JP2010147118A - Method for suppressing surface corrosion in semiconductor manufacturing device - Google Patents
Method for suppressing surface corrosion in semiconductor manufacturing device Download PDFInfo
- Publication number
- JP2010147118A JP2010147118A JP2008320399A JP2008320399A JP2010147118A JP 2010147118 A JP2010147118 A JP 2010147118A JP 2008320399 A JP2008320399 A JP 2008320399A JP 2008320399 A JP2008320399 A JP 2008320399A JP 2010147118 A JP2010147118 A JP 2010147118A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- processing chamber
- semiconductor manufacturing
- dew point
- surface corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本発明は、半導体素子製造装置や半導体基板製造装置、液晶製造装置、太陽電池製造装置等の半導体製造装置での処理チャンバーやガス配管路の内面腐食の抑制方法に関し、特にクリーニングガスやエッチングガスとして塩素原子とフッ素原子とを含む化合物ガスを使用した際での処理チャンバーやガス配管路の表面腐食抑制方法に関する。 The present invention relates to a method for suppressing internal corrosion of a processing chamber and a gas pipe line in a semiconductor manufacturing apparatus such as a semiconductor element manufacturing apparatus, a semiconductor substrate manufacturing apparatus, a liquid crystal manufacturing apparatus, or a solar cell manufacturing apparatus, and particularly as a cleaning gas or an etching gas. The present invention relates to a method for suppressing surface corrosion of a processing chamber and a gas pipeline when a compound gas containing chlorine atoms and fluorine atoms is used.
従来、半導体素子製造装置や半導体基板製造装置、液晶製造装置、太陽電池製造装置等の半導体製造装置での処理チャンバーやガス配管路では、これらの装置内に塩素原子とフッ素原子との少なくとも一方の原子を含むガスを導入してクリーニング処理を施した後、水素ガスや水素含有化合物などからなるパージガスを流通させてクリーニング処理によリ生じた汚染物質を除去するようにしている。
さらに、パージガスとして、窒素ガス等の不活性ガスを使用するものも提案されている。 Furthermore, what uses inert gas, such as nitrogen gas, as purge gas is proposed.
ところが、三フッ化塩素等のハロゲン系クリーニングガスでクリーニング処理した後にパージガスを流通させると、処理チャンバーやガス配管路内に残るクリーニングガスの影響で必要以上にクリーニング処理表面が腐食されるという問題があった。 However, if the purge gas is circulated after cleaning with a halogen-based cleaning gas such as chlorine trifluoride, there is a problem that the surface of the cleaning process is corroded more than necessary due to the influence of the cleaning gas remaining in the processing chamber and the gas piping. there were.
本発明はこのような点に着目し、効果的に表面腐食を抑制する方法を提供することを目的とする。 This invention pays attention to such a point, and it aims at providing the method of suppressing surface corrosion effectively.
上述の目的を達成するために、本発明は、半導体製造装置の処理チャンバーとこの処理チャンバーに連通する配管路の内部を塩素原子とフツ素原子とを含む化合物ガスを導入してクリーニング処理あるいはプロセス処理した後、この処理チャンバー及び処理チャンバーに連通する配管路に露点温度が213K以下の不活性ガスからなるパージガスを導入するようにしたことを特徴としている。 In order to achieve the above object, the present invention provides a cleaning process or process by introducing a compound gas containing chlorine atoms and fluorine atoms into the inside of a processing chamber of a semiconductor manufacturing apparatus and a pipe line communicating with the processing chamber. After the treatment, a purge gas composed of an inert gas having a dew point temperature of 213 K or less is introduced into the treatment chamber and a pipe line communicating with the treatment chamber.
本発明では、パージガスとして、露点温度が213K以下の不活性ガスを用いていることから、処理チャンバーや処理チャンバーに連通する配管路からなる機器類内面に付着残留しているフッ素ガス成分や塩素ガス成分と水との接触により腐食性物質が生成されることを可及的に阻止でき、フッ素ガス成分や塩素ガス成分による腐食性を抑制することができる。 In the present invention, since an inert gas having a dew point temperature of 213 K or less is used as the purge gas, the fluorine gas component and chlorine gas remaining on the inner surface of the equipment consisting of the processing chamber and the piping connected to the processing chamber. Generation of corrosive substances due to contact between the components and water can be prevented as much as possible, and corrosivity due to fluorine gas components and chlorine gas components can be suppressed.
以下、本発明を半導体製造装置のCVDチャンバーを例に説明する。
通常、半導体、太陽電池、液晶基板、感光体ドラムなどの製造に使用されるCVDチャンバーは、その薄膜形成処理後に、三フッ化塩素(ClF3)等のハロゲン系クリーニングガスを使用してCVDチャンバー内面や基板支持体表面に付着した付着物を除去するようにしている。
Hereinafter, the present invention will be described taking a CVD chamber of a semiconductor manufacturing apparatus as an example.
Usually, a CVD chamber used for manufacturing a semiconductor, a solar cell, a liquid crystal substrate, a photosensitive drum, etc. uses a halogen-based cleaning gas such as chlorine trifluoride (ClF 3 ) after the thin film formation process. The deposits adhered to the inner surface and the substrate support surface are removed.
このクリーニングガスによるクリーニング処理の後、チャンバー内に窒素ガス等の不活性ガスで構成されているパージガスを流通させて、チャンバー内からクリーニングガス成分を排除し、次の薄膜形成処理に備えるようにしている。 After the cleaning process using the cleaning gas, a purge gas composed of an inert gas such as nitrogen gas is circulated in the chamber to remove the cleaning gas component from the chamber and prepare for the next thin film forming process. Yes.
ところが、パージガスをチャンバー内に流通させた後、チャンバー内の金属表面が腐食されていることがあった。これは、ハロゲン系のガスでは、水分の存在で腐食力が増大することに起因すると思われる。 However, after the purge gas is circulated in the chamber, the metal surface in the chamber may be corroded. This is considered to be due to the fact that the corrosive force increases in the presence of moisture in the halogen-based gas.
このような観点から本発明では、SUS304のテストピースを100%ClF3ガスに90分曝露させ、その後、露点の異なる窒素ガスで90分パージし、そのSUS304テストピースの表面について、フッ素(F)濃度、塩素(Cl)濃度をX線光電子分光分析装置で分析した。その結果を表1及び図1に示す。この場合規格化は、それぞれの元素における露点−76℃(197K)でのフッ素濃度、塩素濃度を1としている。 From this point of view, in the present invention, the test piece of SUS304 is exposed to 100% ClF 3 gas for 90 minutes, and then purged with nitrogen gas having a different dew point for 90 minutes, and the surface of the SUS304 test piece is subjected to fluorine (F). The concentration and chlorine (Cl) concentration were analyzed with an X-ray photoelectron spectrometer. The results are shown in Table 1 and FIG. In this case, the normalization assumes that the fluorine concentration and chlorine concentration at a dew point of −76 ° C. (197 K) for each element are 1.
この結果、露点温度−20℃(253K)程度まではフッ素濃度はパージ窒素ガスの露点にあまり影響されないが、塩素濃度は露点が高くなるほど(含有水分濃度が高くなるほど)高くなることがわかる。
したがって、フッ素による腐食は露点に無関係にほぼ一定であるが、塩素による腐食は露点が高くなるほど顕著に現れることがわかる。
As a result, it is understood that the fluorine concentration is not significantly affected by the dew point of the purge nitrogen gas until the dew point temperature is about −20 ° C. (253 K), but the chlorine concentration becomes higher as the dew point becomes higher (as the contained water concentration becomes higher).
Therefore, it can be seen that the corrosion by fluorine is almost constant regardless of the dew point, but the corrosion by chlorine appears more prominently as the dew point becomes higher.
次に、1/4インチのSUS316L電解研磨管、溶接部なし、長さ200mmのサンプル配管に、100%ClF3ガスを0.05MPaG、120℃、2日間の条件で曝露し、40℃の純水中に20時間浸漬させ、その水について鉄、クロム、ニツケル、モリブデン、マンガンの合計溶出金属量を分析した。そして、露点温度と合計溶出金属量との関係を表2及び図2に示す。 Next, a 1 / 4-inch SUS316L electrolytic polishing tube, no welded part, and a sample pipe with a length of 200 mm were exposed to 100% ClF 3 gas under conditions of 0.05 MPaG, 120 ° C., and 2 days to obtain a pure 40 ° C. It was immersed in water for 20 hours, and the total amount of eluted metals of iron, chromium, nickel, molybdenum and manganese was analyzed for the water. The relationship between the dew point temperature and the total amount of eluted metal is shown in Table 2 and FIG.
この結果、ClF3ガスでは、露点温度が高くなるほど、溶出金属量は急増することがわかる。 As a result, it can be seen that with ClF 3 gas, the amount of eluted metal increases rapidly as the dew point temperature increases.
また、1/4インチのSUS316L電解研磨管、溶接部なし、長さ200mmのサンプル配管に、ヘリウムで希釈した15%F2ガスを0.35MPaG、60℃、6日間の条件で曝露した後、前記ClF3ガスと同様に合計溶出金属量を分析した。露点温度と合計溶出金属量との関係を表3及び図3に示す。 Further, after exposing a 1/4 inch SUS316L electrolytic polishing tube, no welded portion, and a 200 mm long sample pipe with 15% F 2 gas diluted with helium at 0.35 MPaG, 60 ° C. for 6 days, The total amount of eluted metal was analyzed in the same manner as the ClF 3 gas. The relationship between the dew point temperature and the total amount of eluted metal is shown in Table 3 and FIG.
この結果、F2ガスでは、露点温度の相違は溶出金属量の変化に対しては影響が少ないことがわかる。 As a result, in F 2 gas, it can be seen that the difference in dew point temperature has little effect on the change in the amount of eluted metal.
さらに、1/2インチのSUS316L電解研磨管、自動溶接による溶接部1個所、長さ100mmのサンプル配管に、100%Cl2ガスを0.35MPaG、60℃、6日間の条件で曝露した後、前記ClF3ガスやF2ガスと同様に合計溶出金属量を分析した。露点温度と合計溶出金属量との関係を表4及び図4に示す。 Furthermore, after exposing 100% Cl 2 gas at 0.35 MPaG, 60 ° C., 6 days to a 1/2 inch SUS316L electrolytic polishing pipe, one welded part by automatic welding, and a sample pipe having a length of 100 mm, Similar to the ClF 3 gas and F 2 gas, the total amount of eluted metal was analyzed. The relationship between the dew point temperature and the total amount of eluted metal is shown in Table 4 and FIG.
この結果、Cl2ガスでは、露点温度の相違が合計溶出金属量の変動に大きな影響を与えることがわかる。 As a result, it can be seen that, in the Cl 2 gas, the difference in dew point temperature greatly affects the fluctuation of the total eluted metal amount.
上述のように、、ClF3ガスを使用したクリーニング処理の後のパージ処理に使用するパージガスの水分量を減少させることによりクリーニングガスが接触する金属表面の腐食量を抑制できることを確認することができた。この場合、パージガスの露点温度として、水分濃度が10ppmに対応する213K(−60℃)以下とすることにより、溶出金属量を50ppm以下に抑制することができる。 As described above, it can be confirmed that the amount of corrosion of the metal surface with which the cleaning gas comes into contact can be suppressed by reducing the moisture content of the purge gas used for the purge process after the cleaning process using the ClF 3 gas. It was. In this case, the amount of eluted metal can be suppressed to 50 ppm or less by setting the dew point temperature of the purge gas to 213 K (−60 ° C.) or less corresponding to a moisture concentration of 10 ppm.
上記実施例では、パージガスとして窒素ガスを例に説明しているが、このパージガスとしては、ヘリウムやアルゴン等の希ガスであってもよい。さらに、基板に対するエッチングガスとしてClF3ガスを使用する場合にも発明を応用することができる。 In the above embodiment, nitrogen gas is described as an example of the purge gas. However, the purge gas may be a rare gas such as helium or argon. Furthermore, the present invention can be applied to the case where ClF 3 gas is used as an etching gas for the substrate.
半導体素子製造装置や半導体基板製造装置や、液晶製造装置、太陽電池製造装置等の半導体製造装置の処理チャンバーやガス配管路での内面腐食の抑制方法として広く利用することができる。 The present invention can be widely used as a method for suppressing internal corrosion in processing chambers and gas pipelines of semiconductor manufacturing apparatuses such as semiconductor element manufacturing apparatuses, semiconductor substrate manufacturing apparatuses, liquid crystal manufacturing apparatuses, and solar cell manufacturing apparatuses.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008320399A JP2010147118A (en) | 2008-12-17 | 2008-12-17 | Method for suppressing surface corrosion in semiconductor manufacturing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008320399A JP2010147118A (en) | 2008-12-17 | 2008-12-17 | Method for suppressing surface corrosion in semiconductor manufacturing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010147118A true JP2010147118A (en) | 2010-07-01 |
Family
ID=42567255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008320399A Pending JP2010147118A (en) | 2008-12-17 | 2008-12-17 | Method for suppressing surface corrosion in semiconductor manufacturing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010147118A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6023854B1 (en) * | 2015-06-09 | 2016-11-09 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
WO2017175562A1 (en) | 2016-04-05 | 2017-10-12 | 関東電化工業株式会社 | Material, storage container using said material, valve installed on said storage container as well as cif storage method and cif storage container use method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003133234A (en) * | 2001-10-24 | 2003-05-09 | Shin Etsu Handotai Co Ltd | Method and facility for supplying gas |
JP2008147215A (en) * | 2006-12-06 | 2008-06-26 | Nuflare Technology Inc | Vapor phase epitaxial growth method |
-
2008
- 2008-12-17 JP JP2008320399A patent/JP2010147118A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003133234A (en) * | 2001-10-24 | 2003-05-09 | Shin Etsu Handotai Co Ltd | Method and facility for supplying gas |
JP2008147215A (en) * | 2006-12-06 | 2008-06-26 | Nuflare Technology Inc | Vapor phase epitaxial growth method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6023854B1 (en) * | 2015-06-09 | 2016-11-09 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
JP2017005090A (en) * | 2015-06-09 | 2017-01-05 | 株式会社日立国際電気 | Method of manufacturing semiconductor device, substrate processing device, and program |
WO2017175562A1 (en) | 2016-04-05 | 2017-10-12 | 関東電化工業株式会社 | Material, storage container using said material, valve installed on said storage container as well as cif storage method and cif storage container use method |
KR20180132797A (en) | 2016-04-05 | 2018-12-12 | 칸토 덴카 코교 가부시키가이샤 | Material, a preservation container using this material, a valve attached to this preservation container, a method of preserving ClF, a method of using ClF preservation container |
US10982811B2 (en) | 2016-04-05 | 2021-04-20 | Kanto Denka Kogyo, Co., Ltd. | Material, storage container using the material, valve attached to the storage container, method of storing ClF and method of using ClF storage container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101787139B1 (en) | A coating method for gas delivery system | |
CN111684570B (en) | Treatment liquid for semiconductor wafer containing hypochlorite ion | |
WO2013118260A1 (en) | Method for treating inner surface of chlorine trifluoride supply path in device using chlorine trifluoride | |
WO2006029160A3 (en) | Copper processing using an ozone-solvent solution | |
JP2008244292A (en) | Processing performance stabilizing method of plasma treatment apparatus | |
JP5317321B2 (en) | Metal material, storage container using the same, gas piping, apparatus, manufacturing method thereof, and ClF3 storage method | |
JP2010147118A (en) | Method for suppressing surface corrosion in semiconductor manufacturing device | |
JP2013111537A (en) | Method and device for cleaning equipment | |
TW202113117A (en) | Rf components with chemically resistant surfaces | |
JP2018107438A (en) | Method for surface treatment of metal member, and method for manufacturing semiconductor element | |
JP6749090B2 (en) | Processing method in processing apparatus using halogen-based gas | |
TW202037706A (en) | Semiconductor wafer treatment liquid containing hypochlorite ions and ph buffer | |
WO1993024267A1 (en) | Method of forming oxide passivation film at weld portion and process apparatus | |
TWI694874B (en) | Rapid cleaning method for ultrapure water piping system | |
TW202200818A (en) | Conditioning treatment for ald productivity | |
JP3829189B2 (en) | Grain boundary measurement method for steel with prior austenite grain boundaries. | |
JP4366169B2 (en) | Aluminum surface treatment method | |
JP4774014B2 (en) | Al or Al alloy | |
Ottosson et al. | Response to the comments by P. Szakálos, T. Åkermark and C. Leygraf on the paper “Copper in ultrapure water, a scientific issue under debate” | |
JP2004360066A (en) | Corrosion resistant material, and its production method | |
JP2000176643A (en) | Method for forming oxidized passive state film in weld zone | |
JPH0711421A (en) | Stainless steel member for semiconductor manufacturing fquipment | |
Lowery et al. | Comparing the characteristics of surface-passivated and electropolished 316L stainless steel | |
JP2008007861A (en) | Surface-treating method for aluminum | |
JP2004036002A (en) | Method for improving reliability of reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121005 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130108 |