JP2010144956A - Solar furnace device - Google Patents

Solar furnace device Download PDF

Info

Publication number
JP2010144956A
JP2010144956A JP2008320244A JP2008320244A JP2010144956A JP 2010144956 A JP2010144956 A JP 2010144956A JP 2008320244 A JP2008320244 A JP 2008320244A JP 2008320244 A JP2008320244 A JP 2008320244A JP 2010144956 A JP2010144956 A JP 2010144956A
Authority
JP
Japan
Prior art keywords
sunlight
light receiving
furnace
reactant
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008320244A
Other languages
Japanese (ja)
Inventor
Takeki Kametani
雄樹 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008320244A priority Critical patent/JP2010144956A/en
Publication of JP2010144956A publication Critical patent/JP2010144956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently heat even a reactant with a low wavelength absorption factor from a visible area to a near-infrared area. <P>SOLUTION: A furnace body 10 housing a reactant 12 is provided so that sunlight 7 collected by a light collector 13 is radiated to a peak part. A light receiving part 11 capable of converting the sunlight 7 into thermal energy at high efficiency is provided at the peak of the furnace body 10, so as to constitute a solar furnace device 9. After receiving the sunlight 7 collected by the light collector 13 with the light receiving part 11 and converting it into thermal energy, thermal radiation is performed toward the reactant 12 in the furnace body 10 by the light receiving part 11, so as to apply, to the reactant 12, the electromagnetic waves of thermal radiation in which energy is concentrated in an infrared area shifted to a longer wavelength side than a visible area and a near-infrared area in which energy of the sunlight 7 is concentrated, for heating the reactant 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽光を集光することで非常に高い温度を発生させ、その熱で炉本体内に収納した所要の反応物の化学反応を進行させるために用いる太陽炉装置に関するものである。   The present invention relates to a solar furnace apparatus used to generate a very high temperature by collecting sunlight and to cause a chemical reaction of a desired reactant stored in the furnace body with the heat.

環境に負荷を与えることのないクリーンなエネルギーとして太陽エネルギーがあり、該太陽エネルギーの利用形態の1つとして、太陽光を集光し、この集光された太陽光を熱エネルギーに変換することで非常に高い温度を作り出し、その熱を利用して高温の反応環境が必要とされる所定の反応物の化学反応を進行させるようにする太陽熱利用型の反応装置である太陽炉装置が知られている。   There is solar energy as clean energy that does not give a load to the environment. As one of the utilization forms of the solar energy, sunlight is condensed and the condensed sunlight is converted into thermal energy. A solar furnace device is known that is a solar-powered reactor that creates very high temperatures and uses that heat to advance the chemical reaction of a given reactant that requires a high temperature reaction environment. Yes.

図6及び図7は上記太陽炉装置の一種である太陽光利用還元反応器1を示すもので、該太陽光利用還元反応器1は、上端側に透過窓3を気密に設けた太陽熱化学反応炉2を具備してなり、更に、集光装置としてヘリオスタット4と、タワー(図示せず)の頂部に設けた反射ミラー5と、CPC6とを付設してなる構成として、太陽光7を、上記ヘリオスタット4と反射ミラー5とCPC6で順次集光し、この集光された太陽光7を、上記透過窓3を通して上記太陽熱化学反応炉2の内部へ入射させることができるようにしてある。   6 and 7 show a solar reduction reactor 1 which is a kind of the solar furnace apparatus. The solar reduction reactor 1 is a solar thermal chemical reaction in which a transmission window 3 is provided in an airtight manner on the upper end side. As a configuration comprising a furnace 2, and further comprising a heliostat 4 as a light collecting device, a reflection mirror 5 provided on the top of a tower (not shown), and a CPC 6, sunlight 7 is provided. The heliostat 4, the reflection mirror 5, and the CPC 6 are sequentially condensed, and the condensed sunlight 7 can be incident on the solar thermal chemical reactor 2 through the transmission window 3.

上記構成としてある太陽光利用還元反応器1によれば、上記太陽熱化学反応炉2に反応物としての石炭とマグネタイトの混合粒子8を供給すると、上記透過窓3を透過した集光状態の太陽光7が炉内の混合粒子8に対して直接照射されるようになることから、該混合粒子8で上記集光状態の太陽光7の吸収を行わせて熱エネルギーへの変換を行わせ、これにより、炉内温度を1200℃以上の高温に加熱して、石炭の還元反応を起こさせることができるようにしてある(たとえば、特許文献1参照)。   According to the solar light reduction reactor 1 having the above-described configuration, when the mixed particles 8 of coal and magnetite as reactants are supplied to the solar thermal chemical reactor 2, the condensed sunlight that has passed through the transmission window 3. 7 directly irradiates the mixed particles 8 in the furnace, so that the mixed particles 8 absorb the concentrated sunlight 7 to be converted into heat energy. Thus, the furnace temperature is heated to a high temperature of 1200 ° C. or higher so that the reduction reaction of coal can be caused (see, for example, Patent Document 1).

特開平10−279955号公報JP-A-10-279955

ところが、上記図6及び図7に示した太陽光利用還元反応器1は、太陽熱化学反応炉2内に供給される石炭とマグネタイトの混合粒子8のような反応物に対して集光装置4,5,6で集光された太陽光7を直接照射させるようにすることで、高温の炉内温度環境を得ることができて上記反応物の反応を進行させるのに有効であるが、反応物として、たとえば、酸化亜鉛のように、可視域から近赤外域の波長の電磁波の吸収率が比較的低い吸収波長選択性を有する反応物を用いる場合は、太陽光の利用効率が低下してしまい、1000℃以上となるような高温の炉内温度環境を効率よく得ることが難しいというのが実状である。   However, the solar-powered reduction reactor 1 shown in FIG. 6 and FIG. 7 described above is a concentrating device 4 for a reactant such as coal and magnetite mixed particles 8 supplied into the solar thermal chemical reactor 2. By directly irradiating the sunlight 7 collected at 5 and 6, a high-temperature furnace temperature environment can be obtained and effective for advancing the reaction of the reactants. For example, when using a reactant having an absorption wavelength selectivity that has a relatively low absorption rate of electromagnetic waves in the visible to near-infrared wavelengths, such as zinc oxide, the utilization efficiency of sunlight is reduced. In fact, it is difficult to efficiently obtain a high-temperature furnace temperature environment of 1000 ° C. or higher.

すなわち、上記太陽光利用還元反応器1は、集光した太陽光7を、太陽熱化学反応炉2に設けた透過窓3を通して炉内の反応物に直接照射するようにしてあるが、太陽光7のエネルギーは可視域から近赤外域の波長に集中しているため、反応物の吸収波長選択性が可視域から近赤外域の波長で電磁波の吸収率が低くなっていると、該反応物に太陽光7が直接照射されるようにしても、上記太陽光7のエネルギーが集中している可視域から近赤外域の波長の電磁波が吸収されずに反射されてしまうため、太陽光7の熱エネルギーへの変換にロスが伴われてしまう。そのために、炉内温度が上がり難いというのが実状である。   In other words, the solar light reduction reactor 1 directly irradiates the condensed sunlight 7 to the reactant in the furnace through the transmission window 3 provided in the solar thermal chemical reactor 2. Energy is concentrated in the visible to near-infrared wavelengths, so if the absorption wavelength selectivity of the reactant is low from the visible to the near-infrared wavelength, the absorption rate of electromagnetic waves is reduced in the reactant. Even if the sunlight 7 is directly irradiated, electromagnetic waves having wavelengths in the near infrared region from the visible region where the energy of the sunlight 7 is concentrated are reflected without being absorbed. Loss is accompanied by the conversion to energy. Therefore, the actual situation is that it is difficult for the temperature in the furnace to rise.

又、上記太陽光利用還元反応器1では、太陽熱化学反応炉2の炉内で蒸散、あるいは、飛散した反応物や反応生成物が上記透過窓3に付着すると、該透過窓3を通して太陽熱化学反応炉2内へ入射される太陽光7の光量が減ってしまうため、定期的に上記太陽光利用還元反応器1の運転を停止させて上記透過窓3のメンテナンスを行う必要が生じるというのが実状である。   In the solar reduction reactor 1, when a reaction product or reaction product evaporated or scattered in the solar thermal chemical reactor 2 adheres to the transmission window 3, the solar thermal chemical reaction is conducted through the transmission window 3. Since the amount of sunlight 7 entering the furnace 2 is reduced, it is necessary to periodically stop the operation of the solar reduction reactor 1 and perform maintenance on the transmission window 3. It is.

そこで、本発明は、可視域から近赤外域の波長の電磁波の吸収率が低い吸収波長選択性を有する反応物を用いる場合であっても太陽光の熱エネルギーへの変換ロスを抑制できて、高温の炉内温度環境を効率よく得ることができ、しかも長時間に亘り連続運転することが可能な太陽炉装置を提供しようとするものである。   Therefore, the present invention can suppress the conversion loss of solar light to heat energy even when using a reactant having an absorption wavelength selectivity with a low absorption rate of electromagnetic waves of wavelengths from the visible range to the near infrared range, It is an object of the present invention to provide a solar furnace apparatus that can efficiently obtain a high-temperature furnace temperature environment and that can be continuously operated for a long time.

本発明は、上記課題を解決するために、請求項1に対応して、反応物を高温処理するための炉本体の所要個所に、集光装置で集光された太陽光を受光して熱エネルギーに変換するための受光部を設けてなり、集光装置で集光された太陽光より上記受光部で変換された熱エネルギーを、該受光部より熱輻射として上記炉本体内へ放射できるようにした構成とする。   In order to solve the above-mentioned problem, the present invention, corresponding to claim 1, receives sunlight condensed by a light concentrator at a required portion of a furnace body for high-temperature treatment of a reaction product, and generates heat. A light receiving unit for converting the energy into energy is provided so that heat energy converted by the light receiving unit from sunlight collected by the light collecting device can be radiated from the light receiving unit into the furnace body as heat radiation. The configuration is as follows.

又、上記構成において、受光部を、集光装置で集光した太陽光が入射する小孔を備えるキャビティ形状とした構成とする。   Moreover, in the said structure, let the light-receiving part be the structure provided with the cavity shape provided with the small hole in which the sunlight condensed with the condensing device injects.

本発明の太陽炉装置によれば、以下のような優れた効果を発揮する。
(1)反応物を高温処理するための炉本体の所要個所に、集光装置で集光された太陽光を受光して熱エネルギーに変換するための受光部を設けてなり、集光装置で集光された太陽光より上記受光部で変換された熱エネルギーを、該受光部より熱輻射として上記炉本体内へ放射できるようにした構成としてあるので、太陽光のエネルギーが集中する可視域から近赤外域にかけての電磁波の保有するエネルギーを上記受光部で効率よく熱エネルギーに変換した後、該受光部より熱輻射として炉本体内へ放射することで、該熱輻射のエネルギーが集中する電磁波の波長域を、上記太陽光のエネルギーが集中する可視域から近赤外域の波長よりも長波長側の赤外域へシフトさせることができる。よって、反応物が、可視域から近赤外域の波長の電磁波に対して吸収率が低い吸収波長選択性を有している場合であっても、該反応物に上記受光部より熱輻射として放射される赤外域の波長の電磁波を吸収させて効率よく加熱することができる。
(2)したがって、太陽光の熱エネルギーへの変換ロスを抑制できて、上記反応物を、上記太陽光に由来する熱エネルギーで効率よく加熱して、高温の炉内温度環境を効率よく得ることができることから、熱損失を抑えることが可能となる。
(3)更に、上記炉本体には、太陽光を透過させる透過窓が不要なため、定期的に炉の運転を停止して行う透過窓のメンテナンスが必要ない。よって、長時間の連続運転を実現することが可能になる。
(4)受光部を、集光装置で集光した太陽光が入射する小孔を備えるキャビティ形状とした構成とすることにより、受光部にて太陽光を熱エネルギーに変換した後に、キャビティ形状としてある該受光部の内側へ熱輻射が行われても、そのエネルギーを受光部自体で再吸収することができる。このため、上記受光部で太陽光より変換した熱エネルギーの大部分を炉本体内へ熱輻射として放射させることができることから、熱変換効率をより高めることが可能になる。
According to the solar furnace apparatus of the present invention, the following excellent effects are exhibited.
(1) A light receiving unit for receiving sunlight collected by the light collecting device and converting it into heat energy is provided at a required portion of the furnace main body for high-temperature treatment of the reaction product. Since the heat energy converted by the light receiving unit from the collected sunlight can be radiated into the furnace body as heat radiation from the light receiving unit, from the visible region where the energy of sunlight is concentrated After the energy held by the electromagnetic wave in the near infrared region is efficiently converted into thermal energy by the light receiving part, it is emitted from the light receiving part into the furnace body as thermal radiation, so that the energy of the electromagnetic radiation in which the heat radiation energy is concentrated. The wavelength range can be shifted from the visible range where the solar energy is concentrated to the infrared range longer than the near-infrared range. Therefore, even when the reaction product has an absorption wavelength selectivity with a low absorptance with respect to electromagnetic waves having wavelengths from the visible region to the near-infrared region, the reaction product radiates as heat radiation from the light receiving unit. It is possible to efficiently heat by absorbing electromagnetic waves having a wavelength in the infrared region.
(2) Therefore, conversion loss of sunlight into heat energy can be suppressed, and the reaction product is efficiently heated with the heat energy derived from the sunlight, thereby efficiently obtaining a high-temperature furnace temperature environment. Therefore, it is possible to suppress heat loss.
(3) Furthermore, since the furnace body does not require a transmission window that allows sunlight to pass through, maintenance of the transmission window that is performed by periodically stopping the operation of the furnace is not required. Therefore, it is possible to realize a long continuous operation.
(4) By making the light receiving part into a cavity shape having a small hole through which sunlight condensed by the light collecting device is incident, after the sunlight is converted into heat energy in the light receiving part, Even if heat radiation is performed inside a certain light receiving part, the energy can be reabsorbed by the light receiving part itself. For this reason, most heat energy converted from sunlight by the light receiving unit can be radiated into the furnace body as heat radiation, so that the heat conversion efficiency can be further increased.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1乃至図4は本発明の太陽炉装置の実施の一形態を示すもので、以下のような構成としてある。   1 to 4 show an embodiment of the solar furnace apparatus of the present invention, which has the following configuration.

すなわち、反応物12を収容するための炉本体10を、該炉本体10の所要個所、たとえば、該炉本体10の頂部に所要の集光装置13で集光した太陽光7を受光できるように設ける。更に、上記炉本体10における上記太陽光7の受光個所である頂部に、受光する太陽光7を高効率で熱エネルギーに変換することができる材質製の受光部11を設けて、本発明の太陽炉装置9を構成する。   That is, the furnace body 10 for containing the reactant 12 can receive the sunlight 7 collected by a required concentrator 13 at a required portion of the furnace body 10, for example, at the top of the furnace body 10. Provide. Further, a light receiving portion 11 made of a material capable of converting the received sunlight 7 into heat energy with high efficiency is provided at the top portion of the furnace body 10 which is the light receiving portion of the sunlight 7. A furnace device 9 is configured.

詳述すると、上記炉本体10は、たとえば、上下方向に所要寸法延びる円筒容器状としてある。更に、側壁部における周方向180度対向する個所に、ガス供給管14と、ガス排出管15をそれぞれ接続した構成としてある。   More specifically, the furnace body 10 has, for example, a cylindrical container shape that extends in the vertical direction with a required dimension. Further, the gas supply pipe 14 and the gas discharge pipe 15 are connected to portions of the side wall portion facing each other in the circumferential direction 180 degrees.

なお、上記炉本体10は、熱伝導率の低い材質を用いるか、又は、受光部11を除いた個所の外側に図示しない断熱材を設ける等して炉内と外部の断熱を図ることで、炉内の熱が外部へ逃げることを抑制できるようにしてあるものとする。更に、上記炉本体10の所要個所には、図示しない開閉機構付きの開口部を設けて固体の反応物12や固体の反応生成物を出し入れすることができるようにしてあるものとする。   The furnace body 10 is made of a material having a low thermal conductivity, or by providing a heat insulating material (not shown) outside the portion excluding the light receiving portion 11 so as to insulate the inside and outside of the furnace. It is assumed that heat in the furnace can be prevented from escaping to the outside. Furthermore, an opening with an opening / closing mechanism (not shown) is provided at a required portion of the furnace body 10 so that the solid reactant 12 and the solid reaction product can be taken in and out.

上記受光部11は、たとえば、上下方向に所要寸法延びる円筒状の側壁部11aの上端側に中央部に小孔11cを穿設した天井部11bを備え、且つ、上記側壁部11aの下端側を底部11dで気密に閉塞させたキャビティ形状としてある。   The light receiving portion 11 includes, for example, a ceiling portion 11b having a small hole 11c formed in the central portion on the upper end side of a cylindrical side wall portion 11a extending in a vertical direction and having a lower end side of the side wall portion 11a. The cavity is hermetically closed at the bottom 11d.

上記キャビティ形状とした受光部11は、上記炉本体10の天井部分の中央に設けた開口10aに、側壁部11aの上端部外周面を気密に取り付けることで、該側壁部11aの上端部を除く部分と、底部11dが炉本体10の内側へ露出されるようにしてある。   The cavity-shaped light receiving unit 11 is airtightly attached to the opening 10a provided at the center of the ceiling portion of the furnace body 10 so that the outer peripheral surface of the upper end of the side wall 11a is removed, thereby removing the upper end of the side wall 11a. The portion and the bottom portion 11d are exposed to the inside of the furnace body 10.

更に、上記所要の集光装置13は、太陽光7を集光できるようにしてあれば、1段で集光を行うもの、多段階の集光を行うもの等、いかなる形式の集光装置を用いてもよいが、最終的に集光ミラーや集光レンズ等を用いることで、集光した太陽光7を上記太陽炉装置9の受光部11の天井部11bに設けた小孔11cの内側で一旦集束させることができるようにしてあるものとする。なお、図1では、集光装置13の一例としてフレネルレンズが示してある。これにより、上記集光装置13で集光した太陽光7を、上記太陽炉装置9のキャビティ形状としてある受光部11の天井部11bに設けた小孔11cを通して該受光部11の内側へ照射させることができるようにしてある。   Further, the required condensing device 13 may be any type of condensing device, such as one that condenses in one stage or one that performs multi-stage condensing, as long as the sunlight 7 can be condensed. Although it may be used, by using a condensing mirror, a condensing lens, etc. finally, the inside of the small hole 11c which provided the condensed sunlight 7 in the ceiling part 11b of the light-receiving part 11 of the said solar furnace apparatus 9 It is assumed that it can be focused once. In FIG. 1, a Fresnel lens is shown as an example of the light collecting device 13. Thereby, the sunlight 7 condensed by the light collecting device 13 is irradiated to the inside of the light receiving unit 11 through a small hole 11 c provided in the ceiling portion 11 b of the light receiving unit 11 having a cavity shape of the solar furnace device 9. I can do it.

以上の構成としてある本発明の太陽炉装置9を、たとえば、金属酸化物の還元処理に用いる場合は、炉本体10の内側に反応物12として、金属酸化物(M)と炭素(C)の混合物を入れる。又、上記ガス供給管14よりアルゴン等の不活性ガスをキャリアガス16として供給するようにする。 When the solar furnace device 9 of the present invention having the above-described configuration is used, for example, for reduction treatment of metal oxide, metal oxide (M m O n ) and carbon ( Add the mixture of C). Further, an inert gas such as argon is supplied as a carrier gas 16 from the gas supply pipe 14.

この状態で、太陽光7が上記集光装置13で集光されて、上記受光部11の天井部11bに設けた小孔11cを通して該受光部11の内側に照射されるようになると、この太陽光7を受光した受光部11で太陽光7の熱エネルギーへの変換が高効率で行われる。これにより、太陽光7のエネルギーが集中している可視域から近赤外域の波長の電磁波も効率よく熱エネルギーに変換される。   In this state, when the sunlight 7 is condensed by the condensing device 13 and irradiated to the inside of the light receiving part 11 through the small hole 11c provided in the ceiling part 11b of the light receiving part 11, The light receiving unit 11 that receives the light 7 converts the sunlight 7 into heat energy with high efficiency. As a result, electromagnetic waves having wavelengths from the visible region to the near infrared region where the energy of sunlight 7 is concentrated are also efficiently converted into thermal energy.

上記のようにして受光部11にて太陽光7の熱エネルギーへの変換が行われると、該受光部11が発熱して、該受光部11より熱輻射が生じるようになる。   When the light receiving unit 11 converts the sunlight 7 into heat energy as described above, the light receiving unit 11 generates heat, and thermal radiation is generated from the light receiving unit 11.

この際、上記受光部11は天井部11bの小孔11cのみで外部と連通するキャビティ形状としてあると共に、その内側で太陽光7を受光するようにしてあるため、太陽光7を受光して発熱した部分から該受光部11の内側へ熱輻射が行われても、そのエネルギーの大部分は受光部11で再吸収されるようになる。したがって、上記受光部11では、上記太陽光7を変換して得られた熱エネルギーの大部分が、側壁部と11aと底部11dより熱輻射として炉本体10の内側へ放射されるようになる。   At this time, the light receiving portion 11 has a cavity shape that communicates with the outside only through the small hole 11c of the ceiling portion 11b, and receives sunlight 7 from the inside thereof. Even if the heat radiation is performed from the part to the inside of the light receiving unit 11, most of the energy is reabsorbed by the light receiving unit 11. Therefore, in the light receiving unit 11, most of the heat energy obtained by converting the sunlight 7 is radiated to the inside of the furnace body 10 as thermal radiation from the side wall, 11a, and bottom 11d.

ここで、太陽光7と、上記受光部11からの熱輻射に着目すると、地表に到達する太陽光7の日射量のスペクトル分布は、図2に示すように、主として可視域や近赤外域の波長に集中しているのに対し、上記受光部11が1000K〜1400Kの温度域となる場合の熱輻射で生じる電磁波のスペクトル分布は、図3に示すように、エネルギーが集中する領域がより長波長側にシフトするようになる。なお、図3より明らかなように、上記1000K〜1400Kの温度域では、熱輻射のエネルギーの集中する領域が、図2に示す太陽光7のスペクトル分布のエネルギーが集中する領域とは大きく異なるため、特別な放射特性を有する材質である必要はない。   Here, paying attention to the sunlight 7 and the heat radiation from the light receiving unit 11, the spectral distribution of the amount of solar radiation of the sunlight 7 that reaches the ground surface is mainly in the visible region or near infrared region, as shown in FIG. 2. The spectral distribution of electromagnetic waves generated by thermal radiation in the case where the light receiving unit 11 is in the temperature range of 1000 K to 1400 K, while concentrated in the wavelength, has a longer energy concentrated region as shown in FIG. It shifts to the wavelength side. As is clear from FIG. 3, in the temperature range of 1000K to 1400K, the region where the energy of thermal radiation is concentrated is significantly different from the region where the energy of the spectral distribution of sunlight 7 shown in FIG. 2 is concentrated. It is not necessary for the material to have special radiation characteristics.

したがって、上記炉本体10の内部の反応物12に対しては、受光部11より太陽光7よりも長波長側の赤外域にエネルギーが集中する熱輻射が行われるようになる。このために、上記反応物12が、図4に反射スペクトルを示す酸化亜鉛のように、上記可視域や近赤外域の波長の電磁波の反射率が高い、すなわち、太陽光7のエネルギーが集中する可視域や近赤外域の波長の電磁波の吸収率が低い吸収波長選択性を有する反応物12であっても、上記受光部11より熱放射される太陽光7よりも長波長側にシフトした赤外域の波長の電磁波の吸収による熱エネルギーへの変換が行われて、該反応物12が発熱するため、炉内温度環境が千度から千数百度まで加熱されるようになる。   Therefore, thermal radiation in which energy concentrates in the infrared region longer than the sunlight 7 by the light receiving unit 11 is performed on the reactant 12 inside the furnace body 10. For this reason, the reactant 12 has a high reflectivity of electromagnetic waves having wavelengths in the visible region and near infrared region, such as zinc oxide having a reflection spectrum in FIG. 4, that is, the energy of sunlight 7 is concentrated. Even if the reaction product 12 has an absorption wavelength selectivity with a low absorption rate of electromagnetic waves having wavelengths in the visible region or near infrared region, the red color is shifted to the longer wavelength side than the sunlight 7 radiated from the light receiving unit 11. Conversion to thermal energy is performed by absorption of electromagnetic waves having wavelengths in the outer region, and the reaction product 12 generates heat, so that the temperature environment in the furnace is heated from 1000 degrees to several thousand degrees.

上記のようにして炉本体10の内部で高温の炉内温度条件が得られると、上記反応物12中の金属酸化物(M)の炭素(C)による還元反応が進行して、反応生成物として単体の金属(mM)と一酸化炭素(CO)が生成されるようになる。上記単体の金属(mM)は、炉本体10内に残る一方、上記一酸化炭素(CO)は、上記ガス供給管14より炉本体10内に供給されるキャリアガスの流れに同伴されてガス排出管15より炉外へ排出されるようになる。 When a high furnace temperature condition is obtained inside the furnace body 10 as described above, the reduction reaction of the metal oxide (M m O n ) in the reactant 12 with carbon (C) proceeds, A single metal (mM) and carbon monoxide (CO) are produced as reaction products. The single metal (mM) remains in the furnace body 10 while the carbon monoxide (CO) is discharged along with the flow of the carrier gas supplied into the furnace body 10 from the gas supply pipe 14. It is discharged from the tube 15 to the outside of the furnace.

このように、本発明の太陽炉装置9によれば、集光装置13で集光した太陽光7を、炉本体10の受光部11で受光して熱エネルギーに変換した後、該受光部11より炉本体10内の反応物12に向けて熱輻射させることで、該反応物12に対しては、太陽光7よりも長波長側にシフトした赤外域にエネルギーが集中する電磁波を作用させて、該電磁波を吸収する反応物12自体で熱エネルギーへの変換を行わせることで、該反応物12を高温に加熱することができる。   As described above, according to the solar furnace device 9 of the present invention, the sunlight 7 collected by the light collecting device 13 is received by the light receiving unit 11 of the furnace body 10 and converted into thermal energy, and then the light receiving unit 11. By radiating heat toward the reactant 12 in the furnace body 10 more, electromagnetic waves with energy concentrated on the infrared region shifted to the longer wavelength side than the sunlight 7 are applied to the reactant 12. The reactant 12 can be heated to a high temperature by causing the reactant 12 itself that absorbs the electromagnetic wave to convert to heat energy.

よって、可視域や近赤外域の波長の電磁波の吸収率が低い吸収波長選択性を有する反応物12であっても、太陽光7の熱エネルギーへの変換ロスを抑制できて、該反応物12を、上記太陽光7のエネルギーに由来する熱エネルギーで効率よく加熱することができ、高温の炉内温度環境を効率よく得ることができることから、熱損失を抑えることが可能となる。   Therefore, even if it is the reaction material 12 which has the absorption wavelength selectivity with low absorption factor of the electromagnetic wave of the wavelength of visible region or a near infrared region, the conversion loss to the heat energy of the sunlight 7 can be suppressed, and this reaction material 12 Can be efficiently heated with the thermal energy derived from the energy of the sunlight 7, and a high-temperature in-furnace temperature environment can be efficiently obtained, so that heat loss can be suppressed.

更に、上記炉本体10には、太陽光7を透過させる透過窓が不要なため、従来要していた如き炉の運転を停止して行う定期的な透過窓のメンテナンスが必要ないため、本発明の太陽炉装置9によれば、長時間の連続運転をすることが可能になる。   Furthermore, since the furnace body 10 does not require a transmission window that allows sunlight 7 to pass therethrough, there is no need for periodic maintenance of the transmission window that is performed by stopping the operation of the furnace as conventionally required. According to the solar furnace device 9, it is possible to perform continuous operation for a long time.

上記実施の形態においては、太陽炉装置9の炉本体10に設ける受光部11を、キャビティ形状として、その内部で太陽光7を受光するものとして示したが、炉本体10のサイズや、太陽光7の集光に用いる図示しない集光装置の集光能力に応じて、たとえば、図5に示すように、炉本体10の上記図示しない集光装置を経て集光された太陽光7が照射される部分に、上記キャビティ形状の受光部11に代えて、平板状の受光部11Aを設けるようにしてもよい。   In the said embodiment, although the light-receiving part 11 provided in the furnace main body 10 of the solar furnace apparatus 9 was shown as what receives sunlight 7 inside as a cavity shape, the size of the furnace main body 10 and sunlight For example, as shown in FIG. 5, the sunlight 7 collected through the above-described light collecting device (not shown) of the furnace body 10 is irradiated according to the light collecting ability of the light collecting device (not shown) used for collecting light 7. Instead of the cavity-shaped light receiving portion 11, a flat light receiving portion 11 A may be provided in the portion.

なお、本発明は上記各実施の形態のみに限定されるものではなく、太陽光7のエネルギーが集中する可視域や近赤外域の波長の電磁波の吸収率が低い吸収波長選択性を有している反応物12であれば、酸化亜鉛以外の反応物12を高温で処理するための炉として適用してもよい。更には、可視域や近赤外域の波長の電磁波の吸収率が高い吸収波長選択性を有している反応物12であっても、高温の炉内温度環境で長時間に亘る連続処理が必要な場合の炉として適用してもよい。   In addition, this invention is not limited only to said each embodiment, It has absorption wavelength selectivity with the low absorption factor of the electromagnetic wave of the wavelength of the visible region and the near infrared region where the energy of sunlight 7 concentrates. As long as the reactant 12 is present, it may be applied as a furnace for treating the reactant 12 other than zinc oxide at a high temperature. Furthermore, even if the reaction product 12 has a high absorption wavelength selectivity and has a high absorption rate of electromagnetic waves having wavelengths in the visible range or near infrared range, continuous treatment over a long period of time is required in a high-temperature furnace temperature environment. It may be applied as a furnace in such a case.

炉本体10に設ける受光部11の位置や形状は、炉本体10の形状や、集光装置13より太陽光7が照射される方向に応じて適宜変更してもよい。   The position and shape of the light receiving unit 11 provided in the furnace body 10 may be appropriately changed according to the shape of the furnace body 10 and the direction in which sunlight 7 is irradiated from the light collecting device 13.

炉本体10は、反応物12の供給機構と反応生成物の取出機構を備えて、反応物12の炉内への供給と反応生成物を炉外への取り出しを連続的に行うことができるようにした形式のものをとしてもよい。   The furnace body 10 includes a supply mechanism for the reactant 12 and a reaction product take-out mechanism so that the supply of the reactant 12 into the furnace and the removal of the reaction product to the outside of the furnace can be performed continuously. It may be in the form of

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

本発明の太陽炉装置の実施の一形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows one Embodiment of the solar furnace apparatus of this invention. 太陽光のスペクトル分布を示す図である。It is a figure which shows the spectrum distribution of sunlight. 図1の装置の受光部からの熱放射のスペクトル分布を示す図である。It is a figure which shows the spectrum distribution of the thermal radiation from the light-receiving part of the apparatus of FIG. 酸化亜鉛の反射スペクトルを示す図である。It is a figure which shows the reflection spectrum of zinc oxide. 本発明の実施の他の形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows the other form of implementation of this invention. 従来提案されている太陽光利用還元反応器とそれに付設された集光装置の概要を示す図である。It is a figure which shows the outline | summary of the sunlight utilization reduction reactor proposed conventionally and the condensing device attached to it. 図6の太陽光利用還元反応器の部分を示す概要図である。It is a schematic diagram which shows the part of the sunlight utilization reduction reactor of FIG.

符号の説明Explanation of symbols

7 太陽光
9 太陽炉装置
10 炉本体
11,11A 受光部
11c 小孔
12 反応物
13 集光装置
7 Sunlight 9 Solar furnace device 10 Furnace body 11, 11A Light receiving part 11c Small hole 12 Reactant 13 Condensing device

Claims (2)

反応物を高温処理するための炉本体の所要個所に、集光装置で集光された太陽光を受光して熱エネルギーに変換するための受光部を設けてなり、集光装置で集光された太陽光より上記受光部で変換された熱エネルギーを、該受光部より熱輻射として上記炉本体内へ放射できるようにした構成を有することを特徴とする太陽炉装置。   A light receiving part for receiving the sunlight collected by the condensing device and converting it into heat energy is provided at the required part of the furnace body for high temperature treatment of the reactant, and it is condensed by the condensing device. A solar furnace apparatus having a configuration in which heat energy converted by the light receiving part from sunlight is radiated from the light receiving part into the furnace body as heat radiation. 受光部を、集光装置で集光した太陽光が入射する小孔を備えるキャビティ形状とした請求項1記載の太陽炉装置。   The solar furnace apparatus of Claim 1 which made the light-receiving part the cavity shape provided with the small hole into which the sunlight condensed with the condensing apparatus injects.
JP2008320244A 2008-12-16 2008-12-16 Solar furnace device Pending JP2010144956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320244A JP2010144956A (en) 2008-12-16 2008-12-16 Solar furnace device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320244A JP2010144956A (en) 2008-12-16 2008-12-16 Solar furnace device

Publications (1)

Publication Number Publication Date
JP2010144956A true JP2010144956A (en) 2010-07-01

Family

ID=42565569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320244A Pending JP2010144956A (en) 2008-12-16 2008-12-16 Solar furnace device

Country Status (1)

Country Link
JP (1) JP2010144956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012040663A2 (en) 2010-09-23 2012-03-29 Roland Winston Solar thermal concentrator apparatus, system, and method
WO2014109363A1 (en) * 2013-01-09 2014-07-17 株式会社ニコン Magnesium refining device, and magnesium refining method
JP2015117891A (en) * 2013-12-19 2015-06-25 株式会社Ihi Beam-condensing unit
WO2016177896A1 (en) * 2015-05-07 2016-11-10 Martineau Gilles System and method for producing artificial blocks made of sand

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012040663A2 (en) 2010-09-23 2012-03-29 Roland Winston Solar thermal concentrator apparatus, system, and method
EP2619512A2 (en) * 2010-09-23 2013-07-31 Roland Winston Solar thermal concentrator apparatus, system, and method
EP2619512A4 (en) * 2010-09-23 2015-04-29 Winston Roland Solar thermal concentrator apparatus, system, and method
WO2014109363A1 (en) * 2013-01-09 2014-07-17 株式会社ニコン Magnesium refining device, and magnesium refining method
JP2015117891A (en) * 2013-12-19 2015-06-25 株式会社Ihi Beam-condensing unit
WO2016177896A1 (en) * 2015-05-07 2016-11-10 Martineau Gilles System and method for producing artificial blocks made of sand

Similar Documents

Publication Publication Date Title
Hirsch et al. Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor
Gao et al. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination
JP4729584B2 (en) Solar energy collection apparatus and method
Tamaura et al. Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle
TW201201620A (en) Coating film drying furnace
JP2005511467A (en) Aerosol flow reaction treatment method by solar heat
JP2010144956A (en) Solar furnace device
US10578341B2 (en) Dual-cavity method and device for collecting and storing solar energy with metal oxide particles
JP2010203624A (en) Trough type light collecting unit
Sajid et al. Thermodynamic assessment of chemical looping combustion and solar thermal methane cracking-based integrated system for green ammonia production
WO2016158909A1 (en) Thermophotovoltaic generator
CN104617863A (en) Photovoltaic-photocatalytic combination system based on lens condensation principle
CN112973703A (en) Method for producing hydrogen by direct photo-thermal concerted catalysis of methanol
JP2015535420A5 (en)
JP2010144957A (en) Solar heat collection method and device
CN109695966B (en) New application of selective light absorption material and novel photo-thermal system
CN101367505A (en) Method for preparing hydrogen gas by decomposing water with solar energy
JP2015535419A5 (en)
JP5417090B2 (en) Solar heat converter
US20230202837A1 (en) Hydrogen gas producing apparatus using a photocatalyst
CN108046328B (en) Defect-state tungsten oxide nanoparticle photothermal conversion material and preparation method and application thereof
CN113620243B (en) Solar photo-thermal coupling utilization system and method suitable for methane dry reforming reaction
EP1746864A1 (en) System with high energy efficiency for indirectly heating a target medium using electromagnetic radiation
US20180040794A1 (en) Realizing the Dream of Green Energy and Making the Impossible Possible
JP6636737B2 (en) Magnesium reduction furnace