JP2010147118A - Method for suppressing surface corrosion in semiconductor manufacturing device - Google Patents

Method for suppressing surface corrosion in semiconductor manufacturing device Download PDF

Info

Publication number
JP2010147118A
JP2010147118A JP2008320399A JP2008320399A JP2010147118A JP 2010147118 A JP2010147118 A JP 2010147118A JP 2008320399 A JP2008320399 A JP 2008320399A JP 2008320399 A JP2008320399 A JP 2008320399A JP 2010147118 A JP2010147118 A JP 2010147118A
Authority
JP
Japan
Prior art keywords
gas
processing chamber
semiconductor manufacturing
dew point
surface corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008320399A
Other languages
Japanese (ja)
Inventor
Kunihiko Koike
国彦 小池
Chitoshi Nogami
千俊 野上
Yutaka Yoshino
裕 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2008320399A priority Critical patent/JP2010147118A/en
Publication of JP2010147118A publication Critical patent/JP2010147118A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively suppressing surface corrosion when apparatuses of a semiconductor manufacturing device are subjected to the action of a compound gas containing a fluorine atom and a chlorine atom. <P>SOLUTION: A compound gas containing a fluorine atom and a chlorine atom is introduced into a processing chamber of a semiconductor manufacturing device and an inside of piping communicating with the processing chamber to perform cleaning or processing. Then, a purge gas including an inert gas with a dew point temperature of 213 K or below is introduced into the processing chamber and the piping communicating with the processing chamber. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子製造装置や半導体基板製造装置、液晶製造装置、太陽電池製造装置等の半導体製造装置での処理チャンバーやガス配管路の内面腐食の抑制方法に関し、特にクリーニングガスやエッチングガスとして塩素原子とフッ素原子とを含む化合物ガスを使用した際での処理チャンバーやガス配管路の表面腐食抑制方法に関する。   The present invention relates to a method for suppressing internal corrosion of a processing chamber and a gas pipe line in a semiconductor manufacturing apparatus such as a semiconductor element manufacturing apparatus, a semiconductor substrate manufacturing apparatus, a liquid crystal manufacturing apparatus, or a solar cell manufacturing apparatus, and particularly as a cleaning gas or an etching gas. The present invention relates to a method for suppressing surface corrosion of a processing chamber and a gas pipeline when a compound gas containing chlorine atoms and fluorine atoms is used.

従来、半導体素子製造装置や半導体基板製造装置、液晶製造装置、太陽電池製造装置等の半導体製造装置での処理チャンバーやガス配管路では、これらの装置内に塩素原子とフッ素原子との少なくとも一方の原子を含むガスを導入してクリーニング処理を施した後、水素ガスや水素含有化合物などからなるパージガスを流通させてクリーニング処理によリ生じた汚染物質を除去するようにしている。
特開平1−152274号公報 特開平2−190472号公報
Conventionally, in processing chambers and gas pipelines in semiconductor manufacturing devices such as semiconductor element manufacturing devices, semiconductor substrate manufacturing devices, liquid crystal manufacturing devices, solar cell manufacturing devices, etc., at least one of chlorine atoms and fluorine atoms in these devices. After introducing a gas containing atoms and performing a cleaning process, a purge gas made of hydrogen gas or a hydrogen-containing compound is circulated to remove contaminants generated by the cleaning process.
Japanese Patent Laid-Open No. 1-152274 JP-A-2-190472

さらに、パージガスとして、窒素ガス等の不活性ガスを使用するものも提案されている。   Furthermore, what uses inert gas, such as nitrogen gas, as purge gas is proposed.

ところが、三フッ化塩素等のハロゲン系クリーニングガスでクリーニング処理した後にパージガスを流通させると、処理チャンバーやガス配管路内に残るクリーニングガスの影響で必要以上にクリーニング処理表面が腐食されるという問題があった。   However, if the purge gas is circulated after cleaning with a halogen-based cleaning gas such as chlorine trifluoride, there is a problem that the surface of the cleaning process is corroded more than necessary due to the influence of the cleaning gas remaining in the processing chamber and the gas piping. there were.

本発明はこのような点に着目し、効果的に表面腐食を抑制する方法を提供することを目的とする。   This invention pays attention to such a point, and it aims at providing the method of suppressing surface corrosion effectively.

上述の目的を達成するために、本発明は、半導体製造装置の処理チャンバーとこの処理チャンバーに連通する配管路の内部を塩素原子とフツ素原子とを含む化合物ガスを導入してクリーニング処理あるいはプロセス処理した後、この処理チャンバー及び処理チャンバーに連通する配管路に露点温度が213K以下の不活性ガスからなるパージガスを導入するようにしたことを特徴としている。   In order to achieve the above object, the present invention provides a cleaning process or process by introducing a compound gas containing chlorine atoms and fluorine atoms into the inside of a processing chamber of a semiconductor manufacturing apparatus and a pipe line communicating with the processing chamber. After the treatment, a purge gas composed of an inert gas having a dew point temperature of 213 K or less is introduced into the treatment chamber and a pipe line communicating with the treatment chamber.

本発明では、パージガスとして、露点温度が213K以下の不活性ガスを用いていることから、処理チャンバーや処理チャンバーに連通する配管路からなる機器類内面に付着残留しているフッ素ガス成分や塩素ガス成分と水との接触により腐食性物質が生成されることを可及的に阻止でき、フッ素ガス成分や塩素ガス成分による腐食性を抑制することができる。   In the present invention, since an inert gas having a dew point temperature of 213 K or less is used as the purge gas, the fluorine gas component and chlorine gas remaining on the inner surface of the equipment consisting of the processing chamber and the piping connected to the processing chamber. Generation of corrosive substances due to contact between the components and water can be prevented as much as possible, and corrosivity due to fluorine gas components and chlorine gas components can be suppressed.

以下、本発明を半導体製造装置のCVDチャンバーを例に説明する。
通常、半導体、太陽電池、液晶基板、感光体ドラムなどの製造に使用されるCVDチャンバーは、その薄膜形成処理後に、三フッ化塩素(ClF)等のハロゲン系クリーニングガスを使用してCVDチャンバー内面や基板支持体表面に付着した付着物を除去するようにしている。
Hereinafter, the present invention will be described taking a CVD chamber of a semiconductor manufacturing apparatus as an example.
Usually, a CVD chamber used for manufacturing a semiconductor, a solar cell, a liquid crystal substrate, a photosensitive drum, etc. uses a halogen-based cleaning gas such as chlorine trifluoride (ClF 3 ) after the thin film formation process. The deposits adhered to the inner surface and the substrate support surface are removed.

このクリーニングガスによるクリーニング処理の後、チャンバー内に窒素ガス等の不活性ガスで構成されているパージガスを流通させて、チャンバー内からクリーニングガス成分を排除し、次の薄膜形成処理に備えるようにしている。   After the cleaning process using the cleaning gas, a purge gas composed of an inert gas such as nitrogen gas is circulated in the chamber to remove the cleaning gas component from the chamber and prepare for the next thin film forming process. Yes.

ところが、パージガスをチャンバー内に流通させた後、チャンバー内の金属表面が腐食されていることがあった。これは、ハロゲン系のガスでは、水分の存在で腐食力が増大することに起因すると思われる。   However, after the purge gas is circulated in the chamber, the metal surface in the chamber may be corroded. This is considered to be due to the fact that the corrosive force increases in the presence of moisture in the halogen-based gas.

このような観点から本発明では、SUS304のテストピースを100%ClFガスに90分曝露させ、その後、露点の異なる窒素ガスで90分パージし、そのSUS304テストピースの表面について、フッ素(F)濃度、塩素(Cl)濃度をX線光電子分光分析装置で分析した。その結果を表1及び図1に示す。この場合規格化は、それぞれの元素における露点−76℃(197K)でのフッ素濃度、塩素濃度を1としている。 From this point of view, in the present invention, the test piece of SUS304 is exposed to 100% ClF 3 gas for 90 minutes, and then purged with nitrogen gas having a different dew point for 90 minutes, and the surface of the SUS304 test piece is subjected to fluorine (F). The concentration and chlorine (Cl) concentration were analyzed with an X-ray photoelectron spectrometer. The results are shown in Table 1 and FIG. In this case, the normalization assumes that the fluorine concentration and chlorine concentration at a dew point of −76 ° C. (197 K) for each element are 1.

Figure 2010147118
Figure 2010147118

この結果、露点温度−20℃(253K)程度まではフッ素濃度はパージ窒素ガスの露点にあまり影響されないが、塩素濃度は露点が高くなるほど(含有水分濃度が高くなるほど)高くなることがわかる。
したがって、フッ素による腐食は露点に無関係にほぼ一定であるが、塩素による腐食は露点が高くなるほど顕著に現れることがわかる。
As a result, it is understood that the fluorine concentration is not significantly affected by the dew point of the purge nitrogen gas until the dew point temperature is about −20 ° C. (253 K), but the chlorine concentration becomes higher as the dew point becomes higher (as the contained water concentration becomes higher).
Therefore, it can be seen that the corrosion by fluorine is almost constant regardless of the dew point, but the corrosion by chlorine appears more prominently as the dew point becomes higher.

次に、1/4インチのSUS316L電解研磨管、溶接部なし、長さ200mmのサンプル配管に、100%ClFガスを0.05MPaG、120℃、2日間の条件で曝露し、40℃の純水中に20時間浸漬させ、その水について鉄、クロム、ニツケル、モリブデン、マンガンの合計溶出金属量を分析した。そして、露点温度と合計溶出金属量との関係を表2及び図2に示す。 Next, a 1 / 4-inch SUS316L electrolytic polishing tube, no welded part, and a sample pipe with a length of 200 mm were exposed to 100% ClF 3 gas under conditions of 0.05 MPaG, 120 ° C., and 2 days to obtain a pure 40 ° C. It was immersed in water for 20 hours, and the total amount of eluted metals of iron, chromium, nickel, molybdenum and manganese was analyzed for the water. The relationship between the dew point temperature and the total amount of eluted metal is shown in Table 2 and FIG.

Figure 2010147118
Figure 2010147118

この結果、ClFガスでは、露点温度が高くなるほど、溶出金属量は急増することがわかる。 As a result, it can be seen that with ClF 3 gas, the amount of eluted metal increases rapidly as the dew point temperature increases.

また、1/4インチのSUS316L電解研磨管、溶接部なし、長さ200mmのサンプル配管に、ヘリウムで希釈した15%Fガスを0.35MPaG、60℃、6日間の条件で曝露した後、前記ClFガスと同様に合計溶出金属量を分析した。露点温度と合計溶出金属量との関係を表3及び図3に示す。 Further, after exposing a 1/4 inch SUS316L electrolytic polishing tube, no welded portion, and a 200 mm long sample pipe with 15% F 2 gas diluted with helium at 0.35 MPaG, 60 ° C. for 6 days, The total amount of eluted metal was analyzed in the same manner as the ClF 3 gas. The relationship between the dew point temperature and the total amount of eluted metal is shown in Table 3 and FIG.

Figure 2010147118
Figure 2010147118

この結果、Fガスでは、露点温度の相違は溶出金属量の変化に対しては影響が少ないことがわかる。 As a result, in F 2 gas, it can be seen that the difference in dew point temperature has little effect on the change in the amount of eluted metal.

さらに、1/2インチのSUS316L電解研磨管、自動溶接による溶接部1個所、長さ100mmのサンプル配管に、100%Clガスを0.35MPaG、60℃、6日間の条件で曝露した後、前記ClFガスやFガスと同様に合計溶出金属量を分析した。露点温度と合計溶出金属量との関係を表4及び図4に示す。 Furthermore, after exposing 100% Cl 2 gas at 0.35 MPaG, 60 ° C., 6 days to a 1/2 inch SUS316L electrolytic polishing pipe, one welded part by automatic welding, and a sample pipe having a length of 100 mm, Similar to the ClF 3 gas and F 2 gas, the total amount of eluted metal was analyzed. The relationship between the dew point temperature and the total amount of eluted metal is shown in Table 4 and FIG.

Figure 2010147118
Figure 2010147118

この結果、Clガスでは、露点温度の相違が合計溶出金属量の変動に大きな影響を与えることがわかる。 As a result, it can be seen that, in the Cl 2 gas, the difference in dew point temperature greatly affects the fluctuation of the total eluted metal amount.

上述のように、、ClFガスを使用したクリーニング処理の後のパージ処理に使用するパージガスの水分量を減少させることによりクリーニングガスが接触する金属表面の腐食量を抑制できることを確認することができた。この場合、パージガスの露点温度として、水分濃度が10ppmに対応する213K(−60℃)以下とすることにより、溶出金属量を50ppm以下に抑制することができる。 As described above, it can be confirmed that the amount of corrosion of the metal surface with which the cleaning gas comes into contact can be suppressed by reducing the moisture content of the purge gas used for the purge process after the cleaning process using the ClF 3 gas. It was. In this case, the amount of eluted metal can be suppressed to 50 ppm or less by setting the dew point temperature of the purge gas to 213 K (−60 ° C.) or less corresponding to a moisture concentration of 10 ppm.

上記実施例では、パージガスとして窒素ガスを例に説明しているが、このパージガスとしては、ヘリウムやアルゴン等の希ガスであってもよい。さらに、基板に対するエッチングガスとしてClFガスを使用する場合にも発明を応用することができる。 In the above embodiment, nitrogen gas is described as an example of the purge gas. However, the purge gas may be a rare gas such as helium or argon. Furthermore, the present invention can be applied to the case where ClF 3 gas is used as an etching gas for the substrate.

半導体素子製造装置や半導体基板製造装置や、液晶製造装置、太陽電池製造装置等の半導体製造装置の処理チャンバーやガス配管路での内面腐食の抑制方法として広く利用することができる。   The present invention can be widely used as a method for suppressing internal corrosion in processing chambers and gas pipelines of semiconductor manufacturing apparatuses such as semiconductor element manufacturing apparatuses, semiconductor substrate manufacturing apparatuses, liquid crystal manufacturing apparatuses, and solar cell manufacturing apparatuses.

ClFガスで処理後、窒素ガスでパージした場合のパージガス露点温度と金属表面でのフッ素残留濃度、塩素残留濃度の関係を示すグラフである。After treatment with ClF 3 gas, the fluorine residual concentration in the purge gas dew point temperature and the metal surface of the case, purged with nitrogen gas, it is a graph showing the relationship between the chlorine residual concentration. ClFガスで処理した場合の露点温度と溶出金属濃度の関係を示すグラフである。ClF 3 is a graph showing the relationship between dew point temperature and the elution concentration of metal when treated with gas. で処理した場合の露点温度と溶出金属濃度の関係を示すグラフである。Is a graph showing the relationship between dew point temperature and the elution concentration of metal when treated with F 2. Clで処理した場合の露点温度と溶出金属濃度の関係を示すグラフである。Is a graph showing the relationship between dew point temperature and the elution concentration of metal when treated with Cl 2.

Claims (3)

半導体製造装置の処理チャンバーとこの処理チャンバーに連通する配管路の内部を塩素原子とフッ素原子とを含む化合物ガスを導入してクリーニング処理あるいはプロセス処理した後、この処理チャンバー及び処理チャンバーに連通する配管路に露点温度が213K以下の不活性ガスからなるパージガスを導入するようにした半導体製造装置での表面腐食抑制方法。   After introducing a compound gas containing chlorine atoms and fluorine atoms into a processing chamber of a semiconductor manufacturing apparatus and a piping path communicating with the processing chamber and cleaning or processing the piping, the processing chamber and piping communicating with the processing chamber A method for suppressing surface corrosion in a semiconductor manufacturing apparatus, wherein a purge gas composed of an inert gas having a dew point temperature of 213 K or less is introduced into a road. パージガスが窒素ガスである請求項1に記載した半導体製造装置での表面腐食抑制方法。   2. The method for suppressing surface corrosion in a semiconductor manufacturing apparatus according to claim 1, wherein the purge gas is nitrogen gas. パージガスが希ガスである請求項1に記載した半導体製造装置での表面腐食抑制方法。   The method for suppressing surface corrosion in a semiconductor manufacturing apparatus according to claim 1, wherein the purge gas is a rare gas.
JP2008320399A 2008-12-17 2008-12-17 Method for suppressing surface corrosion in semiconductor manufacturing device Pending JP2010147118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320399A JP2010147118A (en) 2008-12-17 2008-12-17 Method for suppressing surface corrosion in semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320399A JP2010147118A (en) 2008-12-17 2008-12-17 Method for suppressing surface corrosion in semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JP2010147118A true JP2010147118A (en) 2010-07-01

Family

ID=42567255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320399A Pending JP2010147118A (en) 2008-12-17 2008-12-17 Method for suppressing surface corrosion in semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JP2010147118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023854B1 (en) * 2015-06-09 2016-11-09 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2017175562A1 (en) 2016-04-05 2017-10-12 関東電化工業株式会社 Material, storage container using said material, valve installed on said storage container as well as cif storage method and cif storage container use method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133234A (en) * 2001-10-24 2003-05-09 Shin Etsu Handotai Co Ltd Method and facility for supplying gas
JP2008147215A (en) * 2006-12-06 2008-06-26 Nuflare Technology Inc Vapor phase epitaxial growth method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133234A (en) * 2001-10-24 2003-05-09 Shin Etsu Handotai Co Ltd Method and facility for supplying gas
JP2008147215A (en) * 2006-12-06 2008-06-26 Nuflare Technology Inc Vapor phase epitaxial growth method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023854B1 (en) * 2015-06-09 2016-11-09 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2017005090A (en) * 2015-06-09 2017-01-05 株式会社日立国際電気 Method of manufacturing semiconductor device, substrate processing device, and program
WO2017175562A1 (en) 2016-04-05 2017-10-12 関東電化工業株式会社 Material, storage container using said material, valve installed on said storage container as well as cif storage method and cif storage container use method
KR20180132797A (en) 2016-04-05 2018-12-12 칸토 덴카 코교 가부시키가이샤 Material, a preservation container using this material, a valve attached to this preservation container, a method of preserving ClF, a method of using ClF preservation container
US10982811B2 (en) 2016-04-05 2021-04-20 Kanto Denka Kogyo, Co., Ltd. Material, storage container using the material, valve attached to the storage container, method of storing ClF and method of using ClF storage container

Similar Documents

Publication Publication Date Title
KR101787139B1 (en) A coating method for gas delivery system
CN111684570B (en) Treatment liquid for semiconductor wafer containing hypochlorite ion
WO2013118260A1 (en) Method for treating inner surface of chlorine trifluoride supply path in device using chlorine trifluoride
WO2006029160A3 (en) Copper processing using an ozone-solvent solution
JP2008244292A (en) Processing performance stabilizing method of plasma treatment apparatus
JP5317321B2 (en) Metal material, storage container using the same, gas piping, apparatus, manufacturing method thereof, and ClF3 storage method
JP2010147118A (en) Method for suppressing surface corrosion in semiconductor manufacturing device
JP2013111537A (en) Method and device for cleaning equipment
TW202113117A (en) Rf components with chemically resistant surfaces
JP2018107438A (en) Method for surface treatment of metal member, and method for manufacturing semiconductor element
JP6749090B2 (en) Processing method in processing apparatus using halogen-based gas
TW202037706A (en) Semiconductor wafer treatment liquid containing hypochlorite ions and ph buffer
WO1993024267A1 (en) Method of forming oxide passivation film at weld portion and process apparatus
TWI694874B (en) Rapid cleaning method for ultrapure water piping system
TW202200818A (en) Conditioning treatment for ald productivity
JP3829189B2 (en) Grain boundary measurement method for steel with prior austenite grain boundaries.
JP4366169B2 (en) Aluminum surface treatment method
JP4774014B2 (en) Al or Al alloy
Ottosson et al. Response to the comments by P. Szakálos, T. Åkermark and C. Leygraf on the paper “Copper in ultrapure water, a scientific issue under debate”
JP2004360066A (en) Corrosion resistant material, and its production method
JP2000176643A (en) Method for forming oxidized passive state film in weld zone
JPH0711421A (en) Stainless steel member for semiconductor manufacturing fquipment
Lowery et al. Comparing the characteristics of surface-passivated and electropolished 316L stainless steel
JP2008007861A (en) Surface-treating method for aluminum
JP2004036002A (en) Method for improving reliability of reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108