JP2010149122A - Method for cleaning contaminated soil or contaminated groundwater - Google Patents

Method for cleaning contaminated soil or contaminated groundwater Download PDF

Info

Publication number
JP2010149122A
JP2010149122A JP2010047324A JP2010047324A JP2010149122A JP 2010149122 A JP2010149122 A JP 2010149122A JP 2010047324 A JP2010047324 A JP 2010047324A JP 2010047324 A JP2010047324 A JP 2010047324A JP 2010149122 A JP2010149122 A JP 2010149122A
Authority
JP
Japan
Prior art keywords
soil
iron powder
groundwater
contaminated
cyan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010047324A
Other languages
Japanese (ja)
Other versions
JP5552708B2 (en
Inventor
Masami Kamata
雅美 鎌田
Shigeo Hino
成雄 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2010047324A priority Critical patent/JP5552708B2/en
Publication of JP2010149122A publication Critical patent/JP2010149122A/en
Application granted granted Critical
Publication of JP5552708B2 publication Critical patent/JP5552708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning contaminated soil or contaminated groundwater in which the contaminated soil and the contaminated groundwater can be efficiently and readily cleaned by on-site handling when soil and groundwater contained with much humus is contaminated by cyanogen and cyanogen compound or when a plurality of contaminants, such as oil contents and volatile organic compounds, in addition to the cyanogen and cyanogen compound, are intermingled in the soil and groundwater. <P>SOLUTION: Iron powder or copper-containing iron powder is mixed with the soil or groundwater containing the cyanogen and at least one of the humus, the volatile organic compounds, and the oil contents to immobilize the cyanogen. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、汚染土壌または汚染地下水の浄化方法に関し、特に、シアンや金属シアン化合物などのシアン化合物を含有する汚染土壌または汚染地下水の浄化方法に関する。   The present invention relates to a method for purifying contaminated soil or contaminated groundwater, and more particularly to a method for purifying contaminated soil or contaminated groundwater containing cyanide compounds such as cyan and metal cyanide compounds.

化学薬品工場などの跡地では、シアンやシアン化合物により土壌や地下水が汚染されている場合があり、このような跡地を再利用する際に土壌や地下水を浄化することが必要になる場合がある。従来、このようなシアンやシアン化合物により汚染された土壌を浄化するために、シアンを含有する土壌に活性炭を添加することにより、活性炭にシアンを吸着させて土壌中のシアンを固定化することが行われていた。また、シアン化合物を含有する廃棄物に鉄化合物を添加し、鉄シアノ錯塩を難溶性塩として沈殿させて除去する方法が提案されている(例えば、特許文献1参照)。   In sites such as chemical factories, soil and groundwater may be contaminated with cyanide and cyanide compounds, and it may be necessary to purify the soil and groundwater when reusing such sites. Conventionally, in order to purify soil contaminated with cyan and cyanide compounds, by adding activated carbon to soil containing cyan, it is possible to adsorb cyan to activated carbon and fix cyan in the soil. It was done. In addition, a method has been proposed in which an iron compound is added to a waste containing a cyanide compound, and an iron cyano complex salt is precipitated and removed as a hardly soluble salt (see, for example, Patent Document 1).

特開平1−224091号公報(第3頁)Japanese Patent Laid-Open No. 1-224091 (page 3)

しかし、腐植質が多く含まれている土壌がシアンやシアン化合物により汚染されている場合には、土壌に活性炭を添加してシアンやシアン化合物を吸着させる方法では、十分な効果を得ることができない場合がある。すなわち、活性炭は、吸着性に優れているものの、シアンやシアン化合物だけを選択的に吸着することができず、腐植質などの他の物質も吸着してしまうため、土壌中のシアンやシアン化合物の濃度が所望の濃度以下になるまで吸着させるためには、多量の活性炭を添加する必要があり、コストが増大し、設備が大掛かりになる。   However, when soil containing a lot of humic substances is contaminated with cyanide or cyanide, the method of adding activated carbon to the soil and adsorbing cyanide or cyanide compound cannot obtain a sufficient effect. There is a case. In other words, although activated carbon has excellent adsorptivity, it cannot selectively adsorb only cyan and cyanide compounds, and adsorbs other substances such as humic substances. In order to make it adsorb | suck until the density | concentration becomes below a desired density | concentration, it is necessary to add a lot of activated carbon, cost increases, and installation becomes large.

また、特許文献1の方法は、鉄シアノ錯塩を土壌から分離する必要があり、現地外処理(汚染土壌を掘削して場外において行う処理)に適した方法であるが、現地処理に適した方法ではなく、また、シアンやシアン化合物により汚染された地下水を浄化することができないという問題がある。また、腐植質が多く含まれている土壌や地下水がシアンやシアン化合物により汚染されている場合や、土壌や地下水にシアンやシアン化合物の他に油分や揮発性有機化合物などの複数の汚染物質が混在している場合に、汚染土壌や汚染地下水を現地処理により効率的且つ簡便に浄化することができないという問題もある。特に、土壌や地下水からのシアンやシアン化合物の溶出量が僅かであっても問題となる場合が多いので、シアンやシアン化合物の溶出をできるだけ抑制する必要がある。   Moreover, although the method of patent document 1 needs to isolate | separate an iron cyano complex salt from soil, it is a method suitable for off-site processing (processing excavated contaminated soil and carried out off-site), but is a method suitable for on-site processing. In addition, there is a problem that groundwater contaminated with cyanide and cyanide compounds cannot be purified. In addition, soil and groundwater that contain a lot of humic substances are contaminated with cyanide and cyanide, and soil and groundwater contain multiple contaminants such as oil and volatile organic compounds in addition to cyanide and cyanide. When they are mixed, there is a problem that the contaminated soil and the contaminated groundwater cannot be purified efficiently and simply by on-site treatment. In particular, even if the elution amount of cyanide and cyanide compounds from soil and groundwater is small, it often becomes a problem, and thus it is necessary to suppress elution of cyanide and cyanide compounds as much as possible.

したがって、本発明は、このような従来の問題点に鑑み、腐植質が多く含まれている土壌や地下水がシアンやシアン化合物により汚染されている場合や、土壌や地下水にシアンやシアン化合物の他に油分や揮発性有機化合物などの複数の汚染物質が混在している場合に、汚染土壌や汚染地下水を現地処理により効率的且つ簡便に浄化することができる、汚染土壌または汚染地下水の浄化方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention provides a case where soil or groundwater containing a large amount of humus is contaminated with cyanide or cyanide, or other than cyan or cyanide compound in soil or groundwater. A method for purifying contaminated soil or contaminated groundwater that can efficiently and easily purify contaminated soil and contaminated groundwater by on-site treatment when multiple contaminants such as oil and volatile organic compounds are mixed in The purpose is to provide.

本発明者らは、上記課題を解決するために鋭意研究した結果、腐植質が多く含まれている土壌や地下水がシアンやシアン化合物により汚染されている場合や、土壌や地下水にシアンやシアン化合物の他に油分や揮発性有機化合物などの複数の汚染物質が混在している場合に、土壌や地下水に鉄粉または銅含有鉄粉を添加することにより、土壌や地下水中の他の物質により影響されずにシアンやシアン化合物を選択的に固定化することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that soil and groundwater containing a large amount of humic substances are contaminated with cyanide and cyanide, or the soil and groundwater contain cyanide and cyanide. In addition to the presence of multiple pollutants such as oil and volatile organic compounds, adding iron powder or copper-containing iron powder to the soil or groundwater can affect other substances in the soil or groundwater. The present inventors have found that cyan and cyanide compounds can be selectively immobilized without completing the present invention.

すなわち、本発明による汚染土壌または汚染地下水の浄化方法は、腐植質および揮発性有機化合物の少なくとも一方とシアンを含有する土壌または地下水に鉄粉を混合してシアンを固定化することを特徴とする。この汚染土壌または汚染地下水の浄化方法において、鉄粉が銅含有鉄粉であるのが好ましい。また、土壌が0.5重量%以上のフミン酸を含有し、地下水が5g/L以上のフミン酸を含有するのが好ましい。   That is, the method for purifying contaminated soil or contaminated groundwater according to the present invention is characterized in that cyan is fixed by mixing iron powder into soil or groundwater containing at least one of humic substances and volatile organic compounds and cyanide. . In this contaminated soil or groundwater purification method, the iron powder is preferably copper-containing iron powder. Further, it is preferable that the soil contains 0.5% by weight or more of humic acid and the groundwater contains 5 g / L or more of humic acid.

また、本発明による汚染土壌または汚染地下水の浄化方法は、油分とシアンを含有する土壌または地下水に銅含有鉄粉を混合してシアンを固定化することを特徴とする。この汚染土壌または汚染地下水の浄化方法において、土壌中のシアンの濃度が1〜40ppm且つ油分の濃度が0.5〜10重量%であり、地下水中の前記シアンの濃度が10〜1000mg/L且つ油分の濃度が500〜10000mg/Lであるのが好ましい。   Further, the method for purifying contaminated soil or contaminated groundwater according to the present invention is characterized in that cyan is fixed by mixing copper-containing iron powder into soil or groundwater containing oil and cyanide. In this method for purifying contaminated soil or contaminated groundwater, the concentration of cyan in the soil is 1 to 40 ppm and the concentration of oil is 0.5 to 10% by weight, and the concentration of cyan in the ground water is 10 to 1000 mg / L and It is preferable that the oil concentration is 500 to 10,000 mg / L.

本発明によれば、腐植質が多く含まれている土壌や地下水がシアンやシアン化合物により汚染されている場合や、土壌や地下水にシアンやシアン化合物の他に油分や揮発性有機化合物などの複数の汚染物質が混在している場合に、汚染土壌や地下水を現地処理により効率的且つ簡便に浄化することができる。   According to the present invention, soil or groundwater containing a large amount of humus is contaminated with cyan or cyanide compounds, or soil or groundwater contains a plurality of oils or volatile organic compounds in addition to cyan or cyanide compounds. When the pollutants are mixed, the contaminated soil and groundwater can be purified efficiently and easily by on-site treatment.

実施例3、4および比較例2においてフミン酸の濃度と溶出シアン濃度との関係を示すグラフである。6 is a graph showing the relationship between the concentration of humic acid and the concentration of eluted cyanide in Examples 3 and 4 and Comparative Example 2.

本発明による汚染土壌または汚染地下水の浄化方法の実施の形態では、腐植質、揮発性有機化合物および油分の少なくとも1種とシアンを含有する土壌または地下水に鉄粉または銅含有鉄粉を混合してシアンを固定化する。   In the embodiment of the method for purifying contaminated soil or groundwater according to the present invention, iron powder or copper-containing iron powder is mixed with soil or groundwater containing at least one of humic substances, volatile organic compounds and oil and cyanide. Fix cyan.

本発明による汚染土壌または汚染地下水の浄化方法の実施の形態は、腐植質を多く含む土壌や地下水がシアンやシアン化合物により汚染されている場合に適用することができる。腐植質とは、土壌または石炭質中の褐色ないし黒色の無定形有機質であり、動植物体の有機質が地中において緩徐に分解して炭化されて生成すると考えられ、フミン酸(腐植酸)とともに土壌中の有機質および石炭質の大部分を形成している。フミン酸とは、土壌または低石炭化度の石炭質中に存するアルカリに可溶で酸に不溶の褐色ないし黒色の無定形酸性有機質である。   The embodiment of the method for purifying contaminated soil or contaminated groundwater according to the present invention can be applied when soil or groundwater containing a large amount of humus is contaminated with cyanide or a cyanide compound. Humus is brown or black amorphous organic matter in the soil or coal. It is thought that the organic matter of animals and plants is slowly decomposed and carbonized in the ground, and is generated together with humic acid (humic acid). It forms most of the organic and coaly matter in it. Humic acid is a brown or black amorphous acidic organic material that is soluble in alkali and insoluble in acid in soil or low coal content coal.

また、本発明による汚染土壌または汚染地下水の浄化方法は、土壌や地下水にシアンやシアン化合物の他に油分や揮発性有機化合物(VOC)などの複数の汚染物質が混在している場合にも適用することができる。油分としては、軽油、灯油、機械油などがあり、特に、鉱物油系の難水溶性の油分を含む汚染土壌や汚染地下水に適用する場合に効果がある。揮発性有機化合物としては、トリクロロエチレン(TCE)やジクロロエチレン(DCE)などの有機ハロゲン化合物が挙げられる。   Further, the method for purifying contaminated soil or contaminated groundwater according to the present invention is also applied to a case where a plurality of contaminants such as oil and volatile organic compounds (VOC) are mixed in addition to cyan and cyanide compounds in soil and groundwater. can do. Examples of oil components include light oil, kerosene, and machine oil, and are particularly effective when applied to contaminated soil and contaminated groundwater containing mineral oil-based water-insoluble oil. Examples of the volatile organic compound include organic halogen compounds such as trichlorethylene (TCE) and dichloroethylene (DCE).

また、汚染土壌または汚染地下水のpH3以下では、鉄粉の表面状態が不安定になるため、pHが3〜8の場合に特に有効である。   Further, when the pH of the contaminated soil or the contaminated groundwater is 3 or less, the surface state of the iron powder becomes unstable, which is particularly effective when the pH is 3 to 8.

本発明による汚染土壌または汚染地下水の浄化方法の実施の形態を適用可能な土壌には、砂土、砂壌土、壌土、植土壌土および腐土のいずれも含まれるが、粘土質があまりに多いと反応が遅くなる場合があるので、砂土、砂壌土、壌土および植土壌土に適用するのが好ましい。また、3%以上の水分が含まれているのが好ましい。水分が少ないと土壌中に混合した鉄粉または銅含有鉄粉が土壌に付着し難く、土壌に付着したシアンとの反応が進み難いためである。   The soil to which the embodiment of the method for purifying contaminated soil or groundwater according to the present invention can be applied includes sand, sand loam, loam, vegetated soil, and humus, but if there is too much clay. Since reaction may become slow, it is preferable to apply to sand soil, sand loam soil, loam soil and planted soil. Moreover, it is preferable that 3% or more of water is contained. This is because if the water content is low, the iron powder or copper-containing iron powder mixed in the soil hardly adheres to the soil, and the reaction with cyan adhering to the soil does not proceed easily.

また、本発明による汚染土壌または汚染地下水の浄化方法の実施の形態は、5重量%以上のフミン酸を含む土壌に適用した場合に、鉄粉や銅含有鉄粉によって汚染土壌または汚染地下水中のシアンやシアン化合物を選択的に固定化するのに好ましく、50重量%以上のフミン酸を含む土壌に適用する場合に、その効果を顕著に得ることができる。   In addition, the embodiment of the method for purifying contaminated soil or contaminated groundwater according to the present invention, when applied to soil containing 5% by weight or more of humic acid, contaminates soil or contaminated groundwater with iron powder or copper-containing iron powder. It is preferable for selectively fixing cyan and cyanide compounds, and when applied to soil containing 50% by weight or more of humic acid, the effect can be remarkably obtained.

シアン(CN)には、遊離シアンが含まれ、シアン化合物には、ニッケル、鉛、金などの金属イオンと結合した金属シアン化合物またはその錯体が含まれる。他のシアンの形態としては、めっき産業における金、銀、銅、ニッケル、クロムなどと結合したシアン化合物の錯体や、土壌中で鉄イオンと接触して生成される鉄シアノ錯体(フェロシアンまたはフェリシアン)などが挙げられる。シアンやシアン化合物は、土壌中で土粒子に付着している場合が多い。また、土壌に含まれるシアンの濃度が比較的低濃度の場合には、シアンを選択的に固定化しなくとも、活性炭を使用して、その添加量を増加すれば実質的に対応することができるが、シアンの濃度が高濃度になると、活性炭の添加量が非常に多くなる。本発明による汚染土壌または汚染地下水の浄化方法の実施の形態では、シアンを選択的に固定化することができるので、高濃度のシアンを含む場合でも、土壌に添加する鉄粉または銅含有鉄粉の増加量を少なくすることができ、溶出シアン濃度が150mg/L以上の高濃度の場合に特に有効である。   Cyan (CN) includes free cyan, and the cyan compound includes a metal cyan compound or a complex thereof bonded to a metal ion such as nickel, lead, or gold. Other forms of cyan include cyanide complexes combined with gold, silver, copper, nickel, chromium, etc. in the plating industry, and iron cyano complexes formed by contact with iron ions in the soil (ferrocyanic or ferricyan). Etc.). Cyan and cyanide compounds often adhere to soil particles in the soil. In addition, when the concentration of cyanide contained in the soil is relatively low, even if cyan is not selectively immobilized, it can be substantially dealt with by using activated carbon and increasing its addition amount. However, when the density of cyan becomes high, the amount of activated carbon added becomes very large. In the embodiment of the method for purifying contaminated soil or contaminated groundwater according to the present invention, cyan can be selectively immobilized. Therefore, even when high concentrations of cyan are included, iron powder or copper-containing iron powder added to the soil This is particularly effective when the eluted cyan concentration is a high concentration of 150 mg / L or more.

本発明による汚染土壌または汚染地下水の浄化方法の実施の形態に使用する鉄粉は、主成分として90重量%以上の鉄を含み、銅や炭素などを含んでもよい。このような鉄粉は、鉄鉱石から還元して破砕することにより製造され、還元鉄粉として市販されている。この鉄粉は、表面積が大きい鉄粉であるのが好ましく、BET法により測定された比表面積が500cm/g以上の鉄粉であるのが好ましい。また、土壌や地下水中で元の性状を維持するために、粒径が細かい方が好ましく、マイクロトラックにより測定した平均粒径D50が200μm以下であるのが好ましい。細かい鉄粉は、土壌中の水分とともに土壌粒子に付着し易く、土壌粒子に付着しているシアンまたはシアン化合物との接触や反応が促進されると考えられる。鉄粉の粒径が細か過ぎると、ハンドリングが難しくなるため、平均粒径D50が1μm以上であるのが好ましく、平均粒径D50が1〜100μmであるのが好ましい。 The iron powder used in the embodiment of the method for purifying contaminated soil or contaminated groundwater according to the present invention contains 90% by weight or more of iron as a main component, and may contain copper or carbon. Such iron powder is manufactured by reducing and crushing from iron ore, and is commercially available as reduced iron powder. This iron powder is preferably an iron powder having a large surface area, and is preferably an iron powder having a specific surface area measured by the BET method of 500 cm 2 / g or more. Further, in order to maintain the original properties in soil and groundwater, preferably better particle size fine, preferably an average particle size D 50 as measured by Microtrac it is 200μm or less. It is considered that fine iron powder easily adheres to soil particles together with moisture in the soil and promotes contact and reaction with cyanide or a cyanide compound adhering to the soil particles. If the particle size of the iron powder is too small, because the handling is difficult, preferably an average particle diameter D 50 that is 1μm or more, an average particle size D 50 preferably from 1 to 100 [mu] m.

本発明による汚染土壌または汚染地下水の浄化方法の実施の形態に使用する銅含有鉄粉は、鉄粉を硫酸銅溶液に入れて鉄粉の表面に銅を存在させることにより製造することができる。例えば、鉄粉を入れた容器に0.1〜10重量%程度の硫酸銅を添加して混合し、乾燥することによって、銅含有鉄粉を製造することができる。なお、鉄粉の表面全体に銅が被覆されると鉄の反応性が阻害されるので、鉄粉の表面がある程度露出するように銅が付着するのが好ましく、なるべく不均一に銅が付着するのが好ましい。このような銅含有鉄粉を製造するためには、鉄粉に対して0.1〜20重量%程度の銅を含むのが好ましく、0.1〜5重量%の銅を含むのがさらに好ましく、1〜5重量%の銅を含むのが最も好ましい。銅含有鉄粉に含まれる銅は、必ずしも純銅である必要はなく、主成分として80重量%以上の銅を含めばよい。但し、2次汚染を防止するために、鉛、砒素、カドミニウムなどが溶出しない銅含有鉄粉を使用するのが好ましい。また、銅含有鉄粉の代わりに、銅粉の表面に鉄が付着した粉体を使用してもよく、銅や鉄の他、ニッケル、コバルト、アルミニウムなどの2種類の金属の組み合わせからなる粉体を使用してもよい。   The copper-containing iron powder used in the embodiment of the method for purifying contaminated soil or contaminated groundwater according to the present invention can be produced by putting iron powder in a copper sulfate solution and allowing copper to exist on the surface of the iron powder. For example, copper containing iron powder can be manufactured by adding about 0.1-10 weight% copper sulfate to the container which put iron powder, mixing, and drying. In addition, since the reactivity of iron will be inhibited when the whole surface of the iron powder is coated with copper, it is preferable that the copper adheres so that the surface of the iron powder is exposed to some extent, and the copper adheres as unevenly as possible. Is preferred. In order to produce such copper-containing iron powder, it is preferable to contain about 0.1 to 20% by weight of copper, more preferably 0.1 to 5% by weight of copper based on the iron powder. Most preferably, it contains 1 to 5 weight percent copper. Copper contained in the copper-containing iron powder does not necessarily need to be pure copper, and may contain 80% by weight or more of copper as a main component. However, in order to prevent secondary contamination, it is preferable to use copper-containing iron powder from which lead, arsenic, cadmium and the like are not eluted. Moreover, instead of copper-containing iron powder, powder with iron attached to the surface of copper powder may be used, and powder made of a combination of two kinds of metals such as nickel, cobalt, and aluminum in addition to copper and iron. The body may be used.

なお、土壌または地下水中の揮発性有機化合物(VOC)は、鉄粉や銅含有鉄粉の表面近傍においてVOCの結合元素である塩素が水素と置換する脱塩素および水素結合によって分解すると考えられる。一方、シアンも鉄粉や銅含有鉄粉の表面近傍において反応し、鉄と結合して化合物を生成し、固定化されると考えられる。したがって、VOCとシアンを含む汚染土壌または汚染地下水中では、鉄粉や銅含有鉄粉の表面近傍において上記の反応が生じると考えられるが、固定化されたシアン化合物によってVOCが分解されるか否かが不明であることから、シアンの固定化によって生成された鉄粉や銅含有鉄粉の表面のシアン化合物がVOCの分解を阻害する可能性があると考えられ、シアンを固定化した鉄粉や銅含有鉄粉がVOCを分解できるとは考えられていなかった。本発明による汚染土壌または汚染地下水の浄化方法の実施の形態によれば、このような状態でもシアンの固定化およびVOCの分解が可能であることがわかった。   Note that volatile organic compounds (VOC) in soil or groundwater are considered to be decomposed by dechlorination and hydrogen bonding in which chlorine, which is a binding element of VOC, replaces hydrogen in the vicinity of the surface of iron powder or copper-containing iron powder. On the other hand, it is considered that cyan also reacts in the vicinity of the surface of iron powder or copper-containing iron powder, and binds to iron to form a compound and is immobilized. Therefore, in the contaminated soil or groundwater containing VOC and cyan, it is considered that the above reaction occurs in the vicinity of the surface of the iron powder or copper-containing iron powder, but whether or not VOC is decomposed by the immobilized cyanide compound. Since it is unclear, it is considered that iron powder produced by fixing cyan and cyanide compounds on the surface of copper-containing iron powder may inhibit the decomposition of VOC. And copper-containing iron powder was not thought to be able to decompose VOCs. According to the embodiment of the method for purifying contaminated soil or groundwater according to the present invention, it has been found that cyan fixation and VOC decomposition are possible even in such a state.

シアンやシアン化合物により汚染された土壌の汚染領域の位置や範囲の観測は、井戸を掘ってサンプリングしたり、地表において種々の計測を行うことによる。地表近傍に汚染領域がある場合には、重機によって土壌を掘削して鉄粉または銅含有鉄粉を土壌に混合すればよい。汚染領域が地下深部にある場合には、アースオーガなどの掘削機によって土壌を掘削して鉄粉または銅含有鉄粉を土壌に混合すればよい。アースオーガを用いると、掘削や鉄粉または銅含有鉄粉の混合を原位置で行うことができ、より効率的に土壌の浄化を行うことができる。また、必ずしも汚染された領域の全ての領域に鉄粉または銅含有鉄粉を混合する必要はない。混合された土壌の周辺の一定範囲では、鉄粉または銅含有鉄粉を混合しない隣接領域にも土壌の浄化の効果が波及する場合があるためである。なお、土壌に対して0.1〜10重量%の鉄粉または銅含有鉄粉を添加して混合すれば、土壌を浄化することができる。また、鉄粉または銅含有鉄粉を単独で使用してもよいが、これらを混合して使用してもよい。   Observation of the position and range of soil contaminated with cyanide or cyanide is performed by digging a well and sampling or performing various measurements on the ground surface. If there is a contaminated area near the ground surface, the soil may be excavated with heavy machinery and iron powder or copper-containing iron powder may be mixed with the soil. When the contaminated area is deep underground, the soil may be excavated by an excavator such as an earth auger and iron powder or copper-containing iron powder may be mixed with the soil. When an earth auger is used, excavation and mixing of iron powder or copper-containing iron powder can be performed in situ, and soil can be purified more efficiently. Moreover, it is not always necessary to mix iron powder or copper-containing iron powder in all areas of the contaminated area. This is because, in a certain range around the mixed soil, the soil purification effect may spread to the adjacent region where the iron powder or the copper-containing iron powder is not mixed. In addition, if 0.1-10 weight% iron powder or copper containing iron powder is added and mixed with respect to soil, soil can be purified. Moreover, although iron powder or copper containing iron powder may be used independently, these may be mixed and used.

シアンまたはシアン化合物を含む地下水を浄化する場合には、地下水を鉄粉または銅含有鉄粉に接触させればよく、例えば、地下水を一旦地上まで揚水して鉄粉または銅含有鉄粉を混合してもよいし、地下水の流路に鉄粉または銅含有鉄粉を含む土壌体(壁)を形成して地下水を通水させることにより、地下水と鉄粉または銅含有鉄粉を接触させてもよい。地下水に対して0.1〜10重量%の鉄粉または銅含有鉄粉を混合すれば、地下水を浄化することができる。この場合、地下水の量は浄化したい領域内の地下水量に応じて決定されるが、鉄粉または銅含有鉄粉を投入するときに、浄化状況を確認する計測値に応じて鉄粉または銅含有鉄粉の投入量を設定すればよい。   When purifying groundwater containing cyanide or cyanide, the groundwater may be brought into contact with iron powder or copper-containing iron powder. For example, groundwater is once pumped to the ground and mixed with iron powder or copper-containing iron powder. It is also possible to form a soil body (wall) containing iron powder or copper-containing iron powder in the flow path of groundwater and allow groundwater to flow, thereby contacting the groundwater with iron powder or copper-containing iron powder. Good. If 0.1 to 10% by weight of iron powder or copper-containing iron powder is mixed with the groundwater, the groundwater can be purified. In this case, the amount of groundwater is determined according to the amount of groundwater in the area to be purified, but when iron powder or copper-containing iron powder is introduced, the amount of groundwater contained depending on the measured value to confirm the purification status What is necessary is just to set the input amount of iron powder.

土壌と地下水の両方がシアンまたはシアン化合物に汚染された場合にも、鉄粉または銅含有鉄粉を用いて浄化することができる。この場合、アースオーガを用いて汚染土壌中に鉄粉または銅含有鉄粉を混合し、さらにその深部に位置する地下水まで到達するように掘削し、砂などに混合した鉄粉または銅含有鉄粉の土壌体を形成すれば、汚染地下水も浄化することができる。   Even when both soil and groundwater are contaminated with cyanide or cyanide, it can be purified using iron powder or copper-containing iron powder. In this case, iron powder or copper-containing iron powder is mixed in the contaminated soil using an earth auger, drilled to reach the groundwater located deeper, and mixed with sand or iron-containing iron powder. If the soil body is formed, contaminated groundwater can be purified.

なお、土壌または地下水中のフミン酸の含有量は、土壌または地下水に0.1Mの苛性ソーダを添加し、振とう後、遠心分離により残渣(1)を回収し、この残渣(1)以外の上澄み液を濾過し、その濾液にpH2〜10程度になるように塩酸を添加し、遠心分離し、沈殿物を乾燥し、残渣(2)を得た後、残渣(1)と残渣(2)の質量の和から求めることができる。   The content of humic acid in the soil or groundwater was determined by adding 0.1M caustic soda to the soil or groundwater, shaking, collecting the residue (1) by centrifugation, and collecting the supernatant other than this residue (1). The liquid was filtered, hydrochloric acid was added to the filtrate so that the pH was about 2 to 10, centrifuged, and the precipitate was dried to obtain residue (2). Then, residues (1) and (2) It can be determined from the sum of masses.

以下、本発明による汚染土壌または汚染地下水の浄化方法の実施例について詳細に説明する。なお、腐植質はフミン酸とともに土壌中の有機質および石炭質を形成するので、以下の実施例1〜6および比較例1〜3では、腐植質を多く含む汚染土壌または汚染地下水の代わりに、フミン酸を添加した疑似汚染土壌または疑似汚染水を使用した。   Hereinafter, embodiments of the method for purifying contaminated soil or contaminated groundwater according to the present invention will be described in detail. In addition, since humus forms the organic substance and coal quality in soil with humic acid, in the following Examples 1-6 and Comparative Examples 1-3, instead of the contaminated soil or contaminated groundwater containing much humus, humic acid Pseudo-contaminated soil or pseudo-contaminated water added with acid was used.

[実施例1]
ビーカーに工業用水100mLを入れ、フミン酸0.5gを添加し、30分間攪拌して混合した後、シアン水溶液1mLを添加し、攪拌して疑似汚染水を作製した。この疑似汚染水の溶出シアン濃度は18.2mg/Lであった。次いで、この疑似汚染水に鉄粉(同和鉱業(株)製のE200(平均粒径80μm、比表面積2.0m/gであり、92重量%の鉄と0.01重量%以下の銅と残部として不純物を含む鉄粉))10gを添加し、30分間攪拌して混合した。攪拌後に液をサンプリングして溶出シアンの定量分析を行ったところ、溶出シアン濃度は0.42mg/Lであり、溶出シアン固定化率は97.7%であった。
[Example 1]
Into a beaker, 100 mL of industrial water was added, 0.5 g of humic acid was added, and after stirring for 30 minutes, 1 mL of an aqueous cyan solution was added and stirred to prepare pseudo-polluted water. The elution cyanide concentration of the pseudo contaminated water was 18.2 mg / L. Then, the pseudo contaminated water into iron powder (Dowa Mining Co., Ltd. E200 (average particle size 80 [mu] m, a specific surface area of 2.0 m 2 / g, and 92% by weight of iron and 0.01% by weight of copper Iron powder containing impurities as the remainder))) 10 g was added and mixed with stirring for 30 minutes. When the solution was sampled after stirring and quantitative analysis of the eluted cyan was performed, the eluted cyan concentration was 0.42 mg / L, and the eluted cyan immobilization rate was 97.7%.

また、フミン酸の添加量を5gおよび50gにしてそれぞれ同様の実験を行ったところ、フミン酸の添加量が5gの場合には、溶出シアン濃度が0.32mg/L、溶出シアン固定化率が98.2%であり、フミン酸の添加量が50gの場合には、溶出シアン濃度が0.107mg/L、溶出シアン固定化率が99.4%であった。なお、溶出シアン固定化率は、処理前のシアン量から処理後のシアン量を減じた値を処理前のシアン濃度で除して百分率で表すことにより算出した。   The same experiment was conducted with the addition amount of humic acid being 5 g and 50 g. When the addition amount of humic acid was 5 g, the eluted cyan concentration was 0.32 mg / L, and the eluted cyan immobilization ratio was When the amount of humic acid added was 50 g, the eluted cyan concentration was 0.107 mg / L, and the eluted cyan immobilization rate was 99.4%. The elution cyan fixation rate was calculated by dividing the value obtained by subtracting the cyan amount after processing from the cyan amount before processing by the cyan density before processing, and expressing it as a percentage.

[実施例2]
実施例1と同様の鉄粉200gを投入した容器に、硫酸銅の濃度100g/Lの硫酸銅溶液20mLを容器に添加し、攪拌し、水で洗浄し、乾燥することにより、1重量%の銅を含有する銅含有鉄粉を得た。得られた銅含有鉄粉は、平均粒径80μm、比表面積2.1m/gであり、顕微鏡で観察したところ、表面に銅が点在していた。
[Example 2]
By adding 20 mL of a copper sulfate solution with a concentration of 100 g / L of copper sulfate to a container charged with 200 g of the same iron powder as in Example 1, the mixture was stirred, washed with water, and dried to obtain 1% by weight. A copper-containing iron powder containing copper was obtained. The obtained copper-containing iron powder had an average particle size of 80 μm and a specific surface area of 2.1 m 2 / g. When observed with a microscope, copper was scattered on the surface.

また、実施例1と同様にそれぞれフミン酸0.5g、5gおよび50gを添加した疑似汚染水を作製し、これらの疑似汚染水のそれぞれに上記の銅含有鉄粉10gを添加し、30分間攪拌して混合した。攪拌後に液をサンプリングして溶出シアンの定量分析を行ったところ、フミン酸の濃度にかかわらず、いずれも溶出シアン濃度が検出限界以下(ND)、溶出シアン固定化率が100%であった。   Moreover, the pseudo-contaminated water which added 0.5 g, 5 g, and 50 g of humic acids, respectively was produced similarly to Example 1, 10 g of said copper containing iron powder was added to each of these pseudo-contaminated water, and it stirred for 30 minutes And mixed. The solution was sampled after stirring and quantitative analysis of the eluted cyanide was carried out. As a result, regardless of the humic acid concentration, the eluted cyan concentration was below the detection limit (ND) and the eluted cyan fixation rate was 100%.

[比較例1]
鉄粉の代わりに活性炭10gを用いた以外は実施例1と同様の実験を行ったところ、フミン酸の添加量が0.5gおよび5gの場合には、溶出シアン濃度が検出限界以下であったが、フミン酸の添加量が50gの場合には、溶出シアン濃度が0.175mg/L、溶出シアン固定化率が99.0%であった。
[Comparative Example 1]
An experiment similar to Example 1 was conducted except that 10 g of activated carbon was used instead of iron powder. When the amount of humic acid added was 0.5 g and 5 g, the eluted cyanide concentration was below the detection limit. However, when the amount of humic acid added was 50 g, the eluted cyan concentration was 0.175 mg / L and the eluted cyan immobilization rate was 99.0%.

実施例1、2および比較例1の結果を表1に示す。

Figure 2010149122
The results of Examples 1 and 2 and Comparative Example 1 are shown in Table 1.
Figure 2010149122

[実施例3、4、比較例2]
シアン水溶液の添加量を10mLとした以外は実施例1、2および比較例1と同様の実験を行った。これらの実施例および比較例で使用した疑似汚染水の溶出シアン濃度は19mg/Lであった。これらの実施例3、4および比較例2の結果を表2および図1に示す。
[Examples 3 and 4 and Comparative Example 2]
The same experiment as in Examples 1 and 2 and Comparative Example 1 was performed except that the amount of the cyan aqueous solution added was 10 mL. The elution cyanide concentration of the pseudo contaminated water used in these examples and comparative examples was 19 mg / L. The results of Examples 3 and 4 and Comparative Example 2 are shown in Table 2 and FIG.

Figure 2010149122
Figure 2010149122

表2および図1に示すように、シアンの濃度が高い場合、比較例2では、実施例3および4と比べて、溶出シアン濃度が高く、フミン酸の濃度の増加とともに溶出シアン濃度が非常に高くなるのがわかる。   As shown in Table 2 and FIG. 1, when the cyan concentration is high, in Comparative Example 2, the eluted cyan concentration is higher than in Examples 3 and 4, and the eluted cyan concentration becomes very high as the concentration of humic acid increases. You can see it gets higher.

[実施例5]
乾燥したカオリナイト10gに工業用水100mLを添加して攪拌し、フミン酸5gを添加し、30分間攪拌して混合した後、シアン水溶液10mLを添加し、30分間攪拌して疑似汚染土壌を作製した。この疑似汚染土壌の溶出シアン濃度は20mg/Lであった。次いで、この疑似汚染土壌に実施例1と同様の鉄粉1gを添加し、60分間攪拌して混合した。撹拌後に溶出シアン濃度を測定したところ、1.373mg/Lであった。
[Example 5]
100 g of industrial water was added to 10 g of dried kaolinite and stirred, 5 g of humic acid was added, and the mixture was stirred for 30 minutes, then mixed with 10 mL of aqueous cyanide, and stirred for 30 minutes to prepare a pseudo-contaminated soil. . The elution cyanide concentration of this pseudo-contaminated soil was 20 mg / L. Next, 1 g of iron powder similar to that in Example 1 was added to the pseudo-contaminated soil, and the mixture was stirred for 60 minutes and mixed. When the eluted cyanide concentration was measured after stirring, it was 1.373 mg / L.

[実施例6]
鉄粉の代わりに実施例2と同様の銅含有鉄粉を使用した以外は実施例5と同様の実験を行ったところ、溶出シアン濃度は1.037mg/Lであった。
[Example 6]
When the same experiment as in Example 5 was performed except that the same copper-containing iron powder as in Example 2 was used instead of the iron powder, the eluted cyanide concentration was 1.037 mg / L.

[比較例3]
鉄粉の代わりに活性炭を使用した以外は実施例5と同様の実験を行ったところ、溶出シアン濃度は4.020mg/Lであった。
[Comparative Example 3]
When an experiment similar to that of Example 5 was performed except that activated carbon was used instead of iron powder, the eluted cyanide concentration was 4.020 mg / L.

実施例5、6および比較例3の結果を表3に示す。表3に示すように、実施例5および6では、比較例3よりも溶出シアン濃度を非常に低くすることができるので、溶出シアン固定化率を高くすることができる。   The results of Examples 5 and 6 and Comparative Example 3 are shown in Table 3. As shown in Table 3, in Examples 5 and 6, the eluted cyan density can be made much lower than in Comparative Example 3, so that the eluted cyan fixation rate can be increased.

Figure 2010149122
Figure 2010149122

[実施例7]
ビーカーに純水100mLを入れた後、鉱油0.05gとシアン水溶液1mLを添加し、30分間攪拌して混合し、疑似汚染水を作製した。この疑似汚染水の溶出シアン濃度は2mg/Lであった。この疑似汚染水に実施例2と同様の銅含有鉄粉10gを添加し、30分間攪拌して混合した。攪拌後に液をサンプリングして溶出シアンの定量分析を行ったところ、溶出シアン量は検出限界以下(ND)であり、シアンを完全に固定化することができた。また、その後も再溶出は観測されなかった。
[Example 7]
After adding 100 mL of pure water to a beaker, 0.05 g of mineral oil and 1 mL of cyanine aqueous solution were added, and the mixture was stirred for 30 minutes to prepare pseudo-polluted water. The elution cyanide concentration of the pseudo contaminated water was 2 mg / L. To this pseudo-polluted water, 10 g of copper-containing iron powder similar to that in Example 2 was added, and the mixture was stirred for 30 minutes and mixed. When the solution was sampled after stirring and quantitative analysis of the eluted cyan was performed, the amount of cyan eluted was below the detection limit (ND), and cyan could be completely immobilized. In addition, no re-elution was observed thereafter.

[比較例4]
実施例7の銅含有鉄粉の代わりに実施例1の鉄粉を使用して実施例7と同様の実験を行ったところ、溶出シアン量は0.336mg/Lであった。
[Comparative Example 4]
When an experiment similar to that of Example 7 was performed using the iron powder of Example 1 instead of the copper-containing iron powder of Example 7, the amount of cyan eluted was 0.336 mg / L.

[実施例8]
容積100mLの3つのバイアル瓶に、それぞれシアンおよびVOCを含有する地下水50mLを入れ、実施例1と同様の鉄粉をそれぞれ1重量%、5重量%および10重量%添加し、密閉した後、それぞれにcis−DCE(シス−ジクロロエチレン)1μLを添加し、60分間振動させ、その後、25℃で静置し、バイアル瓶のヘッドスペースからガスクロマトグラフ(GC−MS)を用いて、初期、2日後、4日後のcis−DCE濃度を測定し、4日後の溶出シアン濃度を測定した。なお、初期の溶出シアン濃度は0.736mg/Lであった。
[Example 8]
After putting 50 mL of ground water containing cyan and VOC into 3 vials each having a capacity of 100 mL, adding 1 wt%, 5 wt% and 10 wt% of iron powder similar to Example 1, respectively, and sealing each, 1 μL of cis-DCE (cis-dichloroethylene) was added to the tube, shaken for 60 minutes, and then allowed to stand at 25 ° C. Using a gas chromatograph (GC-MS) from the head space of the vial, two days later, The cis-DCE concentration after 4 days was measured, and the eluted cyan concentration after 4 days was measured. The initial eluted cyanide concentration was 0.736 mg / L.

その結果、鉄粉の添加量が1重量%の場合には、初期のcis−DCE濃度を1として、2日後および4日後のcis−DCE濃度はそれぞれ0.99および0.94であり、4日後の溶出シアン濃度は0.010mg/Lであった。また、鉄粉の添加量が5重量%の場合には、初期のcis−DCE濃度を1として、2日後および4日後のcis−DCE濃度はそれぞれ0.99および0.78であり、4日後の溶出シアン濃度は分析限界以下であった。さらに、鉄粉の添加量が10重量%の場合には、初期のcis−DCE濃度を1として、2日後および4日後のcis−DCE濃度はそれぞれ0.73および0.44であり、4日後の溶出シアン濃度は分析限界以下であった。これらの結果から、本実施例では、VOCを分解し、シアンを固定化することができるのがわかる。   As a result, when the amount of iron powder added was 1% by weight, the initial cis-DCE concentration was 1, and the cis-DCE concentrations after 2 days and 4 days were 0.99 and 0.94, respectively. The elution cyan concentration after one day was 0.010 mg / L. When the amount of iron powder added is 5% by weight, the initial cis-DCE concentration is 1, and the cis-DCE concentrations after 2 days and 4 days are 0.99 and 0.78, respectively. The elution cyanide concentration of was less than the analysis limit. Furthermore, when the amount of iron powder added is 10% by weight, the initial cis-DCE concentration is 1, and the cis-DCE concentrations after 2 days and 4 days are 0.73 and 0.44, respectively. The elution cyanide concentration of was less than the analysis limit. From these results, it can be seen that in this embodiment, VOC can be decomposed and cyan can be fixed.

[実施例9]
鉄粉の代わりに実施例2と同様の銅含有鉄粉を使用して実施例8と同様の実験を行ったところ、銅含有鉄粉の添加量が1重量%の場合には、初期のcis−DCE濃度を1として、2日後および4日後のcis−DCE濃度はそれぞれ0.92および0.79であり、4日後の溶出シアン濃度は分析限界以下であった。また、銅含有鉄粉の添加量が5重量%の場合には、初期のcis−DCE濃度を1として、2日後および4日後のcis−DCE濃度はそれぞれ0.52および0.16であり、4日後の溶出シアン濃度は分析限界以下であった。さらに、銅含有鉄粉の添加量が10重量%の場合には、初期のcis−DCE濃度を1として、2日後および4日後のcis−DCE濃度はそれぞれ0.06および0.00であり、4日後の溶出シアン濃度は分析限界以下であった。これらの結果から、本実施例では、VOCを十分に分解し、シアンを完全に固定化することができるのがわかる。
[Example 9]
When the same experiment as in Example 8 was performed using the same copper-containing iron powder as in Example 2 instead of the iron powder, when the amount of copper-containing iron powder added was 1% by weight, the initial cis -The DCE concentration was 1, and the cis-DCE concentrations after 2 days and 4 days were 0.92 and 0.79, respectively, and the eluted cyan concentration after 4 days was below the analytical limit. Moreover, when the addition amount of the copper-containing iron powder is 5% by weight, the initial cis-DCE concentration is 1, and the cis-DCE concentrations after 2 days and 4 days are 0.52 and 0.16, respectively. The elution cyanide concentration after 4 days was below the limit of analysis. Furthermore, when the addition amount of the copper-containing iron powder is 10% by weight, the initial cis-DCE concentration is 1, and the cis-DCE concentrations after 2 days and 4 days are 0.06 and 0.00, respectively. The elution cyanide concentration after 4 days was below the limit of analysis. From these results, it can be seen that in this embodiment, VOC can be sufficiently decomposed and cyan can be completely fixed.

実施例8および9の結果を表4に示す。   The results of Examples 8 and 9 are shown in Table 4.

Figure 2010149122
Figure 2010149122

Claims (2)

油分とシアンを含有する土壌または地下水に銅含有鉄粉を混合してシアンを固定化することを特徴とする、汚染土壌または汚染地下水の浄化方法。 A method for purifying contaminated soil or contaminated groundwater, comprising immobilizing cyanide by mixing copper-containing iron powder in soil or groundwater containing oil and cyanide. 前記土壌中の前記シアンの濃度が1〜40ppm且つ前記油分の濃度が0.5〜10重量%であり、前記地下水中の前記シアンの濃度が10〜1000mg/L且つ前記油分の濃度が500〜10000mg/Lであることを特徴とする、請求項1に記載の汚染土壌または汚染地下水の浄化方法。 The concentration of cyan in the soil is 1 to 40 ppm and the concentration of oil is 0.5 to 10% by weight. The concentration of cyan in the groundwater is 10 to 1000 mg / L and the concentration of oil is 500 to 500. It is 10,000 mg / L, The purification method of the contaminated soil or the contaminated groundwater of Claim 1 characterized by the above-mentioned.
JP2010047324A 2010-03-04 2010-03-04 Method for purifying contaminated soil or contaminated groundwater Active JP5552708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047324A JP5552708B2 (en) 2010-03-04 2010-03-04 Method for purifying contaminated soil or contaminated groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047324A JP5552708B2 (en) 2010-03-04 2010-03-04 Method for purifying contaminated soil or contaminated groundwater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004332777A Division JP4586155B2 (en) 2004-11-17 2004-11-17 Method for purifying contaminated soil or contaminated groundwater

Publications (2)

Publication Number Publication Date
JP2010149122A true JP2010149122A (en) 2010-07-08
JP5552708B2 JP5552708B2 (en) 2014-07-16

Family

ID=42568808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047324A Active JP5552708B2 (en) 2010-03-04 2010-03-04 Method for purifying contaminated soil or contaminated groundwater

Country Status (1)

Country Link
JP (1) JP5552708B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162594A (en) * 2018-03-20 2019-09-26 株式会社大林組 Contaminated water purification method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115557A (en) * 1977-02-28 1978-10-09 Dowa Mining Co Method of removing detrimental material in drainage
US4382865A (en) * 1978-09-14 1983-05-10 Envirogenics Systems Company Treatment of reducible halohydrocarbon containing aqueous stream
JPS62282692A (en) * 1986-06-02 1987-12-08 Nippon Steel Corp Activated sludge treatment of waste water
US5837145A (en) * 1997-05-23 1998-11-17 Aluminum Company Of America Method for treating water contaminated with cyanide
JP2000005740A (en) * 1998-06-26 2000-01-11 Dowa Mining Co Ltd Cleaning method of soil and underground water contaminated with organic chlorine compound
JP2001504032A (en) * 1996-11-08 2001-03-27 ソカー リミテッド Water treatment method
JP2003260456A (en) * 2002-03-08 2003-09-16 Toyo Ink Mfg Co Ltd Soil purifying agent and method for purifying soil
JP2003339902A (en) * 2002-05-29 2003-12-02 Dowa Mining Co Ltd Decomposing agent for organic halogen compound and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115557A (en) * 1977-02-28 1978-10-09 Dowa Mining Co Method of removing detrimental material in drainage
US4382865A (en) * 1978-09-14 1983-05-10 Envirogenics Systems Company Treatment of reducible halohydrocarbon containing aqueous stream
JPS62282692A (en) * 1986-06-02 1987-12-08 Nippon Steel Corp Activated sludge treatment of waste water
JP2001504032A (en) * 1996-11-08 2001-03-27 ソカー リミテッド Water treatment method
US5837145A (en) * 1997-05-23 1998-11-17 Aluminum Company Of America Method for treating water contaminated with cyanide
JP2000005740A (en) * 1998-06-26 2000-01-11 Dowa Mining Co Ltd Cleaning method of soil and underground water contaminated with organic chlorine compound
JP2003260456A (en) * 2002-03-08 2003-09-16 Toyo Ink Mfg Co Ltd Soil purifying agent and method for purifying soil
JP2003339902A (en) * 2002-05-29 2003-12-02 Dowa Mining Co Ltd Decomposing agent for organic halogen compound and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162594A (en) * 2018-03-20 2019-09-26 株式会社大林組 Contaminated water purification method
JP7098990B2 (en) 2018-03-20 2022-07-12 株式会社大林組 Contaminated water purification method

Also Published As

Publication number Publication date
JP5552708B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Yang et al. In situ chemical fixation of arsenic-contaminated soils: An experimental study
Yuan et al. Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer
JP4235688B2 (en) Purification method for contaminated soil
Chung et al. Inhibition of urea hydrolysis by free Cu concentration of soil solution in microbially induced calcium carbonate precipitation
Xu et al. Impacts of sediment particle grain size and mercury speciation on mercury bioavailability potential
Fernández-Calviño et al. Heavy metals fractionation and desorption in pine bark amended mine soils
JP6235596B2 (en) NOVEL POWDER, POWDER COMPOSITION, METHOD OF USING THEM, AND USE OF THE POWDER AND POWDER COMPOSITION
Pellera et al. Effect of dried olive pomace–derived biochar on the mobility of cadmium and nickel in soil
Azouzi et al. Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil
Ray et al. Removal of selected pollutants from aqueous media by hardwood mulch
Abollino et al. The efficiency of vermiculite as natural sorbent for heavy metals. Application to a contaminated soil
Schwartz et al. Impact of dissolved organic matter on mercury and methylmercury sorption to activated carbon in soils: implications for remediation
Fernández et al. Sorption of Zn (II) and Cu (II) by four Argentinean soils as affected by pH, oxides, organic matter and clay content
Wei et al. Alkaline-assisted leaching of iron-cyanide complex from contaminated soils
Peng et al. Simultaneous immobilization of arsenic, lead, and cadmium in soil by magnesium-aluminum modified biochar: Influences of organic acids, aging, and rainfall
Malehase et al. Determination of mercury and its fractionation products in samples from legacy use of mercury amalgam in gold processing in Randfontein, South Africa
Bagherifam et al. In situ stabilization of arsenic in soil with organoclay, organozeolite, birnessite, goethite and lanthanum-doped magnetic biochar
JP5552708B2 (en) Method for purifying contaminated soil or contaminated groundwater
Gruden et al. Preliminary Evaluation of Animal Bone Char as Potential Metal Stabilization Agent in Metal Contaminated Soil.
JP4586155B2 (en) Method for purifying contaminated soil or contaminated groundwater
Shih et al. Assessment of ex-situ chemical washing of heavy metals from estuarine sediments around an industrial harbor in Southern Taiwan
Satti et al. Adsorption of cadmium from aqueous solution onto untreated gypsum rock material: Equilibrium and kinetics
Shahkolaie et al. Cadmium and lead immobilization in a calcareous contaminated soil using the cost-effective amendments
Im et al. Role of phosphate and Fe-oxides on the acid-aided extraction efficiency and readsorption of As in field-aged soil
Çoruh et al. Copper Adsorption from Aqueous Solutions by Usıng Red Mud–An Aluminium Industry Waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5552708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250