較例1〜4の表面処理条件であるフッ素ガス分圧(Pa)、処理時間(s)及び処理ファクター(Pa・s)を表1にまとめて示す。   Table 1 summarizes the fluorine gas partial pressure (Pa), the treatment time (s), and the treatment factor (Pa · s), which are the surface treatment conditions of Examples 1 to 4 and Comparative Examples 1 to 4.

Figure 2010150460
Figure 2010150460

〔純水についての接触角の測定〕
上記の接触角測定方法により、表面処理した試料の表面の純水の接触角を測定した。測定結果を表2に示す。
[Measurement of contact angle for pure water]
The contact angle of pure water on the surface of the surface-treated sample was measured by the above contact angle measurement method. The measurement results are shown in Table 2.

Figure 2010150460
Figure 2010150460

表2に示すように、表面改質処理をしていない比較例1及び処理ファクター(Pa・s)が8未満である比較例2においては、表面改質処理後の純水についての接触角が40°より大きくなっている。また、処理ファクター(Pa・s)が、108000より大きい比較例3及び比較例4においては、表面改質処理後の純水についての接触角が40°以下になっている。   As shown in Table 2, in Comparative Example 1 where the surface modification treatment was not performed and in Comparative Example 2 where the treatment factor (Pa · s) was less than 8, the contact angle with respect to the pure water after the surface modification treatment was It is larger than 40 °. In Comparative Examples 3 and 4 having a treatment factor (Pa · s) larger than 108000, the contact angle with respect to pure water after the surface modification treatment is 40 ° or less.

処理ファクター(Pa・s)が、8〜108000(Pa・s)の範囲内である実施例1〜4は、表面改質処理後の純水についての接触角が40°よりも大きくなっている。   In Examples 1 to 4 in which the treatment factor (Pa · s) is in the range of 8 to 108000 (Pa · s), the contact angle with respect to pure water after the surface modification treatment is larger than 40 °. .

〔剥離強度の測定〕
表面改質処理後の試料2枚を用い、表面改質した面同士を接着剤で貼り合わせ、上記剥離試験の条件で、一方の試料を他方の試料から剥離する際の強度を測定した。剥離速度は、50mm/分とし、接着剤としては合成ゴム接着剤(コニシ社製、ボンドG17)を用いた。
(Measurement of peel strength)
Using two samples after the surface modification treatment, the surface-modified surfaces were bonded together with an adhesive, and the strength at the time of peeling one sample from the other sample was measured under the conditions of the peel test. The peeling rate was 50 mm / min, and a synthetic rubber adhesive (manufactured by Konishi Co., Ltd., Bond G17) was used as the adhesive.

測定結果を表3に示す。   Table 3 shows the measurement results.

Figure 2010150460
Figure 2010150460

表3に示すように、本発明に従う実施例1〜4の条件で表面改質処理したPI、LCP、及びPETの各試料は、比較例1〜4の各試料に比べ高い剥離強度を示している。   As shown in Table 3, each sample of PI, LCP, and PET subjected to surface modification treatment under the conditions of Examples 1 to 4 according to the present invention showed higher peel strength than each sample of Comparative Examples 1 to 4. Yes.

<実験2>
AURUM、PS、PET、PC、PEEK、及びPPSを対象試料とし、上記実施例1〜4及び比較例1〜4の条件で表面改質処理を行った。
<Experiment 2>
AURUM, PS, PET, PC, PEEK, and PPS were used as target samples, and surface modification treatment was performed under the conditions of Examples 1 to 4 and Comparative Examples 1 to 4.

表面改質処理は、各試料当たり4個行い、その半数については、処理直後に剥離強度試験と接触角測定を行った。また、残りの半数については、処理後の試料を、大気中に約30日間保管した後、剥離試験を行った。   Four surface modification treatments were performed for each sample, and about half of them were subjected to a peel strength test and a contact angle measurement immediately after the treatment. For the remaining half, the treated samples were stored in the atmosphere for about 30 days before being subjected to a peel test.

〔純水についての接触角の測定〕
上記の各試料について、上記と同様にして、純水についての接触角を測定した。測定結果を表4に示す。
[Measurement of contact angle for pure water]
About each said sample, it carried out similarly to the above, and measured the contact angle about a pure water. Table 4 shows the measurement results.

Figure 2010150460
Figure 2010150460

表4に示すように、本発明に従う処理条件で表面改質処理した実施例1〜4の各試料は、いずれも純水についての接触角が40°より大きくなっている。また、表面改質処理を行っていない比較例1及び処理ファクターが8Pa・s未満である比較例2においても、純水についての接触角が40°より大きくなっている。   As shown in Table 4, each of the samples of Examples 1 to 4 subjected to the surface modification treatment under the treatment conditions according to the present invention has a contact angle with respect to pure water larger than 40 °. Further, in Comparative Example 1 in which surface modification treatment is not performed and in Comparative Example 2 in which the treatment factor is less than 8 Pa · s, the contact angle with respect to pure water is larger than 40 °.

これに対し、処理ファクターが108000Pa・sより大きい条件で表面改質処理した比較例3及び比較例4においては、純水についての接触角が40°以下になっている。   On the other hand, in Comparative Example 3 and Comparative Example 4 in which the surface modification treatment was performed under a condition where the treatment factor was greater than 108000 Pa · s, the contact angle with respect to pure water was 40 ° or less.

〔剥離強度の測定〕
接着剤として、1液性湿気硬化型弾性接着剤(スリーボンド社製、1530)を用い、剥離速度を10m/分とする以外は、実験1と同様にして剥離試験を行い、剥離強度を測定した。剥離強度は、表面改質処理直後の試料と、30日間保管した後の試料についてそれぞれ行った。表面改質処理直後の初期の剥離強度を表5に示す。また、30日後の剥離強度を表6に示す。なお、比較例1の各試料については、30日後の剥離強度を測定していない。
(Measurement of peel strength)
As the adhesive, a one-component moisture-curing elastic adhesive (manufactured by ThreeBond Co., Ltd., 1530) was used, and the peel strength was measured in the same manner as in Experiment 1 except that the peel rate was 10 m / min. . The peel strength was measured for the sample immediately after the surface modification treatment and the sample after storage for 30 days. Table 5 shows the initial peel strength immediately after the surface modification treatment. Table 6 shows the peel strength after 30 days. In addition, about each sample of the comparative example 1, the peeling strength after 30 days is not measured.

Figure 2010150460
Figure 2010150460

Figure 2010150460
Figure 2010150460

表5に示すように、本発明に従い表面改質処理を行った実施例1〜4においては、比較例1〜4に比べ、処理直後において高い剥離強度が得られている。また、30日後においても、この高い剥離強度が維持されている。   As shown in Table 5, in Examples 1 to 4 in which the surface modification treatment was performed according to the present invention, a higher peel strength was obtained immediately after the treatment than in Comparative Examples 1 to 4. Further, even after 30 days, this high peel strength is maintained.

従って、本発明に従えば、表面改質処理により、高分子化合物の表面に高い接着性を付与できることがわかる。   Therefore, according to this invention, it turns out that high adhesiveness can be provided to the surface of a high molecular compound by surface modification treatment.

<実験3>
PET、PEEK、PES、APL、及びZEONORを対象試料とし、表7に示す条件で、表面改質処理を行った。
<Experiment 3>
Surface modification treatment was performed under the conditions shown in Table 7 using PET, PEEK, PES, APL, and ZEONOR as target samples.

Figure 2010150460
Figure 2010150460

表面改質処理は、各試料当たり4個行い、その半数については、処理直後に接触角の測定とクロスカット試験とを行った。クロスカット試験は、上記の方法に従って行い、塗料としては、アクリルラッカー(ニッペホームプロダクツ社製、スプレー06つやなしブラック)を用いた。   Four surface modification treatments were performed for each sample, and about half of them were subjected to contact angle measurement and cross-cut test immediately after the treatment. The cross-cut test was performed according to the above method, and acrylic lacquer (manufactured by NIPPE HOME PRODUCTS, spray 06 glossy black) was used as the paint.

残りの半数については、処理後大気中に30日間保管した後、クロスカット試験を上記と同様にして行った。   The other half was stored in the atmosphere after treatment for 30 days and then subjected to a cross-cut test in the same manner as described above.

純水についての接触角の測定結果を表8に示す。また、初期のクロスカット試験の結果を表9に示す。30日後のクロスカット試験の結果を表10に示す。なお、比較例5については、30日後のクロスカット試験を行っていない。   Table 8 shows the measurement results of the contact angle for pure water. Table 9 shows the results of the initial crosscut test. Table 10 shows the results of the cross-cut test after 30 days. In addition, about the comparative example 5, the crosscut test after 30 days is not performed.

Figure 2010150460
Figure 2010150460

表8に示すように、本発明に従う処理ファクターで表面改質処理した実施例5〜8の各試料は、純水についての接触角が40°より大きくなっている。また、表面改質処理を行っていない比較例5、及び処理ファクターが8Pa・s未満である比較例6及び7の各試料は40°より大きくなっているが、処理ファクターが108000Pa・sより大きい比較例8の各試料は、純水についての接触角が40°以下となっている。   As shown in Table 8, each sample of Examples 5 to 8 subjected to the surface modification treatment with the treatment factor according to the present invention has a contact angle with respect to pure water larger than 40 °. In addition, each sample of Comparative Example 5 in which the surface modification treatment was not performed and Comparative Examples 6 and 7 in which the treatment factor was less than 8 Pa · s was larger than 40 °, but the treatment factor was larger than 108000 Pa · s. Each sample of Comparative Example 8 has a contact angle with respect to pure water of 40 ° or less.

Figure 2010150460
Figure 2010150460

Figure 2010150460
Figure 2010150460

表9に示すように、本発明に従い表面改質処理を行った実施例5〜8の各試料においては、良好な塗装密着性が得られている。また、表10に示すように、この良好な塗装密着性は30日後においても維持されている。   As shown in Table 9, in each sample of Examples 5 to 8 where the surface modification treatment was performed according to the present invention, good coating adhesion was obtained. Moreover, as shown in Table 10, this good paint adhesion is maintained even after 30 days.

これに対し、比較例6〜8の条件で表面改質処理を行った各試料は、試料直後及び30日後において、塗装密着性が低いことがわかる。   On the other hand, it can be seen that the samples subjected to the surface modification treatment under the conditions of Comparative Examples 6 to 8 have low coating adhesion immediately after the sample and after 30 days.

以上のことから、本発明に従い表面改質処理することにより、接着性及び塗装密着性を、短時間でかつ効果的に改善できることがわかる。また、接着性及び塗装密着性と同様に、印刷性についても本発明の表面改質処理により改善できることを確認している。   From the above, it can be seen that the surface modification treatment according to the present invention can effectively improve the adhesion and paint adhesion in a short time. Moreover, it has been confirmed that the printability can be improved by the surface modification treatment of the present invention as well as the adhesiveness and the paint adhesion.

Claims (3)

単量体単位の一部に芳香族環及び/または脂環式炭化水素基を含む高分子化合物の表面に、フッ素ガスまたはフッ素ガスを含む混合ガスを接触させて前記高分子化合物の表面を改質処理する方法であって、
前記フッ素ガスの分圧(Pa)と処理時間(s)を積算した処理ファクター(Pa・s)が、8〜108000(Pa・s)の範囲内であり、かつ処理時間(s)が180秒以内であり、表面改質処理後の純水についての接触角が40°より大きくなるように処理することを特徴とする高分子化合物の表面改質方法。
The surface of the polymer compound is modified by bringing fluorine gas or a mixed gas containing fluorine gas into contact with the surface of the polymer compound containing an aromatic ring and / or alicyclic hydrocarbon group as part of the monomer unit. A quality processing method,
The treatment factor (Pa · s) obtained by integrating the partial pressure (Pa) and the treatment time (s) of the fluorine gas is in the range of 8 to 108000 (Pa · s), and the treatment time (s) is 180 seconds. The method for surface modification of a polymer compound is characterized in that the treatment is performed so that the contact angle with respect to pure water after the surface modification treatment is greater than 40 °.
前記混合ガスが、フッ素ガスと、不活性ガス及び/または酸素ガスとの混合ガスであることを特徴とする請求項1に記載の高分子化合物の表面改質方法。   2. The surface modification method for a polymer compound according to claim 1, wherein the mixed gas is a mixed gas of a fluorine gas and an inert gas and / or an oxygen gas. 請求項1または2に記載の方法により、表面改質されたことを特徴とする高分子化合物。   A polymer compound which has been surface-modified by the method according to claim 1.
JP2008332299A 2008-12-26 2008-12-26 Method of modifying surface of polymer compound Pending JP2010150460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332299A JP2010150460A (en) 2008-12-26 2008-12-26 Method of modifying surface of polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332299A JP2010150460A (en) 2008-12-26 2008-12-26 Method of modifying surface of polymer compound

Publications (1)

Publication Number Publication Date
JP2010150460A true JP2010150460A (en) 2010-07-08

Family

ID=42569894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332299A Pending JP2010150460A (en) 2008-12-26 2008-12-26 Method of modifying surface of polymer compound

Country Status (1)

Country Link
JP (1) JP2010150460A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061463A (en) * 2010-09-15 2012-03-29 Kuraray Europe Gmbh Plastic container having barrier coating
CN103848999A (en) * 2012-11-30 2014-06-11 中国科学院宁波材料技术与工程研究所 Novel polymer surface modification method
JP2016209197A (en) * 2015-05-01 2016-12-15 国立大学法人信州大学 Resin implant material and method for producing the same
WO2022138799A1 (en) * 2020-12-25 2022-06-30 国立大学法人信州大学 Cell culturing member, and method for modifying surface thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505277A (en) * 1989-05-18 1992-09-17 アライド―シグナル・インコーポレーテッド Membrane surface fluorination
JPH06192451A (en) * 1992-12-22 1994-07-12 Diafoil Co Ltd Fluoropolyester molding and its production
JPH11124681A (en) * 1997-10-21 1999-05-11 Stella Kemifua Kk Plating method for polycarbonate or (and) abs resin molded goods
JP2000336192A (en) * 1999-06-01 2000-12-05 Mitsubishi Chemicals Corp Resin molded product having hydrophilic surface
JP2003110053A (en) * 2001-09-28 2003-04-11 Kuraray Co Ltd Film covering semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505277A (en) * 1989-05-18 1992-09-17 アライド―シグナル・インコーポレーテッド Membrane surface fluorination
JPH06192451A (en) * 1992-12-22 1994-07-12 Diafoil Co Ltd Fluoropolyester molding and its production
JPH11124681A (en) * 1997-10-21 1999-05-11 Stella Kemifua Kk Plating method for polycarbonate or (and) abs resin molded goods
JP2000336192A (en) * 1999-06-01 2000-12-05 Mitsubishi Chemicals Corp Resin molded product having hydrophilic surface
JP2003110053A (en) * 2001-09-28 2003-04-11 Kuraray Co Ltd Film covering semiconductor device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061463A (en) * 2010-09-15 2012-03-29 Kuraray Europe Gmbh Plastic container having barrier coating
CN103848999A (en) * 2012-11-30 2014-06-11 中国科学院宁波材料技术与工程研究所 Novel polymer surface modification method
CN103848999B (en) * 2012-11-30 2018-03-06 中国科学院宁波材料技术与工程研究所 A kind of polymer surface modifying method
JP2016209197A (en) * 2015-05-01 2016-12-15 国立大学法人信州大学 Resin implant material and method for producing the same
WO2022138799A1 (en) * 2020-12-25 2022-06-30 国立大学法人信州大学 Cell culturing member, and method for modifying surface thereof
CN116635460A (en) * 2020-12-25 2023-08-22 国立大学法人信州大学 Cell culture member and surface modification method thereof

Similar Documents

Publication Publication Date Title
KR101972603B1 (en) Packaging material for molding and molding case
JP2010150460A (en) Method of modifying surface of polymer compound
US10329658B2 (en) Gas barrier laminate and method for producing the gas barrier laminate
JP6809657B1 (en) Exterior materials for power storage devices, their manufacturing methods, power storage devices, and polyamide films
JP7080180B2 (en) Gas barrier laminated sheet, manufacturing method of gas barrier laminated sheet, and electronic member or optical member
TWI454381B (en) Release sheet
US20190048230A1 (en) Method for producing an adhesive tape by means of plasma lamination
WO2020054789A1 (en) Exterior material for power storage device, method for manufacturing exterior material for power storage device, and power storage device
JP6081959B2 (en) Resin film, laminate, method for producing the same, and method for producing fuel cell
JP2007136800A (en) Gas-barrier laminated film and image display element using the same
TW201615428A (en) Method for increasing the adhesion between the first surface of a first web-type material and a first surface of a second web-type material
JP2012020409A (en) Laminate with barrier property, gas barrier film, device using the laminate with barrier property and the gas barrier film and method of manufacturing the laminate with barrier property
JP6832868B2 (en) Method of manufacturing laminate and metal leaf with resin layer
US20200291271A1 (en) Release sheet
JP2008080701A (en) Gas barrier laminated film and its manufacturing method
JP4604674B2 (en) Gas barrier transparent laminate
KR20220005516A (en) metallized film
JP2017170728A (en) Polymer composite film
JP2020187976A (en) Exterior material for power storage device, manufacturing method thereof, power storage device, and polyamide film
JP4227190B1 (en) Primer composition, primer layer comprising the primer composition, and film body using the primer layer
JP6276134B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND METHOD FOR MANUFACTURING MEMBRANE ELECTRODE ASSEMBLY
JP6710894B2 (en) Battery packaging material
JP7247495B2 (en) Exterior material for power storage device, method for manufacturing exterior material for power storage device, and power storage device
JP2004231864A (en) Method for surface-treatment of polymer film, surface-treating apparatus, polymer film treated by the treating method and polymer composite film
Kundu et al. A synergy of atmospheric plasma and UV-additive incorporated PU and styrene–isoprene-styrene adhesive for improving inter-layer adhesion in PVF/Fabric/BOPET laminate for aerostat envelope

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130918

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20131001

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20131202

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20140226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20140624

Free format text: JAPANESE INTERMEDIATE CODE: A02