JP2010148007A - Optical communication system and method of generating modulation optical signal - Google Patents

Optical communication system and method of generating modulation optical signal Download PDF

Info

Publication number
JP2010148007A
JP2010148007A JP2008325763A JP2008325763A JP2010148007A JP 2010148007 A JP2010148007 A JP 2010148007A JP 2008325763 A JP2008325763 A JP 2008325763A JP 2008325763 A JP2008325763 A JP 2008325763A JP 2010148007 A JP2010148007 A JP 2010148007A
Authority
JP
Japan
Prior art keywords
optical
signal
optical signal
predetermined
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008325763A
Other languages
Japanese (ja)
Inventor
Tomohiro Taniguchi
友宏 谷口
Hisaya Sakurai
尚也 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008325763A priority Critical patent/JP2010148007A/en
Publication of JP2010148007A publication Critical patent/JP2010148007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical communication system and method of generating a modulation optical signal, wherein polarization-independent coherent detection can be performed at an optical receiver. <P>SOLUTION: An optical transmitter comprises: a wavelength sweep light source 11 which outputs an optical signal sweeping a predetermined wavelength range at a predetermined repeat frequency; a modulation signal generator 17 which outputs a modulation signal obtained by multiplexing data of wavelength channels on a time base; an optical modulator 13 for modulating the output optical signal of the wavelength sweep light source 11 with the modulation signal; an optical demultiplexer 13 for demultiplexing the modulated optical signal into two optical signals; an optical retarder 14 for giving time delay to one of the demultiplexed optical signals in such a way that a time difference of the two demultiplexed optical signals becomes a half value of an inverse of the predetermined repeat frequency; a polarization adjuster 15 for controlling a polarization state of the other demultiplexed optical signal in such a way that polarization directions of the two demultiplexed optical signals become orthogonal to each other; and an optical multiplexer 16 for multiplexing and sending out the two demultiplexed optical signals. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数波長チャネルの変調光信号を伝送する光通信システムおよび複数波長チャネルの変調光信号を生成する方法に関する。   The present invention relates to an optical communication system for transmitting a modulated optical signal of a plurality of wavelength channels and a method for generating a modulated optical signal of a plurality of wavelength channels.

従来技術を用いて複数の波長の変調光信号を生成する方法について、図7を用いて説明する。この方法は、主に、単一の光伝送路に複数の波長の光信号を多重して伝送し、伝送容量の拡大や、サービスラインナップ、加入者収容数の向上を実現する、いわゆる波長多重(WDM:Wavelength Division Multiplexing)システムや、周波数多重(FDM:Frequency Division Multiplexing)システムと呼ばれる光通信システムに適用することが想定される。   A method for generating modulated optical signals of a plurality of wavelengths using the conventional technique will be described with reference to FIG. This method mainly multiplexes and transmits optical signals of a plurality of wavelengths on a single optical transmission line, and realizes so-called wavelength multiplexing (expansion of transmission capacity, service lineup, and increase in the number of subscribers). It is assumed to be applied to an optical communication system called a WDM (Wavelength Division Multiplexing) system or a Frequency Division Multiplexing (FDM) system.

光送信器では、一定の繰り返し周期(1/B)で所定の波長範囲(N×B)が掃引される波長スイープ光を生成する。生成法としては、例えば、図7に示すように、波長掃引信号発生器23が生成するランプ波形の信号電流を、波長掃引信号振幅調整器24で適宜電流振幅を調整した後、半導体レーザ光源21の電極に直接印加する構成が考えられる。ここで、前記の周期1/Bは、各波長チャネルのシンボル長に一致するよう設定する。この波長スイープ光に対し、光変調器22において変調信号発生器25の各波長チャネルの送信データを時間軸多重した信号で変調を施すことで、全てのチャネルの波長帯域がそれぞれ対応する送信データで変調される。これにより、複数波長の変調光信号が一括で生成される。波長スイープ光は、光変調器12において変調信号発生器17の出力信号で変調される。光受信器では、光ヘテロダイン検波に用いるローカル光の波長を、選択受信したい波長チャネル(図7ではチャネル1)の近傍に設定し、受光器28から出力される中間周波数信号を復調することで、この波長チャネルのデータを再生する(非特許文献1参照)。   The optical transmitter generates wavelength sweep light in which a predetermined wavelength range (N × B) is swept at a constant repetition period (1 / B). As a generation method, for example, as shown in FIG. 7, the signal current of the ramp waveform generated by the wavelength sweep signal generator 23 is appropriately adjusted by the wavelength sweep signal amplitude adjuster 24, and then the semiconductor laser light source 21. A configuration in which the voltage is directly applied to the electrodes can be considered. Here, the period 1 / B is set to match the symbol length of each wavelength channel. The wavelength sweep light is modulated with a signal obtained by time-multiplexing the transmission data of each wavelength channel of the modulation signal generator 25 in the optical modulator 22 with the transmission data corresponding to the wavelength bands of all the channels. Modulated. As a result, modulated optical signals having a plurality of wavelengths are collectively generated. The wavelength sweep light is modulated by the output signal of the modulation signal generator 17 in the optical modulator 12. In the optical receiver, the wavelength of the local light used for optical heterodyne detection is set in the vicinity of the wavelength channel (channel 1 in FIG. 7) to be selectively received, and the intermediate frequency signal output from the light receiver 28 is demodulated, The data of this wavelength channel is reproduced (see Non-Patent Document 1).

通常、波長多重(WDM:Wavelength Division Multiplexing)システムや、周波数多重(FDM:Frequency Division Multiplexing)システムでは、波長数に応じた光源、光変調器を用意し、さらにそれぞれの光源の波長を予め定められた波長配置に設定する必要があるため、光送信器の構成が複雑になる。一方、従来技術によれば、上述のように単一の光源と光変調器で複数波長の変調光信号を一括で生成できるため、光送信器の構成を簡素にできる。
谷口友宏,成川聖,桜井尚也,木村秀明,坪川信,“光FDMアクセスシステムにおける波長スイープ光を用いた共用型光送信器の提案”,電子情報通信学会2007年ソサエティ大会講演論文集,2007年8月29日,B−10−64,第258頁 谷口友宏,桜井尚也,木村秀明,坪川信,“波長スイープ光FDMシステムにおける隣接チャネル干渉抑圧のための送信光スペクトル成形”,電子情報通信学会2008年総合大会講演論文集,社団法人電子情報通信学会2008年3月5日発行,B−10−57,第340頁 松尾慎治,硴塚孝明,瀬川徹,藤原直樹,柴田泰夫,八坂洋,鈴木博之,“周波数変調型SSG−DBRレーザと波長フィルタを用いた送信素子”,電子情報通信学会2007年ソサイエティ大会講演論文集,社団法人電子情報通信学会2007年8月29日発行,C−4−14,第220頁 L.-S.Yan, C.Yeh, G.Yang, L.Lin, Z.Chen, Y.Q.Shi, and X.Steve Yao, ”Fast digitally variable differential group delay module using polarization switching,” Optical Fiber Communication Conference and Exhibit(OFC), 2002, FA5
Usually, in a wavelength division multiplexing (WDM) system and a frequency division multiplexing (FDM) system, a light source and an optical modulator corresponding to the number of wavelengths are prepared, and the wavelength of each light source is determined in advance. Therefore, the configuration of the optical transmitter becomes complicated. On the other hand, according to the conventional technique, as described above, modulated optical signals of a plurality of wavelengths can be generated at once by using a single light source and an optical modulator, so that the configuration of the optical transmitter can be simplified.
Tomohiro Taniguchi, Kiyoshi Narukawa, Naoya Sakurai, Hideaki Kimura, Shin Tsubokawa, “Proposal of Shared Optical Transmitter Using Wavelength Sweep Light in Optical FDM Access System”, Proceedings of 2007 Society Conference of IEICE, 2007 August 29, B-10-64, p. 258 Tomohiro Taniguchi, Naoya Sakurai, Hideaki Kimura, Shin Tsubokawa, “Transmission Optical Spectrum Shaping for Suppression of Adjacent Channel Interference in Wavelength Sweep Optical FDM System”, Proceedings of 2008 IEICE General Conference, The Institute of Electronics, Information and Communication Engineers Published March 5, 2008, B-10-57, p.340 Shinji Matsuo, Takaaki Sakurazuka, Toru Segawa, Naoki Fujiwara, Yasuo Shibata, Hiroshi Yasaka, Hiroyuki Suzuki, “Transmitting Elements Using Frequency Modulated SSG-DBR Lasers and Wavelength Filters”, Proceedings of the 2007 IEICE Society Conference , The Institute of Electronics, Information and Communication Engineers August 29, 2007, C-4-14, p. 220 L.-S.Yan, C.Yeh, G.Yang, L.Lin, Z.Chen, YQShi, and X.Steve Yao, `` Fast digitally variable differential group delay module using polarization switching, '' Optical Fiber Communication Conference and Exhibit (OFC), 2002, FA5

従来技術において、光受信器でコヒーレント検波を行う場合には、光伝送路を介して受信する信号光と、光受信器内に設置されるローカル光源からの出力光との偏波状態を一致させる必要がある。このためには通常、受信側で偏波追尾機能を設けて、常に2つの光信号の偏波状態を一致させるよう信号光、ローカル光のいずれかの偏波状態を制御するか、偏波ダイバーシティ型の受信回路を構成することになるが、いずれの方法を用いても光受信器の構成が複雑になってしまう。   In the conventional technique, when coherent detection is performed by an optical receiver, the polarization state of the signal light received via the optical transmission path and the output light from the local light source installed in the optical receiver are matched. There is a need. For this purpose, a polarization tracking function is usually provided on the receiving side, and the polarization state of either the signal light or the local light is controlled so that the polarization states of the two optical signals always coincide with each other. However, the configuration of the optical receiver is complicated regardless of which method is used.

本発明は、このような背景に行われたものであって、コヒーレント検波を適用する際の上述の偏波依存性の課題を、簡素な構成の光受信器で解決できる光通信システムおよび変調光信号の生成方法を提供することを目的とする。   The present invention has been made in such a background, and an optical communication system and modulated light that can solve the above-described problem of polarization dependence when applying coherent detection with an optical receiver having a simple configuration. An object of the present invention is to provide a signal generation method.

上記目的を達成するため、本発明の光通信システムは、複数波長チャネルの変調光信号を出力する光送信器と、該光送信器から光伝送路を介して送信された光信号のうち所定の波長チャネルの光信号を抽出して受信する光受信器からなる光通信システムであって、前記の光送信器が、所定の繰り返し周波数で所定の波長範囲を掃引する光信号を出力する波長スイープ光源と、各波長チャネルのデータを時間軸上で多重して得られる変調信号を出力する変調信号発生器と、前記波長スイープ光源から出力された光信号を前記変調信号で変調する光変調器と、変調された前記光信号を2つに分岐する光分岐器と、前記光分岐器で分岐された2つの光信号の時間差が所定の繰り返し周波数の逆数の半値になるように、分岐された一方の光信号に対して時間遅延を与える光遅延器と、前記光分岐器で分岐された2つの光信号の偏波方向が互いに直交するように、分岐された他方の光信号の偏波状態を制御する偏波調整器と、前記時間遅延を与えられ、偏波状態を制御された2つの光信号を合波し、光伝送路に送出する光合波器を備えることを特徴とする。   To achieve the above object, an optical communication system according to the present invention includes an optical transmitter that outputs a modulated optical signal of a plurality of wavelength channels, and a predetermined number of optical signals transmitted from the optical transmitter via an optical transmission line. An optical communication system comprising an optical receiver for extracting and receiving an optical signal of a wavelength channel, wherein the optical transmitter outputs an optical signal that sweeps a predetermined wavelength range at a predetermined repetition frequency. A modulation signal generator that outputs a modulation signal obtained by multiplexing the data of each wavelength channel on the time axis, an optical modulator that modulates the optical signal output from the wavelength sweep light source with the modulation signal, and One of the optical branching devices that branches the modulated optical signal into two, and the time difference between the two optical signals branched by the optical branching device is half the reciprocal of a predetermined repetition frequency. For optical signal An optical delay device that gives a time delay, and a polarization adjuster that controls the polarization state of the other branched optical signal so that the polarization directions of the two optical signals branched by the optical splitter are orthogonal to each other And an optical multiplexer that combines the two optical signals that are given the time delay and whose polarization state is controlled, and sends the optical signal to the optical transmission line.

また、本発明の光通信システムは、複数波長チャネルの変調光信号を出力する光送信器と、該光送信器から光伝送路を介して送信された光信号のうち所定の波長チャネルの光信号を抽出して受信する光受信器からなる光通信システムであって、前記光送信器が、所定の繰り返し周波数で所定の波長範囲を掃引する光信号を出力する波長スイープ光源と、各波長チャネルのデータを時間軸上で多重して得られる変調信号を出力する変調信号発生器と、前記波長スイープ光源から出力された光信号を前記変調信号で変調する光変調器と、変調された前記光信号の偏波状態を、所定の互いに直交した偏波面に対して45度の角度差を有する直線偏波状態になるように制御する偏波調整器と、直線偏波状態になった、互いに直交した偏波成分を有する光信号に対して、前記所定の繰り返し周波数の逆数の半値の群遅延時間差を生じさせ、光伝送路に送出する偏波分散発生器を備えることを特徴とする。   The optical communication system of the present invention includes an optical transmitter that outputs a modulated optical signal of a plurality of wavelength channels, and an optical signal of a predetermined wavelength channel among optical signals transmitted from the optical transmitter via an optical transmission line. An optical communication system comprising an optical receiver that extracts and receives a wavelength sweep light source that outputs an optical signal that sweeps a predetermined wavelength range at a predetermined repetition frequency, and each wavelength channel A modulation signal generator that outputs a modulation signal obtained by multiplexing data on a time axis, an optical modulator that modulates an optical signal output from the wavelength sweep light source with the modulation signal, and the modulated optical signal And a polarization controller for controlling the polarization state to a linear polarization state having an angle difference of 45 degrees with respect to predetermined orthogonal planes of polarization, and a linear polarization state and orthogonal to each other Has polarization component With respect to the signal, causing the differential group delay of half the reciprocal of the predetermined repetition frequency, characterized in that it comprises a polarization dispersion generator for delivering the optical transmission path.

前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、直接変調型の半導体レーザに、所定の繰り返し周期のランプ波形の電流を印加することで生成されることが好ましい。また、前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、分布反射型レーザの位相調整領域に所定の繰り返し周期を有するランプ波形状の信号を印加することで生成されることが好ましい。また、前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、単一スペクトルのレーザの出力を位相変調器に接続し、前記位相変調器に所定の繰り返し周期のパラボラ型波形の電圧を入力することで生成されることが好ましい。また、前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、レーザの一方の反射端に外部共振器を接続し、前記外部共振器に制御信号を入力して外部共振器内の光導波路の屈折率を変化させる、もしくは、機械的回転により外部共振器と光路との間の角度を変化させることで生成されることが好ましい。また、前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、所定の繰り返し周期、所定の波長帯域のパルス光を生成し、波長に比例した遅延時間を与える群遅延特性を有する分散媒質を通過させることで生成されることが好ましい。   The optical signal sweeping a predetermined wavelength range at the predetermined repetition frequency is preferably generated by applying a ramp waveform current having a predetermined repetition period to a direct modulation type semiconductor laser. The optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency is preferably generated by applying a ramp-shaped signal having a predetermined repetition period to the phase adjustment region of the distributed reflection laser. . An optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency is obtained by connecting a single-spectrum laser output to a phase modulator, and applying a parabolic waveform voltage having a predetermined repetition period to the phase modulator. It is preferably generated by inputting. An optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency is connected to an external resonator at one reflection end of the laser, and a control signal is input to the external resonator to input an optical signal in the external resonator. It is preferably generated by changing the refractive index of the waveguide or changing the angle between the external resonator and the optical path by mechanical rotation. Further, the optical signal sweeping a predetermined wavelength range at the predetermined repetition frequency generates a pulsed light having a predetermined repetition period and a predetermined wavelength band, and has a group delay characteristic that gives a delay time proportional to the wavelength. It is preferable that it is produced | generated by letting pass.

また、本発明の変調光信号の生成方法は、所定の繰り返し周波数で所定の波長範囲を掃引する光信号を生成するステップと、各波長チャネルのデータを時間軸上で多重して得られる変調信号を生成するステップと、出力された前記光信号を前記変調信号で変調するステップと、変調された前記光信号を2つに分岐するステップと、分岐された2つの光信号の時間差が所定の繰り返し周波数の逆数の半値になるように、分岐された一方の光信号に対して時間遅延を与えるステップと、分岐された2つの光信号の偏波方向が互いに直交するように、分岐された他方の光信号の偏波状態を制御するステップと、前記時間遅延を与えられ、偏波状態を制御された2つの光信号を合波するステップを含むことを特徴とする。   The modulated optical signal generation method of the present invention includes a step of generating an optical signal that sweeps a predetermined wavelength range at a predetermined repetition frequency, and a modulated signal obtained by multiplexing the data of each wavelength channel on the time axis. A step of modulating the output optical signal with the modulation signal, a step of branching the modulated optical signal into two, and a time difference between the two branched optical signals is a predetermined repetition. The step of giving a time delay to one of the branched optical signals so that the half value of the reciprocal of the frequency is half, and the other of the branched optical signals so that the polarization directions of the two branched optical signals are orthogonal to each other The method includes a step of controlling a polarization state of an optical signal and a step of combining two optical signals which are given the time delay and whose polarization state is controlled.

また、本発明の変調光信号の生成方法は、所定の繰り返し周波数で所定の波長範囲を掃引する光信号を生成するステップと、各波長チャネルのデータを時間軸上で多重して得られる変調信号を生成するステップと、出力された前記光信号を前記変調信号で変調するステップと、変調された前記光信号の偏波状態を、所定の互いに直交した偏波面に対して45度の角度差を有する直線偏波状態になるように制御するステップと、直線偏波状態になった、互いに直交した偏波成分を有する光信号に対して、前記所定の繰り返し周波数の逆数の半値の群遅延時間差を生じさせるステップを含むことを特徴とする。   The modulated optical signal generation method of the present invention includes a step of generating an optical signal that sweeps a predetermined wavelength range at a predetermined repetition frequency, and a modulated signal obtained by multiplexing the data of each wavelength channel on the time axis. A step of modulating the output optical signal with the modulation signal, and a polarization state of the modulated optical signal with an angle difference of 45 degrees with respect to a predetermined plane of polarization orthogonal to each other A step of controlling to have a linear polarization state, and a group delay time difference of half the reciprocal of the predetermined repetition frequency for an optical signal having polarization components orthogonal to each other in a linear polarization state. Including the step of generating.

以上説明したように、本発明の光通信システムは、単一の光源と光変調器を用い、前記の光源に波長掃引信号を印加して周波数変調することで、簡素な光送信器構成で複数波長の光信号を生成することができ、さらに、生成した複数波長光信号を所定の時間差を付与して直交偏波合成するという簡素な構成で、コヒーレント検波を用いる光受信器において、偏波変動に不感応な受信を実現できるため、経済的なシステム構成で大きなロスバジェットを確保できる。   As described above, the optical communication system of the present invention uses a single light source and an optical modulator, applies a wavelength sweep signal to the light source, and modulates the frequency to provide a plurality of optical transmitters with a simple optical transmitter configuration. It is possible to generate an optical signal with a wavelength, and furthermore, in an optical receiver using coherent detection with a simple configuration in which the generated multi-wavelength optical signal is given a predetermined time difference and is orthogonally polarized and combined, polarization fluctuations Therefore, a large loss budget can be secured with an economical system configuration.

本発明の実施の形態について図面を参照して説明する。
(第1の実施形態)
本発明の光通信システムは、複数波長チャネルの変調光信号を出力する光送信器と、光送信器から光伝送路を介して送信された光信号のうち所定の波長チャネルの光信号を抽出して受信する光受信器により構成される。本発明の光通信システムの第1の実施形態について、図1〜図4を用いて説明する。図1は、本発明の第1の実施形態における光送信器の構成を示している。光送信器は、光部品として、波長スイープ光源11、光変調器12、光分岐器13、光遅延器14、偏波調整器15および光合波器16を有している。波長スイープ光源11からは、所定の繰り返し周期(1/B:各波長チャネルのシンボル長に等しい)で所定の波長範囲を掃引する光信号を出力する波長スイープ光が生成され、波長スイープ光は、光変調器12において変調信号発生器17から出力された変調信号で変調される。波長スイープ光は、図2に示すように、レーザの注入電流を変化させることで出力波長を制御する直接変調型の半導体レーザに、周期1/Bのランプ波形の電流を印加することで容易に生成できる。例えば、レーザ光源に、単一スペクトルの光信号を生成する分布帰還型(DFB:Distributed FeedBack)レーザを用い、レーザの発振波長が印加電流に応じて変化するチャープ現象を用いて波長スイープ光を生成する方法が考えられる。これにより、数GHz程度の繰り返し周期で、数10GHzの波長スイープ範囲を得ることができる。また、この場合、波長スイープと同時に強度変動も生じてしまうため、必要に応じて、レーザ光源の後段において利得飽和領域で動作させた半導体光増幅器(SOA:Semiconductor Optical Amplifier)などを用いて、上記の強度変動成分を抑圧することも有用である(非特許文献2参照)。
Embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
The optical communication system of the present invention extracts an optical signal of a predetermined wavelength channel from an optical transmitter that outputs a modulated optical signal of a plurality of wavelength channels and an optical signal transmitted from the optical transmitter via an optical transmission line. It is comprised by the optical receiver which receives. A first embodiment of an optical communication system of the present invention will be described with reference to FIGS. FIG. 1 shows the configuration of an optical transmitter according to the first embodiment of the present invention. The optical transmitter includes a wavelength sweep light source 11, an optical modulator 12, an optical branching device 13, an optical delay device 14, a polarization adjuster 15, and an optical multiplexer 16 as optical components. The wavelength sweep light 11 generates a wavelength sweep light that outputs an optical signal that sweeps a predetermined wavelength range at a predetermined repetition period (1 / B: equal to the symbol length of each wavelength channel). The optical modulator 12 modulates the modulated signal output from the modulation signal generator 17. As shown in FIG. 2, wavelength sweep light is easily obtained by applying a current having a ramp waveform with a period of 1 / B to a direct modulation type semiconductor laser that controls the output wavelength by changing the injection current of the laser. Can be generated. For example, a distributed feedback (DFB) laser that generates a single-spectrum optical signal is used as the laser light source, and wavelength sweep light is generated using a chirp phenomenon in which the oscillation wavelength of the laser changes according to the applied current. A way to do this is conceivable. Thereby, a wavelength sweep range of several tens GHz can be obtained with a repetition period of about several GHz. In this case, since the intensity fluctuation occurs simultaneously with the wavelength sweep, the semiconductor optical amplifier (SOA: Semiconductor Optical Amplifier) operated in the gain saturation region in the subsequent stage of the laser light source is used as necessary. It is also useful to suppress the intensity fluctuation component (see Non-Patent Document 2).

また、より高速かつ広帯域な波長スイープ光を生成するために、分布反射型(DBR:Distributed Bragg Reflector)レーザの位相調整領域に所定の繰り返し周期(1/B:各波長チャネルのシンボル長に等しい)を有するランプ波形状の信号(波長掃引信号)を印加する方法も考えられる(非特許文献3参照)。   In addition, in order to generate a wavelength sweep light with a higher speed and a wider band, a predetermined repetition period (1 / B: equal to the symbol length of each wavelength channel) in a phase adjustment region of a distributed reflection (DBR) laser A method of applying a ramp-wave shape signal (wavelength sweep signal) having the above is also conceivable (see Non-Patent Document 3).

上記の方法に加えて、単一スペクトルのレーザ光源の出力を位相変調器に接続し、この位相変調器に周期1/Bのパラボラ型波形の信号電圧を入力することでも波長スイープ光は生成できる。さらに、レーザの一方の反射端に外部共振器を接続し、この外部共振器に制御信号を入力して外部共振器内の光導波路の屈折率を変化させる、もしくは、機械的回転により外部共振器と光路との間の角度を変化させることで、出力光信号の波長をスイープさせることも可能である。また、図3に示すような、パルス光源を用いた構成も考えられる。この構成では、繰返し周期1/B、波長帯域N×Bのパルス光を生成し、図示するような波長に比例した遅延時間を与える群遅延特性を有する分散媒質を通過させることで、上記の波長スイープ光を生成することができる。   In addition to the above method, wavelength sweep light can be generated by connecting the output of a single spectrum laser light source to a phase modulator and inputting a signal voltage having a parabolic waveform with a period of 1 / B to the phase modulator. . Further, an external resonator is connected to one reflection end of the laser, and a control signal is input to the external resonator to change the refractive index of the optical waveguide in the external resonator, or the external resonator is mechanically rotated. The wavelength of the output optical signal can be swept by changing the angle between the optical path and the optical path. A configuration using a pulse light source as shown in FIG. 3 is also conceivable. In this configuration, pulse light having a repetition period of 1 / B and a wavelength band N × B is generated and passed through a dispersion medium having a group delay characteristic that gives a delay time proportional to the wavelength as shown in the figure, thereby allowing the above wavelength to pass. Sweep light can be generated.

また、ここで用いる変調信号は、図4に示すように、各波長チャネルの送信データ(B[b/s])を時間軸上で多重して得られるデータ信号(B×N[b/s])である。このようにして生成された変調光信号は、光分岐器13により2つの出力に分岐され、それぞれ光遅延器14、偏波調整器15に入力され、これら2つの光信号が相互の時間差が1/2Bで、偏波が互いに直交した状態になるよう調整された後、光合波器16で合波され、光伝送路に送出される。この構成により、図1に示すように、複数波長の光信号であり、各波長チャネルにおいてそれぞれ、1シンボル内(シンボル長1/B)に偏波が直交した同一ビット情報を含む状態で送信することができる。なお、図1では、偏波調整器15を、光遅延器14と異なる側に設置したが、光遅延器14の側に設置するようにしてもよい。また、両方の側に偏波調整器15を設置して、2つの光信号の偏波が互いに直交した状態になるように調整してもよい。   Further, as shown in FIG. 4, the modulation signal used here is a data signal (B × N [b / s] obtained by multiplexing transmission data (B [b / s]) of each wavelength channel on the time axis. ]). The modulated optical signal generated in this way is branched into two outputs by the optical branching device 13 and input to the optical delay device 14 and the polarization adjuster 15, respectively. The time difference between these two optical signals is 1. After being adjusted so that the polarizations are orthogonal to each other at / 2B, they are multiplexed by the optical multiplexer 16 and sent to the optical transmission line. With this configuration, as shown in FIG. 1, it is an optical signal of a plurality of wavelengths, and is transmitted in a state including the same bit information in which the polarization is orthogonal within one symbol (symbol length 1 / B) in each wavelength channel. be able to. In FIG. 1, the polarization adjuster 15 is installed on a different side from the optical delay device 14, but may be installed on the optical delay device 14 side. Alternatively, the polarization adjuster 15 may be installed on both sides so that the polarizations of the two optical signals are orthogonal to each other.

光受信器では、図7に示すような構成により、ローカル光源26のローカル光の波長を所望の波長チャネル近傍に設定し、光合波器27でローカル光と信号光を合波することで、前記所望の波長チャネルのデータを再生するが、この際に特にローカル光の偏波を制御しなくとも、上記のように信号光を同一ビットが直交偏波した状態で受信するため、受光器28から出力される中間周波数信号の電力は、シンボル長1/Bにおける時間平均で一定値になる。よって、復調器29の出力に設置するローパスフィルタ30の通過特性を適切に設定して、シンボル長1/B内の電力変動を抑圧することで、信号光の偏波状態に依存せずにデータを再生することが可能である。
このように、本発明では、送信側で、言わば、時間軸上で偏波ダイバーシティ処理を行うことで、光受信器で特に複雑な部品を用いることなく偏波無依存のコヒーレント検波による受信を行うことができる。
In the optical receiver, the wavelength of the local light of the local light source 26 is set in the vicinity of a desired wavelength channel by the configuration shown in FIG. 7, and the optical multiplexer 27 combines the local light and the signal light, thereby The data of the desired wavelength channel is reproduced. At this time, the signal light is received in a state where the same bits are orthogonally polarized as described above without controlling the polarization of the local light. The output power of the intermediate frequency signal becomes a constant value as a time average at the symbol length 1 / B. Therefore, by appropriately setting the pass characteristic of the low-pass filter 30 installed at the output of the demodulator 29 and suppressing the power fluctuation within the symbol length 1 / B, the data can be obtained without depending on the polarization state of the signal light. Can be played.
In this way, in the present invention, by performing polarization diversity processing on the transmission side, that is, on the time axis, reception by polarization-independent coherent detection is performed without using particularly complicated components in the optical receiver. be able to.

(第2の実施形態)
本発明の光通信システムの第2の実施形態について、図5を用いて説明する。第2の実施形態では、光送信器および光受信器の構成は、第1の実施形態と同様のものであるが、図5に示すように、光分岐器13、光遅延器14、偏波調整器15および光合波器16から構成される部分に代えて、縦続して接続した偏波調整器18と偏波分散発生器19を用いる点に特徴がある。
(Second Embodiment)
A second embodiment of the optical communication system of the present invention will be described with reference to FIG. In the second embodiment, the configurations of the optical transmitter and the optical receiver are the same as those in the first embodiment, but as shown in FIG. 5, the optical branching device 13, the optical delay device 14, and the polarization It is characterized in that instead of the portion composed of the adjuster 15 and the optical multiplexer 16, a polarization adjuster 18 and a polarization dispersion generator 19 connected in cascade are used.

偏波分散発生器19は、互いに直交した偏波成分を有する光信号に対して、1/2Bの群遅延時間差を生じさせる分散特性を有している。このような特性を有する部品としては、偏波保持ファイバ(PANDA:Polarization-maintaining and Absorption reducing)や、DGD(Differential Group Delay,群遅延時間差)発生器などが挙げられる(非特許文献4参照)。   The polarization dispersion generator 19 has a dispersion characteristic that causes a group delay time difference of 1/2 B with respect to optical signals having polarization components orthogonal to each other. Examples of components having such characteristics include a polarization maintaining fiber (PANDA) and a DGD (Differential Group Delay) generator (see Non-Patent Document 4).

偏波調整器18は、光変調器12の出力光信号の偏波状態を、偏波分散発生器19において1/2Bの群遅延時間差が発生する互いに直交した偏波面に対して45度の角度差を有する直線偏波状態になるように制御する。これにより、図5に示すように、偏波分散発生器19の出力において、第1の実施形態同様に、各波長チャネルにおいてそれぞれ1シンボル内(シンボル長1/B)に偏波が直交した同一ビット情報を含む複数波長の光信号を送信することができるため、光受信器で特に複雑な部品を用いることなく偏波無依存のコヒーレント検波による受信を行うことができる。   The polarization adjuster 18 changes the polarization state of the output optical signal of the optical modulator 12 at an angle of 45 degrees with respect to mutually orthogonal polarization planes in which a 1/2 B group delay time difference is generated in the polarization dispersion generator 19. Control is performed so that a linearly polarized state having a difference is obtained. As a result, as shown in FIG. 5, at the output of the polarization dispersion generator 19, as in the first embodiment, in each wavelength channel, the same polarized wave is orthogonal within one symbol (symbol length 1 / B). Since optical signals of a plurality of wavelengths including bit information can be transmitted, it is possible to perform reception by polarization-independent coherent detection without using particularly complicated components in the optical receiver.

上述のような実施形態が適用される光通信システムの構成例としては、例えば、図6に示すように、光送信器からの光信号がそれぞれ1芯の光伝送路を介して複数の光受信器に接続されたシングルスター(SS)方式や、光伝送路途中に設置された光分岐器を介して、光伝送路の一部を共有しつつ複数の光受信器が接続されたパッシブオプティカルネットワーク(PON)方式が考えられる。また、光伝送路途中にWDMフィルタを設置し、波長によって異なる経路で光信号が伝送されるWDM−PON方式も考えられる。この場合、光フィルタは、1つの出力ポート毎に1波ずつ分波するもの、もしくは、複数波長(波長群)単位で分波するものが考えられる。   As a configuration example of an optical communication system to which the above-described embodiment is applied, for example, as shown in FIG. 6, an optical signal from an optical transmitter is received by a plurality of optical receivers via a single-core optical transmission path. Passive optical network in which a plurality of optical receivers are connected while sharing a part of the optical transmission line through a single star (SS) system connected to the optical device or an optical branching device installed in the middle of the optical transmission line A (PON) system is conceivable. Further, a WDM-PON system in which a WDM filter is installed in the middle of an optical transmission line and an optical signal is transmitted through a different path depending on the wavelength can be considered. In this case, an optical filter may be one that demultiplexes one wave for each output port, or one that demultiplexes in units of a plurality of wavelengths (wavelength groups).

本発明の第1の実施形態における光送信器の構成を示す図である。It is a figure which shows the structure of the optical transmitter in the 1st Embodiment of this invention. 波長スイープ光源の構成例を示す図である。It is a figure which shows the structural example of a wavelength sweep light source. パルス光源を用いた波長スイープ光の生成例を示す図である。It is a figure which shows the example of a production | generation of the wavelength sweep light using a pulse light source. 本発明における変調信号を示す図である。It is a figure which shows the modulation signal in this invention. 本発明の第2の実施形態における光受信器の構成を示す図である。It is a figure which shows the structure of the optical receiver in the 2nd Embodiment of this invention. 光通信システムの構成例を示す図である。It is a figure which shows the structural example of an optical communication system. 従来技術の実施形態を示す図である。It is a figure which shows embodiment of a prior art.

符号の説明Explanation of symbols

11 波長スイープ光源
12,22 光変調器
13 光分岐器
14 光遅延器
15,18 偏波調整器
16 光合波器
17,25 変調信号発生器
19 偏波分散発生器
21 レーザ光源
23 波長掃引信号発生器
24 波長掃引信号振幅調整器
26 ローカル光源
27 光合波器
28 受光器
29 復調器
30 ローパスフィルタ
DESCRIPTION OF SYMBOLS 11 Wavelength sweep light source 12,22 Optical modulator 13 Optical branching device 14 Optical delay device 15,18 Polarization regulator 16 Optical multiplexer 17,25 Modulation signal generator 19 Polarization dispersion generator 21 Laser light source 23 Wavelength sweep signal generation 24 Wavelength sweep signal amplitude adjuster 26 Local light source 27 Optical multiplexer 28 Light receiver 29 Demodulator 30 Low pass filter

Claims (9)

複数波長チャネルの変調光信号を出力する光送信器と、該光送信器から光伝送路を介して送信された光信号のうち所定の波長チャネルの光信号を抽出して受信する光受信器からなる光通信システムであって、
前記の光送信器は、
所定の繰り返し周波数で所定の波長範囲を掃引する光信号を出力する波長スイープ光源と、
各波長チャネルのデータを時間軸上で多重して得られる変調信号を出力する変調信号発生器と、
前記波長スイープ光源から出力された光信号を前記変調信号で変調する光変調器と、
変調された前記光信号を2つに分岐する光分岐器と、
前記光分岐器で分岐された2つの光信号の時間差が所定の繰り返し周波数の逆数の半値になるように、分岐された一方の光信号に対して時間遅延を与える光遅延器と、
前記光分岐器で分岐された2つの光信号の偏波方向が互いに直交するように、分岐された他方の光信号の偏波状態を制御する偏波調整器と、
前記時間遅延を与えられ、偏波状態を制御された2つの光信号を合波し、光伝送路に送出する光合波器を備える、
ことを特徴とする光通信システム。
From an optical transmitter that outputs a modulated optical signal of a plurality of wavelength channels, and an optical receiver that extracts and receives an optical signal of a predetermined wavelength channel from optical signals transmitted from the optical transmitter via an optical transmission line An optical communication system
The optical transmitter is
A wavelength sweep light source that outputs an optical signal that sweeps a predetermined wavelength range at a predetermined repetition rate; and
A modulation signal generator that outputs a modulation signal obtained by multiplexing the data of each wavelength channel on the time axis;
An optical modulator that modulates an optical signal output from the wavelength sweep light source with the modulation signal;
An optical branching device for branching the modulated optical signal into two;
An optical delay device that gives a time delay to one of the branched optical signals so that the time difference between the two optical signals branched by the optical branching device is half the reciprocal of a predetermined repetition frequency;
A polarization controller for controlling the polarization state of the other branched optical signal so that the polarization directions of the two optical signals branched by the optical splitter are orthogonal to each other;
An optical multiplexer that multiplexes two optical signals that are given the time delay and whose polarization state is controlled, and sends the optical signal to an optical transmission line;
An optical communication system.
複数波長チャネルの変調光信号を出力する光送信器と、該光送信器から光伝送路を介して送信された光信号のうち所定の波長チャネルの光信号を抽出して受信する光受信器からなる光通信システムであって、
前記光送信器は、
所定の繰り返し周波数で所定の波長範囲を掃引する光信号を出力する波長スイープ光源と、
各波長チャネルのデータを時間軸上で多重して得られる変調信号を出力する変調信号発生器と、
前記波長スイープ光源から出力された光信号を前記変調信号で変調する光変調器と、
変調された前記光信号の偏波状態を、所定の互いに直交した偏波面に対して45度の角度差を有する直線偏波状態になるように制御する偏波調整器と、
直線偏波状態になった、互いに直交した偏波成分を有する光信号に対して、前記所定の繰り返し周波数の逆数の半値の群遅延時間差を生じさせ、光伝送路に送出する偏波分散発生器を備える、
ことを特徴とする光通信システム。
From an optical transmitter that outputs a modulated optical signal of a plurality of wavelength channels, and an optical receiver that extracts and receives an optical signal of a predetermined wavelength channel from optical signals transmitted from the optical transmitter via an optical transmission line An optical communication system
The optical transmitter is
A wavelength sweep light source that outputs an optical signal that sweeps a predetermined wavelength range at a predetermined repetition rate; and
A modulation signal generator that outputs a modulation signal obtained by multiplexing the data of each wavelength channel on the time axis;
An optical modulator that modulates an optical signal output from the wavelength sweep light source with the modulation signal;
A polarization controller for controlling the polarization state of the modulated optical signal so as to be a linear polarization state having an angle difference of 45 degrees with respect to predetermined orthogonal planes of polarization;
Polarization dispersion generator that generates a group delay time difference of half the reciprocal of the predetermined repetition frequency for an optical signal having polarization components orthogonal to each other in a linear polarization state, and sends the difference to the optical transmission line Comprising
An optical communication system.
前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、直接変調型の半導体レーザに、所定の繰り返し周期のランプ波形の電流を印加することで生成される、ことを特徴とする請求項1または2に記載の光通信システム。   The optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency is generated by applying a ramp waveform current having a predetermined repetition period to a direct modulation semiconductor laser. The optical communication system according to 1 or 2. 前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、分布反射型レーザの位相調整領域に所定の繰り返し周期を有するランプ波形状の信号を印加することで生成される、ことを特徴とする請求項1または2に記載の光通信システム。   The optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency is generated by applying a ramp-shaped signal having a predetermined repetition period to the phase adjustment region of the distributed reflection type laser. The optical communication system according to claim 1 or 2. 前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、単一スペクトルのレーザの出力を位相変調器に接続し、前記位相変調器に所定の繰り返し周期のパラボラ型波形の電圧を入力することで生成される、ことを特徴とする請求項1または2に記載の光通信システム。   For an optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency, the output of a single spectrum laser is connected to a phase modulator, and a parabolic waveform voltage having a predetermined repetition period is input to the phase modulator. The optical communication system according to claim 1, wherein the optical communication system is generated by: 前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、レーザの一方の反射端に外部共振器を接続し、前記外部共振器に制御信号を入力して外部共振器内の光導波路の屈折率を変化させる、もしくは、機械的回転により外部共振器と光路との間の角度を変化させることで生成される、ことを特徴とする請求項1または2に記載の光通信システム。   An optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency is connected to an external resonator at one reflection end of a laser, and a control signal is input to the external resonator to input an optical waveguide in the external resonator. The optical communication system according to claim 1 or 2, wherein the optical communication system is generated by changing a refractive index or changing an angle between an external resonator and an optical path by mechanical rotation. 前記所定の繰り返し周波数で所定の波長範囲を掃引する光信号は、所定の繰り返し周期、所定の波長帯域のパルス光を生成し、波長に比例した遅延時間を与える群遅延特性を有する分散媒質を通過させることで生成される、ことを特徴とする請求項1または2に記載の光通信システム。   The optical signal that sweeps a predetermined wavelength range at the predetermined repetition frequency generates pulse light of a predetermined wavelength band with a predetermined repetition period and passes through a dispersion medium having a group delay characteristic that gives a delay time proportional to the wavelength. The optical communication system according to claim 1, wherein the optical communication system is generated. 所定の繰り返し周波数で所定の波長範囲を掃引する光信号を生成するステップと、
各波長チャネルのデータを時間軸上で多重して得られる変調信号を生成するステップと、
出力された前記光信号を前記変調信号で変調するステップと、
変調された前記光信号を2つに分岐するステップと、
分岐された2つの光信号の時間差が所定の繰り返し周波数の逆数の半値になるように、分岐された一方の光信号に対して時間遅延を与えるステップと、
分岐された2つの光信号の偏波方向が互いに直交するように、分岐された他方の光信号の偏波状態を制御するステップと、
前記時間遅延を与えられ、偏波状態を制御された2つの光信号を合波するステップを含む、
ことを特徴とする変調光信号の生成方法。
Generating an optical signal that sweeps a predetermined wavelength range at a predetermined repetition rate;
Generating a modulated signal obtained by multiplexing the data of each wavelength channel on the time axis;
Modulating the output optical signal with the modulation signal;
Branching the modulated optical signal into two;
Applying a time delay to one of the branched optical signals so that the time difference between the two branched optical signals is half the reciprocal of a predetermined repetition frequency;
Controlling the polarization state of the other branched optical signal so that the polarization directions of the two branched optical signals are orthogonal to each other;
Combining two optical signals given the time delay and whose polarization state is controlled,
A method of generating a modulated optical signal.
所定の繰り返し周波数で所定の波長範囲を掃引する光信号を生成するステップと、
各波長チャネルのデータを時間軸上で多重して得られる変調信号を生成するステップと、
出力された前記光信号を前記変調信号で変調するステップと、
変調された前記光信号の偏波状態を、所定の互いに直交した偏波面に対して45度の角度差を有する直線偏波状態になるように制御するステップと、
直線偏波状態になった、互いに直交した偏波成分を有する光信号に対して、前記所定の繰り返し周波数の逆数の半値の群遅延時間差を生じさせるステップを含む、
ことを特徴とする変調光信号の生成方法。
Generating an optical signal that sweeps a predetermined wavelength range at a predetermined repetition rate;
Generating a modulated signal obtained by multiplexing the data of each wavelength channel on the time axis;
Modulating the output optical signal with the modulation signal;
Controlling the polarization state of the modulated optical signal so as to be a linear polarization state having an angle difference of 45 degrees with respect to predetermined orthogonal planes of polarization;
Including a group delay time difference of half the inverse of the predetermined repetition frequency for an optical signal having polarization components orthogonal to each other in a linear polarization state,
A method of generating a modulated optical signal.
JP2008325763A 2008-12-22 2008-12-22 Optical communication system and method of generating modulation optical signal Pending JP2010148007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325763A JP2010148007A (en) 2008-12-22 2008-12-22 Optical communication system and method of generating modulation optical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325763A JP2010148007A (en) 2008-12-22 2008-12-22 Optical communication system and method of generating modulation optical signal

Publications (1)

Publication Number Publication Date
JP2010148007A true JP2010148007A (en) 2010-07-01

Family

ID=42567920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325763A Pending JP2010148007A (en) 2008-12-22 2008-12-22 Optical communication system and method of generating modulation optical signal

Country Status (1)

Country Link
JP (1) JP2010148007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850159B2 (en) * 2012-08-01 2016-02-03 日本電気株式会社 Polarization multiplexed optical transmitter and operation control method
WO2021136046A1 (en) * 2019-12-31 2021-07-08 烽火通信科技股份有限公司 Optical interconnection communication method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983459A (en) * 1995-09-19 1997-03-28 Matsushita Electric Ind Co Ltd Communication system using optical module
JP2003262830A (en) * 2002-03-12 2003-09-19 Fujitsu Ltd Polarization scrambler and optical transmitter
JP2005278024A (en) * 2004-03-26 2005-10-06 Kddi Corp Optical space transmission method and system
JP2006238334A (en) * 2005-02-28 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical communication apparatus and system in coherent optical communication system
JP2008263375A (en) * 2007-04-11 2008-10-30 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter, optical receiver, and optical communication system
JP2008281869A (en) * 2007-05-11 2008-11-20 Nippon Telegr & Teleph Corp <Ntt> Optical signal generator and optical communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983459A (en) * 1995-09-19 1997-03-28 Matsushita Electric Ind Co Ltd Communication system using optical module
JP2003262830A (en) * 2002-03-12 2003-09-19 Fujitsu Ltd Polarization scrambler and optical transmitter
JP2005278024A (en) * 2004-03-26 2005-10-06 Kddi Corp Optical space transmission method and system
JP2006238334A (en) * 2005-02-28 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical communication apparatus and system in coherent optical communication system
JP2008263375A (en) * 2007-04-11 2008-10-30 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter, optical receiver, and optical communication system
JP2008281869A (en) * 2007-05-11 2008-11-20 Nippon Telegr & Teleph Corp <Ntt> Optical signal generator and optical communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012025822; 谷口 友宏 他: '「波長スイープ光を用いた超高密度WDMアクセスシステム」' 電子情報通信学会技術研究報告 [光通信システム] Vol.108 No.189, 20080821, p.57-62, 社団法人電子情報通信学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850159B2 (en) * 2012-08-01 2016-02-03 日本電気株式会社 Polarization multiplexed optical transmitter and operation control method
US9419744B2 (en) 2012-08-01 2016-08-16 Nec Corporation Polarization multiplexing optical transmitter and operation control method
WO2021136046A1 (en) * 2019-12-31 2021-07-08 烽火通信科技股份有限公司 Optical interconnection communication method and system

Similar Documents

Publication Publication Date Title
US9860013B2 (en) Time division multiplexed orbital angular momentum based communication
US9712273B2 (en) Orbital angular momentum multiplexing for digital communication
US6141127A (en) High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
US6081355A (en) Multi-wavelength light source
US5726784A (en) WDM optical communication system with remodulators and diverse optical transmitters
US20040018018A1 (en) Optical code-division multiple access transmission system and method
US8543000B2 (en) System and method for reducing polarization dependent loss cross-talk effects
Ryf et al. Physical layer transmission and switching solutions in support of spectrally and spatially flexible optical networks
US20140301736A1 (en) Directly modulated multi-level optical signal generator and method thereof
Fang et al. A novel PON architecture based on OAM multiplexing for efficient bandwidth utilization
JP2002270949A (en) Optical wavelength splitting multiple signal generator
CN110050421B (en) Device and method for generating optical signal
US5949925A (en) Method, device, and system for optical modulation in wavelength division multiplexing
CN106792281A (en) Optical line terminal and optical network unit
JP2010041707A (en) Production method of optical transmission channel with 100 g bit/sec or more
JP2010148007A (en) Optical communication system and method of generating modulation optical signal
CN105450325A (en) Low-cost 40Gb/s symmetric TWDM-PON system
Puttnam et al. C+ L-band seeded comb regeneration for MCF networks
Rau et al. Wavelength multicasting using an ultra high-speed all-optical wavelength converter
JP3860760B2 (en) Optical wavelength division multiplexing ring network
KR101477355B1 (en) Interferometric noise suppression apparatus and optical communication system comprising the same
Qin et al. Demonstration of multi-channel hitless defragmentation with fast auto-tracking coherent RX LOs
JP3860759B2 (en) Optical wavelength division multiplexing ring network
JP5101455B2 (en) Optical communication system, optical transmitter, and optical transmission method
JP2008263375A (en) Optical transmitter, optical receiver, and optical communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016