JP2010145238A - Method of determining antigen-binding site in anti-membrane penetration type protein antibody - Google Patents

Method of determining antigen-binding site in anti-membrane penetration type protein antibody Download PDF

Info

Publication number
JP2010145238A
JP2010145238A JP2008322607A JP2008322607A JP2010145238A JP 2010145238 A JP2010145238 A JP 2010145238A JP 2008322607 A JP2008322607 A JP 2008322607A JP 2008322607 A JP2008322607 A JP 2008322607A JP 2010145238 A JP2010145238 A JP 2010145238A
Authority
JP
Japan
Prior art keywords
antigen
mutant
antibody
binding site
mutants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008322607A
Other languages
Japanese (ja)
Other versions
JP5230397B2 (en
Inventor
Takeshi Murata
武士 村田
So Iwata
想 岩田
Takatoshi Arakawa
孝俊 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008322607A priority Critical patent/JP5230397B2/en
Publication of JP2010145238A publication Critical patent/JP2010145238A/en
Application granted granted Critical
Publication of JP5230397B2 publication Critical patent/JP5230397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of conveniently and efficiently determining a binding site of an antibody to a membrane penetration type protein. <P>SOLUTION: The method of determining an antigen-binding site of the antibody to the membrane penetration type protein having two or more extramembranous regions includes: the process for expressing a group of variants having different extramembranous region and one or more added amino acid variants by a budding yeast expression system; the process for considering a group of the variants expressed by the budding yeast expression system as the antigen, making the antibody react to the membrane penetration type protein, and implementing an antigen-antibody reaction; and the process for identifying the variants in which the antigen-antibody reaction is not detected, and determining the extramembranous regions in which the variants are varied as a region including the antigen-binding site of the antibody or the antigen-binding site. The method determines the antigen-binding site of the antibody to the membrane penetration type protein. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、膜貫通型タンパク質に対する抗体の抗原結合部位を決定する方法に主に関する。   The present invention mainly relates to a method for determining an antigen binding site of an antibody against a transmembrane protein.

抗タンパク質抗体の抗原結合部位の決定には、抗原−抗体複合体の立体構造を決定し、直接判断する方法か、抗原の一次配列に基づく無数の部分ペプチドを準備した上で、それらの抗体との結合情報を集積して推定するペプチドスキャンと称される方法が一般的である(非特許文献1参照)。   In determining the antigen-binding site of an anti-protein antibody, the three-dimensional structure of the antigen-antibody complex is determined and directly judged, or an infinite number of partial peptides based on the primary sequence of the antigen are prepared, A method called peptide scan that accumulates and estimates the binding information is generally used (see Non-Patent Document 1).

前者では、正確な結合パターンを評価できるものの、X線結晶構造解析やNMRを駆使するための試料となる結晶や標識の調製にコストや時間がかかり、産業上の実用レベルにあるとは言い難い。   In the former, accurate bond patterns can be evaluated, but it is difficult to say that it is at an industrially practical level because it takes cost and time to prepare crystals and labels to be used as samples for X-ray crystal structure analysis and NMR. .

後者のペプチドスキャンでは、正確な決定を行うにあたり、抗原タンパク質の一次配列に基づく部分ペプチドを、重複を含めて設計してゆく必要がある。このため、部分ペプチド合成には、抗原タンパク質の配列の長さに応じて、多大な費用がかかる。例えば、ラット由来ニューロテンシン受容体に対する抗体のエピトープをペプチドスキャンにより判定した例(非特許文献2参照)では、C-末端近傍領域に限定して9種類のペプチドを合成して調査を行っているが、それ以外の領域を認識する抗体が与えられている場合、より多数の合成ペプチドを用意する必要性が生じるものと思われる。   In the latter peptide scan, in order to make an accurate determination, it is necessary to design a partial peptide based on the primary sequence of the antigen protein including duplication. For this reason, partial peptide synthesis requires a great deal of cost depending on the length of the antigen protein sequence. For example, in an example in which the epitope of an antibody against a rat-derived neurotensin receptor was determined by peptide scanning (see Non-Patent Document 2), nine types of peptides were synthesized and investigated in a region near the C-terminal. However, if an antibody that recognizes the other region is given, it will be necessary to prepare a larger number of synthetic peptides.

一方、高等生物由来膜タンパク質の結晶構造解析に適した品質の標品を得ることを目的とした、組換えタンパク質発現およびその評価法が報告された(非特許文献3参照)。この技術は発現用プラスミドを出芽酵母に導入して形質転換を行い蛍光タンパク質の融合した膜タンパク質を発現させ、次いで検体の蛍光を指標にして発現および可溶化の成功率を見積もることを特色としている。また、出芽酵母において、相同組換えを利用することで変異体発現プラスミドベクターが効率よく作成できることが報告されている(非特許文献4参照)。   On the other hand, recombinant protein expression and its evaluation method have been reported for the purpose of obtaining a quality sample suitable for crystal structure analysis of membrane protein derived from higher organisms (see Non-Patent Document 3). This technology is characterized by introducing a plasmid for expression into Saccharomyces cerevisiae to express a membrane protein fused with a fluorescent protein, and then estimating the success rate of expression and solubilization using the fluorescence of the specimen as an indicator. . In addition, it has been reported that mutant expression plasmid vectors can be efficiently prepared by utilizing homologous recombination in budding yeast (see Non-Patent Document 4).

しかしながら、これらの技術の利用はタンパク質の効率的な発現及び発現量評価に留まっており、上記技術の実施方法に関する総説(非特許文献5参照)においては、当該技術をウエスタン解析に適用することはむしろ推奨しない旨の記載があった。
Gershoni, Biodrugs, 2007, 21(3), 145-56 Niebauer, J. Recept Signal Transduct Res., 2006, 26, 395-415 Newstead, Proc. Natl. Acad. Sci. USA, 2007, 104(35), 13936-41 Ito K, Biochem. Biophys. Res. Commun., 2008, 371(4), 841-5 Drew D, Nat. Protocol, 2008, 3(5), 784-98
However, the use of these techniques is limited to the efficient expression of proteins and the evaluation of the expression level. In the review on the implementation method of the above technique (see Non-Patent Document 5), it is not possible to apply the technique to Western analysis. Rather, there was a statement that it was not recommended.
Gershoni, Biodrugs, 2007, 21 (3), 145-56 Niebauer, J. Recept Signal Transduct Res., 2006, 26, 395-415 Newstead, Proc. Natl. Acad. Sci. USA, 2007, 104 (35), 13936-41 Ito K, Biochem. Biophys. Res. Commun., 2008, 371 (4), 841-5 Drew D, Nat.Protocol, 2008, 3 (5), 784-98

本発明は、膜貫通型タンパク質に対する抗体の結合部位を、迅速に、かつ、効率よく決定できる方法を提供することを主な課題とする。   The main object of the present invention is to provide a method capable of quickly and efficiently determining the binding site of an antibody to a transmembrane protein.

本発明者は、上記課題を解決することを主な目的として鋭意検討を重ねた結果、膜貫通型タンパク質、およびその膜外領域における配列に置換を施した変異体の一群を作製し、出芽酵母発現系で発現させ、当該発現した変異体の一群について、抗原−抗体反応を行って解析を行うことにより、抗膜貫通型タンパク質抗体の抗原結合部位を簡便に決定し得ることを見出し、更に検討を重ねて本発明を完成するに至った。   As a result of intensive studies aimed at solving the above-mentioned problems, the present inventor has produced a group of transmembrane proteins and mutants in which sequences in the extramembrane region have been substituted, and budding yeast. It was found that the antigen-binding site of an anti-transmembrane protein antibody can be easily determined by expressing it in an expression system and analyzing the expressed mutant group by performing an antigen-antibody reaction. As a result, the present invention was completed.

即ち、本発明は、下記の事項に関する。   That is, the present invention relates to the following matters.

項1:2以上の膜外領域を有する膜貫通型タンパク質に対する抗体の抗原結合部位を決定する方法であって、
異なる膜外領域に1又は数個のアミノ酸変異が加えられた変異体の一群を出芽酵母発現系で発現させる工程、
前記出芽酵母発現系で発現させた変異体の一群を抗原として、前記膜貫通型タンパク質に対する抗体を作用させて抗原−抗体反応を行う工程、
抗原−抗体反応が検出されない変異体を特定し、当該変異体において変異が加えられている膜外領域を、前記抗体の抗原結合部位又は抗原結合部位を含む領域と判定する工程、
を含むことを特徴とする、膜貫通型タンパク質に対する抗体の抗原結合部位を決定する方法。
Item 1: A method for determining an antigen-binding site of an antibody against a transmembrane protein having two or more extra-membrane regions,
Expressing a group of mutants in which one or several amino acid mutations are added to different extramembrane regions in a budding yeast expression system;
A step of performing an antigen-antibody reaction by causing an antibody against the transmembrane protein to act as a group of mutants expressed in the budding yeast expression system,
Identifying a mutant in which an antigen-antibody reaction is not detected, and determining an extra-membrane region in which the mutation is added in the mutant as an antigen-binding site of the antibody or a region containing an antigen-binding site;
A method for determining an antigen-binding site of an antibody against a transmembrane protein, comprising:

項2:前記変異体の一群を発現させる工程が、
変異体に蛍光タンパク質を融合させた融合タンパク質として発現させる工程であることを特徴とする項1に記載の方法。
Item 2: The step of expressing a group of the mutants comprises:
Item 2. The method according to Item 1, wherein the method is expressed as a fusion protein in which a fluorescent protein is fused to a mutant.

項3:膜貫通型タンパク質が7回膜貫通型受容体であることを特徴とする項1又は2に記載の方法。   Item 3: The method according to Item 1 or 2, wherein the transmembrane protein is a seven-transmembrane receptor.

項4:更に、同じ膜外領域に1又は数個の異なるアミノ酸変異が加えられた変異体の一群を出芽酵母発現系で発現し、
当該発現させた変異体の一群を抗原として、前記膜貫通型タンパク質に対する抗体を作用させて抗原−抗体反応を行い、
抗原−抗体反応が検出されない変異体を特定し、当該変異体において変異が加えられている箇所を、前記抗体の抗原結合部位又は抗原結合部位を含む領域と判定する工程を含むことを特徴とする項1〜3のいずれかに記載の方法。
Item 4: Furthermore, a group of mutants in which one or several different amino acid mutations are added to the same outer membrane region is expressed in a budding yeast expression system,
Using a group of the expressed mutants as an antigen, an antibody against the transmembrane protein is allowed to act to perform an antigen-antibody reaction,
Characterized in that it includes a step of identifying a variant in which an antigen-antibody reaction is not detected, and determining a portion where the mutation is added in the variant as an antigen-binding site of the antibody or a region containing the antigen-binding site. Item 4. The method according to any one of Items 1 to 3.

以下、本発明について、より詳細を説明する。   Hereinafter, the present invention will be described in more detail.

1.変異体の一群を出芽酵母発現系で発現させる工程
本発明における変異体とは、2以上の膜外領域を有する膜貫通型タンパク質における膜外領域の1つに1または数個のアミノ酸残基に変異が施されている膜貫通型タンパク質変異体である。
1. Step of expressing a group of mutants in a budding yeast expression system A mutant in the present invention is one or several amino acid residues in one of the transmembrane domains in a transmembrane protein having two or more transmembrane domains. It is a transmembrane protein mutant that has been mutated.

アミノ酸変異としては、置換、欠失、挿入等が挙げられる。
アミノ酸変異は、対象タンパク質と抗体との結合を損なわせる又は減じるようなものであれば、特に限定されることはない。通常は、対象タンパク質と同種のタンパク質から相当する部位の構造を考慮した上、同種のタンパク質の構造と類似性を持たないような構造に設定される。
Amino acid mutations include substitution, deletion, insertion and the like.
The amino acid mutation is not particularly limited as long as it damages or reduces the binding between the target protein and the antibody. Usually, the structure is set so as not to be similar to the structure of the same type of protein after considering the structure of the corresponding site from the same type of protein as the target protein.

変異箇所の設定にあたっては、対象タンパク質のアミノ酸配列又は遺伝子配列中から膜外領域に相当する部分を推定する。推定の方法は特に限定されないが、通常、対象タンパク質のアミノ酸配列を同一のファミリーと認められるタンパク質のアミノ酸配列を参照として、ClustalやT-coffeeといった、公開された配列アラインメントアルゴリズムを用いて整列させ、比較することで行う。   In setting the mutation site, a portion corresponding to the extra-membrane region is estimated from the amino acid sequence or gene sequence of the target protein. The estimation method is not particularly limited, but usually the amino acid sequence of the target protein is aligned using a published sequence alignment algorithm such as Clustal or T-coffee with reference to the amino acid sequence of the protein recognized as the same family, This is done by comparing.

参照タンパク質は膜外予測アルゴリズムにより高精度に予測可能なタンパク質を採用するが、特に立体構造解析他の実証的手段により膜貫通部と膜外領域が判明しているものを採用することが推奨される。7回膜貫通型タンパク質の場合は、立体構造の解明されたアドレナリン受容体、アデノシン受容体、あるいはロドプシンを参照タンパク質として比較することにより、膜外領域の位置を正確に決定することが可能である。   As the reference protein, a protein that can be predicted with high accuracy by an extra-membrane prediction algorithm is adopted, but it is recommended to adopt a protein whose transmembrane region and extra-membrane region are known by empirical means such as three-dimensional structure analysis. The In the case of a 7-transmembrane protein, it is possible to accurately determine the position of the extramembrane region by comparing the adrenoceptor, adenosine receptor, or rhodopsin whose structure has been elucidated as a reference protein. .

本発明において、異なる膜外領域に1又は数個のアミノ酸変異が加えられた変異体の一群とは、タンパク質の膜外領域のそれぞれに1又は数個のアミノ酸変異が加えられた変異体の一群であって、換言すると、互いに異なる膜外領域において1又は数個のアミノ酸変異が加えられた変異体の一群である。   In the present invention, a group of variants in which one or several amino acid mutations are added to different extra-membrane regions means a group of variants in which one or several amino acid mutations are added to each of the extra-membrane regions of a protein. In other words, it is a group of mutants in which one or several amino acid mutations are added in different transmembrane regions.

例えば、変異体の一群の例には、7回膜貫通型タンパク質の変異体の一群であって、第1の膜外領域のみに1又は数個のアミノ酸変異が加えられている第1の変異体、第2の膜外領域のみに1又は数個のアミノ酸変異が加えられている第2の変異体、第3の膜外領域のみに1又は数個のアミノ酸変異が加えられている第3の変異体、第4の膜外領域のみに1又は数個のアミノ酸変異が加えられている第4の変異体、第5の膜外領域のみに1又は数個のアミノ酸変異が加えられている第5の変異体、第6の膜外領域のみに1又は数個のアミノ酸変異が加えられている第6の変異体、第7の膜外領域のみに1又は数個のアミノ酸変異が加えられている第7変異体、及び、第8の膜外領域のみに1又は数個のアミノ酸変異が加えられている第8変異体からなる一群が挙げられる。   For example, in the group of mutants, the first mutation is a group of 7-transmembrane protein mutants in which one or several amino acid mutations are added only to the first transmembrane region. The second variant in which one or several amino acid mutations are added only to the second extra-membrane region, and the third variant in which one or several amino acid alterations are added only to the third extra-membrane region. A variant in which one or several amino acid mutations are added only to the fourth extra-membrane region, and one or several amino acid alterations are added only to the fifth extra-membrane region. The fifth variant, the sixth variant in which one or several amino acid mutations are added only to the sixth extra-membrane region, and the one or several amino acid alterations are added only to the seventh extra-membrane region And the eighth mutation in which one or several amino acid mutations are added only to the eighth extramembranous region The group consisting of and the like.

更に、より詳細に結合部位を追求していくため、同じ膜外領域に変異を有するが、変異箇所が異なる1又は複数の変異体を更に当該一群に加えることもできる。   Furthermore, in order to pursue the binding site in more detail, one or a plurality of mutants having mutations in the same extra-membrane region but different mutation sites can be further added to the group.

アミノ酸配列の変異方法は、公知の方法に従うことができ、特に限定されないが、例えば、対象タンパク質の遺伝子配列のうち、変異を施すアミノ酸残基に翻訳されるDNA配列が別のアミノ酸残基に翻訳されるDNA配列へ置換された変異体遺伝子配列を設計し、遺伝子操作により変異遺伝子断片を調製し、宿主細胞用プラスミドの所定の位置に変異遺伝子断片の挿入された発現用プラスミドベクターを作製することにより行うことができる。   The amino acid sequence mutation method can follow a known method and is not particularly limited. For example, in the gene sequence of the target protein, the DNA sequence translated into the amino acid residue to be mutated is translated into another amino acid residue. Designing a mutant gene sequence substituted for the DNA sequence to be prepared, preparing a mutant gene fragment by genetic manipulation, and preparing an expression plasmid vector in which the mutant gene fragment is inserted at a predetermined position of the host cell plasmid Can be performed.

変異は、1回の操作により、1つのアミノ酸残基のみを変異させてもよく、2以上のアミノ酸残基を同時に変異させるものであってもよい。   Mutation may be to mutate only one amino acid residue or to mutate two or more amino acid residues simultaneously by one operation.

好ましくは、変異体は、発現用プラスミドベクターが導入された出芽酵母の形質転換株によって発現される。   Preferably, the mutant is expressed by a transformant of Saccharomyces cerevisiae into which an expression plasmid vector has been introduced.

例えば、当該変異体を構成するペプチド鎖へと翻訳されるDNA配列を酵母用プラスミドに挿入し、発現用プラスミドベクターを作製する操作は、相同組換えが高頻度に発生するという出芽酵母の生物機構的特徴を利用して行うことができる。変異を施したい膜外領域部分とそれを挟んだ転写方向においてその上流部分、下流部分の3箇所のDNA配列に対して、上流部分の3’末側と膜外領域部分の5’末側、膜外領域部分の3’側と下流部分の5’末側にそれぞれ約30塩基対の重複を持たせた断片をPCR等により準備する。このとき、上流断片の5’末側、下流断片の3’側はそれぞれ、酵母用プラスミドのクローニングサイトの上流、下流の配列と同一の配列を持つようにする。膜外領域部分が短い場合や遺伝子末端領域を変異させる場合には、準備するDNA断片は、変異を施すDNA配列を重複配列として含む2以下の断片にすることもできる。これらをクローニングサイトで直鎖化した酵母用プラスミドとともに出芽酵母の形質転換を行うと、酵母菌体内で所与の配列により相同組換えが起こり、変異体配列の挿入された発現プラスミドとして保持される。形質転換体は引き続き変異体の発現に供することができる。   For example, the operation of inserting a DNA sequence translated into the peptide chain constituting the mutant into a yeast plasmid and preparing an expression plasmid vector is a biological mechanism of budding yeast in which homologous recombination occurs frequently. This can be done by using the characteristic features. 3 'end side of the upstream part and 5' end side of the extramembranous region part with respect to the DNA region of the upstream part and the downstream part in the transcriptional direction sandwiching the extramembranous part part to be mutated, A fragment having about 30 base pair duplications on the 3 ′ side of the outer membrane region and the 5 ′ end of the downstream portion is prepared by PCR or the like. At this time, the 5 ′ end side of the upstream fragment and the 3 ′ side of the downstream fragment have the same sequence as the upstream and downstream sequences of the cloning site of the yeast plasmid, respectively. When the extra-membrane region is short or when the gene terminal region is mutated, the DNA fragment to be prepared can be a fragment of 2 or less containing the mutated DNA sequence as an overlapping sequence. When transforming a budding yeast together with a yeast plasmid linearized at the cloning site, homologous recombination occurs in a yeast cell with a given sequence, which is retained as an expression plasmid into which the mutant sequence is inserted. . The transformant can then be subjected to mutant expression.

より好ましくは、実施例に記載の方法に従って実施できる。   More preferably, it can be carried out according to the method described in the Examples.

ただし、酵母による変異体の発現が上記方法に限られることはなく、酵母以外の宿主系で一般的に行われている手法を用いることができる。例えばカセット変異法やQuikchange法などを用いて一旦発現用プラスミドベクターを獲得し、改めて出芽酵母に導入する手段を採用しても差し支えない。   However, the expression of the mutant by yeast is not limited to the above method, and a method generally performed in a host system other than yeast can be used. For example, it is possible to adopt a means of once obtaining a plasmid vector for expression using the cassette mutation method or Quikchange method and introducing it into budding yeast again.

変異体は、対象タンパク質に変異を加えた変異タンパク質と蛍光タンパク質との融合タンパク質として発現させてもよい。   The mutant may be expressed as a fusion protein of a mutant protein obtained by adding a mutation to the target protein and a fluorescent protein.

例えば、宿主細胞として酵母を用いる場合には、発現用プラスミドにおけるクローニングサイトの下流側に酵母での発現に最適化された変異体緑色蛍光タンパク質(yEGFP)の遺伝子を配置し、変異体が膜貫通型タンパク質とyEGFPの融合タンパク質として発現するように設計されているものを用いて発現させることができる。   For example, when yeast is used as the host cell, a mutant green fluorescent protein (yEGFP) gene optimized for yeast expression is placed downstream of the cloning site in the expression plasmid, and the mutant transmembranes. It can be expressed using a protein designed to be expressed as a fusion protein of type protein and yEGFP.

蛍光タンパク質との融合タンパク質として発現させることにより、結合部位の決定が簡便かつ精度の高いものとなる。特に、対象タンパク質の由来と宿主の異なる異種発現系の場合、通例として、変異体のアミノ酸配列によっては発現量が極度に減少したり、発現の抑制を来したりする場合がある。この場合、発現のない変異体標品を以降の工程に持ち込むことは誤判定の一因になる。しかし、融合タンパク質として発現させた変異体の蛍光強度を測定し、蛍光強度の観測された標品を用いて抗原−抗体反応の検出を行えば、上記のような誤判定を避け、発現した変異体のみを対象として抗原結合部位を的確に検出することが可能になる。   By expressing as a fusion protein with a fluorescent protein, the determination of the binding site is simple and highly accurate. In particular, in the case of a heterologous expression system in which the target protein is derived from a different host, the expression level may be extremely reduced or the expression may be suppressed depending on the amino acid sequence of the mutant. In this case, bringing in a mutant preparation having no expression to the subsequent steps contributes to erroneous determination. However, if the fluorescence intensity of the mutant expressed as a fusion protein is measured and the antigen-antibody reaction is detected using a sample whose fluorescence intensity is observed, the above-mentioned misjudgment can be avoided and the expressed mutation It becomes possible to accurately detect the antigen-binding site only for the body.

形質転換体の培養物を回収し、変異体の発現している細胞膜画分を抽出する。   A culture of the transformant is collected, and a cell membrane fraction expressing the mutant is extracted.

具体的には、培養物を遠心分離することにより、培養物中の細胞を集め、細胞を破砕して、低速遠心分離により細胞の死骸を廃棄し、上清を回収することにより、細胞膜画分を得ることができる。得られた膜画分は、そのまま膜検体として、下記抗原−抗体反応に用いることができる。但し、必要によっては、遠心分離等を行うことにより膜画分を簡易精製してもよい。精製することにより、膜画分を用いた検体の保存性は向上する。   Specifically, the cells in the culture are collected by centrifuging the culture, the cells are crushed, the carcasses of the cells are discarded by low-speed centrifugation, and the supernatant is collected to collect the cell membrane fraction. Can be obtained. The obtained membrane fraction can be used for the following antigen-antibody reaction as a membrane specimen as it is. However, if necessary, the membrane fraction may be simply purified by centrifugation or the like. By purifying, the preservability of the specimen using the membrane fraction is improved.

2.抗原−抗体反応の検出工程
前記出芽酵母発現系で発現した膜貫通型タンパク質および変異体の一群に抗体を反応させて、抗原−抗体反応を検出する。
2. Step of detecting antigen-antibody reaction An antigen is reacted with a group of transmembrane proteins and mutants expressed in the budding yeast expression system to detect an antigen-antibody reaction.

抗体は、対象タンパク質に対する抗膜貫通型タンパク質抗体であれば、特に限定されないが、特異的な結合部位を決定する観点から、本発明では、モノクローナル抗体が好適に用いられる。   The antibody is not particularly limited as long as it is an anti-transmembrane protein antibody against the target protein, but from the viewpoint of determining a specific binding site, a monoclonal antibody is preferably used in the present invention.

抗原−抗体反応の検出方法は、公知の方法に従って行うことができ、特に限定されない。   The method for detecting the antigen-antibody reaction can be performed according to a known method, and is not particularly limited.

例えば、抗体を直接又は間接的に標識して検出する方法、具体的には、西洋ワサビペルオキシダーゼやアルカリフォスファターゼなどの酵素標識により検出するELISA法やCLIA法、ルミノールやGFP(Green Fluorescence Protein)などの蛍光標識を検出するFIA法、125Iなどの放射性同位体標識を検出するRIA法などを用いることができる。 For example, a method for detecting by directly or indirectly labeling an antibody, specifically, ELISA method or CLIA method for detecting by enzyme labeling such as horseradish peroxidase or alkaline phosphatase, luminol or GFP (Green Fluorescence Protein) An FIA method for detecting a fluorescent label, an RIA method for detecting a radioisotope label such as 125 I, and the like can be used.

また、ウエスタンブロット法やドットブロット法などの検出方法も用いることができる。例えば、ウエスタンブロットでは、膜検体をポリアクリルアミドゲルに展開したのち、PVDFあるいはニトロセルロース製の平膜にゲル内容物を転写する。ドットブロットでは、膜検体を直接平膜へスポットし、吸着させる。膜検体の固定された平膜にモノクローナル抗体を作用させ、直接又は間接的に当該抗体と平膜へ固定されたタンパク質との結合を検出する。   In addition, detection methods such as Western blotting and dot blotting can also be used. For example, in Western blotting, a membrane specimen is developed on a polyacrylamide gel, and then the gel contents are transferred to a flat membrane made of PVDF or nitrocellulose. In dot blotting, membrane specimens are spotted directly onto a flat membrane and adsorbed. A monoclonal antibody is allowed to act on the flat membrane on which the membrane specimen is immobilized, and the binding between the antibody and the protein immobilized on the flat membrane is detected directly or indirectly.

3.抗体の抗原結合部位を判定する工程
上記工程により、膜貫通型タンパク質および変異体の一群におけるあるモノクローナル抗体に対する抗原−抗体反応の有無を確認する。このとき抗原−抗体反応が検出される変異体は変異によって抗原配列が損なわれておらず、一方で検出されなかった変異体には抗原配列が完全に削除されているか部分的に欠損していると考えることができる。そのために検出されなかった変異体に施した変異の箇所がモノクローナル抗体の抗原結合部位に関与すると決定される。
3. Step of determining antigen-binding site of antibody By the above-mentioned step, the presence or absence of an antigen-antibody reaction against a certain monoclonal antibody in a group of transmembrane proteins and mutants is confirmed. In this case, the mutant in which the antigen-antibody reaction is detected does not lose the antigen sequence due to the mutation, while the mutant that has not been detected has the antigen sequence completely deleted or partially missing. Can be considered. Therefore, it is determined that the position of the mutation applied to the mutant not detected is involved in the antigen-binding site of the monoclonal antibody.

例えば、第1の膜外領域に変異が加えられている第1の変異体、第2の膜外領域に変異が加えられている第2の変異体、第3の膜外領域に変異が加えられている第3の変異体、第4の膜外領域に変異が加えられている第4の変異体、第5の膜外領域に変異が加えられている第5の変異体、第6の膜外領域に変異が加えられている第6の変異体、第7の膜外領域に変異が加えられている第7変異体、及び、第8の膜外領域に酸変異が加えられている第8変異体からなる一群に対し、モノクローナル抗体を用いて、抗原−抗体反応を行い、第Xの変異体(Xは1〜8のいずれかの整数を示す)について抗原−抗体反応が検出されなかった場合には、第Xの膜外領域に当該モノクローナル抗体の抗原結合部位が存在すると決定できる。   For example, a first mutant in which a mutation is added to the first outer membrane region, a second mutant in which a mutation is added to the second outer membrane region, and a mutation in the third outer membrane region A third variant, a fourth variant in which a mutation is added to the fourth extra-membrane region, a fifth variant in which a mutation is added to the fifth extra-membrane region, A sixth mutant in which a mutation is added to the extramembrane region, a seventh mutant in which a mutation is added to the seventh extramembrane region, and an acid mutation in the eighth extramembrane region A group consisting of the eighth mutant is subjected to an antigen-antibody reaction using a monoclonal antibody, and an antigen-antibody reaction is detected for the Xth mutant (X represents an integer of 1 to 8). If not, it can be determined that the antigen-binding site of the monoclonal antibody is present in the Xth extramembrane region.

抗体の抗原結合部位の決定を行う場合には、変異体の種類と調査する抗体の種類が直交するように検体又は解析結果を2次元上に並べてもよい。   When determining the antigen-binding site of an antibody, specimens or analysis results may be arranged two-dimensionally so that the type of mutant and the type of antibody to be investigated are orthogonal.

例えば、Y種(Yは2以上の整数を示す)の変異体の一群を用いてELISAやドットブロットを用いて、Z種(Zは2以上の整数を示す)の抗体について抗原結合部位を解析する場合、Z列×Y行ウェルのプレートまたはスロットの各行毎にそれぞれ異なる変異体を固定し、抗体を種類毎に各列に並べて抗原−抗体反応を行うことにより、Z種の抗体のエピトープの解析結果を一目で把握することができる。   For example, using a group of mutants of type Y (Y is an integer of 2 or more), using ELISA or dot blot, analyze the antigen binding site for antibody of type Z (Z is an integer of 2 or more) In this case, a different variant is immobilized for each row of the plate or slot of the Z column × Y row well, and the antigen-antibody reaction is performed by arranging the antibodies in each column, thereby allowing the epitope of the Z type antibody to be detected. The analysis result can be grasped at a glance.

また、ウエスタンブロットの場合も、各レーンへの変異体の重層に規則性を持たせ、Y種の変異体についてZ種の抗体を用いて抗原−抗体反応を検出した結果を、Z列×Y行の形式で並べて相互に比較することにより、Z種の抗体のエピトープの解析結果を一目で把握することができる。   Also, in the case of Western blotting, the overlay of the mutants to each lane has regularity, and the results of detecting the antigen-antibody reaction using the Z-type antibodies for the Y-type mutants are shown as Z row × Y The results of analyzing the epitopes of the Z-type antibody can be grasped at a glance by arranging them in a row format and comparing them with each other.

本発明により、膜貫通型タンパク質に対する抗体の抗原結合部位に関与する領域を、迅速に効率よく決定する方法が提供される。   The present invention provides a method for quickly and efficiently determining a region involved in an antigen-binding site of an antibody against a transmembrane protein.

従来の立体構造解析を伴う決定方法においては、タンパク質の構造解析が必要となり、特に高等生物の場合は試料の調製や構造解析に困難を要していたが、本発明では、タンパク質の構造解析を経ることなく、抗原結合部位の決定を行うことができる。   In the conventional determination method involving a three-dimensional structure analysis, a protein structure analysis is required. Particularly in the case of higher organisms, preparation of samples and a structure analysis are difficult, but in the present invention, a protein structure analysis is performed. The antigen binding site can be determined without going through.

また、従来のペプチドを用いた決定方法においては、多数のペプチド合成が必要であり、またペプチド配列の選択による人為的なエラーが生ずる可能性があったが、本発明は、タンパク質の発現体を対象として解析を行うため、前記のような問題が生じる可能性が除かれる。   In addition, in the conventional determination method using peptides, it is necessary to synthesize a large number of peptides, and there is a possibility that an artificial error may occur due to selection of peptide sequences. Since the analysis is performed as a target, the possibility of the above-described problem is eliminated.

上記のような特徴から、本発明は、膜タンパク質の抗原結合部位決定までに要する時間かつ費用を大きく低減することができ、膜貫通型タンパク質の構造決定部位を迅速に効率よく実施できる方法を提供するものである。   From the above features, the present invention can greatly reduce the time and cost required to determine the antigen-binding site of a membrane protein, and provides a method capable of quickly and efficiently implementing the structure-determining site of a transmembrane protein. To do.

以下、本発明を実施例により、更に詳しく説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited by these.

なお、特に断わらない限り、「%」は「質量%」を示す。   Unless otherwise specified, “%” indicates “mass%”.

マウス由来抗ヒトムスカリン性アセチルコリン受容体M2サブタイプ(以下、M2受容体とも称する)に対するモノクローナル抗体のM2受容体における結合領域を、ウエスタンブロットを用いて解析した。 The binding region in the M2 receptor of the monoclonal antibody against the mouse-derived anti-human muscarinic acetylcholine receptor M2 subtype (hereinafter also referred to as M2 receptor) was analyzed using Western blot.

1−1.出芽酵母発現用プラスミドの作製
M2受容体の一次配列における膜外領域を決定するために、ヒトβ2アドレナリン受容体(β2受容体)の一次配列を参照として配列プログラムT-coffeeによりペアワイズアライメントを行った。次いでβ2受容体の膜外領域を、同受容体の結晶構造(Rasmussen S.G.F. et al. (2007) Nature 450 383-387)から読み取り、対応するM2受容体の一次配列について、N-末端からC-末端に向かって、N末ループ領域(Nter)、細胞内側第一ループ領域(il)、細胞外側第一ループ領域(o1)、細胞内側第二ループ領域(i2)、細胞外側第二ループ領域(o2)、細胞内側第三ループ領域(i3)、細胞外側第三ループ領域(o3)、C末ループ領域(Cter)の8カ所を膜外領域と断定した。
1-1. Preparation of budding yeast expression plasmid
In order to determine the extramembranous region in the primary sequence of the M2 receptor, pair-wise alignment was performed with the sequence program T-coffee with reference to the primary sequence of the human β2 adrenergic receptor (β2 receptor). The transmembrane region of the β2 receptor was then read from the crystal structure of the receptor (Rasmussen SGF et al. (2007) Nature 450 383-387) and the corresponding primary sequence of the M2 receptor was C- N-terminal loop region (Nter), intracellular first loop region (il), extracellular first loop region (o1), intracellular second loop region (i2), extracellular second loop region ( o2), the inner third loop region (i3), the outer third loop region (o3), and the C-terminal loop region (Cter) were determined as the extramembrane region.

これら膜外領域に対応した個々の変異体について、他のムスカリン性アセチルコリン受容体サブタイプの一次配列において各膜外領域に相当する配列のうち、極力類似性を持たない受容体のアミノ酸配列へ置換するように考慮して、各変異体の配列を以下のように設定した。   For the individual mutants corresponding to these extra-membrane regions, in the primary sequence of other muscarinic acetylcholine receptor subtypes, substitution to the amino acid sequence of the receptor having as little similarity as possible among the sequences corresponding to each extra-membrane region Thus, the sequence of each mutant was set as follows.

当実施例で用いたM2受容体の一次構造は一文字表記で、MDDSTDSSDNSLALTSPYKTFEVVFIVLVAGSLSLVTIIGNILVMVSIKVNRHLQTVNNYFLFSLACADLIIGVFSMNLYTLYTVIGYWPLGPVVCDLWLALDYVVSNASVMNLLIISFDRYFCVTKPLTYPVKRTTKMAGMMIAAAWVLSFILWAPAILFWQFIVGVRTVEDGECYIQFFSNAAVTFGTAIAAFYLPVIIMTVLYWHISRASKSRIKKDKKEPVANQDPVSPSLVPSREKKVTRTILAILLAFIITWAPYNVMVLINTFCAPCIPNTVWTIGYWLCYINSTINPACYALCNATFKKTFKHLLMCHYKNIGATR(配列番号1)で示される。   The primary structure of the M2 receptors used in this embodiment is a single letter, represented by EmudidiesutidiesuesudienuesuerueierutiesuPiwaikeitiefuibuibuiefuaibuierubuieijiesueruesuerubuitiaiaijienuaierubuiemubuiesuaikeibuienuarueichierukyutibuienuenuwaiefueruefuesuerueishieidieruaiaijibuiefuesuemuenueruwaitieruwaitibuiaijiwaidaburyuPieruJipibuibuishidierudaburyuerueierudiwaibuibuiesuenueiesubuiemuenuerueruaiaiesuefudiaruwaiefushibuitikeiPierutiwaiPibuikeiarutitikeiemueijiemuemuaieieieidaburyubuieruesuefuaierudaburyueiPieiaieruefudaburyukyuefuaibuijibuiarutibuiidijiishiwaiaikyuefuefuesuenueieibuitiefujitieiaieieiefuwaieruPibuiaiaiemutibuieruwaidaburyueichiaiesuarueiesukeiesuaruaikeikeidikeikeiiPibuieienukyudiPibuiesuPiesuerubuiPiesuaruikeikeibuitiarutiaierueiaieruerueiefuaiaitidaburyueiPiwaienubuiemubuieruaienutiefushieiPishiaiPienutibuidaburyutiaijiwaidaburyuerushiwaiaienuesutiaienuPieishiwaieiLCNATFKKTFKHLLMCHYKNIGATR (SEQ ID NO: 1).

変異体の一群として、
2-DDSTDSSDNSLALTSPYKTFE -22(配列番号2)をTDDPLGGHTVWQ(配列番号3)に置換したNter変異体、
51-NRHLQTVNN-59(配列番号4)をDKQLKTVDD(配列番号5)に置換したi1変異体、
86-IGYWPLGPVV-95(配列番号6)をMNRWALGNLA(配列番号7)に置換したものをo1変異体、
123-CVTKPLTYPVKRTTKM-139(配列番号8)をSITRPLTYRAKRSTKR(配列番号9)に置換したi2変異体、
164-FIVGVRTVEDGECYIQFFSN-183(配列番号10)をYFVGKRTVPPGECFIQFLSE(配列番号11)に置換したo2変異体、
218-KKDKKEPVANQDPVSPSLVPSREK-241(配列番号12)をDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEH(配列番号13)に置換したi3変異体、
272-APCIPN-277(配列番号14)をDSCVPK(配列番号15)に置換したo3変異体、
303-ATFKKTFKHLLMCHYKNIGATR-324(配列番号16)をKT(配列番号17)に置換したCter変異体を作製した。
As a group of mutants,
Nter mutant in which 2-DDSTDSSDNSLALTSPYKTFE-22 (SEQ ID NO: 2) is replaced with TDDPLGGHTVWQ (SEQ ID NO: 3),
I1 mutant in which 51-NRHLQTVNN-59 (SEQ ID NO: 4) is replaced with DKQLKTVDD (SEQ ID NO: 5),
86-IGYWPLGPVV-95 (SEQ ID NO: 6) replaced with MNRWALGNLA (SEQ ID NO: 7) o1 mutant,
I2 mutant in which 123-CVTKPLTYPVKRTTKM-139 (SEQ ID NO: 8) is replaced with SITRPLTYRAKRSTKR (SEQ ID NO: 9),
An o2 mutant in which 164-FIVGVRTVEDGECYIQFFSN-183 (SEQ ID NO: 10) is replaced with YFVGKRTVPPGECFIQFLSE (SEQ ID NO: 11),
I3 mutant in which 218-KKDKKEPVANQDPVSPSLVPSREK-241 (SEQ ID NO: 12) is replaced with DKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEH (SEQ ID NO: 13),
O3 mutant in which 272-APCIPN-277 (SEQ ID NO: 14) is replaced with DSCVPK (SEQ ID NO: 15),
A Cter mutant was prepared in which 303-ATFKKTFKHLLMCHYKNIGATR-324 (SEQ ID NO: 16) was replaced with KT (SEQ ID NO: 17).

以下、明示のあるものを除き、各変異体に対して並行して同一の操作を行った。   In the following, the same operation was performed in parallel on each mutant except those explicitly described.

酵母用プラスミドpRS426GAL1-GFP(Newstead S. et al. (2007) Proc. Natl. Acad. Sci. USA 104(35) 13936-13941)は、pRS426GAL1プラスミドのクローニングサイト下流側にtobacco etch virus プロテアーゼ(TEV)認識配列、yEGFP遺伝子、His×8残基タグの順に並ぶ塩基配列を挿入して作製した。これを制限酵素SmaIで消化し、直鎖化した。次いでM2受容体の遺伝子配列を鋳型として、変異体発現用プラスミド作製に必要な遺伝子断片をPCR法で増幅した。反応容量は50μL、ポリメラーゼは、Phusion High-Fidelity DNA Polymerase (Finnzymes社)を0.1U用いた。   The yeast plasmid pRS426GAL1-GFP (Newstead S. et al. (2007) Proc. Natl. Acad. Sci. USA 104 (35) 13936-13941) is a tobacco etch virus protease (TEV) downstream of the cloning site of the pRS426GAL1 plasmid. A base sequence arranged in the order of recognition sequence, yEGFP gene, and His × 8 residue tag was inserted. This was digested with the restriction enzyme SmaI and linearized. Next, using the gene sequence of the M2 receptor as a template, a gene fragment necessary for preparing a mutant expression plasmid was amplified by PCR. The reaction volume was 50 μL, and 0.1 U Phusion High-Fidelity DNA Polymerase (Finnzymes) was used as the polymerase.

プライマーはNter変異体及びCter変異体については2本、残りの変異体についてはそれぞれ4本を準備した。消化断片および増幅断片は1%アガロース電気泳動を行い確認し、ゲルから相当するバンドを切り出して、精製した。   Two primers were prepared for the Nter mutant and the Cter mutant, and four primers were prepared for the remaining mutants. Digested fragments and amplified fragments were confirmed by 1% agarose electrophoresis, and the corresponding bands were excised from the gel and purified.

次いで、直鎖状プラスミドと膜タンパク質遺伝子および変異体配列を含むDNA断片を用いて宿主株を形質転換した。宿主株は出芽酵母FGY217株(Kota J. et al. (2007) J. Cell Biol. 176 617-628)をYPD培地10mLで震盪培養し、OD600≒0.6 となった時点で2000×gで回収し、滅菌水で数回洗浄したものを用いた。形質転換は酢酸リチウム法(Gietz R. D. et al. (1995) Yeast 11 355-360)により行った。 The host strain was then transformed with a linear plasmid and a DNA fragment containing the membrane protein gene and the mutant sequence. The host strain is budding yeast strain FGY217 (Kota J. et al. (2007) J. Cell Biol. 176 617-628) shaken in 10 mL of YPD medium and collected at 2000 xg when OD 600 ≈0.6. And washed several times with sterilized water. Transformation was performed by the lithium acetate method (Gietz RD et al. (1995) Yeast 11 355-360).

形質転換処理された宿主株溶液を2%寒天プレートとして準備した2%グルコース含有ウラシル欠損最少培地に塗布し、30℃で3日静置しコロニーを形成させた。シングルコロニーを0.1%グルコース含有ウラシル欠損最少培地10mLの入った遠沈管2本に分注し、そのうち1本を菌体濃度が飽和するまで30℃で震盪培養したのち回収した。回収した菌体はグラスビーズ(Glass beads, acid-washed、Sigma社)を用いて剪断し、得られた細胞抽出液からプラスミドミニプレップキット(Qiagen社)を用いてプラスミド溶液を獲得した。プラスミドをDNA配列解析することにより変異が適切に施されていることを確認した。   The transformed host strain solution was applied to 2% glucose-containing uracil-deficient minimal medium prepared as a 2% agar plate, and allowed to stand at 30 ° C. for 3 days to form colonies. Single colonies were dispensed into two centrifuge tubes containing 10 mL of 0.1% glucose-containing uracil-deficient medium, one of which was collected after shaking culture at 30 ° C. until the cell concentration was saturated. The collected cells were sheared using glass beads (acid-washed, Sigma), and a plasmid solution was obtained from the obtained cell extract using a plasmid miniprep kit (Qiagen). It was confirmed that the mutation was appropriately performed by analyzing the DNA sequence of the plasmid.

1−2.出芽酵母発現系における膜貫通型タンパク質の発現
上記0.1%グルコース含有ウラシル欠損最少培地10mLのうち1本を30℃で震盪培養し、OD600≒0.6 となった時点で終濃度2%のガラクトースを添加した。30℃で20時間震盪培養を続けた後、培地を回収し、2000×gで沈殿させた菌体を、50mM Tris-HCl(pH7.6)、5mM EDTA、10%グリセロール、1×プロテアーゼ阻害剤カクテル(Complete EDTA-free 、Roche社)からなる緩衝液(YSB) 700μLに懸濁させた。
1-2. Expression of transmembrane protein in Saccharomyces cerevisiae expression system One of 10 mL of the above 0.1% glucose-containing uracil-deficient medium was shake-cultured at 30 ° C, and when OD 600 ≒ 0.6, final concentration of 2% galactose was added. did. After continuing shaking culture at 30 ° C. for 20 hours, the medium was collected and the cells precipitated at 2000 × g were mixed with 50 mM Tris-HCl (pH 7.6), 5 mM EDTA, 10% glycerol, 1 × protease inhibitor. It was suspended in 700 μL of a buffer solution (YSB) consisting of a cocktail (Complete EDTA-free, Roche).

グラスビーズ200μL(Glass beads, acid-washed、Sigma社)を加えて4℃で30分間高速震盪し、菌体を剪断して得られた抽出液を14,000×g、1分間遠心して菌体死骸を除去した。上清を100,000×g、30分間小型超遠心分離器に通し、その沈殿(発現膜画分)を回収し、YSB 1mLで懸濁した。懸濁液2μLを50mM Tris-HCl(pH7.6)、 5%グリセロール、5mM EDTA、0.02% ブロモフェノールブルーからなる溶液2μL と混ぜて30分静置し、トリスグリシン12%ポリアクリルアミドゲル(Invitrogen社)を用いて100V、120分電気泳動し、組成物を展開した。展開したゲルを蛍光イメージアナライザ(商品名:LAS-1000、富士フィルム社)で撮影し、GFP融合変異体タンパク質に由来する単一バンドを確認した。   Add 200 μL of glass beads (Glass beads, acid-washed, Sigma), shake at high speed for 30 minutes at 4 ° C, shear the cells and centrifuge the extract for 1 minute at 14,000 xg for 1 minute. Removed. The supernatant was passed through a small ultracentrifuge at 100,000 × g for 30 minutes, and the precipitate (expression membrane fraction) was collected and suspended in 1 mL of YSB. 2 μL of the suspension was mixed with 2 μL of a solution consisting of 50 mM Tris-HCl (pH 7.6), 5% glycerol, 5 mM EDTA, 0.02% bromophenol blue, and allowed to stand for 30 minutes. Trisglycine 12% polyacrylamide gel (Invitrogen) ) Was used for electrophoresis at 100 V for 120 minutes to develop the composition. The developed gel was photographed with a fluorescence image analyzer (trade name: LAS-1000, Fuji Film), and a single band derived from the GFP fusion mutant protein was confirmed.

また、M2受容体の未変異体の発現膜画分について、上記と同様に電気泳動し、CBB染色、蛍光検出、及び、ウエスタンブロットの各検出方法により発現を確認した。CBB染色はゲルを適量の染色液(商品名:Imperial Protein Stain (サーモサイエンティフィク社))に2時間浸したのち、純水で良く濯いで、イメージアナライザ(商品名:LAS-1000、富士フィルム社)のデジタイズモード(露光時間0.25秒)で撮影した。   Further, the expression membrane fraction of the unmutated M2 receptor was electrophoresed in the same manner as described above, and expression was confirmed by each detection method of CBB staining, fluorescence detection, and Western blot. For CBB staining, the gel is immersed in an appropriate amount of staining solution (trade name: Imperial Protein Stain (Thermo Scientific)) for 2 hours, then rinsed thoroughly with pure water, and image analyzer (trade name: LAS-1000, Fuji Film). ) Digitizing mode (exposure time 0.25 seconds).

蛍光検出では、泳動したゲルを直接イメージアナライザ(商品名:LAS-1000、富士フィルム社)の蛍光検出モード(露光時間30秒)で撮影した。   In fluorescence detection, the electrophoresed gel was directly photographed in a fluorescence detection mode (exposure time 30 seconds) of an image analyzer (trade name: LAS-1000, Fuji Film).

ウエスタンブロットでは、化学発光試薬(商品名:Immobilon Western Detection Reagents、Millipore社)2mLを2次抗体反応後のPVDF膜上に接触させ、5分間放置後、イメージアナライザ(商品名:LAS-1000、富士フィルム社)の化学発光検出モード(露光時間30秒)で撮影した。一次抗体反応にはTBS-Tで200ng/mLに希釈したmAb5を5mL、二次抗体反応にはTBS-Tで20ng/mL に希釈したHRP結合抗IgG抗体(商品名:goat anti-mouse IgG HRP conjugate:santa cruz社製)を5mL用いた。   In Western blotting, 2 mL of a chemiluminescent reagent (trade name: Immobilon Western Detection Reagents, Millipore) was brought into contact with the PVDF membrane after the secondary antibody reaction, allowed to stand for 5 minutes, and then an image analyzer (trade name: LAS-1000, Fuji). Films) and chemiluminescence detection mode (exposure time 30 seconds). For primary antibody reaction, 5 mL of mAb5 diluted to 200 ng / mL with TBS-T, and for secondary antibody reaction, HRP-conjugated anti-IgG antibody diluted to 20 ng / mL with TBS-T (trade name: goat anti-mouse IgG HRP 5 mL of conjugate (manufactured by Santa cruz) was used.

図1に、出芽酵母による未変異体及び変異体とyEGFPとの融合体の発現の模式図を示す。   In FIG. 1, the schematic diagram of the expression of the unmutated body by a budding yeast and the fusion body of a mutant and yEGFP is shown.

また、図2に、各変異体及び未変異体について発現確認を行った結果を示す。図2(a)はM2受容体未変異体の発現確認の結果を示す。1はCBB染色、2は蛍光検出、3はウエスタンブロットにより検出した結果を示す。   Moreover, the result of having confirmed the expression about each variant and a non-mutant is shown in FIG. FIG. 2 (a) shows the results of confirming the expression of the M2 receptor non-mutant. 1 shows CBB staining, 2 shows fluorescence detection, and 3 shows the result of detection by Western blot.

図2(a)に示されるように、CBB染色では夾雑する無数のタンパク質が検出されるが、蛍光検出ではM2受容体の未変異体が選択的に検出された。また、モノクローナル抗体を作用させて抗体検出を行うと、蛍光が確認された位置にシグナルが観測された。   As shown in FIG. 2 (a), a myriad of contaminating proteins were detected by CBB staining, but an unmutated M2 receptor was selectively detected by fluorescence detection. In addition, when antibody detection was performed using a monoclonal antibody, a signal was observed at a position where fluorescence was confirmed.

図2(b)は未変異体及び変異体の一群の発現を蛍光検出により確認した結果を示す。
左から未変異体、Nter変異体、i1変異体、o1変異体、i2変異体、o2変異体、i3変異体、o3変異体、及びCter変異体の結果を示す。図2(b)は、蛍光強度が最も大きいバンド位置を抽出して表示したものである。
FIG. 2 (b) shows the results of confirming the expression of a group of unmutated and mutants by fluorescence detection.
From the left, the results of unmutated, Nter mutant, i1 mutant, o1 mutant, i2 mutant, o2 mutant, i3 mutant, o3 mutant, and Cter mutant are shown. FIG. 2B shows the band position with the highest fluorescence intensity extracted and displayed.

参照のために10ng のyEGFPおよび蛍光マーカー(商品名:Benchmark fluorescent、Invitrogen社)も同時に泳動させ、バンドの蛍光強度から発現した変異体の濃度を、また移動度からは相対的分子量を見積もった。   For reference, 10 ng of yEGFP and a fluorescent marker (trade name: Benchmark fluorescent, Invitrogen) were also run simultaneously, and the concentration of the mutant expressed from the fluorescence intensity of the band and the relative molecular weight were estimated from the mobility.

蛍光強度換算で20 ng/μL となるように変異体懸濁液をYSBで希釈したのち、-80℃で冷凍保存した。   The mutant suspension was diluted with YSB so that the fluorescence intensity was 20 ng / μL, and then stored frozen at −80 ° C.

1−3.発現した蛋白質に対する抗原−抗体反応と結合部位の決定
上記1−2で作製した変異体懸濁液各1μLについて12%ポリアクリルアミドゲル(Tris-Glycine Gel、Invitrogen社)を用いて100V、120分電気泳動したのち、ゲル表面に親水化処理を施したPVDF膜に接触させ、0.3% Tris、1.5%グリシン、0.1%SDSからなる転写溶液を満たしたタンク式転写装置(Xcell; Invitrogen)内で30V、90分間で転写を行った。次いで2%スキムミルクを含むTBS-T(10mM Tris-HCl (pH7.6)、150mM NaCl、0.1%(v/v)Tween-20)に1時間膜を浸してブロッキングし、一次抗体として5種類の被判定用抗M2抗体mAb1〜5、二次抗体としてHRP結合抗IgG抗体(商品名:goat anti-mouse IgG HRP conjugate:santa cruz社製)を作用させて、抗原−抗体反応を行った。化学発光試薬(商品名:Immobilon Western Detection Reagents、Millipore社製)を用いて二次抗体を検出し、検出されなかったバンドに相当する変異体において変異を施した箇所がエピトープ領域であると判断した。
1-3. Determination of antigen-antibody reaction and binding site for the expressed protein 1 μL of each of the mutant suspensions prepared in 1-2 above was subjected to electricity at 100 V for 120 minutes using 12% polyacrylamide gel (Tris-Glycine Gel, Invitrogen). After electrophoresis, the gel surface is contacted with a PVDF membrane that has been hydrophilized, and 30 V in a tank-type transfer device (Xcell; Invitrogen) filled with a transfer solution consisting of 0.3% Tris, 1.5% glycine, and 0.1% SDS. Transfer was performed in 90 minutes. Next, the membrane was immersed in TBS-T (10 mM Tris-HCl (pH 7.6), 150 mM NaCl, 0.1% (v / v) Tween-20) containing 2% skim milk for 1 hour to block, and 5 types of primary antibodies were used. Anti-M2 antibodies mAb1 to 5 for determination and HRP-conjugated anti-IgG antibody (trade name: goat anti-mouse IgG HRP conjugate: manufactured by Santa cruz) as a secondary antibody were allowed to act to carry out an antigen-antibody reaction. A secondary antibody was detected using a chemiluminescent reagent (trade name: Immobilon Western Detection Reagents, manufactured by Millipore), and it was determined that the portion of the mutant corresponding to the band that was not detected was the epitope region. .

図3に、M2受容体未変異体及び変異体の一群と5種の抗M2モノクローナル抗体(mAb1〜5)について抗原−抗体反応を試験した結果を示す。横軸に未変異体及び各変異体、及び縦軸に各抗体の結果が並ぶように配置した。   FIG. 3 shows the results of testing the antigen-antibody reaction for a group of M2 receptor unmutated and mutants and 5 types of anti-M2 monoclonal antibodies (mAbs 1 to 5). The horizontal axis represents the unmutated mutant and each mutant, and the vertical axis aligned the results of each antibody.

図3の結果に示されるように、mAb1、mAb2、mAb3、mAb4は、Nter変異体に対するバンドが検出されていないことから、N末ループ領域に特異的な抗体であると判定される。一方、mAb5は、i3変異体に対するバンドが検出されていないことから、細胞内側第三ループ領域に特異的な抗体であると判定される。   As shown in the results of FIG. 3, mAb1, mAb2, mAb3, and mAb4 are determined to be antibodies specific for the N-terminal loop region since no band against the Nter mutant has been detected. On the other hand, mAb5 is determined to be an antibody specific for the intracellular third loop region since no band for the i3 mutant was detected.

抗M2受容体抗体産生ハイブリドーマ培養上清中のモノクローナル抗体について、M2受容体におけるエピトープ領域をELISA検出により決定した。 For the monoclonal antibody in the anti-M2 receptor antibody-producing hybridoma culture supernatant, the epitope region in the M2 receptor was determined by ELISA detection.

2−1.変異体の固定化およびブロッキング
実施例1で作製したM2受容体変異体の一群の膜検体のうち、Nter変異体、i1変異体、o1変異体、i2変異体、o2変異体、i3変異体、o3変異体、及び未変異体について、各変異体懸濁液2μLをYSBで100μLに希釈し、高吸着性96穴プレート(商品名:Maxisorp、Nunc社製)に注入し、2時間4℃に放置することにより、各構成物をプレート器壁に固定した。その後、懸濁液を捨て、20mM Hepes-NaOH (pH7.5), 150mM NaCl, 0.2% デシルマルトシドからなる洗浄溶液150μLに交換することで未吸着成分を取り除いた。次いで1% ウシ血清アルブミンを添加した洗浄溶液150μLに置換し、プレートを2時間4℃に放置することで、以下の操作における非特異的な抗体の吸着の低減を図った。
2-1. Immobilization and blocking of mutants Among a group of membrane specimens of M2 receptor mutants prepared in Example 1, Nter mutant, i1 mutant, o1 mutant, i2 mutant, o2 mutant, i3 mutant, For o3 mutant and unmutated mutants, 2 μL of each mutant suspension was diluted to 100 μL with YSB and injected into a highly adsorbable 96-well plate (trade name: Maxisorp, manufactured by Nunc), and kept at 4 ° C. for 2 hours. Each component was fixed to the plate wall by leaving it to stand. Thereafter, the suspension was discarded, and the unadsorbed components were removed by exchanging with 150 μL of a washing solution composed of 20 mM Hepes-NaOH (pH 7.5), 150 mM NaCl, 0.2% decyl maltoside. Subsequently, the plate was replaced with 150 μL of a washing solution supplemented with 1% bovine serum albumin, and the plate was allowed to stand at 4 ° C. for 2 hours, thereby reducing nonspecific antibody adsorption in the following procedure.

2−2.抗原-抗体反応と結合部位の決定
抗M2受容体抗体産生ハイブリドーマ培養上清を洗浄溶液で5倍程度に希釈し、上記未変異体及び変異体を固定化したELISAプレートの各ウェルに100μLずつ注入し、2時間4℃に放置し、ハイブリドーマ培養上清に溶解している12種の被判定用抗M2抗体mAb6〜17と一次抗体反応を行った。
2-2. Antigen-antibody reaction and determination of the binding site Anti-M2 receptor antibody-producing hybridoma culture supernatant is diluted approximately 5 times with a washing solution, and 100 μL is injected into each well of the ELISA plate to which the unmutated and mutants are immobilized. The mixture was allowed to stand at 4 ° C. for 2 hours, and a primary antibody reaction was performed with 12 kinds of anti-M2 antibodies mAb 6 to 17 for determination dissolved in the hybridoma culture supernatant.

その後、培養上清希釈液を捨て、洗浄溶液150μLでの洗浄を2回繰り返した。次いで、二次抗体として洗浄溶液で20ng/mL に希釈したHRP結合抗IgG抗体(商品名:goat anti-mouse IgG HRP conjugate:santa cruz社製)を100μLずつ注入し、2時間4℃で放置し反応させた後、二次抗体溶液を捨て、洗浄溶液200μLでの洗浄を3回繰り返した。残存溶液を取り除き、化学発色試薬(商品名:ABTS solution、Roche社製)を100μLずつ添加して発色を確認した。また、15分間室温に放置後、プレートリーダー(商品名:Spectramax M2e、Molecular Devices社製)で415nmおよび562nmにおける吸光度を測定し、その差を記録した。同一ハイブリドーマ培養上清について、変異体間における吸光度差を比較して、エピトープの解析を行った。   Thereafter, the culture supernatant dilution was discarded, and washing with 150 μL of the washing solution was repeated twice. Next, 100 μL each of HRP-conjugated anti-IgG antibody (trade name: goat anti-mouse IgG HRP conjugate: manufactured by Santa cruz) diluted to 20 ng / mL with a washing solution as a secondary antibody was injected and allowed to stand at 4 ° C. for 2 hours. After the reaction, the secondary antibody solution was discarded and washing with 200 μL of the washing solution was repeated three times. The remaining solution was removed, and 100 μL of a chemical coloring reagent (trade name: ABTS solution, manufactured by Roche) was added to confirm color development. Further, after standing at room temperature for 15 minutes, absorbance at 415 nm and 562 nm was measured with a plate reader (trade name: Spectramax M2e, manufactured by Molecular Devices), and the difference was recorded. For the same hybridoma culture supernatant, the difference in absorbance between the mutants was compared to analyze the epitope.

図4(a)に、反応30分後のプレートの発色反応の結果を示す。また、図4(b)に反応15分後の415nmと562nmにおける吸光度の差を示す。行方向に変異体の種類、列方向にハイブリドーマ培養上清の種類が並ぶように配置してある。NCは変異体を発現していない膜検体であり、基底レベルの発色を観察するために用いた。   FIG. 4 (a) shows the result of the color development reaction of the plate 30 minutes after the reaction. FIG. 4 (b) shows the difference in absorbance at 415 nm and 562 nm after 15 minutes of reaction. The mutants are arranged in the row direction and the hybridoma culture supernatants are arranged in the column direction. NC is a membrane specimen that does not express the mutant and was used to observe basal level color development.

図4に示される結果に基づき、プレートの発色を列毎に観察してゆき、同一列内の各ウェルにおいて、発色強度が顕著に見られないものについて、それに対応する変異体に施した変異箇所が抗体の結合配列を有する領域と判定した。発色は(a)に示すように目視でも確認できるが、判然としない場合は、(b)に示すように、415nmと562nmにおける吸光度の差を測定し、数値化することにより強度の比較を行った。   Based on the results shown in FIG. 4, the color development of the plate is observed for each column, and in each well in the same column where the color intensity is not significantly observed, the mutation site applied to the corresponding mutant Was determined to be a region having an antibody binding sequence. The color development can be confirmed visually as shown in (a), but if it is not clear, as shown in (b), the difference in absorbance at 415 nm and 562 nm is measured, and the intensity is compared by quantification. It was.

その結果、mAb7、mAb9、mAb11〜mAb17を一次抗体として用いた列では、i3変異体を固定したウェルの発色が顕著に低下していたことから、mAb7、mAb9、mAb11〜mAb17は、i3細胞内第三ループ領域に特異的な抗体と判定された。また、mAb10を用いた列では、N-末変異体を固定したウェルの発色が見られなかったため、mAb10はN-末ループ領域に特異的な抗体と判定された。   As a result, in the column using mAb7, mAb9, mAb11-mAb17 as the primary antibody, the color development of the well to which the i3 mutant was fixed was significantly reduced, so that mAb7, mAb9, mAb11-mAb17 The antibody was determined to be specific for the third loop region. In addition, in the column using mAb10, since color development was not observed in the wells to which the N-terminal mutant was fixed, mAb10 was determined to be an antibody specific for the N-terminal loop region.

上記で示したように、モノクローナル抗体の状態は精製を経たものである必要はなく、ハイブリドーマクローン樹立過程における培養上清であっても適用され、抗原結合領域の決定を行うことが可能であることがわかった。   As indicated above, the state of the monoclonal antibody does not need to have been purified, and can be applied even to the culture supernatant in the process of hybridoma clone establishment, and the antigen-binding region can be determined. I understood.

マウス由来抗ヒトアデノシン受容体A2aサブタイプ(以下、AA2a受容体とも称する)に対するモノクローナル抗体(mAb18)のAA2a受容体におけるエピトープ領域を、以下のように、ウエスタンブロットにより解析した。 The epitope region in the AA2a receptor of the monoclonal antibody (mAb18) against the mouse-derived anti-human adenosine receptor A2a subtype (hereinafter also referred to as AA2a receptor) was analyzed by Western blot as follows.

3−1.出芽酵母発現用プラスミドの作製
AA2a受容体の一次配列における膜外領域を決定するために、ヒトβ2アドレナリン受容体(β2受容体)の一次配列を参照として配列プログラムT-coffeeによりペアワイズアライメントを行った。次いでβ2受容体の膜外領域を、同受容体の結晶構造(Rasmussen S.G.F. et al. (2007) Nature 450 383-387)から読み取り、対応するM2受容体のアミノ酸一次配列についてN-末端からC-末端に向かってNter、i1、o1、i2、o2、i3、o3、Cterの8カ所を膜外領域と断定した。
3-1. Preparation of budding yeast expression plasmid
In order to determine the extramembranous region in the primary sequence of the AA2a receptor, pair-wise alignment was performed using the sequence program T-coffee with reference to the primary sequence of the human β2 adrenergic receptor (β2 receptor). The transmembrane region of the β2 receptor was then read from the crystal structure of the receptor (Rasmussen SGF et al. (2007) Nature 450 383-387) and the amino acid primary sequence of the corresponding M2 receptor was C- Eight regions of Nter, i1, o1, i2, o2, i3, o3, and Cter were determined as the outer membrane region toward the end.

これら膜外領域に対応する個々の変異体に施す置換は、他のアデノシン受容体サブタイプ(A1, A2b, A3)の一次配列において各膜外領域に相当する配列のうち、極力類似性を持たない受容体のアミノ酸配列へ置換するように考慮して、各変異体の配列を以下のように設定した。   Substitutions made to individual mutants corresponding to these extramembrane regions have as much similarity as possible among the sequences corresponding to each extramembranous region in the primary sequence of other adenosine receptor subtypes (A1, A2b, A3). The sequence of each mutant was set as follows, considering substitution to the amino acid sequence of the non-receptor.

当実施例で用いたAA2a受容体の一次構造は一文字表記で、MPIMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPFAITISTGFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTRAKGIIAICWVLSFAIGLTPMLGWNNCGQPKEGKQHSQGCGEGQVACLFEDVVPMNYMVYFNFFACVLVPLLLMLGVYLRIFLAARRQLKQMESQPLPGERARSTLQKEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTFRKIIRSHVLRQQEPFKA(配列番号18)で示される。   The primary structure of AA2a Receptor Using in this embodiment is a single letter, represented by EmuPiaiemujiesuesubuiwaiaitibuiierueiaieibuierueiaierujienubuierubuishidaburyueibuidaburyueruenuesuenuerukyuenubuitienuwaiefubuibuiesuerueieieidiaieibuijibuierueiaiPiefueiaitiaiesutijiefushieieishieichijishieruefuaieishiefubuierubuierutikyuesuesuaiefuesueruerueiaieiaidiaruwaiaieiaiaruaiPieruaruwaienujierubuitijitiarueikeijiaiaieiaishidaburyubuieruesuefueiaijierutiPiemuerujidaburyuenuenushijikyuPikeiijikeikyueichiesukyujishijiijikyubuieishieruefuidibuibuiPiemuenuwaiemubuiwaiefuenuefuefueishibuierubuiPieruerueruemuerujibuiwaieruaruaiefuerueieiaruarukyuerukeikyuemuiesukyuPierupijiiarueiaruesutierukyukeiibuieichieieikeiesuerueiaiaibuijieruefueierushidaburyueruPierueichiaiaienushiefutiefuefushiPidishiesueichieiPierudaburyueruemuwaierueiaibuieruesueichitienuesubuibuienuPiefuaiwaieiwaiaruIREFRQTFRKIIRSHVLRQQEPFKA (SEQ ID NO: 18).

変異体の一群として、
3-IMGSSV-8(配列番号19)をMPPSISAFQAA(配列番号20)に置換したNter変異体、
32-WLNSNLQNVTNY-43(配列番号21)をKVNQALRDSTFC(配列番号22)に置換したi1変異体、
70-FCAACHG-76(配列番号23)をITIHFYS(配列番号24)に置換したo1変異体、
104-IAIRIPLRYNGLVTGT-119(配列番号25)をLRVKLTVRYKRVTTHR(配列番号26)に置換したi2変異体、
146-CGQPKEGKQHSQGCGEGQVACLFEDVVP-173(配列番号27)をLSAVERAWAANGSMGEPVIKCEFEKVIS(配列番号28)に置換したo2変異体、
205- RRQLKQMESQPLPGERARSTLQKEVH-230(配列番号29)をKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHK(配列番号30)に置換したi3変異体、
261-DCSHA-265(配列番号31)をSCHK(配列番号32)に置換したo3変異体、
297-QTFRKIIRSHVLRQQEPFKA-316(配列番号33)をVT(配列番号34)に置換したCter変異体を作製した。
As a group of mutants,
Nter mutant in which 3-IMGSSV-8 (SEQ ID NO: 19) is replaced with MPPSISAFQAA (SEQ ID NO: 20),
An i1 mutant in which 32-WLNSNLQNVTNY-43 (SEQ ID NO: 21) is replaced with KVNQALRDSTFC (SEQ ID NO: 22);
O1 mutant in which 70-FCAACHG-76 (SEQ ID NO: 23) is replaced with ITIHFYS (SEQ ID NO: 24),
An i2 mutant in which 104-IAIRIPLRYNGLVTGT-119 (SEQ ID NO: 25) is replaced with LRVKLTVRYKRVTTHR (SEQ ID NO: 26);
O2 mutant in which 146-CGQPKEGKQHSQGCGEGQVACLFEDVVP-173 (SEQ ID NO: 27) is replaced with LSAVERAWAANGSMGEPVIKCEFEKVIS (SEQ ID NO: 28),
205-RRQLKQMESQPLPGERARSTLQKEVH-230 (SEQ ID NO: 29) is replaced with KRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHK (SEQ ID NO: 30),
An o3 mutant in which 261-DCSHA-265 (SEQ ID NO: 31) is replaced with SCHK (SEQ ID NO: 32);
A Cter mutant was prepared in which 297-QTFRKIIRSHVLRQQEPFKA-316 (SEQ ID NO: 33) was replaced with VT (SEQ ID NO: 34).

制限酵素SmaIにより直鎖化処理された酵母用プラスミドpRS426GAL1-GFPと、PCR法により増幅されたAA2a受容体またはその変異体の遺伝子配列を用いて、酢酸リチウム法により、出芽酵母株FGY217を形質転換した。形質転換処理された宿主株溶液を2%寒天プレートとして準備した2%グルコース含有ウラシル欠損最少培地に塗布し、30℃で3日静置しコロニーを形成させた。シングルコロニーを0.1%グルコース含有ウラシル欠損最少培地10mLの入った遠沈管2本に分注し、そのうち1本を菌体濃度が飽和するまで30℃で震盪培養したのち回収した。回収した菌体はグラスビーズ(商品名:Glass beads, acid-washed、Sigma社製)を用いて剪断し、得られた細胞抽出液からプラスミドミニプレップキット(Qiagen社)を用いてプラスミド溶液を獲得した。プラスミドをDNA配列解析することにより変異が適切に施されているのを確認した。   Transformation of budding yeast strain FGY217 by lithium acetate method using yeast plasmid pRS426GAL1-GFP linearized with restriction enzyme SmaI and gene sequence of AA2a receptor or its mutant amplified by PCR method did. The transformed host strain solution was applied to 2% glucose-containing uracil-deficient minimal medium prepared as a 2% agar plate and allowed to stand at 30 ° C. for 3 days to form colonies. Single colonies were dispensed into two centrifuge tubes containing 10 mL of 0.1% glucose-containing uracil-deficient medium, one of which was collected after shaking culture at 30 ° C. until the cell concentration was saturated. The collected cells are sheared using glass beads (trade name: Glass beads, acid-washed, manufactured by Sigma), and a plasmid solution is obtained from the obtained cell extract using a plasmid miniprep kit (Qiagen). did. It was confirmed that the mutation was appropriately performed by analyzing the DNA sequence of the plasmid.

3−2.出芽酵母発現系における膜貫通型タンパク質の発現
上記1−2において「M2受容体」に代えて「AA2a受容体」を用い、M2受容体の変異体の一群に代えてAA2a受容体の変異体の一群を用いる以外は、同様の操作を行って、タンパク質の発現を行った。
3-2. Expression of transmembrane protein in Saccharomyces cerevisiae expression system In the above 1-2, “AA2a receptor” is used instead of “M2 receptor”, and AA2a receptor mutants are substituted for a group of M2 receptor mutants. Except for using one group, protein was expressed in the same manner.

3−3.発現した蛋白質に対する抗原−抗体反応と結合部位の決定
上記1−3において「M2受容体」に代えて「AA2a受容体」を用い、M2受容体の変異体の一群に代えてAA2a受容体の変異体の一群を用いる以外は、同様の操作を行って、抗原−抗体反応と結合部位の決定を行った。
3-3. Determination of antigen-antibody reaction and binding site for expressed protein In 1-3 above, “AA2a receptor” is used instead of “M2 receptor”, and AA2a receptor mutation is substituted for a group of M2 receptor mutants. The same operation was performed except that a group of bodies was used, and the antigen-antibody reaction and the binding site were determined.

図5上部に AA2a受容体未変異体とその変異体の一群の発現結果を蛍光検出にて確認した結果を示す。   The upper part of FIG. 5 shows the result of confirming the expression results of the AA2a receptor non-mutant and a group of the mutants by fluorescence detection.

また、図5下部にAA2受容体未変異体とその変異体の一群に対する抗原−抗体反応をウエスタンブロットにより検出した結果を示す。   Further, the lower part of FIG. 5 shows the results of detecting the antigen-antibody reaction against the AA2 receptor non-mutant and a group of the mutants by Western blot.

図5に示されるように、i3変異体が展開されたレーンでは発現は確認されているが、抗原−抗体反応に基づく発光は観測されなかった。そのため、mAb18は細胞内側第三ループに位置する205-RRQLKQMESQPLPGERARSTLQKEVH-230(配列番号35)なる配列を認識するものと判断された。   As shown in FIG. 5, although the expression was confirmed in the lane where the i3 mutant was developed, no luminescence based on the antigen-antibody reaction was observed. Therefore, it was judged that mAb18 recognizes the sequence 205-RRQLKQMESQPLPGERARSTLQKEVH-230 (SEQ ID NO: 35) located in the cell inner third loop.

3−4.細胞内側第三ループ変異体の一群を用いた、エピトープ領域の絞り込み
上記3−3で細胞内第三ループを認識すると判定された抗AA2a抗体mAb18のより詳細な結合部位を解析するため、同じ細胞内側第三ループにおいて異なる変異を行った5種類の変異体の一群を作製し、発現確認及び抗原−抗体反応検出を行った。
3-4. Narrowing down the epitope region using a group of intracellular third loop variants Analyzes the more detailed binding sites of anti-AA2a antibody mAb18 determined to recognize the intracellular third loop in 3-3 above Therefore, a group of 5 mutants with different mutations in the same third loop inside the cell was prepared, and expression confirmation and antigen-antibody reaction detection were performed.

AA2a受容体細胞内第3ループの変異体の一群としては、
198-LRIFLAARRQ-207(配列番号36)をLEVFYLIRKQ(配列番号37)へ置換したi3-1変異体、
203- AARRQLKQME-212(配列番号38)をIIRNKLSLNL(配列番号39)へ置換したi3-2変異体、
208-LKQMESQPLP-217(配列番号40)をLNKKVSAS(配列番号41)へ置換したi3-3変異体、
213-SQPLPGERAR-222(配列番号42)をSNSKETG(配列番号43)へ置換したi3-4変異体、
218-GERARSTLQK-227(配列番号44)をSGDPQKYYGK(配列番号45)へ置換したi3-5変異体を作製した。
As a group of mutants of AA2a receptor intracellular third loop,
An i3-1 mutant in which 198-LRIFLAARRQ-207 (SEQ ID NO: 36) is replaced with LEVFYLIRKQ (SEQ ID NO: 37);
203-AARRQLKQME-212 (SEQ ID NO: 38) is replaced with IIRNKLSLNL (SEQ ID NO: 39) i3-2 mutant,
I3-3 mutant in which 208-LKQMESQPLP-217 (SEQ ID NO: 40) is replaced with LNKKVSAS (SEQ ID NO: 41),
I3-4 mutant in which 213-SQPLPGERAR-222 (SEQ ID NO: 42) is replaced with SNSKETG (SEQ ID NO: 43),
An i3-5 mutant in which 218-GERARSTLQK-227 (SEQ ID NO: 44) was replaced with SGDPQKYYGK (SEQ ID NO: 45) was prepared.

発現用プラスミドの作製、形質転換、膜貫通型タンパク質の発現、抗原-抗体反応と結合部位の決定は、「M2受容体」に代えて「AA2a受容体」を用い、M2受容体変異体の一群に代えて、AA2a受容体細胞内第3ループ領域変異体の一群を用いる以外は、上記1−1〜1−3と同様に行った。   For the construction of expression plasmids, transformation, transmembrane protein expression, antigen-antibody reaction and binding site determination, use "AA2a receptor" instead of "M2 receptor", and a group of M2 receptor variants Instead of using a group of AA2a receptor intracellular third loop region mutants, the same procedure as in 1-1 to 1-3 was performed.

図6上部に AA2a受容体細胞内第3ループ領域変異体の一群の発現結果を蛍光検出にて確認した結果を示す。   The upper part of FIG. 6 shows the results of confirming the expression results of a group of AA2a receptor intracellular third loop region mutants by fluorescence detection.

また、図6下部に化学発光試薬(商品名:Immobilon Western Detection Reagents、Millipore社製) を用いて、AA2a受容体細胞内第3ループ領域変異体に対する抗原−抗体反応を検出した結果を示す。   Moreover, the result of having detected the antigen-antibody reaction with respect to the AA2a receptor intracellular 3rd loop area | region mutant using a chemiluminescence reagent (brand name: Immobilon Western Detection Reagents, the product made by Millipore) is shown in the FIG. 6 lower part.

図6に示されるように、i3-1変異体及びi3-2変異体については、抗体検出において、発光が観測されたため、上記3−3で判定された205-RRQLKQMESQPLPGERARSTLQKEVH-230(配列番号35)からなる領域のうち、205-RRQLKQME-212(配列番号46)の領域は、エピトープでないと判定される。   As shown in FIG. 6, for the i3-1 mutant and the i3-2 mutant, since luminescence was observed in antibody detection, 205-RRQLKQMESQPLPGERARSTLQKEVH-230 determined by the above 3-3 (SEQ ID NO: 35) Among the regions consisting of 205, the region of 205-RRQLKQME-212 (SEQ ID NO: 46) is determined not to be an epitope.

一方、i3-4変異体及びi3-5変異体においては、抗体検出において発光が観測されなかったため、当該変異体において変異を設定した箇所、即ち、213-SQPLPGERARSTLQK-227(配列番号47)からなる領域は、エピトープに含まれると判断される。   On the other hand, in the i3-4 mutant and the i3-5 mutant, no luminescence was observed in antibody detection, and thus the mutation was set in the mutant, ie, 213-SQPLPGERARSTLQK-227 (SEQ ID NO: 47). The region is judged to be included in the epitope.

また、i3-3変異体では、抗体検出が陰性であるが、蛍光検出も陰性となっているため、発現産物が得られなかったものと判断される。   Further, in the i3-3 mutant, antibody detection was negative, but fluorescence detection was also negative, so it was judged that no expression product was obtained.

当該結果から、mAb18のAA2a受容体におけるエピトープ配列は 213-SQPLPGERARSTLQKEVH-230(配列番号48)に限定された。   From the results, the epitope sequence of mAb18 in the AA2a receptor was limited to 213-SQPLPGERARSTLQKEVH-230 (SEQ ID NO: 48).

出芽酵母による未変異体及び変異体とyEGFPとの融合体の発現の模式図を示す。Nativeは未変異体、NterはNter変異体、i1はil変異体、o1はo1変異体、i2はi2変異体、o2はo2変異体、i3はi3変異体、o3はo3変異体、CterはCter変異体の発現模式図を示す。★印は変異箇所が存在するループを示す。The schematic diagram of the expression of the unmutated body by a budding yeast and the fusion body of a mutant and yEGFP is shown. Native is unmutated, Nter is Nter mutant, i1 is il mutant, o1 is o1 mutant, i2 is i2 mutant, o2 is o2 mutant, i3 is i3 mutant, o3 is o3 mutant, Cter is The expression schematic diagram of a Cter mutant is shown. * Indicates a loop with a mutation. (a)はM2受容体未変異体の発現確認の結果を示す。1はCBB染色、2は蛍光検出、3はウエスタンブロットにより検出した結果を示す。(b)はM2受容体未変異体及び変異体の一群の発現を蛍光検出により確認した結果を示す。左から未変異体、Nter変異体、i1変異体、o1変異体、i2変異体、o2変異体、i3変異体、o3変異体、及びCter変異体の結果を示す。バンドは蛍光強度が最も大きいバンド位置を抽出して表示した。(a) shows the results of confirming the expression of the M2 receptor non-mutant. 1 shows CBB staining, 2 shows fluorescence detection, and 3 shows the result of detection by Western blot. (B) shows the results of confirming the expression of a group of non-mutated M2 receptors and mutants by fluorescence detection. From the left, the results of unmutated, Nter mutant, i1 mutant, o1 mutant, i2 mutant, o2 mutant, i3 mutant, o3 mutant, and Cter mutant are shown. For the band, the band position with the highest fluorescence intensity was extracted and displayed. M2受容体未変異体及び変異体の一群と5種の抗M2モノクローナル抗体(mAb1〜5)についてウエスタンブロットにより抗原−抗体反応を試験した結果を示すShows the results of testing antigen-antibody reaction by Western blot for a group of M2 receptor unmutated and mutants and 5 anti-M2 monoclonal antibodies (mAbs 1-5) M2受容体未変異体及び変異体の一群と12種の抗M2受容体抗体産生ハイブリドーマ培養上清中のモノクローナル抗体(mAb6〜17)についてELISAにより抗原−抗体反応を検出した結果を示す。(a)は、反応30分後のプレートの発色反応の結果を示す。また(b)は反応15分後の415nmと562nmにおける吸光度の差を示す。The result of having detected antigen-antibody reaction by ELISA about the monoclonal antibody (mAb6-17) in a hybridoma culture supernatant of a group of M2 receptor non-mutant and a variant, and 12 types of anti-M2 receptor antibodies is shown. (A) shows the result of the color development reaction of the plate 30 minutes after the reaction. (B) shows the difference in absorbance at 415 nm and 562 nm after 15 minutes of reaction. 上部の蛍光検出は、AA2a受容体未変異体とその変異体の一群の発現結果を蛍光検出にて確認した結果を示す。下部の抗体検出は、AA2受容体未変異体とその変異体の一群に対する抗原−抗体反応をウエスタンブロットにより検出した結果を示す。The upper fluorescence detection shows the result of confirming the expression results of a group of AA2a receptor non-mutants and the mutants by fluorescence detection. The lower antibody detection shows the result of detecting an antigen-antibody reaction against a group of AA2 receptor unmutated mutants and a group of the mutants by Western blotting. 上部の蛍光検出は、AA2a受容体細胞内第3ループ領域変異体の一群の発現結果を蛍光検出にて確認した結果を示す。下部の抗体検出は、AA2a受容体細胞内第3ループ領域変異体の一群に対する抗原−抗体反応をウエスタンブロットにより検出した結果を示す。The upper fluorescence detection shows the result of confirming the expression result of a group of AA2a receptor intracellular third loop region mutants by fluorescence detection. The antibody detection in the lower part shows the result of detecting an antigen-antibody reaction against a group of AA2a receptor intracellular third loop region mutants by Western blotting.

Claims (4)

2以上の膜外領域を有する膜貫通型タンパク質に対する抗体の抗原結合部位を決定する方法であって、
異なる膜外領域に1又は数個のアミノ酸変異が加えられた変異体の一群を出芽酵母発現系で発現させる工程、
前記出芽酵母発現系で発現させた変異体の一群を抗原として、前記膜貫通型タンパク質に対する抗体を作用させて抗原−抗体反応を行う工程、
抗原−抗体反応が検出されない変異体を特定し、当該変異体において変異が加えられている膜外領域を、前記抗体の抗原結合部位又は抗原結合部位を含む領域と判定する工程、
を含むことを特徴とする、膜貫通型タンパク質に対する抗体の抗原結合部位を決定する方法。
A method for determining an antigen binding site of an antibody against a transmembrane protein having two or more extra-membrane regions,
Expressing a group of mutants in which one or several amino acid mutations are added to different extramembrane regions in a budding yeast expression system;
A step of performing an antigen-antibody reaction by causing an antibody against the transmembrane protein to act as a group of mutants expressed in the budding yeast expression system,
Identifying a mutant in which an antigen-antibody reaction is not detected, and determining an extra-membrane region in which the mutation is added in the mutant as an antigen-binding site of the antibody or a region containing an antigen-binding site;
A method for determining an antigen-binding site of an antibody against a transmembrane protein, comprising:
前記変異体の一群を発現させる工程が、
変異体に蛍光タンパク質を融合させた融合タンパク質として発現させる工程であることを特徴とする請求項1に記載の方法。
Expressing the group of mutants,
The method according to claim 1, wherein the method is expressed as a fusion protein in which a fluorescent protein is fused to a mutant.
膜貫通型タンパク質が7回膜貫通型受容体であることを特徴とする請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the transmembrane protein is a seven-transmembrane receptor. 更に、同じ膜外領域に1又は数個の異なるアミノ酸変異が加えられた変異体の一群を出芽酵母発現系で発現し、
当該発現させた変異体の一群を抗原として、前記膜貫通型タンパク質に対する抗体を作用させて抗原−抗体反応を行い、
抗原−抗体反応が検出されない変異体を特定し、当該変異体において変異が加えられている箇所を、前記抗体の抗原結合部位又は抗原結合部位を含む領域と判定する工程を含むことを特徴とする請求項1〜3のいずれかに記載の方法。
In addition, a group of mutants in which one or several different amino acid mutations are added to the same outer membrane region are expressed in a budding yeast expression system,
Using a group of the expressed mutants as an antigen, an antibody against the transmembrane protein is allowed to act to perform an antigen-antibody reaction,
Characterized in that it includes a step of identifying a variant in which an antigen-antibody reaction is not detected, and determining a portion where the mutation is added in the variant as an antigen-binding site of the antibody or a region containing the antigen-binding site. The method according to claim 1.
JP2008322607A 2008-12-18 2008-12-18 Method for determining antigen-binding site of anti-transmembrane protein antibody Expired - Fee Related JP5230397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322607A JP5230397B2 (en) 2008-12-18 2008-12-18 Method for determining antigen-binding site of anti-transmembrane protein antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322607A JP5230397B2 (en) 2008-12-18 2008-12-18 Method for determining antigen-binding site of anti-transmembrane protein antibody

Publications (2)

Publication Number Publication Date
JP2010145238A true JP2010145238A (en) 2010-07-01
JP5230397B2 JP5230397B2 (en) 2013-07-10

Family

ID=42565832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322607A Expired - Fee Related JP5230397B2 (en) 2008-12-18 2008-12-18 Method for determining antigen-binding site of anti-transmembrane protein antibody

Country Status (1)

Country Link
JP (1) JP5230397B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098413A1 (en) * 2011-01-21 2012-07-26 Heptares Therapeutics Limited Mutant g-protein coupled receptor proteins and methods for producing them
US9283784B2 (en) 2012-04-02 2016-03-15 Toshiba Tec Kabushiki Kaisha Printer
US10040219B2 (en) 2013-03-25 2018-08-07 Toshiba Memory Corporation Mold and mold manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500003A (en) * 1998-10-30 2003-01-07 ノボザイムス アクティーゼルスカブ Low allergenic protein variants
JP2003135084A (en) * 1990-04-05 2003-05-13 Roberto Crea Walk-through mutagenesis
JP2004500088A (en) * 2000-02-08 2004-01-08 ジェネンコア インターナショナル インコーポレーテッド Proteins producing altered immunogenic responses and methods of making and using the same
JP2005522227A (en) * 2002-04-12 2005-07-28 ブライアン エフ. オーダウド Identification of compounds that interact with transmembrane proteins
JP2008537887A (en) * 2005-04-15 2008-10-02 ボード、オブ、トラスティーズ、オブ、ミシガン、ステイト、ユニバーシティ Ascorbate-binding peptide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135084A (en) * 1990-04-05 2003-05-13 Roberto Crea Walk-through mutagenesis
JP2003500003A (en) * 1998-10-30 2003-01-07 ノボザイムス アクティーゼルスカブ Low allergenic protein variants
JP2004500088A (en) * 2000-02-08 2004-01-08 ジェネンコア インターナショナル インコーポレーテッド Proteins producing altered immunogenic responses and methods of making and using the same
JP2005522227A (en) * 2002-04-12 2005-07-28 ブライアン エフ. オーダウド Identification of compounds that interact with transmembrane proteins
JP2008537887A (en) * 2005-04-15 2008-10-02 ボード、オブ、トラスティーズ、オブ、ミシガン、ステイト、ユニバーシティ Ascorbate-binding peptide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012002544; Svante Paabo: 'Structural and functional dissection of an MHC class I antigen-binding adenovirus glycoprotein' The EMBO Journal vol.5, no.8, 1986, p.1921-1927 *
JPN6012002545; Eur.J.Immunol. vol.24, 1994, p.2548-2555 *
JPN7012002982; JEAN-MARIE BUERSTEDDE: 'IDENTIFICATION OF AN IMMUNODOMINANT REGION ON THE 1-A betaCHAIN USING SITE-DIRECTED MUTAGENESIS AND DN' Journal of Experimental Medicine vol.167, no.2, 1988, p.473-487 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098413A1 (en) * 2011-01-21 2012-07-26 Heptares Therapeutics Limited Mutant g-protein coupled receptor proteins and methods for producing them
US20170145075A1 (en) * 2011-01-21 2017-05-25 Heptares Therapeutics Limited Mutant g-protein coupled receptor proteins and methods for producing them
US9283784B2 (en) 2012-04-02 2016-03-15 Toshiba Tec Kabushiki Kaisha Printer
US20160167407A1 (en) * 2012-04-02 2016-06-16 Toshiba Tec Kabushiki Kaisha Printer
US9682581B2 (en) 2012-04-02 2017-06-20 Toshiba Tec Kabushiki Kaisha Printer
US10173446B2 (en) 2012-04-02 2019-01-08 Toshiba Tec Kabushiki Kaisha Printer
US10040219B2 (en) 2013-03-25 2018-08-07 Toshiba Memory Corporation Mold and mold manufacturing method

Also Published As

Publication number Publication date
JP5230397B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
CN113557431A (en) Methods and reagents for diagnosing SARS-CoV-2 infection
BR102021005055B1 (en) Detection of antibodies to sarsr-cov
CN108107217B (en) Classical swine fever virus truncated E2 protein and application thereof
EP2871189A1 (en) High-affinity monoclonal anti-strep-tag antibody
CN114807054B (en) Mouse anti-human IgG monoclonal antibody hybridoma cell strain, antibody composition and kit
KR20210035249A (en) NS1 protein binding protein
CN114369160B (en) Binding anti Lees&#39; tube hormone AMH N High affinity rabbit monoclonal antibodies to dimeric proteins
JP5230397B2 (en) Method for determining antigen-binding site of anti-transmembrane protein antibody
JP5405111B2 (en) Method for detecting autoimmune antibody against TSH receptor and novel TSH receptor chimera
US20130052669A1 (en) Compositions and methods for reliably detecting and/or measuring the amount of a modified target protein in a sample
JP5252339B2 (en) Method for measuring PAD4 and anti-PAD4 antibody and method for detecting rheumatoid arthritis
CN111196851A (en) Specific antibody aiming at human anti-mullerian hormone and application thereof
JP4683572B2 (en) Quantification of recombinant protein
US20220002395A1 (en) Anti-plasmodium falciparum HRP-II antibody
US20210395394A1 (en) Antibody against pan-species-specific plasmodium lactate dehydrogenase
US9758588B2 (en) Blocking reagent compositions and methods of making and using the same
EP3647785A1 (en) Method for measuring serum amyloid a of various animals and reagent for measurement thereof
JP6345596B2 (en) Method for detecting primary aldosteronism and monoclonal antibody
CN111333726B (en) Anti-plasmodium falciparum HRP-II antibody
CN111234026A (en) Monoclonal antibody specifically binding to lipoarabinomannan and application of monoclonal antibody in mycobacterium detection
WO2023127881A1 (en) Detection method and detection reagent
US20230331865A1 (en) Antibodies for use in immunohistochemistry (ihc) protocols to diagnose cancer
JPWO2012124683A1 (en) Novel monoclonal antibodies and their use as tag antibodies
US11221339B2 (en) Mapping protein binding sites and conformational epitopes using cysteine labelling and surface display library
JP5805943B2 (en) Method for producing pertussis Fim3 and method for detecting pertussis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees