JP2010145177A - Photometric sensor system - Google Patents

Photometric sensor system Download PDF

Info

Publication number
JP2010145177A
JP2010145177A JP2008321237A JP2008321237A JP2010145177A JP 2010145177 A JP2010145177 A JP 2010145177A JP 2008321237 A JP2008321237 A JP 2008321237A JP 2008321237 A JP2008321237 A JP 2008321237A JP 2010145177 A JP2010145177 A JP 2010145177A
Authority
JP
Japan
Prior art keywords
color
photometric sensor
color filter
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008321237A
Other languages
Japanese (ja)
Inventor
Masato Kimura
正人 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008321237A priority Critical patent/JP2010145177A/en
Publication of JP2010145177A publication Critical patent/JP2010145177A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance measuring sensitivity by enhancing the signal sensitivity of a wavelength having a risk of lowering in sensitivity. <P>SOLUTION: A photometric sensor system 5 has: a photometric sensor 52 constituted by two-dimensionally arranging a plurality of photodetectors for detecting the transmitted light from a measuring target, the color filter 51, which includes a plurality of color filters having mutually different color wavelengths in order to spectrally diffract the light entering the respective photodetectors, arranged on the measuring target side of the photometric sensor 52; and a reading part 53 for sequentially reading the signals from the respective photodetectors of the photometric sensor 52. In the color filter 51, a short wavelength colorimetric filter 51S being a color filter having a color wavelength low in the output of a light source 1 is constituted so as to occupy an area wider than that of a color filter having another color wavelength. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光源からの光を測定対象物である血液等の液体に透過させ、その色波長ごとの光量の差を測ることで、その成分量を同定する手法による分析機における測光センサ装置に関する。   The present invention relates to a photometric sensor device in an analyzer based on a method of identifying the amount of a component by transmitting light from a light source through a liquid such as blood as a measurement object and measuring a difference in light amount for each color wavelength. .

従来より、血液分析機において血液中の各成分量を測定する方法として比色法が用いられている。   Conventionally, a colorimetric method has been used as a method for measuring the amount of each component in blood in a blood analyzer.

例えば、特許文献1に開示の自動分析装置では、成分を測定するための試薬と血清とを測光セル内に入れて反応させた液体に、白色光を通過させ、その透過光を測光センサ装置に入射させる。該測光センサ装置において、入射された上記透過光をグレーティングにより分光し、必要な波長の光に対する分散角の位置にフォトセンサアレイを配置している。そして、このフォトセンサアレイの各フォトセンサの信号値を読み出すことで、成分量を測定することができる。
特開昭59−100862号公報
For example, in the automatic analyzer disclosed in Patent Document 1, white light is passed through a liquid obtained by reacting a reagent for measuring components and serum in a photometric cell, and the transmitted light is transmitted to the photometric sensor device. Make it incident. In the photometric sensor device, the incident transmitted light is dispersed by a grating, and a photo sensor array is arranged at a position of a dispersion angle with respect to light having a necessary wavelength. The component amount can be measured by reading the signal value of each photosensor in the photosensor array.
JP 59-100822 A

しかしながら、上記特許文献1に開示されているような方法では、グレーティングの分散角により、波長分解能が決まってしまうため、特定の波長に対して、分散角を変えるという手段を取ることができない。血液成分分析に際し、近紫外域光での測定は重要であるが、光源のスペクトル特性により、近紫外域の光量は低く、フォトセンサの感度も低いため、その波長域での感度を上げることは困難であった。   However, in the method disclosed in Patent Document 1, the wavelength resolution is determined by the dispersion angle of the grating. Therefore, it is not possible to take a means of changing the dispersion angle for a specific wavelength. In blood component analysis, measurement with near-ultraviolet light is important, but due to the spectral characteristics of the light source, the light intensity in the near-ultraviolet region is low and the sensitivity of the photosensor is low. It was difficult.

本発明は、上記の点に鑑みてなされたもので、感度の低下が懸念される波長の信号感度を上げることができ、測定感度を向上することができる測光センサ装置を提供することを目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a photometric sensor device that can increase the signal sensitivity of a wavelength at which a decrease in sensitivity is a concern and can improve the measurement sensitivity. To do.

本発明の測光センサ装置の一態様は、光源からの光を測定対象物である液体に透過させ、その色波長ごとの光量の差を測ることで、その成分量を同定する手法による分析機における測光センサ装置であって、
上記測定対象物を透過した透過光を受光する複数の受光素子を2次元に配置してなる測光センサ部と、
上記測光センサ部の上記測定対象物側に配置され、上記受光素子各々に入射する光を分光するため互いに異なる色波長を持つ複数の色フィルタを備える色フィルタ部と、
上記測光センサ部の各受光素子からの信号を順次読み出す読出部と、
を有し、
上記色フィルタ部において、上記光源の出力が低い色波長を持つ色フィルタは、その他の色波長を持つ色フィルタよりも広面積を占めるように構成していることを特徴とする。
One aspect of the photometric sensor device of the present invention is an analyzer based on a technique for identifying a component amount by transmitting light from a light source to a liquid as a measurement object and measuring a difference in light amount for each color wavelength. A photometric sensor device comprising:
A photometric sensor unit in which a plurality of light receiving elements that receive transmitted light that has passed through the measurement object are two-dimensionally arranged;
A color filter unit that is arranged on the measurement object side of the photometric sensor unit and includes a plurality of color filters having different color wavelengths to separate light incident on each of the light receiving elements;
A readout unit for sequentially reading out signals from the respective light receiving elements of the photometric sensor unit;
Have
In the color filter unit, the color filter having a color wavelength with a low output of the light source is configured to occupy a larger area than color filters having other color wavelengths.

本発明によれば、感度の低下が懸念される波長の信号感度を上げることができ、測定感度を向上することができる測光センサ装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the photometric sensor apparatus which can raise the signal sensitivity of the wavelength which is a concern about the fall of a sensitivity, and can improve a measurement sensitivity can be provided.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1(A)は、本発明の一実施形態に係る測光センサ装置を適用した血液分析機の構成を示す図である。   FIG. 1A is a diagram showing a configuration of a blood analyzer to which a photometric sensor device according to an embodiment of the present invention is applied.

この血液分析機は、光源からの光を測定対象物である液体に透過させ、その色波長ごとの光量の差を測ることで、その成分量を同定する手法による分析機であり、光源1、集光部2、測光セル3、集光部4、本一実施形態に係る測光センサ装置5及び図示しない制御部から構成される。ここで、測定対象物の液体は、成分を測定するための試薬と血清とを測光セル3に入れて反応させた反応液31である。   This hematology analyzer is an analyzer based on a technique for identifying the component amount by transmitting light from a light source to a liquid as a measurement object and measuring a difference in light amount for each color wavelength. It is comprised from the condensing part 2, the photometry cell 3, the condensing part 4, the photometry sensor apparatus 5 which concerns on this one embodiment, and the control part which is not shown in figure. Here, the liquid to be measured is a reaction liquid 31 in which a reagent for measuring a component and serum are put into the photometric cell 3 and reacted.

光源1としては、例えばハロゲンランプが使用され、該光源1からの光は、集光部2を介して、測光セル3に集光される。この集光した光は、測光セル3内の反応液31を透過することで、反応液31中の特定物質により、特定波長の光が吸収される。この変化を定量化することにより、反応液31中の特定物質の量を同定することができる。そのため、測光セル3を透過した光は、集光部4を介して、測光センサ装置5に導光される。   As the light source 1, for example, a halogen lamp is used, and the light from the light source 1 is condensed on the photometric cell 3 via the condenser 2. The collected light passes through the reaction solution 31 in the photometric cell 3, and light having a specific wavelength is absorbed by the specific substance in the reaction solution 31. By quantifying this change, the amount of the specific substance in the reaction solution 31 can be identified. Therefore, the light transmitted through the photometric cell 3 is guided to the photometric sensor device 5 through the light collecting unit 4.

測光センサ装置5は、色フィルタ部51、測光センサ部52及び読出部53からなり、上記集光部4で集光された上記透過光以外の光が入らないように遮光されていることが好ましい。測光センサ部52は、複数の受光素子(図示せず)が2次元に配置されて構成されており、上記測光セル3を透過した透過光を受光する。色フィルタ部51は、上記測光センサ部52の上記測光セル3側に配置され、上記測光センサ部52の受光素子各々に入射する光を分光するため互いに異なる色波長を持つ複数の色フィルタを備える。読出部53は、上記測光センサ部52の各受光素子からの信号を順次読み出す。   The photometric sensor device 5 includes a color filter unit 51, a photometric sensor unit 52, and a reading unit 53, and is preferably shielded so that light other than the transmitted light collected by the light collecting unit 4 does not enter. . The photometric sensor unit 52 is configured by two-dimensionally arranging a plurality of light receiving elements (not shown), and receives the transmitted light transmitted through the photometric cell 3. The color filter unit 51 is disposed on the photometric cell 3 side of the photometric sensor unit 52, and includes a plurality of color filters having different color wavelengths in order to split light incident on each light receiving element of the photometric sensor unit 52. . The reading unit 53 sequentially reads signals from the respective light receiving elements of the photometric sensor unit 52.

なお、上記測光センサ装置5の読出部53によって読み出された信号は、図示しない制御部に供給され、成分量が演算される。   The signal read by the reading unit 53 of the photometric sensor device 5 is supplied to a control unit (not shown), and the component amount is calculated.

図1(B)は、色フィルタ部51における複数の色フィルタの配置を示す図である。
上記のようにして測光センサ装置5に導かれた透過光は、通常、測光センサ部52に到達した時点でスポット光が円形を示すため、本実施形態に於いては、色フィルタ部51においては、数の色フィルタを同心円状に配置している。なお、図1(B)では、図面の簡略化のため、3種類の色波長分の色フィルタしか示していないが、実際には、例えば13種類の色波長分の色フィルタが同心円上に配置される。
FIG. 1B is a diagram illustrating an arrangement of a plurality of color filters in the color filter unit 51.
Since the transmitted light guided to the photometric sensor device 5 as described above normally has a circular spot when it reaches the photometric sensor unit 52, in the present embodiment, the color filter unit 51 A number of color filters are arranged concentrically. In FIG. 1 (B), only the color filters for three types of color wavelengths are shown for simplification of the drawing, but actually, for example, the color filters for 13 types of color wavelengths are arranged on concentric circles. Is done.

ここで、測光センサ部52が受光する円形のスポット光は、その中央部は光強度が強く、周辺部にいくに従って弱くなる。また、通常、分析する項目により、測定する波長が異なっている。一方、ハロゲンランプを光源1とした場合、短波長(350nm付近)では、長波長域に比べて出力が低下する。このことから、本一実施形態では、上記スポット光のうちで光強度の強い中央部分には、上記複数の色フィルタのうち短波長側の波長を持つ短波長側色フィルタ51Sを配置し、周辺部には長波長側の波長を持つ長波長側色フィルタ51Lを配置することで、感度の低下が懸念される波長の受光量を補償することができる。   Here, the circular spot light received by the photometric sensor unit 52 has a strong light intensity at the center and becomes weaker toward the periphery. Further, the wavelength to be measured usually differs depending on the item to be analyzed. On the other hand, when the halogen lamp is used as the light source 1, the output is reduced at a short wavelength (around 350 nm) as compared to the long wavelength region. Therefore, in the present embodiment, a short wavelength side color filter 51S having a wavelength on the short wavelength side among the plurality of color filters is disposed in the central portion where the light intensity is strong among the spot lights, By disposing a long wavelength side color filter 51L having a wavelength on the long wavelength side in the part, it is possible to compensate for the amount of light received at a wavelength for which a decrease in sensitivity is a concern.

また、測光センサ部52は受光素子を2次元に配置したもの(2次元センサアレイ)であるから、色フィルタ部51の各色フィルタの大きさによって、特定波長の受光面積を変えることができる。よって、本一実施形態では、短波長側色フィルタ51Sの面積を大きくして短波長の光が当たる部分を大きくし、長波長側色フィルタ51Lに行くに従って徐々に面積を小さくしていくことによって、長波長の光が当たる部分を小さくすることで、短波長部の感度を向上させることができる。   Further, since the photometric sensor unit 52 is a two-dimensional arrangement of light receiving elements (two-dimensional sensor array), the light receiving area of a specific wavelength can be changed depending on the size of each color filter of the color filter unit 51. Therefore, in the present embodiment, by increasing the area of the short wavelength side color filter 51S to increase the portion where the short wavelength light hits, and gradually decreasing the area toward the long wavelength side color filter 51L. The sensitivity of the short wavelength portion can be improved by reducing the portion where the long wavelength light hits.

以上、一実施形態に基づいて本発明を説明したが、本発明は上述した一実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to one Embodiment mentioned above, Of course, a various deformation | transformation and application are possible within the range of the summary of this invention. It is.

例えば、上記一実施形態では、短波長側色フィルタ51Sを中央部に且つ広面積に配置したが、どの色波長を持つ色フィルタをどこに配置するか、及びどのような面積とするかは、光源1の種類や分析する項目によって決定されるものである。   For example, in the above-described embodiment, the short wavelength side color filter 51S is disposed in the center and in a wide area. However, where the color filter having which color wavelength is disposed, and in what area, the light source It is determined by the type of item 1 and the item to be analyzed.

また、分析機を上記特許文献1に開示されているように、複数の測光セル3を順次搬送する機構を持つ自動分析装置としても構わない。   Further, as disclosed in Patent Document 1, the analyzer may be an automatic analyzer having a mechanism for sequentially transporting a plurality of photometric cells 3.

更に、上記一実施形態は血液成分を分析する血液分析機に適用した例を説明したが、本発明は、他の測定対象物の成分を比色法によって分析するどのような分析機にも適用可能である。   Furthermore, although the above-described embodiment has been described as an example applied to a blood analyzer that analyzes blood components, the present invention is applicable to any analyzer that analyzes components of other measurement objects by a colorimetric method. Is possible.

(付記)
前記の具体的実施形態から、以下のような構成の発明を抽出することができる。
(Appendix)
The invention having the following configuration can be extracted from the specific embodiment.

(1) 光源からの光を測定対象物である液体に透過させ、その色波長ごとの光量の差を測ることで、その成分量を同定する手法による分析機における測光センサ装置であって、
上記測定対象物を透過した透過光を受光する複数の受光素子を2次元に配置してなる測光センサ部と、
上記測光センサ部の上記測定対象物側に配置され、上記受光素子各々に入射する光を分光するため互いに異なる色波長を持つ複数の色フィルタを備える色フィルタ部と、
上記測光センサ部の各受光素子からの信号を順次読み出す読出部と、
を有し、
上記色フィルタ部において、上記光源の出力が低い色波長を持つ色フィルタは、その他の色波長を持つ色フィルタよりも広面積を占めるように構成していることを特徴とする測光センサ装置。
(1) A photometric sensor device in an analyzer based on a technique for identifying a component amount by transmitting light from a light source to a liquid as a measurement object and measuring a difference in light amount for each color wavelength,
A photometric sensor unit in which a plurality of light receiving elements that receive transmitted light that has passed through the measurement object are two-dimensionally arranged;
A color filter unit that is arranged on the measurement object side of the photometric sensor unit and includes a plurality of color filters having different color wavelengths to separate light incident on each of the light receiving elements;
A readout unit for sequentially reading out signals from the respective light receiving elements of the photometric sensor unit;
Have
The photometric sensor device according to claim 1, wherein in the color filter section, the color filter having a low color wavelength of the light source occupies a larger area than the color filters having other color wavelengths.

(対応する実施形態との対応)
一実施形態に於いて、例えば、光源1が上記光源に、測光セル3内の反応液31が上記測定対象物である液体に、測光センサ装置5が上記測光センサ装置に、測光センサ部52が上記測光センサ部に、色フィルタ部51が上記色フィルタ部に、読出部53が上記読出部に、短波長側色フィルタ51Sが上記光源の出力が低い色波長を持つ色フィルタに、長波長側色フィルタ51Lが上記その他の色波長を持つ色フィルタに、それぞれ対応する。
(Correspondence with corresponding embodiment)
In one embodiment, for example, the light source 1 is the light source, the reaction solution 31 in the photometric cell 3 is the liquid that is the measurement object, the photometric sensor device 5 is the photometric sensor device, and the photometric sensor unit 52 is In the photometric sensor section, the color filter section 51 is in the color filter section, the readout section 53 is in the readout section, the short wavelength side color filter 51S is in the color filter having a low color wavelength of the light source, and the long wavelength side. The color filter 51L corresponds to each of the color filters having the other color wavelengths.

(作用効果)
この(1)に記載の測光センサ装置によれば、感度の低下が懸念される波長の信号感度を上げることができ、測定感度を向上することができる。
(Function and effect)
According to the photometric sensor device described in (1), it is possible to increase the signal sensitivity of a wavelength for which a decrease in sensitivity is a concern, and to improve the measurement sensitivity.

(2) 上記色フィルタ部において、上記光源の出力が低い色波長を持つ色フィルタを上記色フィルタ部の中央部に配置してあることを特徴とする(1)に記載の測光センサ。   (2) The photometric sensor according to (1), wherein in the color filter unit, a color filter having a color wavelength with a low output of the light source is arranged in a central portion of the color filter unit.

(実施形態との対応)
一実施形態に於いて、例えば、短波長側色フィルタ51Sが上記光源の出力が低い色波長を持つ色フィルタに対応する。
(Correspondence with embodiment)
In one embodiment, for example, the short wavelength side color filter 51S corresponds to a color filter having a color wavelength with a low output of the light source.

(作用効果)
この(2)に記載の測光センサ装置によれば、光スポットの光量が強い中央部分に、感度の低下が懸念される波長を配置することができ、測定感度を向上させることができる。
(Function and effect)
According to the photometric sensor device described in (2), it is possible to arrange a wavelength at which a decrease in sensitivity is a concern at the central portion where the light amount of the light spot is strong, and the measurement sensitivity can be improved.

図1(A)は、本発明の一実施形態に係る測光センサ装置を適用した血液分析機の構成を示す図であり、図1(B)は、色フィルタ部における複数の色フィルタの配置を示す図である。FIG. 1A is a diagram showing a configuration of a blood analyzer to which a photometric sensor device according to an embodiment of the present invention is applied, and FIG. 1B shows the arrangement of a plurality of color filters in a color filter unit. FIG.

符号の説明Explanation of symbols

1…光源、 2…集光部、 3…測光セル、 31…反応液、 4…集光部、 5…測光センサ装置、 51…色フィルタ部、 51S…短波長側色フィルタ、 51L…長波長側色フィルタ、 52…測光センサ部、 53…読出部。     DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Condensing part, 3 ... Photometry cell, 31 ... Reaction liquid, 4 ... Condensing part, 5 ... Photometric sensor apparatus, 51 ... Color filter part, 51S ... Short wavelength side color filter, 51L ... Long wavelength Side color filter, 52: Photometric sensor unit, 53: Reading unit.

Claims (2)

光源からの光を測定対象物である液体に透過させ、その色波長ごとの光量の差を測ることで、その成分量を同定する手法による分析機における測光センサ装置であって、
上記測定対象物を透過した透過光を受光する複数の受光素子を2次元に配置してなる測光センサ部と、
上記測光センサ部の上記測定対象物側に配置され、上記受光素子各々に入射する光を分光するため互いに異なる色波長を持つ複数の色フィルタを備える色フィルタ部と、
上記測光センサ部の各受光素子からの信号を順次読み出す読出部と、
を有し、
上記色フィルタ部において、上記光源の出力が低い色波長を持つ色フィルタは、その他の色波長を持つ色フィルタよりも広面積を占めるように構成していることを特徴とする測光センサ装置。
A photometric sensor device in an analyzer based on a technique for identifying a component amount by transmitting light from a light source to a liquid as a measurement object and measuring a difference in light amount for each color wavelength,
A photometric sensor unit in which a plurality of light receiving elements that receive transmitted light that has passed through the measurement object are two-dimensionally arranged;
A color filter unit that is arranged on the measurement object side of the photometric sensor unit and includes a plurality of color filters having different color wavelengths to separate light incident on each of the light receiving elements;
A readout unit for sequentially reading out signals from the respective light receiving elements of the photometric sensor unit;
Have
The photometric sensor device according to claim 1, wherein in the color filter section, the color filter having a low color wavelength of the light source occupies a larger area than the color filters having other color wavelengths.
上記色フィルタ部において、上記光源の出力が低い色波長を持つ色フィルタを上記色フィルタ部の中央部に配置してあることを特徴とする請求項1に記載の測光センサ装置。   2. The photometric sensor device according to claim 1, wherein in the color filter unit, a color filter having a color wavelength with a low output of the light source is disposed in a central portion of the color filter unit.
JP2008321237A 2008-12-17 2008-12-17 Photometric sensor system Withdrawn JP2010145177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321237A JP2010145177A (en) 2008-12-17 2008-12-17 Photometric sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321237A JP2010145177A (en) 2008-12-17 2008-12-17 Photometric sensor system

Publications (1)

Publication Number Publication Date
JP2010145177A true JP2010145177A (en) 2010-07-01

Family

ID=42565774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321237A Withdrawn JP2010145177A (en) 2008-12-17 2008-12-17 Photometric sensor system

Country Status (1)

Country Link
JP (1) JP2010145177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227858A (en) * 2014-06-03 2015-12-17 コニカミノルタ株式会社 Spectroscopic analyzer
KR20190004773A (en) 2016-07-15 2019-01-14 코니카 미놀타 가부시키가이샤 Side colorimeter
WO2021131574A1 (en) * 2019-12-26 2021-07-01 株式会社堀場製作所 Infrared detector and gas analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227858A (en) * 2014-06-03 2015-12-17 コニカミノルタ株式会社 Spectroscopic analyzer
KR20190004773A (en) 2016-07-15 2019-01-14 코니카 미놀타 가부시키가이샤 Side colorimeter
CN109416282A (en) * 2016-07-15 2019-03-01 柯尼卡美能达株式会社 Colorimeter
CN109416282B (en) * 2016-07-15 2021-01-05 柯尼卡美能达株式会社 Colorimeter
WO2021131574A1 (en) * 2019-12-26 2021-07-01 株式会社堀場製作所 Infrared detector and gas analyzer

Similar Documents

Publication Publication Date Title
US7659987B2 (en) Device and method for acquiring information on objective substance to be detected by detecting a change of wavelength characteristics on the optical transmittance
US7754153B2 (en) Optical biosensor for biomolecular interaction analysis
US9945787B2 (en) Increasing the usable dynamic range in photometry
HK1116252A1 (en) Grating-based sensor combining label-free binding detection and fluorescence amplification
KR20110127122A (en) Sample analyzing apparatus
KR20180041688A (en) Multi-excitation-multi-emission fluorescence spectrometer for multi-parameter water quality monitoring
WO1991000995A1 (en) Optical read system and immunoassay method
KR20170052256A (en) Apparatus and method for measuring concentration of material
JPWO2016129033A1 (en) Multichannel spectrophotometer and data processing method for multichannel spectrophotometer
JP2010145177A (en) Photometric sensor system
CN113122614B (en) Fluorescent quantitative PCR processing method and system
WO2017018150A1 (en) Optical sensor device, optical sensor unit, and optical sensor system
JP2015094586A (en) Electrophoresis apparatus
CN201335808Y (en) Double-wavelength optical detection device
JPS63298137A (en) Sample analyzer using image fiber
JP4797233B2 (en) Compact sample concentration measuring device
KR20180091726A (en) Optical spectrum measuring apparatus and optical spectrum measuring method
US20180156730A1 (en) Dual function fluorometer-absorbance sensor
US20090173891A1 (en) Fluorescence detection system
Hussain et al. A multi-channel smartphone-based spectroscopic system for high-throughput biosensing in low-resource settings
KR101172012B1 (en) Spectrophotometer apparatus using color filter array
KR101006282B1 (en) Biochemistry material sensing device and disk device using the light waveguide
JP2009230021A (en) Optical microscope and spectrum measuring method
JP4405882B2 (en) Target substance detection device
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306