JP2010150026A - Bearing structure suitable for spiral conveyor - Google Patents

Bearing structure suitable for spiral conveyor Download PDF

Info

Publication number
JP2010150026A
JP2010150026A JP2008332183A JP2008332183A JP2010150026A JP 2010150026 A JP2010150026 A JP 2010150026A JP 2008332183 A JP2008332183 A JP 2008332183A JP 2008332183 A JP2008332183 A JP 2008332183A JP 2010150026 A JP2010150026 A JP 2010150026A
Authority
JP
Japan
Prior art keywords
bearing
diameter portion
solid
rotating shaft
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332183A
Other languages
Japanese (ja)
Other versions
JP5574601B2 (en
Inventor
Yoshihisa Tsurumaki
義久 鶴巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Hatsujo Co Ltd
Original Assignee
Tokyo Seimitsu Hatsujo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Hatsujo Co Ltd filed Critical Tokyo Seimitsu Hatsujo Co Ltd
Priority to JP2008332183A priority Critical patent/JP5574601B2/en
Publication of JP2010150026A publication Critical patent/JP2010150026A/en
Application granted granted Critical
Publication of JP5574601B2 publication Critical patent/JP5574601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Screw Conveyors (AREA)
  • Sealing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To completely prevent the intrusion of a solid in a solid-liquid mixed phase into a gap between a rotating shaft and a bearing effectively or substantially even in low speed rotation. <P>SOLUTION: In the bearing structure arranged below the liquid surface of the solid-liquid mixed phase, the rotating shaft 10 and the bearing part 30 have large diameter parts 11 and 31 and small diameter parts 13 and 33, and therefore, a bent gap is formed between them, and a telescopic ring is arranged in a gap G between steps of the rotating shaft and the bearing, preventing the intrusion of the solid. A recessed groove is annularly provided in opposing sections facing the steps of the rotating shaft and the bearing, and central axis direction both ends of the telescopic ring are fitted in the recessed groove. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一般に固液混合相を収容した貯槽等の液面下に配置するに適した軸受け構造に関し、特にスパイラルコンベヤに適した軸受け構造に関する。   The present invention generally relates to a bearing structure suitable for being placed below a liquid surface of a storage tank or the like containing a solid-liquid mixed phase, and more particularly to a bearing structure suitable for a spiral conveyor.

スパイラルコンベヤに適した軸受け構造として、出願人が提案した下記特許文献1に記載したものがある。この軸受け構造は、オイル中に切り粉などの粉塵物が多数混在しているような固液混合相を所定方向に輸送するスパイラルコンベヤに好適に適用し得るものであって、スパイラルコンベヤのトレイ基端部に固定される軸受け部と、該軸受け部の内部にベアリングを介して回転自在に収容される回転軸がいずれも大径部分と縮径部分とを有するものとして形成されているため、軸受けと回転軸との間の空隙が直線状ではなく折れ曲がり状に形成される。さらに、この折れ曲がった空隙に積層リングが設けられている。このような構造を採用することにより、固液混合相中のオイルなどの液体が該空隙を通って漏出することが防止されると共に、該混合相中の固形物粉塵物も該空隙への侵入が防止されるので防塵効果を高め、長時間の連続使用を可能にすることができるものであった。
特公平6−99014号公報
As a bearing structure suitable for a spiral conveyor, there is one described in Patent Document 1 proposed by the applicant. This bearing structure can be suitably applied to a spiral conveyor that transports a solid-liquid mixed phase in which a large number of dusts such as chips are mixed in oil in a predetermined direction. Since both the bearing portion fixed to the end portion and the rotating shaft rotatably accommodated inside the bearing portion via a bearing are formed as having a large diameter portion and a reduced diameter portion, the bearing The space between the rotating shaft and the rotating shaft is not linear but bent. Further, a laminated ring is provided in the bent gap. By adopting such a structure, liquid such as oil in the solid-liquid mixed phase is prevented from leaking through the gap, and solid dust in the mixed phase also enters the gap. Therefore, the dust-proofing effect can be enhanced and continuous use for a long time can be realized.
Japanese Patent Publication No. 6-99014

特許文献1記載の軸受け構造は上述のような効果を発揮するものであったが、ごく稀に固液混合層中の固形物粉塵物が空隙内に侵入して目詰まりを起こして運転中断を余儀なくされたり、防塵効果が十分に得られないことがあった。   The bearing structure described in Patent Document 1 exerted the above-mentioned effects, but very rarely the solid dust in the solid-liquid mixed layer entered the gap, causing clogging and interrupting the operation. In some cases, it was forced to have a dustproof effect.

従って、本発明の目的は、固液混合相の液面下に配置される軸受け構造において、低速回転においても回転軸と軸受けとの間の空隙に固液混合相中の固形物が侵入することをより効果的もしくは実質的に完全に防止することを可能にするための新規な構造を提供することにある。   Therefore, an object of the present invention is to allow the solid matter in the solid-liquid mixed phase to enter the gap between the rotating shaft and the bearing even in the low-speed rotation in the bearing structure arranged below the liquid surface of the solid-liquid mixed phase. It is an object of the present invention to provide a novel structure for making it possible to prevent the above effectively or substantially completely.

上記課題を解決するため、請求項1に係る本発明のスパイラルコンベアに適した軸受け構造は、固液混合相を収容した容器の基端部の容器壁に固定される軸受け部と、該軸受け部の内部にベアリングを介して回転自在に収容されて該容器に収容される固液混合相の液面下において該容器壁を通過して延長する回転軸とを備え、前記軸受け部は大径部分と小径部分とを有してなると共に、前記回転軸は前記軸受け部の大径部分に包囲収容される大径部分と前記軸受け部の小径部分に包囲収容される小径部分とを有してなり、これらの大径部分および小径部分同士の間およびこれらの大径部分と小径部分との境をなす段部同士の間には折り曲げ状に連続する空隙が形成されており、且つ、これらの段部同士の間に形成される空隙に少なくとも一つのシール手段が該段部同士の間の空隙を横断するように設けられていることを特徴とする。   In order to solve the above problems, a bearing structure suitable for the spiral conveyor of the present invention according to claim 1 includes a bearing portion fixed to a container wall at a base end portion of a container containing a solid-liquid mixed phase, and the bearing portion. A rotary shaft that is rotatably accommodated through a bearing and extends through the vessel wall below the liquid level of the solid-liquid mixed phase contained in the vessel, and the bearing portion has a large diameter portion. And the rotation shaft has a large diameter portion surrounded and accommodated in the large diameter portion of the bearing portion and a small diameter portion surrounded and accommodated in the small diameter portion of the bearing portion. In addition, a continuous void is formed between the large-diameter portion and the small-diameter portion and between the step portions defining the boundary between the large-diameter portion and the small-diameter portion, and these steps are formed. At least one gap formed between the parts Sealing means and being provided so as to cross the gap between the adjacent stepped portions.

請求項2に係る本発明は、請求項1に記載の軸受け構造において、前記シール手段として、一枚の細長い平板状素材がスパイラル状に重ね合わせて複数回巻かれて形成された伸縮自在リングが用いられることを特徴とする。   According to a second aspect of the present invention, in the bearing structure according to the first aspect of the present invention, as the sealing means, a stretchable ring formed by winding a single thin flat plate material in a spiral shape and winding it a plurality of times is used. It is used.

請求項3に係る本発明は、請求項2に記載の軸受け構造において、前記軸受け部と前記回転軸の前記段部に面する対向箇所に各々凹溝が環設され、該凹溝に前記伸縮自在リングの中心軸方向の両端部が嵌め込まれていて、該伸縮自在リングが該段部同士の間に形成される空隙内に固液混合層中の固形物が侵入することを防止することを特徴とする。   According to a third aspect of the present invention, in the bearing structure according to the second aspect of the present invention, a concave groove is provided around each of the bearing portions and the steps facing the stepped portion of the rotating shaft, and the expansion and contraction is provided in the concave groove. Both ends of the universal ring in the central axis direction are fitted, and the telescopic ring prevents the solid matter in the solid-liquid mixed layer from entering the gap formed between the stepped portions. Features.

請求項4に係る本発明は、請求項2または3に記載の軸受け構造において、径の異なる複数の前記伸縮リングが多重的に設けられることを特徴とする。   According to a fourth aspect of the present invention, in the bearing structure according to the second or third aspect, a plurality of the expansion rings having different diameters are provided in a multiple manner.

この発明によれば、軸受け部が大径部分と小径部分とを有してなると共に、回転軸が軸受け部の大径部分に包囲収容される大径部分と軸受け部の小径部分に包囲収容される小径部分とを有してなり、これらの大径部分と小径部分との境をなす段部同士の間に形成される空隙に少なくとも一つのシール手段が設けられるため、低速回転においても回転軸と軸受けとの間の空隙に固液混合相中の固形物が侵入することを効果的に防止することができる。   According to this invention, the bearing portion has a large diameter portion and a small diameter portion, and the rotary shaft is enclosed and accommodated in the large diameter portion and the small diameter portion of the bearing portion that are enclosed and accommodated in the large diameter portion of the bearing portion. And at least one sealing means is provided in the gap formed between the step portions that define the boundary between the large diameter portion and the small diameter portion. It is possible to effectively prevent the solid matter in the solid-liquid mixed phase from entering the gap between the bearing and the bearing.

このシール手段としては、一枚の細長い板状素材がスパイラル状に重ね合わせて複数回巻かれて形成された伸縮自在リングが好適に用いられる、より好適には、軸受け部と回転軸の段部に面する対向箇所に各々凹溝が環設され、該凹溝に伸縮自在リングの中心軸方向の両端部を嵌め込んで設けられる。また、本発明の一実施形態によれば、径の異なる複数の前記伸縮リングが多重的に設けられる。これらの付加的構成を採用することにより、段部間の空隙内に固液混合層中の固形物が侵入することをより一層効果的もしくは実質的に完全に防止する。   As this sealing means, a stretchable ring formed by laminating a single thin plate-like material in a spiral shape and winding it a plurality of times is preferably used. More preferably, a bearing portion and a step portion of a rotating shaft are used. A concave groove is provided in each of the facing portions facing the upper and lower ends, and both end portions in the central axis direction of the telescopic ring are fitted into the concave groove. Moreover, according to one Embodiment of this invention, the said some expansion-contraction ring from which a diameter differs is provided in multiple. By adopting these additional configurations, the solid matter in the solid-liquid mixed layer can be more effectively or substantially completely prevented from entering the gaps between the step portions.

図1は、本発明の軸受け構造をスパイラルコンベヤのトレイの基端部における回転駆動軸に適用した実施例の部分断面図である。U字状の断面形状を有するトレイ1は底壁1と端壁2とを有し、旋盤などの各種工作機械に付設され、大量の切粉を含んだ切削液を収容する。端壁2には軸受け構造の軸受け部30がボルトBなどの固定手段によって取り付けられている。軸受け部30には回転軸10が回転自在に収容されている。回転軸10は軸径の異なる二つの部分、すなわち大径部分11と小径部分13とを有する。小径部分13はトレイ1の端壁2を通過する先端側に形成され、最先端にはスプロケットホイールSWがスプリングピンSPによって固定されている。回転軸10の主部をなす大径部分11の外周には断面矩形状のスパイラルSがねじSCによって固定されている。大径部分11の小径部分13との段部に近い箇所の外周面には環状溝12が凹設されている。   FIG. 1 is a partial cross-sectional view of an embodiment in which the bearing structure of the present invention is applied to a rotary drive shaft at the base end of a spiral conveyor tray. A tray 1 having a U-shaped cross-sectional shape has a bottom wall 1 and an end wall 2 and is attached to various machine tools such as a lathe and accommodates a cutting fluid containing a large amount of chips. A bearing portion 30 having a bearing structure is attached to the end wall 2 by a fixing means such as a bolt B. The rotating shaft 10 is rotatably accommodated in the bearing portion 30. The rotating shaft 10 has two portions having different shaft diameters, that is, a large diameter portion 11 and a small diameter portion 13. The small-diameter portion 13 is formed on the front end side that passes through the end wall 2 of the tray 1, and the sprocket wheel SW is fixed to the tip by a spring pin SP. A spiral S having a rectangular cross section is fixed to the outer periphery of the large-diameter portion 11 constituting the main part of the rotating shaft 10 by screws SC. An annular groove 12 is recessed in the outer peripheral surface of the portion of the large diameter portion 11 close to the step portion with the small diameter portion 13.

軸受け部30は、回転軸10の大径部分11および小径部分13とに対応して、大径部分31と小径部分33とを有し、軸受け部30の大径部分31に回転軸10の大径部分11を収容し、軸受け部30の小径部分33に回転軸10の小径部分13を収容するように構成されている。軸受け部30の小径部分の大径部分との段部に近い箇所の内周面には環状溝32が凹設されている。   The bearing portion 30 has a large diameter portion 31 and a small diameter portion 33 corresponding to the large diameter portion 11 and the small diameter portion 13 of the rotating shaft 10, and the large diameter portion 31 of the bearing portion 30 has a large diameter of the rotating shaft 10. The diameter portion 11 is accommodated, and the small diameter portion 13 of the rotating shaft 10 is accommodated in the small diameter portion 33 of the bearing portion 30. An annular groove 32 is recessed in the inner peripheral surface of the portion close to the step portion with the large diameter portion of the small diameter portion of the bearing portion 30.

これらの環状溝12,32には各々積層リング51,52が嵌め込まれている。図示の実施例では、回転軸10の大径部分11の外周に形成された環状溝12に積層リング51の内径側が嵌め込まれていてその外径側が軸受け部30の大径部分31の円筒状内周面に圧接し、また、軸受け部30の小径部分33の内周に形成された環状溝32にもう一つの積層リング52の外径側が嵌め込まれていてその内径側が回転軸10の小径部分13の円筒形外周面に圧接している。   Laminated rings 51 and 52 are fitted in the annular grooves 12 and 32, respectively. In the illustrated embodiment, the inner diameter side of the laminated ring 51 is fitted into the annular groove 12 formed on the outer periphery of the large diameter portion 11 of the rotary shaft 10, and the outer diameter side is the cylindrical inner portion of the large diameter portion 31 of the bearing portion 30. The outer diameter side of another laminated ring 52 is fitted into an annular groove 32 formed in the inner periphery of the small diameter portion 33 of the bearing portion 30 so as to be in pressure contact with the peripheral surface, and the inner diameter side thereof is the small diameter portion 13 of the rotary shaft 10. Is in pressure contact with the cylindrical outer peripheral surface.

積層リング51,52の嵌め込み形態はこれに限定されるものではなく、たとえば積層リング51について言えば、図1の実施形態とは逆に、軸受け部30の大径部分31の内周に環状溝を形成してこの環状溝に積層リング51の外径側を嵌め込んでその内径側が回転軸10の大径部分11の円筒形外周面に圧接されるようにしても良いし、あるいは、図1と同様に回転軸10の大径部分11の外周に環状溝12を形成すると共に軸受け部30の大径部分31の内周における対向箇所にも環状溝を形成して、これらの環状溝に積層リング51の外径側および内径側を嵌め込んでも良い。また、積層リング52について言えば、図1の実施形態とは逆に、回転軸10の小径部分13の外周に環状溝を形成してこの環状溝に積層リング52の内径側を嵌め込んでその外径側が軸受け部30の小径部分33の円筒形内周面に圧接されるようにしても良いし、あるいは、図1と同様に軸受け部10の小径部分13の内周に環状溝12を形成すると共に回転軸10の小径部分13の外周における対向箇所にも環状溝を形成して、これらの環状溝に積層リング52の外径側および内径側を嵌め込んでも良い。   The fitting form of the laminated rings 51 and 52 is not limited to this. For example, in the case of the laminated ring 51, contrary to the embodiment of FIG. 1, an annular groove is formed on the inner periphery of the large-diameter portion 31 of the bearing portion 30. The outer diameter side of the laminated ring 51 may be fitted into this annular groove, and the inner diameter side may be pressed against the cylindrical outer peripheral surface of the large-diameter portion 11 of the rotating shaft 10, or FIG. In the same manner as described above, the annular groove 12 is formed on the outer periphery of the large-diameter portion 11 of the rotary shaft 10 and the annular groove is also formed at the opposite position on the inner periphery of the large-diameter portion 31 of the bearing portion 30 and laminated on these annular grooves The outer diameter side and inner diameter side of the ring 51 may be fitted. Further, regarding the laminated ring 52, contrary to the embodiment of FIG. 1, an annular groove is formed on the outer periphery of the small diameter portion 13 of the rotating shaft 10, and the inner diameter side of the laminated ring 52 is fitted into the annular groove. The outer diameter side may be pressed against the cylindrical inner peripheral surface of the small diameter portion 33 of the bearing portion 30, or the annular groove 12 is formed on the inner periphery of the small diameter portion 13 of the bearing portion 10 as in FIG. At the same time, annular grooves may be formed at opposite positions on the outer periphery of the small-diameter portion 13 of the rotary shaft 10, and the outer diameter side and inner diameter side of the laminated ring 52 may be fitted into these annular grooves.

回転軸10と軸受け部30の大径部分11,31と小径部分13,33との境をなす段部同士の間には、軸方向と直交する方向に延長する若干の空隙Gが設けられて、それらの面が互いに接触するのを回避している。この空隙Gにシール手段としての伸縮自在リング20が設けられている。伸縮自在リング20は、一枚の細長い平板状素材がスパイラル状に重ね合わせて複数回巻かれて形成されたものであり、たとえば本出願人である東京精密発条株式会社が商品名「スクリューカバー」の下に製造販売している製品を用いることができる(http://www.to-hatsu.co.jp/products/other_screwcover.html参照)。一例を図3に示す。   A slight gap G extending in a direction perpendicular to the axial direction is provided between the step portions that define the boundary between the rotary shaft 10 and the large diameter portions 11 and 31 and the small diameter portions 13 and 33 of the bearing portion 30. , Avoiding those surfaces coming into contact with each other. In this gap G, an expandable ring 20 is provided as a sealing means. The expandable ring 20 is formed by laminating a single long and thin flat plate material into a spiral shape and winding it a plurality of times. Products manufactured and sold under can be used (see http://www.to-hatsu.co.jp/products/other_screwcover.html). An example is shown in FIG.

図1と共に図2を参照して、回転軸10の大径部分11と小径部分13との境をなす段段16には環状溝17が凹設されると共に、軸受け部30の大径部分31と小径部分33との境をなす段部37には、前記環状溝17と対向する位置に環状溝38が凹設される。そして、これら環状溝17,38に両端を嵌め込むようにして伸縮自在リング20が組み込まれる。この実施形態では伸縮自在リング20の大径側の端部が環状溝38に嵌め込まれ、小径側の端部が環状溝17に嵌め込まれているが、もちろん逆の位置関係にしてこれらの環状溝17,18を嵌め込んでも良い。また、環状溝17,18の位置は必ずしも厳密な対向関係になくても良く、伸縮自在リング20の端部を嵌め込むことができる位置に該嵌め込み状態を安定的に確保できるような寸法に形成されれば良い。   With reference to FIG. 2 together with FIG. 1, an annular groove 17 is recessed in the step 16 that forms the boundary between the large diameter portion 11 and the small diameter portion 13 of the rotary shaft 10, and the large diameter portion 31 of the bearing portion 30 An annular groove 38 is recessed at a position facing the annular groove 17 in the step portion 37 that forms a boundary with the small diameter portion 33. Then, the expandable ring 20 is assembled so that both ends are fitted into the annular grooves 17 and 38. In this embodiment, the end portion on the large diameter side of the expandable ring 20 is fitted into the annular groove 38 and the end portion on the small diameter side is fitted into the annular groove 17. 17 and 18 may be fitted. Further, the positions of the annular grooves 17 and 18 are not necessarily strictly opposed to each other, and are formed in such dimensions that the fitting state can be stably secured at a position where the end of the expandable ring 20 can be fitted. It should be done.

このようにして配置された伸縮自在リング20は、両端が環状溝17,18に圧縮状態で嵌め込まれており、図2に示すようにスパイラル状に巻かれた一枚の平板状素材が重ね合わされた状態で設けられているので、段部16,37間の空隙Gに切り粉などの固形物が侵入することを確実に阻止する。   The telescopic ring 20 arranged in this manner is fitted into the annular grooves 17 and 18 in a compressed state at both ends, and a single flat plate material wound in a spiral shape is overlapped as shown in FIG. Therefore, it is possible to reliably prevent a solid material such as cutting powder from entering the gap G between the step portions 16 and 37.

図示の実施例においては、2個のオイルシール53,54が、積層リング51,52の背後において回転軸10と軸受け部30との間に設けられ、それらの間に2個のベアリング(深溝玉軸受け)55,56が設けられている。更に、オイルシール54と回転軸10との間には金属リングまたはスリーブ57が設けられ、スリーブ57と回転軸10との間には、回転軸10に設けられた溝13に嵌め込まれる形でOリング58が設けられている。   In the illustrated embodiment, two oil seals 53, 54 are provided between the rotary shaft 10 and the bearing portion 30 behind the laminated rings 51, 52, and two bearings (deep groove balls) are provided between them. Bearings) 55 and 56 are provided. Further, a metal ring or sleeve 57 is provided between the oil seal 54 and the rotary shaft 10, and the sleeve 57 and the rotary shaft 10 are inserted into a groove 13 provided in the rotary shaft 10 in an O shape. A ring 58 is provided.

図示の実施例による軸受け構造において回転軸10と軸受け部30とを組み付ける要領は下記の通りである。まず、回転軸10の溝12内に積層リング51を、溝13内にOリング58をそれぞれ組み付けておく。このとき、積層リング51は軸受け部30の大径部分31の内周面に圧接される外接型のものであるから、溝12内において僅かな遊びをもって受け入れられており、積層リング51の外径は回転軸10の大径部分11の外周面から外側に突出している。一方、軸受け部30の溝32内には積層リング52を嵌合させ、オイルシール53、ベアリング55,56、オイルシール54、スリーブ57を順次組み付けておく。ここで、積層リング52は回転軸10の小径部分13の外周面に圧接される内接型のものであるから、溝32内において僅かな遊びをもって受け入れられており、積層リング52の内径は軸受け部30の小径部分33の内周面から内側に突出している。   The procedure for assembling the rotating shaft 10 and the bearing portion 30 in the bearing structure according to the illustrated embodiment is as follows. First, the laminated ring 51 is assembled in the groove 12 of the rotating shaft 10, and the O-ring 58 is assembled in the groove 13. At this time, the laminated ring 51 is of a circumscribed type that is pressed against the inner peripheral surface of the large-diameter portion 31 of the bearing portion 30, and is therefore received with a little play in the groove 12. Protrudes outward from the outer peripheral surface of the large-diameter portion 11 of the rotary shaft 10. On the other hand, the laminated ring 52 is fitted in the groove 32 of the bearing portion 30, and the oil seal 53, the bearings 55 and 56, the oil seal 54, and the sleeve 57 are sequentially assembled. Here, since the laminated ring 52 is an inscribed type that is pressed against the outer peripheral surface of the small-diameter portion 13 of the rotary shaft 10, the laminated ring 52 is received with little play in the groove 32, and the inner diameter of the laminated ring 52 is a bearing. Projecting inward from the inner peripheral surface of the small diameter portion 33 of the portion 30.

そして、回転軸10の小径部13の先端から伸縮自在リング20を挿入し、その段部16に形成されている環状溝17に一端を挿入した状態にして、回転軸10を軸受け部30の右側(図1において)から挿入すると、回転軸10の小径部分13の左側の肩部における斜めの面取り部分15が、積層リング52の内径面に接触して積層リング52を拡径させながら侵入していく。同様に、軸受け部30の大径部分の右側の肩部における斜めの面取り部分34が、積層リング51の外径面に接触して積層リング51を縮径させながら回転軸10が軸受け部30内に侵入していく。伸縮自在リング20の他端(左端)は軸受け部30の段部37に形成されている環状溝38に嵌め込まれる。しかる後、スプロケットホイールSWを装着することにより、回転軸10と軸受け部30との組み付けが完了する。   The telescopic ring 20 is inserted from the tip of the small-diameter portion 13 of the rotating shaft 10, and one end is inserted into the annular groove 17 formed in the stepped portion 16, so that the rotating shaft 10 is placed on the right side of the bearing portion 30. When inserted from (in FIG. 1), an oblique chamfered portion 15 on the left shoulder portion of the small-diameter portion 13 of the rotary shaft 10 comes into contact with the inner diameter surface of the laminated ring 52 while expanding the laminated ring 52. Go. Similarly, the oblique chamfered portion 34 at the right shoulder portion of the large diameter portion of the bearing portion 30 contacts the outer diameter surface of the laminated ring 51 to reduce the diameter of the laminated ring 51, while the rotary shaft 10 is inside the bearing portion 30. To invade. The other end (left end) of the telescopic ring 20 is fitted into an annular groove 38 formed in the step portion 37 of the bearing portion 30. After that, by attaching the sprocket wheel SW, the assembly of the rotating shaft 10 and the bearing portion 30 is completed.

トレイ1の端壁2における開口部分と軸受け部30の大径部分31の外周面との間にパッキング35を介して、それらを嵌合させ、軸受け部30の大径部分31から放射方向に延長しているフランジ部分35と端壁2との間にリング状のパッキング36を介して、それらを圧接させ、ボルトBなどの固定手段によって締め付け固定する。しかる後、スパイラルSが回転軸10の右側端部に適切な固定手段によって固定される。   The opening 35 in the end wall 2 of the tray 1 and the outer peripheral surface of the large-diameter portion 31 of the bearing portion 30 are fitted via a packing 35 to extend from the large-diameter portion 31 of the bearing portion 30 in the radial direction. The flange portion 35 and the end wall 2 are in pressure contact with each other via a ring-shaped packing 36 and are fastened and fixed by a fixing means such as a bolt B. Thereafter, the spiral S is fixed to the right end portion of the rotary shaft 10 by appropriate fixing means.

上述の実施例による軸受け構造を設けたスパイラルコンベヤは、通常の稼働条件下において長時間の連続運転に耐え、十分に実用可能であることが確認された。回転軸10および軸受け部30がいずれも大径部11,31と小径部13,33を持つ形状とされることによって固形物の侵入に対して折れ曲がった経路(空隙)を与えていることや、積層リング51,52を配置したことに加えて、段部16,37間の空隙Gに伸縮自在リング20を配したことが、固形物の侵入を効果的に阻止して好ましい防塵効果を長期に亘って持続させているものと考えられる。   It was confirmed that the spiral conveyor provided with the bearing structure according to the above-described embodiment can withstand a long continuous operation under normal operating conditions and is sufficiently practical. The rotary shaft 10 and the bearing portion 30 both have a large-diameter portion 11, 31 and a small-diameter portion 13, 33, thereby providing a path (gap) that is bent with respect to intrusion of solid matter, In addition to the arrangement of the laminated rings 51 and 52, the arrangement of the expandable ring 20 in the gap G between the stepped portions 16 and 37 effectively prevents the intrusion of solid matter and provides a favorable dustproof effect for a long time. It is thought that it is sustained throughout.

以上に本発明の一実施例について詳述したが、本発明は上述の実施例のみに限定されるものではなく、本発明の技術思想を逸脱することなく様々な変形が可能である。たとえば、上記実施例では段部16,37間の空隙Gに一つの伸縮自在リング20が設けられているが、第1の伸縮自在リングと共に、その最大径よりも大きな最小径を有する第2の伸縮自在リングを用い、これらを同心状に多重的に配することができる。もちろん、同様の径寸法関係を有する伸縮自在リングをより多数用いてこれらを同心状に多重配置しても良い。このようにすることでより一層すぐれた防塵効果を発揮することが期待される。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the technical idea of the present invention. For example, in the above-described embodiment, one stretchable ring 20 is provided in the gap G between the step portions 16 and 37, but the second stretchable ring has a minimum diameter larger than the maximum diameter together with the first stretchable ring. These can be arranged concentrically and multiply using telescopic rings. Of course, it is also possible to use a larger number of stretchable rings having the same diametrical dimensional relationship and concentrically multiplex them. By doing so, it is expected to exhibit an even better dustproof effect.

本発明による軸受け構造をスパイラルコンベヤのトレイの基端部における回転駆動軸に適用した実施例の部分断面図である。It is a fragmentary sectional view of the Example which applied the bearing structure by this invention to the rotational drive shaft in the base end part of the tray of a spiral conveyor. 図1の実施例における伸縮自在リングの配置状態を示す拡大図である。It is an enlarged view which shows the arrangement | positioning state of the expandable ring in the Example of FIG. 伸縮自在リングの一例を示す図である。It is a figure which shows an example of a telescopic ring.

符号の説明Explanation of symbols

1 トレイ
2 端壁
10 回転軸
11 大径部分
12 環状溝
13 小径部分
16 段部
17 環状溝
20 伸縮自在リング
30 軸受け部
31 大径部分
32 環状溝
33 小径部分
37 段部
38 環状溝
51,52 積層リング
53,54 オイルシール
55,56 ベアリング
DESCRIPTION OF SYMBOLS 1 Tray 2 End wall 10 Rotating shaft 11 Large diameter part 12 Annular groove 13 Small diameter part 16 Step part 17 Annular groove 20 Retractable ring 30 Bearing part 31 Large diameter part 32 Annular groove 33 Small diameter part 37 Step part 38 Annular grooves 51, 52 Laminated ring 53, 54 Oil seal 55, 56 Bearing

Claims (4)

固液混合相を収容した容器の基端部の容器壁に固定される軸受け部と、該軸受け部の内部にベアリングを介して回転自在に収容されて該容器に収容される固液混合相の液面下において該容器壁を通過して延長する回転軸とを備え、前記軸受け部は大径部分と小径部分とを有してなると共に、前記回転軸は前記軸受け部の大径部分に包囲収容される大径部分と前記軸受け部の小径部分に包囲収容される小径部分とを有してなり、これらの大径部分および小径部分同士の間およびこれらの大径部分と小径部分との境をなす段部同士の間には折り曲げ状に連続する空隙が形成されており、且つ、これらの段部同士の間に形成される空隙に少なくとも一つのシール手段が該段部同士の間の空隙を横断するように設けられていることを特徴とする、スパイラルコンベアに適した軸受け構造。 A bearing portion fixed to the container wall at the base end of the container containing the solid-liquid mixed phase, and a solid-liquid mixed phase accommodated in the vessel by being rotatably accommodated inside the bearing portion via a bearing. A rotating shaft extending through the container wall under the liquid surface, the bearing portion having a large diameter portion and a small diameter portion, and the rotating shaft is surrounded by the large diameter portion of the bearing portion A large-diameter portion to be accommodated and a small-diameter portion that is enclosed and accommodated in the small-diameter portion of the bearing portion, and the boundary between the large-diameter portion and the small-diameter portions and between the large-diameter portion and the small-diameter portion. Between the step portions forming a gap, a continuous gap is formed in a bent shape, and at least one sealing means is provided in the space formed between the step portions. The spa is characterized by being provided to cross Bearing structure suitable for Rarukonbea. 前記シール手段として、一枚の細長い平板状素材がスパイラル状に重ね合わせて複数回巻かれて形成された伸縮自在リングが用いられることを特徴とする、請求項1に記載の軸受け構造。 The bearing structure according to claim 1, wherein an elastic ring formed by winding a single thin flat plate material in a spiral shape and winding it a plurality of times is used as the sealing means. 前記軸受け部と前記回転軸の前記段部に面する対向箇所に各々凹溝が環設され、該凹溝に前記伸縮自在リングの中心軸方向の両端部が嵌め込まれていて、該伸縮自在リングが該段部同士の間に形成される空隙内に固液混合層中の固形物が侵入することを防止することを特徴とする、請求項2に記載の軸受け構造。 A concave groove is provided in each of the bearing portions and the rotary shaft facing the stepped portion, and both ends of the telescopic ring in the central axis direction are fitted in the concave groove, and the telescopic ring 3. The bearing structure according to claim 2, wherein solids in the solid-liquid mixed layer are prevented from entering a gap formed between the step portions. 径の異なる複数の前記伸縮リングが多重的に設けられることを特徴とする、請求項2または3に記載の軸受け構造。 The bearing structure according to claim 2 or 3, wherein a plurality of the expansion and contraction rings having different diameters are provided.
JP2008332183A 2008-12-26 2008-12-26 Bearing structure suitable for spiral conveyor Active JP5574601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332183A JP5574601B2 (en) 2008-12-26 2008-12-26 Bearing structure suitable for spiral conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332183A JP5574601B2 (en) 2008-12-26 2008-12-26 Bearing structure suitable for spiral conveyor

Publications (2)

Publication Number Publication Date
JP2010150026A true JP2010150026A (en) 2010-07-08
JP5574601B2 JP5574601B2 (en) 2014-08-20

Family

ID=42569555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332183A Active JP5574601B2 (en) 2008-12-26 2008-12-26 Bearing structure suitable for spiral conveyor

Country Status (1)

Country Link
JP (1) JP5574601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104444201A (en) * 2014-12-03 2015-03-25 成都索伊新材料有限公司 Bearing sealing device for screw conveyor
CN106800169A (en) * 2017-03-14 2017-06-06 福建金闽再造烟叶发展有限公司 A kind of helix transporting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699014B2 (en) * 1989-04-13 1994-12-07 東京精密発条株式会社 Bearing structure suitable for spiral conveyors
JP2000088108A (en) * 1998-09-14 2000-03-31 Minolta Co Ltd Seal structure of periphery of rotary shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699014B2 (en) * 1989-04-13 1994-12-07 東京精密発条株式会社 Bearing structure suitable for spiral conveyors
JP2000088108A (en) * 1998-09-14 2000-03-31 Minolta Co Ltd Seal structure of periphery of rotary shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104444201A (en) * 2014-12-03 2015-03-25 成都索伊新材料有限公司 Bearing sealing device for screw conveyor
CN106800169A (en) * 2017-03-14 2017-06-06 福建金闽再造烟叶发展有限公司 A kind of helix transporting device

Also Published As

Publication number Publication date
JP5574601B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US7391139B2 (en) Spindle motor and rotation apparatus
JP2016504541A5 (en)
JP2008281013A (en) Sealing device
US9422974B2 (en) Fluid bearing apparatus including dynamic pressure grooves with striations, spindle motor, and disk drive apparatus
JP2006105398A (en) Fluid dynamical pressure bearing device
JP5574601B2 (en) Bearing structure suitable for spiral conveyor
JP2007209193A (en) Spindle motor having plural sealing portions
JP2008025600A (en) Bearing sealing device
JP2003061295A (en) Spindle motor
JP2006002935A (en) Backing plate for axially parallel double clutch
JP2010180944A (en) Unitized sealing member
JP2009185859A (en) Roller bearing unit and its manufacturing method
JP2006283944A (en) Double row bearing device
JP2008275159A (en) Fluid dynamic bearing device
WO2017094231A1 (en) Rotary table device
JP2008002648A (en) Seal ring
JP2005291452A (en) Fluid bearing device
JP4930179B2 (en) Stepped fitting structure and worm gear support structure
JP6774909B2 (en) Rotating machine
JP2007060731A (en) Spindle motor and rotary device
JP5286934B2 (en) Foil bearing
JP2008281170A (en) Oil seal and rolling bearing unit
JPH0699014B2 (en) Bearing structure suitable for spiral conveyors
JP2008281028A (en) Shaft seal device
CA2498633A1 (en) Element that defines a gap and is to be mounted on a shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250