JP2010149913A - Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container - Google Patents

Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container Download PDF

Info

Publication number
JP2010149913A
JP2010149913A JP2008332158A JP2008332158A JP2010149913A JP 2010149913 A JP2010149913 A JP 2010149913A JP 2008332158 A JP2008332158 A JP 2008332158A JP 2008332158 A JP2008332158 A JP 2008332158A JP 2010149913 A JP2010149913 A JP 2010149913A
Authority
JP
Japan
Prior art keywords
heat insulating
inner container
container
heat
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008332158A
Other languages
Japanese (ja)
Inventor
Keiji Tsukahara
啓二 塚原
Takashi Onoe
崇史 尾上
Toshihiko Kumasaka
敏彦 熊坂
Osamu Morikawa
修 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2008332158A priority Critical patent/JP2010149913A/en
Publication of JP2010149913A publication Critical patent/JP2010149913A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating material for a heat insulating container capable of easily surrounding (forming) the heat insulating material on an internal container constituting the heat insulating container for storing a liquid such as LLC in a heat-insulated state, and having excellent mass productivity. <P>SOLUTION: The heat insulating container for storing the liquid in a heat-insulated state in which a heat insulating material is formed in a three-dimensional manner so as to surround an internal container 20 by combining a plurality of formed bodies 90 made of inorganic fibers. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、液体を保温貯留する断熱容器に関するものであり、特に車両用エンジンの冷却水を保温貯留する断熱容器に適用する。   The present invention relates to a heat insulating container for storing and storing a liquid, and particularly to a heat insulating container for storing and storing cooling water for a vehicle engine.

近年、地球温暖化対策として車両用エンジンの低燃費化が強く求められている。特に、エンジン始動直後の暖機運転時の燃費を向上させることは大きな課題となっている。   In recent years, there has been a strong demand for lower fuel consumption of vehicle engines as a countermeasure against global warming. In particular, improving the fuel efficiency during warm-up operation immediately after engine startup has become a major issue.

例えば、車両用エンジン始動直後の燃費を向上させることを目的として、エンジンの予熱で温められた、車両用エンジンの冷却水(ロング・ライフ・クーラント:以下LLCと記す)を断熱容器に保温貯留し、次のエンジン始動時に保温されたLLCをエンジンに循環させてエンジンの暖機運転を促進する技術がある。   For example, for the purpose of improving fuel efficiency immediately after starting the vehicle engine, the coolant for the vehicle engine (long life coolant: hereinafter referred to as LLC) warmed by preheating the engine is stored in a heat insulating container. There is a technology that circulates LLC, which is kept warm at the next engine start, to the engine to promote warm-up operation of the engine.

このLLCを保温貯留する断熱容器には、エンジンの予熱で温められたLLCを次のエンジン始動時まで高温に維持する高い保温性能、更に、車両原価低減に伴う製造コストの低減が求められている。また、この断熱容器はエンジンルーム内に設置されるため、車両によって異なるエンジンルーム内の限定されたスペースに収納可能な形状が強く求められており、その要求に対して、特許文献1では樹脂製内部容器の周囲に高性能真空断熱材を形成した、断熱容器について記載されている。   Insulated containers that retain and store the LLC are required to have a high thermal insulation performance to maintain the LLC heated by the preheating of the engine at a high temperature until the next engine start, and to reduce the manufacturing cost associated with the reduction in vehicle cost. . Moreover, since this heat insulation container is installed in an engine room, the shape which can be accommodated in the limited space in an engine room which changes with vehicles is calculated | required strongly, and it is made from resin in patent document 1 with respect to the request | requirement. A heat insulating container is described in which a high performance vacuum heat insulating material is formed around the inner container.

特開2008−105748号公報JP 2008-105748 A 特開2004−308691号公報JP 2004-308691 A 特開2004−84847号公報JP 2004-84847 A

ところで、無機繊維からなる断熱材を、ガスバリア性フィルムで減圧封入した真空断熱材では、減圧封入前後の無機繊維の体積変化が大きいため、ガスバリア性フィルム表面でシワが発生し、ガスバリア性フィルムにピンホールや亀裂等の欠陥が生じる可能性が高くなる、表面積増大によって保温性能が低下する、また、意匠性も悪くなる等の問題が生じていた。   By the way, in a vacuum heat insulating material in which a heat insulating material made of inorganic fibers is sealed under reduced pressure with a gas barrier film, since the volume change of the inorganic fibers before and after the reduced pressure sealing is large, wrinkles occur on the surface of the gas barrier film, and the pin is attached to the gas barrier film. There has been a problem that defects such as holes and cracks are likely to occur, heat retention performance is reduced due to an increase in surface area, and design properties are deteriorated.

そこで、無機繊維の体積変化を制御するために、バインダーの添加が検討されている。例えば特許文献2では、有機質バインダーを用いた断熱材の成形が記載されている。また、特許文献3には無機質バインダーを用いた断熱材の成形が記載されている。   Then, in order to control the volume change of inorganic fiber, addition of a binder is examined. For example, Patent Document 2 describes the formation of a heat insulating material using an organic binder. Patent Document 3 describes the formation of a heat insulating material using an inorganic binder.

しかしながら、特許文献2のように有機質バインダーを用いた場合、真空封止後にバインダー成分が気化して真空度を低下(圧力上昇)して、断熱性能が劣化する可能性があるため、予めバインダーを熱処理等により、完全に除去する必要がある。これにより、断熱材は元の体積近くまで復元し、真空封止時の体積変化を制御できないという問題があった。   However, when an organic binder is used as in Patent Document 2, the binder component may be vaporized after vacuum sealing to lower the degree of vacuum (pressure increase) and the heat insulation performance may deteriorate. It must be completely removed by heat treatment or the like. Thereby, the heat insulating material was restored to near the original volume, and there was a problem that the volume change at the time of vacuum sealing could not be controlled.

一方、無機質のバインダーを使用した場合、真空封止後の揮発成分はなくなるが、無機繊維の体積変化率を制御するためには、多くのバインダーが必要で、このバインダーを添加した固体熱伝導増加分、熱伝導率が上昇する問題があった。   On the other hand, when an inorganic binder is used, the volatile components after vacuum sealing are eliminated, but in order to control the volume change rate of inorganic fibers, many binders are required, and solid heat conduction increases by adding this binder. There was a problem that the thermal conductivity increased.

また、グラスウール等の無機繊維は、繊維径が細くなると固体熱伝導の減少により、熱伝導率が低下することは周知の事実である。但し、平均繊維径が2μm以下となると製造コストが上がるため、バインダー添加の有無に関わらず、高性能が求められる真空断熱材には、平均繊維径を3〜5μmの無機繊維が用いられてきた。   In addition, it is a well-known fact that inorganic fibers such as glass wool have a reduced thermal conductivity due to a decrease in solid heat conduction when the fiber diameter is reduced. However, since the manufacturing cost increases when the average fiber diameter is 2 μm or less, inorganic fibers having an average fiber diameter of 3 to 5 μm have been used for vacuum heat insulating materials that require high performance regardless of whether or not a binder is added. .

しかしながら、近年、細径無機繊維の人体への悪影響が指摘され、断熱材に使用される無機繊維の太径化の動きは世界的に拡がりを見せている。例えば、欧州委員会指令96/96/ECには、(繊維直径の荷重幾何平均)−2×(標準偏差)を6μm以上とする、と記載されており、将来的には、平均繊維径が6μm未満の無機繊維は規制の対象となる可能性がある。   However, in recent years, adverse effects on the human body of small-diameter inorganic fibers have been pointed out, and the movement of increasing the diameter of inorganic fibers used for heat insulating materials is spreading worldwide. For example, the European Commission Directive 96/96 / EC states that (load geometric average of fiber diameter) −2 × (standard deviation) should be 6 μm or more. Inorganic fibers of less than 6 μm may be subject to regulation.

そこで、本願発明は、上記の問題点を鑑み、平均繊維径が6μm以上の太い繊維を使用して減圧封入前後の無機繊維の体積変化を低減する無機繊維の成形を行い、かつ、熱伝導率の上昇を制御した真空断熱材を使用することにより、熱損失を最小限に抑えた断熱容器及びその製造方法を提供することを目的とする。それによって、ひいては、エンジンルーム内等に設置され、低燃費化に寄与し、自動車から排出される温暖化ガスの低減につながるものである。また、上記断熱容器を構成する内部容器に断熱材を囲繞(形成)することを容易にし、量産性に優れた断熱容器用の断熱材及び断熱容器を提供することを目的とするものである。   Therefore, in view of the above problems, the present invention performs molding of inorganic fibers that reduce the volume change of inorganic fibers before and after vacuum encapsulation using thick fibers having an average fiber diameter of 6 μm or more, and thermal conductivity. An object of the present invention is to provide a heat-insulating container that minimizes heat loss by using a vacuum heat-insulating material in which the rise of the temperature is controlled, and a method for manufacturing the same. As a result, it is installed in the engine room and the like, contributing to lower fuel consumption and leading to reduction of greenhouse gases emitted from automobiles. It is another object of the present invention to provide a heat insulating material and a heat insulating container for a heat insulating container that can easily surround (form) the heat insulating material in the inner container constituting the heat insulating container and is excellent in mass productivity.

上記課題を達成することを目的として、第1の発明では、液体を保温貯留する断熱容器であって、液体の流入出口部を備えた内部容器と、内部容器を収容しガスバリア層を形成するシート状の外装材と、内部容器と外装材との間に断熱材とガス吸着材が封入され減圧空間とされた断熱空間とを備え、前記断熱材が複数の無機繊維製成形体を組み合わせて内部容器を囲繞するように立体成形されていることを特徴とするものを提供する。ここで、ガスバリア層とは、気体の透過を制限する層である。JIS-K7126-1にて測定したガスバリア層を積層したラミネートフィルムの酸素透過度が1.1×10-11m3/m2・s・MPa以下であれば良く、1.1×10-12m3/m2・s・MPa以下であれば好ましい。また、断熱空間は断熱性を向上させるために大気圧より低い圧力(減圧状態)に制御されており、0.01〜100Paであればよく、好ましくは0.1〜10Paである。
第2の発明は、無機繊維製成形体が、平板、L字型、コ字型、U字型、凹字型又は凸字型等であることを特徴とする同断熱容器を提供する。
第3の発明は、無機繊維製成形体が、ガラス長繊維を伝熱方向に対して垂直方向に圧縮状態で配向し、無機バインダーによって保形されていることを特徴とする同断熱容器を提供する。ここで、ガラス長繊維とはSiO2,Al2O3,にCaO,MgO等のアルカリ土類金属酸化物やK2O,Na2O等のアルカリ金属酸化物を加えたものを原料としている。高温で溶解した原料を、細孔の空いたポットの底から高速で紡出して冷却後巻き取って作られており、直径45μm以上の同一組成の未繊維化物を含まない繊維である。
第4の発明は、液体を保温貯留するために、液体の流入出口部を備えた樹脂製の内部容器と、内部容器を収容するシート状の外装材と、内部容器と外装材との間に断熱材とガス吸着材が封入され減圧空間とされた断熱空間とを備えた断熱容器用の断熱材の製造方法であって、無機繊維をニードルパンチして作製された無機繊維マットを無機バインダーの分散された水溶液中に含浸して、水分を乾燥することにより成形された後に切断加工して無機繊維製成形体を構成し、この無機繊維製成形体を複数組み合わせて内部容器を囲繞する断熱材を形成したことを特徴とする断熱容器用断熱材の製造方法を提供する。
第5の発明は、角型の芯材に巻き付けた無機繊維マットを無機バインダーの分散された水溶液中に含浸したことを特徴とする同断熱容器用断熱材の製造方法を提供する。
第6の発明は、無機繊維がガラス長繊維であることを特徴とする同断熱容器用断熱材の製造方法を提供する。
第7の発明は、液体を保温貯留するために、液体の流入出口部を備えた樹脂製の内部容器と、内部容器を収容するシート状の外装材と、内部容器と外装材との間に断熱材とガス吸着材が封入され減圧空間とされた断熱空間とを備えた断熱容器の製造方法であって、予め、断熱材を構成する無機繊維製パーツを立体成形する工程と、無機繊維製パーツを嵌め合わせて内部容器を囲繞する工程と、無機繊維製パーツによって囲繞された内部容器を外装材に収容し、内部容器と外装材で形成される断熱空間にガス吸着材を装填した後に、断熱空間を減圧封止する工程とを備えることを特徴とする断熱容器の製造方法を提供する。
第8の発明は、無機バインダーを含んだ水溶液に無機繊維製マットを浸す工程と、水溶液を含んだ無機繊維製マットを圧縮した状態で乾燥する工程とを更に備えることを特徴とする同断熱容器の製造方法を提供する。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a heat-insulating container for keeping and storing a liquid, an inner container having a liquid inflow / outlet portion, and a sheet for accommodating the inner container and forming a gas barrier layer And a heat insulating space in which a heat insulating material and a gas adsorbing material are enclosed between the inner container and the outer material to form a decompression space, and the heat insulating material is formed by combining a plurality of inorganic fiber molded bodies. What is characterized by being three-dimensionally molded so as to surround the container is provided. Here, the gas barrier layer is a layer that restricts gas permeation. The oxygen permeability of the laminate film with the gas barrier layer measured according to JIS-K7126-1 should be 1.1 × 10 -11 m 3 / m 2 · s · MPa or less, 1.1 × 10 -12 m 3 / m 2 · s · MPa or less is preferable. Moreover, in order to improve heat insulation, the heat insulation space is controlled by the pressure (reduced pressure state) lower than atmospheric pressure, and should just be 0.01-100 Pa, Preferably it is 0.1-10 Pa.
2nd invention provides the said heat insulation container characterized by the molded object made from an inorganic fiber being a flat plate, L shape, U shape, U shape, a concave shape, or a convex shape.
According to a third aspect of the present invention, there is provided the heat insulating container characterized in that the inorganic fiber molded body is oriented in a compressed state in a direction perpendicular to the heat transfer direction in the long glass fiber and is retained by an inorganic binder. To do. Here, the long glass fiber is made of SiO 2 , Al 2 O 3 , added with alkaline earth metal oxides such as CaO and MgO, and alkali metal oxides such as K 2 O and Na 2 O. . A raw material melted at a high temperature is spun at a high speed from the bottom of a pot having pores, cooled and wound up, and is a fiber not containing an unfibrinated product having a diameter of 45 μm or more and having the same composition.
According to a fourth aspect of the present invention, there is provided a resin-made inner container having a liquid inflow / outlet portion, a sheet-like exterior material for housing the inner container, and the inner container and the exterior material, A heat insulating material manufacturing method for a heat insulating container provided with a heat insulating space in which a heat insulating material and a gas adsorbing material are enclosed to form a decompression space, wherein an inorganic fiber mat produced by needle punching an inorganic fiber is used as an inorganic binder. A heat insulating material that is impregnated in a dispersed aqueous solution, molded by drying moisture, then cut to form an inorganic fiber molded body, and a plurality of these inorganic fiber molded bodies are combined to surround the inner container The manufacturing method of the heat insulating material for heat insulation containers characterized by forming is provided.
5th invention provides the manufacturing method of the heat insulating material for the said heat insulation containers characterized by impregnating the inorganic fiber mat wound around the square-shaped core material in the aqueous solution in which the inorganic binder was disperse | distributed.
6th invention provides the manufacturing method of the heat insulating material for the said heat insulation containers characterized by inorganic fiber being a glass long fiber.
According to a seventh aspect of the present invention, there is provided a resin-made inner container having a liquid inflow / outlet portion, a sheet-like exterior material that accommodates the inner container, and the inner container and the exterior material, A method for manufacturing a heat-insulating container having a heat-insulating space in which a heat-insulating material and a gas adsorbing material are enclosed and formed as a decompression space, and a step of three-dimensionally molding inorganic fiber parts constituting the heat-insulating material in advance, After fitting the parts and surrounding the inner container, and housing the inner container surrounded by the inorganic fiber parts in the exterior material, after loading the gas adsorbent into the heat insulating space formed by the inner container and the exterior material, And a step of sealing the heat insulation space under reduced pressure.
The eighth invention further comprises a step of immersing the inorganic fiber mat in an aqueous solution containing an inorganic binder, and a step of drying the inorganic fiber mat containing the aqueous solution in a compressed state. A manufacturing method is provided.

本願発明によれば、以下のような効果を有する。
(1)断熱材が平板、L字型、コ字型、U字型、凹字型又は凸字型等に成形された成形体を組み合わせてなるため、立体形状の周囲に断熱材を形成することが容易で、量産性に優れた真空断熱材用の断熱材を安価に提供することができる。
(2)密度の高いニードルパンチしたガラスマットを使用することにより、バインダー添加量を最小限に抑えることができ、バインダー添加による断熱材の熱伝導率上昇を制御することができる。
(3)断熱材を成形し、真空封止時の体積変化率を小さくすることにより、真空封止時のガスバリア性外装材にシワの発生を低減する。これにより、シワに起因して発生する、ピンホール、亀裂等の欠陥を抑えることができる。
(4)平均繊維径が6μm以上の太い無機繊維と断熱性能の両立が可能で、人体の悪影響を軽減した真空断熱材を提供することができる。
The present invention has the following effects.
(1) Since the heat insulating material is formed by combining a molded body formed into a flat plate, an L shape, a U shape, a U shape, a concave shape or a convex shape, the heat insulating material is formed around the three-dimensional shape. Therefore, it is possible to provide a heat insulating material for a vacuum heat insulating material that is easy to manufacture and has excellent mass productivity at low cost.
(2) By using a high-density needle punched glass mat, the amount of binder added can be minimized, and the increase in the thermal conductivity of the heat insulating material due to the binder addition can be controlled.
(3) By forming a heat insulating material and reducing the volume change rate during vacuum sealing, the generation of wrinkles in the gas barrier outer packaging material during vacuum sealing is reduced. Thereby, defects such as pinholes and cracks caused by wrinkles can be suppressed.
(4) It is possible to provide a vacuum heat insulating material in which both thick inorganic fibers having an average fiber diameter of 6 μm or more and heat insulating performance can be achieved, and adverse effects on the human body are reduced.

図1は、本願発明にかかる断熱容器の縦断面図である。
液体を保温貯留する断熱容器10は、液体の流入出口部21,21を備えた樹脂製内部容器20と、その内部容器20を収容し、その周囲にガスバリア層を形成する外装材50を備える。そして、この内部容器20と外装材50の間に断熱材41とガス吸着材42を封入し減圧状態とした断熱空間40を備える。なお、断熱容器10は、図1に示すように、内部容器20の周囲にガスバリア層を形成する内装材30を備え、この内装材30と外装材50の間に断熱空間40を備えるようにしてもよい。また、流入出口部21,21にあっては、外装材50や内装材30を接合するためのフランジ部材60,60を環装している。
FIG. 1 is a longitudinal sectional view of a heat insulating container according to the present invention.
The heat insulating container 10 that retains and retains a liquid includes a resin inner container 20 having liquid inflow and outlet portions 21 and 21, and an outer packaging material 50 that accommodates the inner container 20 and forms a gas barrier layer therearound. A heat insulating space 40 is provided between the inner container 20 and the exterior material 50 so that the heat insulating material 41 and the gas adsorbing material 42 are enclosed in a reduced pressure state. As shown in FIG. 1, the heat insulation container 10 includes an interior material 30 that forms a gas barrier layer around the inner container 20, and a heat insulation space 40 is provided between the interior material 30 and the exterior material 50. Also good. In addition, in the inflow / outlet portions 21 and 21, flange members 60 and 60 for joining the exterior material 50 and the interior material 30 are mounted.

上記構造における断熱材41について、製造方法を含めて説明する。
無機繊維として、ガラス長繊維をニードルパンチして作製されたガラスマットを使用する。このガラスマットの製造法としては様々な方法があるが、気流を用いてガラス長繊維を堆積させ、更にニードルパンチによるマット化する工法が好適である。この工法で繊維長さが30mm以上のガラス長繊維を用いて作製されたガラスマットは、繊維の長さ方向に破壊される(短くなる)ことなく、伝熱方向(断熱材の厚み方向)に対して垂直方向の繊維配向性が得られるため、真空断熱材を作製した際良好な断熱性能が得られる。
The heat insulating material 41 in the said structure is demonstrated including a manufacturing method.
As the inorganic fiber, a glass mat produced by needle punching a long glass fiber is used. There are various methods for producing this glass mat, and a method of depositing long glass fibers using an air stream and further matting by needle punching is preferred. A glass mat produced using a glass long fiber having a fiber length of 30 mm or more by this construction method is not broken (shortened) in the fiber length direction, but in the heat transfer direction (thickness direction of the heat insulating material). On the other hand, since the fiber orientation in the vertical direction can be obtained, good heat insulation performance can be obtained when a vacuum heat insulating material is produced.

前記、ガラス長繊維の平均繊維径は、本願発明の課題を鑑みて6μm〜20μmが望ましいが、繊維径が太く、最も一般的で安価なヤーンが6〜9μm、ロービングが10〜13μmとするのが好適で実用化しやすい。また、この長繊維はロービングとヤーンの混合であり、混合比に関して製造のし易さという観点から検討を行った結果、ロービング/ヤーン比が50/50〜0/100(重量比)であればよく、好ましくは20/80〜40/60(重量比)、さらに好ましくは30/70(重量比)である。ここで、ロービングとはファイバー(単繊維で少なくとも直径の100倍の長さを有する)を撚らずに集合させた粗糸を意味し、ヤーンとは一本以上のストランド(縒りのない単繊維の束)を撚り合わせた加工糸を意味する。   The average fiber diameter of the long glass fibers is preferably 6 μm to 20 μm in view of the problem of the present invention, but the fiber diameter is thick, the most common and cheap yarn is 6 to 9 μm, and the roving is 10 to 13 μm. Is suitable and easy to put into practical use. In addition, this long fiber is a mixture of roving and yarn, and as a result of investigation from the viewpoint of ease of manufacture with respect to the mixing ratio, the roving / yarn ratio is 50/50 to 0/100 (weight ratio). It is preferably 20/80 to 40/60 (weight ratio), more preferably 30/70 (weight ratio). As used herein, roving means a roving made of fibers (single fibers having a length of at least 100 times the diameter) without twisting, and yarn means one or more strands (single fibers without twist). Is a processed yarn twisted together.

ガラスマットの密度、厚みは、堆積させる目付量(単位面積あたりの重量)、ニードルパンチの針本数(単位面積あたりの打抜き本数)で調整することができる。ニードルパンチの針本数は5〜40本/cm2であれば良く、好ましくは15〜35本/cm2である。厚みに関しては、真空断熱材の必要厚みによるため、特に規定するものではない。密度は50〜160Kg/m3の範囲で製造できるが、好ましくは90〜160Kg/m3である。ガラスマットの密度が高いほど、バインダーの添加量が少量でも、真空封止時の体積変化率の制御効果が得られるためである。 The density and thickness of the glass mat can be adjusted by the weight per unit area (weight per unit area) and the number of needle punches (number of punches per unit area). The number of needle punches may be 5 to 40 / cm 2 , and preferably 15 to 35 / cm 2 . The thickness is not particularly specified because it depends on the required thickness of the vacuum heat insulating material. The density can be produced in the range of 50 to 160 kg / m 3 , but preferably 90 to 160 kg / m 3 . This is because, as the density of the glass mat is higher, the effect of controlling the volume change rate during vacuum sealing can be obtained even when the amount of binder added is small.

ガラス長繊維はファイバー、ストランドを保護するために、サイジング処理がなされている。サイジング材は一般的にウレタン、エポキシ、ポリビニルアルコール、デンプン、植物油等の有機質材料が用いられている。サイジング材が真空封止後に気化して真空断熱材の真空度を低下させる(圧力上昇)可能性があるため、ガラスマット製造後にこれを除去する必要がある。サイジング材除去は熱処理を行えばよく、300〜700℃で20〜180分程度でよいが、400〜600℃で30〜90分が望ましい。   The long glass fiber is sized to protect the fibers and strands. Generally, organic materials such as urethane, epoxy, polyvinyl alcohol, starch and vegetable oil are used as the sizing material. Since the sizing material may be vaporized after vacuum sealing to lower the degree of vacuum of the vacuum heat insulating material (pressure increase), it is necessary to remove it after manufacturing the glass mat. The sizing material may be removed by heat treatment, and it may be about 20 to 180 minutes at 300 to 700 ° C., but preferably 30 to 90 minutes at 400 to 600 ° C.

次に、上記ガラスマットの成形について説明する。水中に無機バインダーを分散させてガラスマットを含浸する。この時無機バインダーとしては、粘土、水ガラス、コロイダルシリカ、アルミナゾル、チタニアゾル、ジルコニアゾル等から選択するが、水分除去時の温度である100〜250℃で結合力を発揮し、また、熱伝導率への影響、真空封止後の体積変化率の観点から検討した結果、層状粘土鉱物が最も優れており、中でもベントナイトが好適である。無機バインダーとしてベントナイトを使用した場合、水溶液を作製するが、ベントナイトの水に対する添加量は0.5〜3.0wt%が良く、好ましくは0.5〜1.5wt%、換言すれば、ガラス繊維100質量部に対して2〜15質量部であればよく、好ましくは2〜8質量部である。   Next, the molding of the glass mat will be described. An inorganic binder is dispersed in water and impregnated with a glass mat. At this time, the inorganic binder is selected from clay, water glass, colloidal silica, alumina sol, titania sol, zirconia sol, etc., but exhibits a binding force at a temperature of 100 to 250 ° C., which is a temperature at the time of moisture removal, and has a thermal conductivity As a result of examination from the viewpoint of the influence on the volume and the volume change rate after vacuum sealing, the layered clay mineral is most excellent, and among these, bentonite is preferred. When bentonite is used as an inorganic binder, an aqueous solution is prepared, but the amount of bentonite added to water is preferably 0.5 to 3.0 wt%, preferably 0.5 to 1.5 wt%, in other words, with respect to 100 parts by mass of glass fiber. What is necessary is just 2-15 mass parts, Preferably it is 2-8 mass parts.

上記ベントナイト水溶液にガラスマットを含浸させ、所定の形状に成形し、乾燥させる。乾燥温度は水の沸点である100℃以上であれば良く、好ましくは200℃以上である。乾燥後、端部の切断加工、孔開け加工等を施し、断熱容器の断熱材とする。   The bentonite aqueous solution is impregnated with a glass mat, formed into a predetermined shape, and dried. The drying temperature should just be 100 degreeC or more which is the boiling point of water, Preferably it is 200 degreeC or more. After drying, the end is cut and drilled to provide a heat insulating material for the heat insulating container.

この断熱材を、ガスバリア層を形成する外装材50(又は内装材30及び外装材50)を用いて接合封止するが、この外装材50(又は内装材30及び外装材50)は液体流入出口21,21に環装したフランジ部材60,60を介して接合する。フランジ部材60は、中心に流入出口部用貫通孔61を備えるとともに、大径状の上端部62と下端部64を備えた円筒形部材であり、上端部62の上面は上部フランジ面63を、下端部64の下面は下部フランジ面65を形成する(図2及び図3)。フランジ部材60の材質としては、ポリエチレン、ポリプロピレン等の熱溶着が容易にできるものから選ばれ、気体の透過性能の低いエチレンビニルアルコールが好適である。   The heat insulating material is bonded and sealed using an exterior material 50 (or interior material 30 and exterior material 50) that forms a gas barrier layer. The exterior material 50 (or interior material 30 and exterior material 50) is a liquid inflow / outlet. It joins via the flange members 60 and 60 which were attached to 21 and 21. The flange member 60 is a cylindrical member having an inflow / outlet portion through-hole 61 at the center and a large-diameter upper end portion 62 and a lower end portion 64, and the upper surface of the upper end portion 62 has an upper flange surface 63. The lower surface of the lower end portion 64 forms a lower flange surface 65 (FIGS. 2 and 3). The material of the flange member 60 is selected from materials that can easily be thermally welded, such as polyethylene and polypropylene, and ethylene vinyl alcohol having a low gas permeability is preferable.

外装材50(又は内装材30及び外装材50)はガスバリア層が形成されており、上述した気体透過度を満たしていれば、材質、構造、形態に特に制限はないが、シート状のものが好適に使用できる。こういった内装材および外装材の一例として、「保護層/ガスバリア層/接着層」からなる多層構造のラミネートフィルムが挙げられる。こういったラミネートフィルムの厚さは、45〜120μmであればよく、好ましくは60〜100μmである。   The exterior material 50 (or the interior material 30 and the exterior material 50) has a gas barrier layer formed, and the material, structure, and form are not particularly limited as long as the gas permeability described above is satisfied. It can be used suitably. As an example of such an interior material and exterior material, a laminate film having a multilayer structure composed of “protective layer / gas barrier layer / adhesive layer” can be mentioned. The thickness of such a laminate film should just be 45-120 micrometers, Preferably it is 60-100 micrometers.

接着層を形成する材質は内部容器との接合が可能であれば特に制限はないが、本願発明においては気体透過率が低いものが望ましい。具体的には、フランジ部材60の材質がポリエチレンの場合、接着層はポリエチレンであればよいし、ポリプロピレンの場合、接着層はポリプロピレンであればよいし、エチレンビニルアルコールまたは金属の場合、接着層はエチレンビニルアルコールとすることが望ましい。接着層の厚さは10〜70μmであればよく、好ましくは30〜50μmである。   The material for forming the adhesive layer is not particularly limited as long as it can be joined to the inner container, but in the present invention, a material having a low gas permeability is desirable. Specifically, when the material of the flange member 60 is polyethylene, the adhesive layer may be polyethylene, in the case of polypropylene, the adhesive layer may be polypropylene, and in the case of ethylene vinyl alcohol or metal, the adhesive layer is It is desirable to use ethylene vinyl alcohol. The thickness of the adhesive layer may be 10 to 70 μm, and preferably 30 to 50 μm.

ガスバリア層は気体の透過を制限することが可能であれば、その材質に特に制限はないが、例えばステンレス箔やアルミニウム箔といった金属箔が挙げられるが、低い気体透過率と安価で実用性の高いアルミニウム箔が好適に利用できる。ガスバリア層の厚さは5〜30μmであればよく、好ましくは6〜15μmである。   The material of the gas barrier layer is not particularly limited as long as gas permeation can be restricted. For example, a metal foil such as stainless steel foil or aluminum foil can be used, but low gas permeability, low cost, and high practicality. Aluminum foil can be suitably used. The thickness of a gas barrier layer should just be 5-30 micrometers, Preferably it is 6-15 micrometers.

保護層はガスバリア層を保護する層であり、例えば、アルミニウム箔にピンホール・クラック等の欠陥が形成されることを防ぎ、気体透過防止効果を確実にするものである。こういった保護層は、ポリエステル、ナイロンといった樹脂が好適に利用できる。保護層の厚さは10〜15μmあればよく、好ましくは20〜40μmである。また、保護層は必要に応じて複数層形成されてもよい。こうした構成によれば、樹脂の特性を生かした機能を付加することができる。   The protective layer is a layer that protects the gas barrier layer and, for example, prevents the formation of defects such as pinholes and cracks in the aluminum foil, and ensures the gas permeation preventing effect. Such a protective layer is preferably made of a resin such as polyester or nylon. The thickness of a protective layer should just be 10-15 micrometers, Preferably it is 20-40 micrometers. Further, a plurality of protective layers may be formed as necessary. According to such a configuration, it is possible to add a function that takes advantage of the characteristics of the resin.

また、外装材50の他に内装材30を備えた場合、内装材30は内部容器20と対向する表面側31に接着層を備えることになるが、フランジ部材60の下部フランジ面65と接合する部分にも接着層を備えることが必要になる。そこで、流入出口部21の周辺部分にあっては内装材30の表面側31を断熱空間40側に向くように貼り替える向き切替え部32を設けることとした(図4)。
なお、内装材30に向き切替え部32を設けることに限定されるものではなく、内部容器20と接する部分以外で下部フランジ面65と接合する部分にも接着層を備えるものであればよい。
When the interior material 30 is provided in addition to the exterior material 50, the interior material 30 includes an adhesive layer on the surface side 31 facing the inner container 20, but is joined to the lower flange surface 65 of the flange member 60. It is necessary to provide an adhesive layer on the part as well. Therefore, in the peripheral portion of the inflow / outlet portion 21, an orientation switching portion 32 is provided for reattaching the surface side 31 of the interior material 30 so as to face the heat insulating space 40 side (FIG. 4).
In addition, it is not limited to providing the direction switching part 32 in the interior material 30, as long as it is provided with an adhesive layer in a portion joined to the lower flange surface 65 other than a portion in contact with the inner container 20.

真空断熱層40の内部には、断熱材41から発生するガスあるいは接合部樹脂を透過して外気より侵入するガス等により真空断熱層の真空度が万一低下することを防止するためにガス吸着剤42を封入する。ガス吸着剤42は、水分を吸着する酸化カルシウム層、酸素及び窒素を吸着するバリウム/リチウム合金層、水素を吸着する酸化コバルト層の3層構造のものを用いる。但し、バリウム/リチウム合金層は酸素及び窒素の他に水分も吸着する性質があるため、酸化カルシウム層と酸化コバルト層との間の中間層に位置する構造として夫々の層の吸着性を効率良く活用する。   In order to prevent the vacuum degree of the vacuum heat insulating layer from being lowered by the gas generated from the heat insulating material 41 or the gas that permeates through the joint resin and enters from the outside air, etc., is adsorbed inside the vacuum heat insulating layer 40. The agent 42 is encapsulated. The gas adsorbent 42 has a three-layer structure of a calcium oxide layer that adsorbs moisture, a barium / lithium alloy layer that adsorbs oxygen and nitrogen, and a cobalt oxide layer that adsorbs hydrogen. However, since the barium / lithium alloy layer has the property of adsorbing moisture in addition to oxygen and nitrogen, the adsorbability of each layer can be efficiently achieved as a structure located in the intermediate layer between the calcium oxide layer and the cobalt oxide layer. use.

ここで、樹脂製内部容器20の素材として対応可能な樹脂は、アクリロニトリルブタジエンスチレン共重合体(ABS)、アクリルニトリルスチレン共重合体(AS)、EEA樹脂(EEA)、エポキシ樹脂(EP)、エチレン酢酸ビニルポリマー(EVA)、エチレンビニルアルコール共重合体(EVOH)、液晶ポリマー(LCP)、MBS樹脂(MBS)、メラミンホルムアルデヒド(MMF)、ポリアミド(PA)、ポリブチレンテレフタラート(PBT)、ポリカーボネート樹脂(PC)、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、テトラフルオロエチレンパーフルオロアルキルビニルエーテルポリマー(PFA)、ポリイミド(PI)、ポリメタクリル酸メチル(PMMA)、ポリアセタール樹脂(POM)、ポリプロピレン(PP)、ポリフェニレンスルフィド樹脂(PPS)、ポリスチレン(PS)、ポリテトラフルオロエチレンポリ四フッ化エチレン(PTFE)、ポリウレタン(PU)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、等から選択使用される。こういった樹脂を用いることにより、射出成形や、押出し成形により複雑形状の内部容器の成形が可能となり、生産コストを抑えることができる。   Here, the resin that can be used as the material of the resin inner container 20 is acrylonitrile butadiene styrene copolymer (ABS), acrylonitrile styrene copolymer (AS), EEA resin (EEA), epoxy resin (EP), ethylene. Vinyl acetate polymer (EVA), ethylene vinyl alcohol copolymer (EVOH), liquid crystal polymer (LCP), MBS resin (MBS), melamine formaldehyde (MMF), polyamide (PA), polybutylene terephthalate (PBT), polycarbonate resin (PC), polyethylene (PE), polyethylene terephthalate (PET), tetrafluoroethylene perfluoroalkyl vinyl ether polymer (PFA), polyimide (PI), polymethyl methacrylate (PMMA), polyacetal resin (POM), polypropylene (PP ), Polyphenylene sulfide resin (PPS), polystyrene (PS), polytetrafluoroethylene polytetrafluoroethylene (PTFE), polyurethane (PU), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and the like. By using such a resin, it becomes possible to mold an inner container having a complicated shape by injection molding or extrusion molding, and the production cost can be suppressed.

次に、直方体形状でパイプ状の液体流入出口が形成された内部容器周囲に真空断熱材を形成する断熱容器を例として、本願発明に係る断熱材および断熱容器の詳細な作製方法を示すが、本願発明はこれに限定されるものではない。   Next, a heat insulating container and a heat insulating container according to the present invention will be described in detail as an example of a heat insulating container that forms a vacuum heat insulating material around an inner container in which a pipe-shaped liquid inflow / outlet is formed in a rectangular parallelepiped shape. The present invention is not limited to this.

まず、図5−1〜5−3において、断熱材の作製方法を示す。ガラスマットはロービング/ヤーンの配合重量比が30/70、針本数18本/cm2、密度90Kg/m3、厚み8mmを使用した。また、バインダーはクニミネ工業製のベントナイトを使用し、水に1.5wt%の濃度となるように添加して、10時間攪拌しバインダー溶液とした。 First, in FIGS. 5-1 to 5-3, a method for manufacturing a heat insulating material is shown. The glass mat used had a roving / yarn blending weight ratio of 30/70, 18 needles / cm 2 , a density of 90 kg / m 3 , and a thickness of 8 mm. Also, bentonite manufactured by Kunimine Kogyo was used as the binder, added to water to a concentration of 1.5 wt%, and stirred for 10 hours to obtain a binder solution.

ガラスマット80を500℃で10時間熱処理してサイジング材を除去した後、図5−1に示すように、バインダー溶液81に含浸させ、角型の芯材82に2周巻き付けた(図5−2)。これを200℃で5時間乾燥させた後、角型の芯材82を引き抜いた。図5−3に示すとおり、切断加工、孔開け加工(孔91)を行い、断熱材を構成する断面コ字型の無機繊維製成形体90とした。但し、孔開け加工を施したのは、液体の流入出口にあたる部分のみである。この時無機繊維製成形体90の厚みは14mmであった。   After the glass mat 80 was heat treated at 500 ° C. for 10 hours to remove the sizing material, as shown in FIG. 5-1, the binder solution 81 was impregnated and wound around the square core material 82 twice (FIG. 5-). 2). After drying this at 200 ° C. for 5 hours, the square core member 82 was pulled out. As shown in FIG. 5-3, cutting and punching (holes 91) were performed to obtain an inorganic fiber molded body 90 having a U-shaped cross section constituting the heat insulating material. However, only the portion corresponding to the inflow / outlet of the liquid is subjected to the perforating process. At this time, the thickness of the inorganic fiber molded body 90 was 14 mm.

ここで、ガラスマット80はニードル加工によりある程度圧縮された状態にされるが、図5−1に示されるように、角型の芯材82に巻きつける際に、テンションをかけてガラスマット80を圧縮した状態にし、さらに、そのまま、乾燥することで無機バインダーの結合力によりそのままの圧縮状態を維持できる。なお、ニードル加工のみでは、所望する圧縮率を得ることが期待できない。また、ニードル加工をせずに、テンションをかけて圧縮した状態にしたまま乾燥して無機バインダーの結合力だけで圧縮状態を維持しただけでは、製造工程におけるハンドリングが悪かったり、圧縮率低減のために多量のバインダーが必要になることが懸念される。   Here, the glass mat 80 is compressed to some extent by needle processing. However, as shown in FIG. 5A, when the glass mat 80 is wound around the square core member 82, tension is applied to the glass mat 80. The compressed state can be maintained as it is due to the binding force of the inorganic binder by drying in a compressed state. Note that it is not possible to obtain a desired compression rate only by needle processing. Also, if the compressed state is maintained only by the binding force of the inorganic binder without applying needle processing, the compressed state is maintained by applying tension, and the handling in the manufacturing process is poor, or the compression rate is reduced. There is a concern that a large amount of binder is required.

断熱容器を形成する断熱材以外の部材は次に示すものを使用した。内部容器20は、内容積約3L、肉厚8mmの直方体形状のポリエチレン製容器を使用し、内部容器20の一面に外径φ18.5mm、内径φ13mm、高さ30mmの液体の流出入口部21を設けた。また、フランジ部材60は高密度ポリエチレン製で、外径φ36mm、内径φ20mm、高さ11mm、肉厚2mmとした。
内装材30及び外装材50となるラミネートフィルムは保護層となるポリエチレンテレフタラート層(12μm)/保護層となるナイロン層(15μm)/ガスバリア層となるアルミ箔(6μm)/接着層となるポリエチレン層(50μm)という多層構成のものを使用した。
ガス吸着剤(ゲッター材)42はサエス・ゲッターズ製COMBO3 GETTERを使用した。
The following members were used as members other than the heat insulating material forming the heat insulating container. The inner container 20 uses a rectangular parallelepiped polyethylene container having an inner volume of about 3 L and a wall thickness of 8 mm. A liquid outflow inlet 21 having an outer diameter of 18.5 mm, an inner diameter of 13 mm, and a height of 30 mm is provided on one surface of the inner container 20. Provided. The flange member 60 is made of high-density polyethylene and has an outer diameter of 36 mm, an inner diameter of 20 mm, a height of 11 mm, and a wall thickness of 2 mm.
The laminate film used as the interior material 30 and the exterior material 50 is a polyethylene terephthalate layer (12 μm) serving as a protective layer / a nylon layer (15 μm) serving as a protective layer / aluminum foil (6 μm) serving as a gas barrier layer / a polyethylene layer serving as an adhesive layer. A multi-layered structure (50 μm) was used.
As the gas adsorbent (getter material) 42, COMBO3 GETTER manufactured by SAES Getters was used.

次に、断熱容器の作製方法について図6−1〜図6−7を用いて示す。
まず、図6−1に示すように、100×200mmのラミネートフィルム33に、液体の流出入口に合わせた円形の孔34,34を開け、接着層側にフランジ部材60を、リング状ヒーター70を用いて、熱溶着し貼り合せた。この時の熱溶着条件は、押付け圧力0.2MPa、ヒーター温度180℃、6秒間である。
そして、図6−2に示すように、上記ラミネートフィルム33を80×180mmの孔のあいたラミネートフィルム(内装材)30と接着層同士が相対するようにあわせ、周囲36を幅10mmで熱溶着して貼り合せた。
Next, a method for manufacturing a heat insulating container will be described with reference to FIGS.
First, as shown in FIG. 6A, circular holes 34 and 34 are formed in a laminating film 33 of 100 × 200 mm in accordance with a liquid inflow / outlet, a flange member 60 is provided on the adhesive layer side, and a ring heater 70 is provided. Using, heat-sealed and bonded. The heat welding conditions at this time are a pressing pressure of 0.2 MPa, a heater temperature of 180 ° C., and 6 seconds.
Then, as shown in FIG. 6B, the laminate film 33 is aligned so that the laminate film (interior material) 30 having a hole of 80 × 180 mm and the adhesive layer face each other, and the periphery 36 is thermally welded with a width of 10 mm. And pasted together.

次に、図6−3に示すように、内部容器20の液体の流入出口部21を、フランジ部材60の流入出口部用貫通孔61に差込んだ後、内装材30で内部容器20を包んで筒状に形成し、一辺を熱溶着37により貼り合せた。
そして、図6−4に示すように、両端の開放部を折り込み、棒状のヒーター71で熱溶着しパッケージングした。
Next, as shown in FIG. 6-3, the liquid inlet / outlet portion 21 of the inner container 20 is inserted into the inlet / outlet portion through hole 61 of the flange member 60, and then the inner container 20 is wrapped with the interior material 30. Then, it was formed into a cylindrical shape, and one side was bonded by heat welding 37.
And as shown to FIGS. 6-4, the open part of both ends was folded, and it heat-sealed with the rod-shaped heater 71, and packaged.

次に、図6−5に示すように、周囲を内装材30でパッケージングした内部容器20に、前述の断面コ字型の無機繊維製成形体90,90をセットした。この結果、内部容器20を囲繞する断熱材41を極めて容易に形成できる。このことは、断熱容器10の量産に大いに寄与するものである。このように、組み合わせることで内部容器20を囲繞できる形状の無機繊維製成形体であれば、図6−5に示す断面コ字型のものに限られない。例えば、平板、L字型、U字型、凹型、凸型のものなどが挙げられる。   Next, as shown in FIGS. 6-5, the above-mentioned inorganic fiber molded bodies 90, 90 having a U-shaped cross section were set in the inner container 20 whose periphery was packaged with the interior material 30. As a result, the heat insulating material 41 surrounding the inner container 20 can be formed very easily. This greatly contributes to mass production of the heat insulating container 10. Thus, if it is the inorganic fiber molded object of the shape which can surround the inner container 20 by combining, it will not be restricted to the thing of a cross-sectional U shape shown to FIGS. 6-5. For example, a flat plate, an L shape, a U shape, a concave shape, a convex shape, and the like can be given.

次に、図6−6に示すように、上記内部容器20を、液体の流入出口部21にあわせて孔を開けた、筒状のラミネートフィルム(外装材)50に挿入し、リング状ヒーター70を用いて、外装材50とフランジ部材60を熱溶着し貼り合せた。
そして、図6−7に示すように、開放部の片側を折り込み、棒状のヒーター71で熱溶着し、底部を除く3方が熱溶着されて袋状とした。さらに、120℃のオーブン中で24時間放置し断熱材90中に含まれる水分を蒸発させた。乾燥後はアルゴン雰囲気としたチャンバーに搬入し、外装材50が開放された底部より、ガス吸着剤となるゲッター材を1個(約7g)装填した後、チャンバー内を1Pa迄減圧し、外装材50の開放部を真空チャンバー内に設けたヒーター71により接合させて封止し、厚さ10mmの真空断熱層を有する断熱容器10を製作した。断熱材90の体積変化率は28%であった。
Next, as shown in FIGS. 6-6, the inner container 20 is inserted into a cylindrical laminate film (exterior material) 50 having a hole in accordance with the liquid inflow / outflow portion 21, and the ring-shaped heater 70. The exterior material 50 and the flange member 60 were heat-welded and bonded together.
And as shown to FIGS. 6-7, the one side of the open part was folded and heat-welded with the rod-shaped heater 71, and 3 directions except the bottom part were heat-welded and it was set as the bag shape. Further, it was left in an oven at 120 ° C. for 24 hours to evaporate water contained in the heat insulating material 90. After drying, it is carried into a chamber in an argon atmosphere, and after getting one getter material (about 7 g) as a gas adsorbent from the bottom where the exterior material 50 is opened, the inside of the chamber is decompressed to 1 Pa, and the exterior material 50 open parts were joined and sealed by a heater 71 provided in a vacuum chamber, and a heat insulating container 10 having a vacuum heat insulating layer having a thickness of 10 mm was manufactured. The volume change rate of the heat insulating material 90 was 28%.

上記実施例の断熱容器10に約100℃の温水を注ぎ約10分間放置した後廃棄し、再度約100℃の温水を断熱容器10内に注ぎ、液体の流入出口部21から熱電対を挿入して流入出口部21をゴム栓で閉じた。断熱容器10内の水温が95℃になった時点をスタートとして12時間継続して水温を測定した。その測定結果を図7に示す。
その測定結果は、12時間後の水温は79℃と優れた保温性能を示した。
About 100 ° C. warm water is poured into the heat insulation container 10 of the above embodiment and left to stand for about 10 minutes. After that, about 100 ° C. hot water is poured into the heat insulation container 10 again, and a thermocouple is inserted through the liquid inlet / outlet portion 21. Then, the inlet / outlet portion 21 was closed with a rubber stopper. The water temperature was measured continuously for 12 hours starting from the time when the water temperature in the heat insulating container 10 reached 95 ° C. The measurement results are shown in FIG.
As a result of the measurement, the water temperature after 12 hours was 79 ° C. and showed excellent heat retention performance.

本願発明によれば、液体を保温貯留する断熱容器として利用でき、特に車両用エンジンのLLCを保温貯留する断熱容器に適用するものである。その他に、電気ポットなどの保温容器あるいは液化ガスなどの保冷容器にも利用することも可能である。   According to this invention, it can utilize as a heat insulation container which heat-retains a liquid, and is applied to the heat insulation container which heat-retains the LLC of the vehicle engine especially. In addition, it can also be used for a heat retaining container such as an electric pot or a cold container such as a liquefied gas.

本願発明に係る断熱容器の縦断面図Longitudinal sectional view of a heat insulating container according to the present invention フランジ部材を示す斜視図A perspective view showing a flange member フランジ部材を示す断面図Sectional view showing the flange member 図1における液体流入出口周辺の部分拡大図Partial enlarged view around the liquid inlet / outlet in FIG. 本願発明に係る断熱材の作製方法を示す説明図(その1)Explanatory drawing which shows the preparation methods of the heat insulating material which concerns on this invention (the 1) 本願発明に係る断熱材の作製方法を示す説明図(その2)Explanatory drawing which shows the preparation methods of the heat insulating material which concerns on this invention (the 2) 本願発明に係る断熱材の作製方法を示す説明図(その3)Explanatory drawing which shows the preparation methods of the heat insulating material which concerns on this invention (the 3) 本願発明に係る断熱容器の作製方法を示す説明図(その1)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 1) 本願発明に係る断熱容器の作製方法を示す説明図(その2)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 2) 本願発明に係る断熱容器の作製方法を示す説明図(その3)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 3) 本願発明に係る断熱容器の作製方法を示す説明図(その4)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 4) 本願発明に係る断熱容器の作製方法を示す説明図(その5)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 5) 本願発明に係る断熱容器の作製方法を示す説明図(その6)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 6) 本願発明に係る断熱容器の作製方法を示す説明図(その7)Explanatory drawing which shows the preparation methods of the heat insulation container which concerns on this invention (the 7) 本実施例に係る断熱容器の保温性能を示すグラフThe graph which shows the heat retention performance of the heat insulation container which concerns on a present Example

符号の説明Explanation of symbols

10:断熱容器
20:内部容器
21:流入出口部
30:内装材(ラミネートフィルム)
31:表面側
32:向き切替え部
33:ラミネートフィルム
34:孔
35:孔
36:周囲
37,38:熱溶着部
40:断熱空間
41:断熱材(グラスウール)
42:ガス吸着剤(ゲッター剤)
50:外装材(ラミネートフィルム)
60:フランジ部材
61:流入出口部用貫通孔
62:上端部
63:上部フランジ面
64:下端部
65:下部フランジ面
70:リング状ヒーター
71:溶着封止ヒーター(棒状ヒーター)
80:ガラスマット
81:バインダー溶液
82:角型芯材(型)
90:無機繊維製成形体(断熱材パーツ)
91:孔
10: Thermal insulation container 20: Inner container 21: Inlet / outlet part 30: Interior material (laminate film)
31: Surface side 32: Orientation switching part 33: Laminate film 34: Hole 35: Hole 36: Periphery 37, 38: Thermal welding part 40: Heat insulation space 41: Heat insulation material (glass wool)
42: Gas adsorbent (getter agent)
50: Exterior material (laminate film)
60: Flange member 61: Inlet / outlet portion through hole 62: Upper end portion 63: Upper flange surface 64: Lower end portion 65: Lower flange surface 70: Ring heater 71: Welding sealing heater (bar heater)
80: Glass mat 81: Binder solution 82: Square core material (mold)
90: Inorganic fiber molded body (heat insulation parts)
91: Hole

Claims (8)

液体を保温貯留する断熱容器であって、液体の流入出口部を備えた内部容器と、内部容器を収容するシート状の外装材と、内部容器と外装材との間に断熱材とガス吸着材が封入され減圧空間とされた断熱空間とを備え、前記断熱材が複数の無機繊維製成形体を組み合わせて内部容器を囲繞するように立体成形されていることを特徴とする断熱容器。   A heat insulating container that retains and retains a liquid, the inner container having a liquid inflow / outlet portion, a sheet-shaped exterior material that accommodates the inner container, and a heat insulating material and a gas adsorbent between the inner container and the exterior material And a heat-insulating space formed into a decompression space, and the heat insulating material is three-dimensionally molded so as to surround the inner container by combining a plurality of inorganic fiber molded bodies. 無機繊維製成形体が、平板、L字型、コ字型、U字型、凹字型又は凸字型であることを特徴とする請求項1記載の断熱容器。   The heat insulating container according to claim 1, wherein the inorganic fiber molded body is a flat plate, an L shape, a U shape, a U shape, a concave shape or a convex shape. 無機繊維製成形体が、ガラス長繊維を伝熱方向に対して垂直方向に圧縮状態で配向し、無機バインダーによって保形されていることを特徴とする請求項1又は2記載の断熱容器。   The heat insulation container according to claim 1 or 2, wherein the inorganic fiber molded body is formed by orienting glass long fibers in a compressed state in a direction perpendicular to the heat transfer direction, and retained by an inorganic binder. 液体を保温貯留するために、液体の流入出口部を備えた樹脂製の内部容器と、内部容器を収容するシート状の外装材と、内部容器と外装材との間に断熱材とガス吸着材が封入され減圧空間とされた断熱空間とを備えた断熱容器用の断熱材の製造方法であって、無機繊維をニードルパンチして作製された無機繊維マットを無機バインダーの分散された水溶液中に含浸して、水分を乾燥することにより成形された後に切断加工して無機繊維製成形体を構成し、この無機繊維製成形体を複数組み合わせて内部容器を囲繞する断熱材を形成したことを特徴とする断熱容器用断熱材の製造方法。   In order to keep the liquid warm, a resin-made inner container provided with a liquid inflow / outlet part, a sheet-shaped exterior material that accommodates the inner container, and a heat insulating material and a gas adsorbent between the inner container and the exterior material A heat insulating material manufacturing method for a heat insulating container provided with a heat insulating space enclosed with a reduced pressure space, wherein an inorganic fiber mat produced by needle punching an inorganic fiber is placed in an aqueous solution in which an inorganic binder is dispersed. It is formed by impregnating and drying by moisture and then cut to form an inorganic fiber molded body, and a plurality of these inorganic fiber molded bodies are combined to form a heat insulating material surrounding the inner container. The manufacturing method of the heat insulating material for heat insulation containers. 角型の芯材に巻き付けた無機繊維マットを無機バインダーの分散された水溶液中に含浸したことを特徴とする請求項4記載の断熱容器用断熱材の製造方法。   The method for producing a heat insulating material for a heat insulating container according to claim 4, wherein an inorganic fiber mat wound around a square core material is impregnated in an aqueous solution in which an inorganic binder is dispersed. 無機繊維がガラス長繊維であることを特徴とする請求項4又は5記載の断熱容器用断熱材の製造方法。   The method for producing a heat insulating material for a heat insulating container according to claim 4 or 5, wherein the inorganic fiber is a long glass fiber. 液体を保温貯留するために、液体の流入出口部を備えた樹脂製の内部容器と、内部容器を収容するシート状の外装材と、内部容器と外装材との間に断熱材とガス吸着材が封入され減圧空間とされた断熱空間とを備えた断熱容器の製造方法であって、
予め、断熱材を構成する無機繊維製パーツを立体成形する工程と、
無機繊維製パーツを嵌め合わせて内部容器を囲繞する工程と、
無機繊維製パーツによって囲繞された内部容器を外装材に収容し、内部容器と外装材で形成される断熱空間にガス吸着材を装填した後に、断熱空間を減圧封止する工程とを備えることを特徴とする断熱容器の製造方法。
In order to keep the liquid warm, a resin-made inner container provided with a liquid inflow / outlet part, a sheet-shaped exterior material that accommodates the inner container, and a heat insulating material and a gas adsorbent between the inner container and the exterior material Is a method of manufacturing a heat insulating container provided with a heat insulating space enclosed with a decompression space,
In advance, a process of three-dimensionally molding the inorganic fiber parts constituting the heat insulating material,
Fitting the inorganic fiber parts together to surround the inner container;
A step of accommodating the inner container surrounded by the inorganic fiber parts in the exterior material, and after the gas adsorbent is loaded into the heat insulation space formed by the inner container and the exterior material, the process of sealing the heat insulation space under reduced pressure. A method for producing a heat-insulating container.
無機バインダーを含んだ水溶液に無機繊維製マットを浸す工程と、
水溶液を含んだ無機繊維製マットを圧縮した状態で乾燥する工程とを更に備えることを特徴とする請求項7記載の断熱容器の製造方法。
Immersing the inorganic fiber mat in an aqueous solution containing an inorganic binder;
The method for producing a heat insulating container according to claim 7, further comprising a step of drying the mat made of inorganic fiber containing an aqueous solution in a compressed state.
JP2008332158A 2008-12-26 2008-12-26 Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container Pending JP2010149913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332158A JP2010149913A (en) 2008-12-26 2008-12-26 Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332158A JP2010149913A (en) 2008-12-26 2008-12-26 Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container

Publications (1)

Publication Number Publication Date
JP2010149913A true JP2010149913A (en) 2010-07-08

Family

ID=42569465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332158A Pending JP2010149913A (en) 2008-12-26 2008-12-26 Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container

Country Status (1)

Country Link
JP (1) JP2010149913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137689A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and its process of manufacture
JP2015137688A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and process for manufacture of vacuum insulation material
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137689A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and its process of manufacture
JP2015137688A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and process for manufacture of vacuum insulation material
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10875009B2 (en) 2014-10-24 2020-12-29 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Similar Documents

Publication Publication Date Title
JP4960801B2 (en) Insulated container and manufacturing method thereof
KR101323490B1 (en) Vacuum insulation panel with moisture-gas adsorbing getter material and manufacturing method thereof
US8956710B2 (en) Vacuum insulation panel
EP1978312B1 (en) Heat-insulating container and method for manufacturing same
EP1905976B1 (en) Insulated container and method of manufacturing the same
CN101660648B (en) Vacuum heat insulation material, heat insulation box body using the same, and refrigerator
CN107405858A (en) Evacuated insulation panel
KR102201266B1 (en) Vacuum thermal insulation material
JP5194812B2 (en) Vacuum heat insulating material and building material to which vacuum heat insulating material is applied
JP2010149913A (en) Heat insulating container, method for manufacturing heat insulating material for heat insulating container, and method for manufacturing heat insulating container
JP2008144929A (en) Heat insulating material for very low temperature and its manufacturing method
CN102162526B (en) Optimized high pressure vessel
JP2010096291A (en) Vacuum heat insulated casing
CN101178145A (en) Vacuum insulation material and vacuum flask employing the same
JP2006183810A (en) Method of manufacturing vacuum heat insulating material
JP2010151280A (en) Insulating container and manufacturing method for insulator of insulating container
JP2006316872A (en) Vacuum heat insulating material and heat retaining equipment adopting the same
JP2544521B2 (en) Vacuum insulation panel
JP2006161939A (en) Vacuum thermal insulating material
WO2018101142A1 (en) Filter, gas adsorption device using filter, and vacuum heat insulator
JP2010235176A (en) Heat insulating container
JP2020056454A (en) Gas adsorption device and vacuum heat insulating material
JP2010179925A (en) Heat insulating container
JP2017137955A (en) Jacket material for vacuum heat insulation material and vacuum heat insulation material using the same
JP2006153150A (en) Vacuum insulation material