JP2010144740A - Vibration proof structure for vacuum pump - Google Patents

Vibration proof structure for vacuum pump Download PDF

Info

Publication number
JP2010144740A
JP2010144740A JP2007063995A JP2007063995A JP2010144740A JP 2010144740 A JP2010144740 A JP 2010144740A JP 2007063995 A JP2007063995 A JP 2007063995A JP 2007063995 A JP2007063995 A JP 2007063995A JP 2010144740 A JP2010144740 A JP 2010144740A
Authority
JP
Japan
Prior art keywords
vacuum pump
vibration
vibration damping
damping member
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007063995A
Other languages
Japanese (ja)
Inventor
Hideo Fukami
英夫 深美
Yuko Sakaguchi
祐幸 坂口
Hideki Enosawa
秀樹 江野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Japan Ltd
Original Assignee
Edwards Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Japan Ltd filed Critical Edwards Japan Ltd
Priority to JP2007063995A priority Critical patent/JP2010144740A/en
Priority to PCT/JP2008/051493 priority patent/WO2008111335A1/en
Publication of JP2010144740A publication Critical patent/JP2010144740A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-proof structure for a vacuum pump suitable to reduce microvibration of a vacuum device caused by operation of a vacuum pump. <P>SOLUTION: A vibration-proof structure for a vacuum pump P is connected to the chamber C of a vacuum device M via a mechanical damper D. The mechanical damper D includes a tubular bellows 2 for maintaining the boundary between the atmosphere and vacuum, flange sections 3A, 3B fixed to both ends of the bellows 2, and a tubular vibration damping member 4 placed between the flange sections at both ends. One flange section 3A is connected to the chamber C and the other flange section 3B is connected to an air suction opening PS of the vacuum pump P. Irregularity sections 5-1, 5-2 are placed between the flange sections 3A, 3B and the vibration damping member 4. The flange section 3B and the vibration damping member 4 abut on each other via the irregularity sections. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子顕微鏡その他の真空装置のチャンバに接続される真空ポンプの防振構造に関する。   The present invention relates to a vibration isolation structure for a vacuum pump connected to a chamber of an electron microscope or other vacuum apparatus.

例えば、電子顕微鏡には観察試料をセットするためのチャンバが設けられている。このチャンバにはメカニカルダンパを介して真空ポンプが接続され、真空ポンプによってチャンバ内の真空引きが行われる。メカニカルダンパは、真空ポンプの運転によって発生する振動が電子顕微鏡側へ伝わらないようにするために設けられている。   For example, an electron microscope is provided with a chamber for setting an observation sample. A vacuum pump is connected to this chamber via a mechanical damper, and the inside of the chamber is evacuated by the vacuum pump. The mechanical damper is provided in order to prevent vibration generated by the operation of the vacuum pump from being transmitted to the electron microscope side.

前記のようにメカニカルダンパを介して真空ポンプと電子顕微鏡などの真空装置のチャンバとを接続する接続構造については、例えば特許文献1に開示されている。同文献1で用いるメカニカルダンパは、図5のように、大気と真空の境界を維持する筒状のベローズ2と、ベローズ2の両端に取り付けたフランジ部3A、3Bと、その両端のフランジ部3A、3B間に振動減衰部材4として介在させたシリコーンゴムからなる筒状の弾性部材とにより構成されている。   As described above, a connection structure for connecting a vacuum pump and a chamber of a vacuum apparatus such as an electron microscope via a mechanical damper is disclosed in Patent Document 1, for example. As shown in FIG. 5, the mechanical damper used in the document 1 includes a cylindrical bellows 2 that maintains the boundary between air and vacuum, flange portions 3A and 3B attached to both ends of the bellows 2, and flange portions 3A at both ends. And a cylindrical elastic member made of silicone rubber interposed as a vibration damping member 4 between 3B.

そして、このメカニカルダンパDの一方のフランジ部3Aを真空装置MのチャンバCに接続するとともに、他方のフランジ部3Bを真空ポンプPの吸気口部PSに接続することにより、ベローズ2の内側空間を通じて真空ポンプPとチャンバCとが連通し、この状態で真空ポンプPの運転が行われることにより、チャンバC内のガスがベローズ2の内側空間と真空ポンプP内部を通って外部へ排気される。   And while connecting one flange part 3A of this mechanical damper D to the chamber C of the vacuum apparatus M and connecting the other flange part 3B to the inlet port PS of the vacuum pump P, the inner space of the bellows 2 is passed through. The vacuum pump P and the chamber C communicate with each other, and the operation of the vacuum pump P is performed in this state, whereby the gas in the chamber C is exhausted to the outside through the inner space of the bellows 2 and the inside of the vacuum pump P.

ところで、前記のような従来の接続構造によると、振動減衰部材4として設けられているシリコーンゴムからなる弾性部材のばね定数を小さくすることによって、メカニカルダンパDによる振動の減衰効果を高めることができる。   By the way, according to the conventional connection structure as described above, the vibration damping effect of the mechanical damper D can be enhanced by reducing the spring constant of the elastic member made of silicone rubber provided as the vibration damping member 4. .

しかしながら、メカニカルダンパDの弾性部材(振動減衰部材4)のばね定数を小さくしすぎると、弾性部材の剛性が低下し、チャンバC内およびベローズ2の内側空間の真空度が高まるのに従い、当該弾性部材は大気圧に耐えきれず収縮し、真空ポンプPがチャンバC側へ引き寄せられてしまうという不具合が生じる。   However, if the spring constant of the elastic member (vibration damping member 4) of the mechanical damper D is made too small, the rigidity of the elastic member decreases, and the elasticity increases as the degree of vacuum in the chamber C and the inner space of the bellows 2 increases. The member cannot withstand the atmospheric pressure and contracts, causing a problem that the vacuum pump P is drawn toward the chamber C side.

以上のことから、振動の減衰効果を高めることを目的として、メカニカルダンパDの弾性部材(振動減衰部材4)のばね定数を小さくすることには一定の限界があり、その限界を超えて弾性部材のばね定数を小さくすることはできない。また、このメカニカルダンパDの弾性部材は、真空ポンプPの吸気口PS側に接続される金属性のフランジ部3BとチャンバC側に接続される金属性のフランジ部3Aとに張り付き密着しているため、真空ポンプPの振動が弾性部材を介して真空装置Mへ伝わりやすくなっている。このため、前記限界を超える極小のばね定数の弾性部材でなければ十分に減衰させることができない微振動、例えばナノメートルオーダ以下の振幅の微振動をメカニカルダンパDの弾性部材で減衰させることはできず、そのような微振動がメカニカルダンパDの弾性部材を介して真空装置M側へ伝播し、真空装置Mが微振動するという問題点がある。   From the above, for the purpose of enhancing the vibration damping effect, there is a certain limit to reducing the spring constant of the elastic member (vibration damping member 4) of the mechanical damper D, and the elastic member exceeds the limit. The spring constant cannot be reduced. In addition, the elastic member of the mechanical damper D is adhered and adhered to the metallic flange portion 3B connected to the suction port PS side of the vacuum pump P and the metallic flange portion 3A connected to the chamber C side. Therefore, the vibration of the vacuum pump P is easily transmitted to the vacuum device M through the elastic member. For this reason, micro-vibration that cannot be sufficiently damped unless it is an elastic member with a minimum spring constant exceeding the limit, for example, micro-vibration with an amplitude of nanometer order or less, can be damped by the elastic member of the mechanical damper D. However, there is a problem that such fine vibration propagates to the vacuum device M side through the elastic member of the mechanical damper D, and the vacuum device M slightly vibrates.

真空ポンプPの内部にはロータを回転させるためのモータが内蔵されており、そのモータのステータがロータ回転の反力を受けて微振動する。このような微振動が前述のようにメカニカルダンパDの弾性部材を介して真空装置M側へ伝播するため、真空ポンプPを運転している限り、真空装置Mの微振動はなくならない。   A motor for rotating the rotor is built in the vacuum pump P, and the stator of the motor receives a reaction force of the rotor rotation and slightly vibrates. Since such slight vibration propagates to the vacuum apparatus M side through the elastic member of the mechanical damper D as described above, as long as the vacuum pump P is operated, the fine vibration of the vacuum apparatus M is not lost.

特に、電子ビーム等を使って原子レベルで精密な観察を行う電子顕微鏡の分野ではその性能の向上に伴い、前記のような微振動を低減することが課題とされている。このことは同様に精密な作業を行う電子顕微鏡以外の他の真空装置でも同様である。   In particular, in the field of electron microscopes that perform precise observation at the atomic level using an electron beam or the like, it is an issue to reduce such fine vibrations as the performance improves. This also applies to other vacuum devices other than the electron microscope that performs the same precise work.

特開2002−295581号公報JP 2002-295581 A

本発明は前記問題点を解決するためになされたもので、その目的とするところは、真空ポンプの運転に伴う真空装置の微振動の低減を図るのに好適な真空ポンプ防振構造を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vacuum pump vibration isolation structure suitable for reducing fine vibrations of a vacuum apparatus accompanying the operation of the vacuum pump. There is.

前記目的を達成するために、本発明は、メカニカルダンパを介して真空装置のチャンバに接続される真空ポンプの防振構造であって、前記メカニカルダンパは、大気と真空の境界を維持する筒状のベローズと、ベローズの両端に取り付けたフランジ部と、その両端のフランジ部間に介在させた筒状の振動減衰部材とを備え、前記一方のフランジ部を前記チャンバに接続し、前記他方のフランジ部を前記真空ポンプの吸気口部に接続した構造からなり、前記フランジ部と前記振動減衰部材との間に凹凸部を設けたことを特徴とするものである。   In order to achieve the above object, the present invention provides a vibration isolating structure for a vacuum pump connected to a chamber of a vacuum apparatus via a mechanical damper, wherein the mechanical damper has a cylindrical shape that maintains a boundary between air and vacuum. A bellows, a flange attached to both ends of the bellows, and a cylindrical vibration damping member interposed between the flanges on both ends, the one flange connected to the chamber, and the other flange It has a structure in which a portion is connected to the suction port portion of the vacuum pump, and an uneven portion is provided between the flange portion and the vibration damping member.

前記凹凸部は、前記フランジ部の下面と対向する前記振動減衰部材の上端面に切り欠きを設けて形成される、又は、前記フランジ部の上面と対向する前記振動吸収部材の下端面に切り欠きを設けて形成されるものであってもよい。   The concavo-convex portion is formed by providing a notch in the upper end surface of the vibration damping member facing the lower surface of the flange portion, or is cut out in the lower end surface of the vibration absorbing member facing the upper surface of the flange portion. And may be formed.

前記凹凸部は、前記振動減衰部材の上端面と対向する前記フランジ部の下面に突起を設けて形成される、又は、前記振動減衰部材の下端面と対向する前記フランジ部の上面に突起を設けて形成されるものであってもよい。   The concavo-convex portion is formed by providing a protrusion on the lower surface of the flange portion facing the upper end surface of the vibration damping member, or a protrusion is provided on the upper surface of the flange portion facing the lower end surface of the vibration damping member. It may be formed.

本発明にあっては、フランジ部と振動減衰部材との間に凹凸部を設けた。このため、その凹凸部を介して振動減衰部材がフランジ部に当接することから、振動減衰部材とフランジ部との接触面積が減少し、メカニカルダンパの真空ポンプラジアル軸周りの回転剛性が弱まり、その方向(真空ポンプラジアル軸回り)の振動成分を減衰させることが可能であるため、真空ポンプから真空装置へのナノメートルオーダ以下の振幅の振動伝播量が減り、真空ポンプの運転に伴う真空装置の微振動を低減させることができる等の作用効果を奏する。   In the present invention, the uneven portion is provided between the flange portion and the vibration damping member. For this reason, since the vibration damping member abuts on the flange portion through the uneven portion, the contact area between the vibration damping member and the flange portion is reduced, and the rotational rigidity around the vacuum pump radial axis of the mechanical damper is weakened. Since the vibration component in the direction (around the vacuum pump radial axis) can be damped, the amount of vibration propagation with an amplitude of nanometer order or less from the vacuum pump to the vacuum device is reduced. There are effects such as the ability to reduce micro vibrations.

以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の真空ポンプ防振構造の一実施形態の説明図、図2(a)は図1の真空ポンプ防振構造で採用したメカニカルダンパを構成する振動減衰部材の上面図、(b)はその振動減衰部材のb−b線断面図、(c)はその振動減衰部材の下面図である。   FIG. 1 is an explanatory view of an embodiment of a vacuum pump vibration-proof structure of the present invention, FIG. 2A is a top view of a vibration damping member constituting a mechanical damper employed in the vacuum pump vibration-proof structure of FIG. ) Is a cross-sectional view of the vibration damping member taken along the line bb, and (c) is a bottom view of the vibration damping member.

本真空ポンプ防振構造は、図1のようにメカニカルダンパDを介して電子顕微鏡などの真空装置MのチャンバCに接続される真空ポンプPの防振構造であり、真空ポンプPについてはターボ分子ポンプTPその他の真空ポンプが適用される。本実施形態では、かかる真空ポンプPの一例として、周知のターボ分子ポンプTPを採用した。   This vacuum pump vibration isolation structure is a vibration isolation structure of a vacuum pump P connected to a chamber C of a vacuum apparatus M such as an electron microscope via a mechanical damper D as shown in FIG. A pump TP or other vacuum pump is applied. In the present embodiment, a known turbo molecular pump TP is employed as an example of the vacuum pump P.

ターボ分子ポンプTPは、図示は省略するが、そのポンプケース1内に、モータによって回転駆動されるロータと、ロータの外周面に多段に設けた複数のロータ翼と、ロータ翼間に多段に位置決め配置された固定のステータ翼とを備えている。そして、ロータの回転により、ロータの回転中心軸線周りにロータ翼が旋回し、この旋回するロータ翼と固定のステータ翼とで気体分子を順次移送し排気する。   Although not shown, the turbo molecular pump TP is positioned in a multistage manner between the rotor blades, a rotor that is rotationally driven by a motor, a plurality of rotor blades provided in multiple stages on the outer peripheral surface of the rotor, and a pump case 1. And fixed stator blades. Then, the rotor blades rotate around the rotation center axis of the rotor by the rotation of the rotor, and gas molecules are sequentially transferred and exhausted by the rotating rotor blades and the fixed stator blades.

メカニカルダンパDは、真空ポンプPの運転により生じる機械的な振動を減衰する手段であり、本実施形態のメカニカルダンパDは、真空と大気の境界を維持する筒状のベローズ2と、ベローズ2の上下両端に溶接などで取り付けられたフランジ部3A、3Bと、この上下のフランジ部3A、3B間に介在させた筒状の振動減衰部材4とにより構成されている。   The mechanical damper D is a means for attenuating mechanical vibration generated by the operation of the vacuum pump P. The mechanical damper D of the present embodiment includes a cylindrical bellows 2 that maintains a boundary between vacuum and the atmosphere, and a bellows 2. It is comprised by the flange parts 3A and 3B attached to the upper and lower ends by welding etc., and the cylindrical vibration damping member 4 interposed between these upper and lower flange parts 3A and 3B.

また、本実施形態のメカニカルダンパDは、その上側のフランジ部3Aが真空装置MのチャンバCに取り付けられ、その下側のフランジ部3Bには、真空ポンプPの吸気口部PSが取り付けられるようになっている。   Further, in the mechanical damper D of this embodiment, the upper flange portion 3A is attached to the chamber C of the vacuum apparatus M, and the intake port PS of the vacuum pump P is attached to the lower flange portion 3B. It has become.

さらに、上側のフランジ部3Aの下面S1とこれに対向する振動減衰部材4の上端面S2との間には第1の凹凸部5−1が設けられ、この第1の凹凸部5−1を介して振動減衰部材4が上側のフランジ部3Aに当接するように構成されている。   Further, a first uneven portion 5-1 is provided between the lower surface S1 of the upper flange portion 3A and the upper end surface S2 of the vibration damping member 4 facing the upper flange portion 3A. The vibration damping member 4 is configured to come into contact with the upper flange portion 3A.

特に、本実施形態では、前記第1の凹凸部5−1の具体的な構成例として、図2(a)のように振動減衰部材4の上端面S2に2つの切り欠き5A、5Bを設けることによって当該第1の凹凸部5−1が形成される構成を採用した。また、その2つの第1の切り欠き5A、5Bは、振動減衰部材4の中心軸線L周りに180度隔てて対向配置される構成にした。このため、図2(a)のように振動減衰部材4とフランジ部3Aとの接触面は同様に180度隔てて対向するようになっている。   In particular, in the present embodiment, as a specific configuration example of the first uneven portion 5-1, two notches 5A and 5B are provided on the upper end surface S2 of the vibration damping member 4 as shown in FIG. Thus, a configuration in which the first uneven portion 5-1 is formed is adopted. Further, the two first cutouts 5A and 5B are configured to be opposed to each other around the central axis L of the vibration damping member 4 by 180 degrees. For this reason, as shown in FIG. 2A, the contact surfaces of the vibration damping member 4 and the flange portion 3A are similarly opposed to each other by 180 degrees.

つまり、本実施形態の真空ポンプ防振構造は、切り欠き5A、5Bによって形成される第1の凹凸部5−1を介して振動減衰部材4が上側のフランジ部3Aに当接するように構成することで、その振動減衰部材4とフランジ部3Aとの接触面積の減少を図り、メカニカルダンパDの真空ポンプラジアル軸周りの回転剛性を積極的に弱め、その方向(真空ポンプラジアル軸回り)の振動成分を減衰させるようにしたものである。   In other words, the vacuum pump vibration isolating structure of the present embodiment is configured such that the vibration damping member 4 comes into contact with the upper flange portion 3A via the first uneven portion 5-1 formed by the notches 5A and 5B. Thus, the contact area between the vibration damping member 4 and the flange portion 3A is reduced, the rotational rigidity of the mechanical damper D around the vacuum pump radial axis is actively weakened, and the vibration in that direction (around the vacuum pump radial axis) The component is attenuated.

下側のフランジ部3Bの上面S3とこれに対向する振動減衰部材4の下端面S4との間にも同様に、前述した切り欠き5A、5Bによって形成される第2の凹凸部5−2が設けられ、この第2の凹凸部5−2を介して振動減衰部材4が下側のフランジ部3Bに当接する構造になっている。   Similarly, between the upper surface S3 of the lower flange portion 3B and the lower end surface S4 of the vibration damping member 4 opposed thereto, the second uneven portion 5-2 formed by the notches 5A and 5B described above is provided. The vibration attenuating member 4 is in contact with the lower flange portion 3B through the second uneven portion 5-2.

また、第1の凹凸部5−1を形成する切り欠き5A、5Bと、第2の凹凸部5−2を形成する切り欠き5A、5Bは、振動減衰部材4の中心軸線L周りに90度ずつずれた等ピッチ間隔で配置されている。これにより、図2(a)(c)のように、振動減衰部材4とフランジ部3A、3Bとの接触面は、その上下方向で互いに重ならないように設けられている。   Further, the notches 5A and 5B forming the first uneven portion 5-1 and the notches 5A and 5B forming the second uneven portion 5-2 are 90 degrees around the central axis L of the vibration damping member 4. They are arranged at equal pitch intervals that are shifted one by one. Accordingly, as shown in FIGS. 2A and 2C, the contact surfaces of the vibration damping member 4 and the flange portions 3A and 3B are provided so as not to overlap each other in the vertical direction.

なお、本実施形態のメカニカルダンパDの構成要素のうち、ベローズ2とフランジ部3A、3Bについては金属で形成し、振動減衰部材4は弾性部材としてのシリコーンゴムで形成したが、これら以外の材料によってベローズ2、フランジ部3A、3B、振動減衰部材4を形成してもよい。   Of the components of the mechanical damper D of the present embodiment, the bellows 2 and the flange portions 3A and 3B are made of metal, and the vibration damping member 4 is made of silicone rubber as an elastic member. The bellows 2, the flange portions 3A and 3B, and the vibration damping member 4 may be formed.

次に、前記の如く構成された真空ポンプ防振構造の作用などについて図1を基に説明する。   Next, the operation of the vacuum pump vibration-proof structure configured as described above will be described with reference to FIG.

真空ポンプPの運転を開始し、同真空ポンプP内において図示しないモータによりロータが高速回転すると、ロータと一体に旋回するロータ翼と固定のステータ翼とで気体分子を順次移送し排気する動作が行われる。   When the operation of the vacuum pump P is started and the rotor is rotated at a high speed by a motor (not shown) in the vacuum pump P, the operation of sequentially transferring and exhausting gas molecules between the rotor blade rotating integrally with the rotor and the fixed stator blade is performed. Done.

これにより、真空ポンプPの吸気口部PS側が低圧となり、真空装置MのチャンバC内の気体分子は、メカニカルダンパDのベローズ2の内側空間を通って真空ポンプPの吸気口部PSへ移行し、真空ポンプPによって外部へ排気される。   Thereby, the suction port part PS side of the vacuum pump P becomes a low pressure, and the gas molecules in the chamber C of the vacuum device M pass through the inner space of the bellows 2 of the mechanical damper D to the suction port part PS of the vacuum pump P. Then, it is exhausted to the outside by the vacuum pump P.

ところで、真空ポンプPの運転中にそのロータの回転に伴う微振動が真空ポンプPで発生することは避けられず、その微振動は、真空ポンプPの吸気口部PSからメカニカルダンパDを介して真空装置Mへ伝播しようとする。   By the way, it is inevitable that a slight vibration accompanying the rotation of the rotor is generated in the vacuum pump P during the operation of the vacuum pump P. The slight vibration is inevitably generated from the intake port PS of the vacuum pump P through the mechanical damper D. It tries to propagate to the vacuum device M.

しかし、本実施形態の真空ポンプ防振構造では、凹凸部5−1、5−2を介するフランジ部3A、3Bと振動減衰部材4との当接構造によって、そのフランジ部3A、3Bと振動減衰部材4との接触面積を小さくし、メカニカルダンパDの真空ポンプラジアル軸周りの回転剛性を積極的に弱めているため、その方向(真空ポンプラジアル軸回り)の振動成分は減衰し、真空装置Mへの微振動の伝播量は低減される。   However, in the vacuum pump vibration isolating structure of the present embodiment, the flange portions 3A and 3B and the vibration damping member 4 are damped by the contact structure between the flange portions 3A and 3B and the vibration damping member 4 via the concave and convex portions 5-1 and 5-2. Since the contact area with the member 4 is reduced and the rotational rigidity of the mechanical damper D around the vacuum pump radial axis is actively weakened, the vibration component in that direction (vacuum pump radial axis) is attenuated, and the vacuum device M The amount of propagation of micro-vibration to is reduced.

前記実施形態においては、図2(b)(c)のように振動減衰部材4の下端面S4に切り欠き5A、5Bを形成することによって、振動減衰部材4の下端面S4と下側のフランジ部3Bの上面S3との間に第2の凹凸部5−2が設けられる構成を採用したが、この第2の凹凸部5−2については、図3(a)(b)のように、振動減衰部材4の下端面S4と対向する下側のフランジ部3Bの上面S3に、2つの突起5D、5Eを形成することによって設けられるように構成してもよい。この点については、図示は省略するが、第1の凹凸部5−1も同様である。   In the above embodiment, the notches 5A and 5B are formed in the lower end surface S4 of the vibration damping member 4 as shown in FIGS. 2B and 2C, so that the lower end surface S4 and the lower flange of the vibration damping member 4 are formed. Although the configuration in which the second uneven portion 5-2 is provided between the upper surface S3 of the portion 3B is adopted, the second uneven portion 5-2 is as shown in FIGS. 3 (a) and 3 (b). You may comprise so that it may provide by forming two protrusion 5D, 5E in the upper surface S3 of the lower flange part 3B facing the lower end surface S4 of the vibration damping member 4. FIG. Although the illustration is omitted in this respect, the same applies to the first uneven portion 5-1.

また、第1の凹凸部5−1は、振動減衰部材4の上端面S2とこれに対向するフランジ部3Aの下面S1との間に図示しないスペーサを介挿することによって形成されるようにしてもよい。第2の凹凸部5−2も同様である。   Further, the first concavo-convex portion 5-1 is formed by inserting a spacer (not shown) between the upper end surface S2 of the vibration damping member 4 and the lower surface S1 of the flange portion 3A opposite to the upper end surface S2. Also good. The same applies to the second uneven portion 5-2.

さらに、前記実施形態では、図2(a)(b)(c)のように2つの切り欠き5A、5Bによって第1の凹凸部5−1や第2の凹凸部5−2が形成される構成を採用したが、その切り欠きの数は2つに限定されることはなく、図4(a)(b)のように3つ(切り欠き5A、5B、5C)とすることもできる。これと同様に図3(a)(b)の突起5D、5Eの数も2つに限定されない。   Furthermore, in the said embodiment, the 1st uneven | corrugated | grooved part 5-1 and the 2nd uneven | corrugated | grooved part 5-2 are formed by two notches 5A and 5B like FIG. 2 (a) (b) (c). Although the configuration is adopted, the number of notches is not limited to two, but can be three (notches 5A, 5B, 5C) as shown in FIGS. Similarly, the number of projections 5D and 5E in FIGS. 3A and 3B is not limited to two.

前記実施形態では、真空ポンプPの一例としてターボ分子ポンプTPを採用した構成例を説明したが、本発明の真空ポンプ防振構造は、たとえばネジ溝ポンプなどのようにターボ分子ポンプ以外の真空ポンプにも適用することができる。   In the above embodiment, the configuration example in which the turbo molecular pump TP is adopted as an example of the vacuum pump P has been described. However, the vacuum pump vibration isolating structure of the present invention is a vacuum pump other than the turbo molecular pump such as a thread groove pump, for example. It can also be applied to.

本発明の一実施形態である真空ポンプ防振構造の断面図。Sectional drawing of the vacuum pump vibration proof structure which is one Embodiment of this invention. (a)は図1の真空ポンプ防振構造で採用したメカニカルダンパを構成する振動減衰部材の上面図、(b)はその振動減衰部材のb−b線断面図、(c)はその振動減衰部材の下面図である。(A) is a top view of a vibration damping member constituting the mechanical damper employed in the vacuum pump vibration-proof structure of FIG. 1, (b) is a cross-sectional view taken along the line bb of the vibration damping member, and (c) is its vibration damping. It is a bottom view of a member. (a)は振動減衰部材とフランジ部との間に設けられる凹凸部の他の実施形態を含んだ真空ポンプ防振構造の説明図、(b)はその真空ポンプ防振構造で採用したメカニカルダンパを構成する下側のフランジ部の上面図。(A) is explanatory drawing of the vacuum pump vibration-proof structure containing other embodiment of the uneven | corrugated | grooved part provided between a vibration damping member and a flange part, (b) is the mechanical damper employ | adopted with the vacuum pump vibration-proof structure. The upper surface figure of the lower flange part which constitutes. 図4は振動減衰部材とフランジ部との間の凹凸部を切り欠きによって形成する場合の他の実施形態の説明図であって、(a)はその切り欠きが形成される振動減衰部材の上面図、(b)は同振動減衰部材の下面図である。FIG. 4 is an explanatory view of another embodiment in the case where the uneven portion between the vibration damping member and the flange portion is formed by notching, and (a) is an upper surface of the vibration damping member on which the notch is formed. FIG. 4B is a bottom view of the vibration damping member. メカニカルダンパを介して真空ポンプと真空装置のチャンバとを接続する従来の接続構造の説明図。Explanatory drawing of the conventional connection structure which connects a vacuum pump and the chamber of a vacuum device via a mechanical damper.

符号の説明Explanation of symbols

1 ポンプケース
2 ベローズ
3A、3B フランジ部
4 振動減衰部材
5−1 第1の凹凸部
5−2 第2の凹凸部
5A、5B、5C 切り欠き
5D、5E 突起
L 振動減衰部材の中心軸線
S1 上側のフランジ部の下面
S2 振動減衰部材の上端面
S3 下側のフランジ部の上面
S4 振動減衰部材の下端面
C チャンバ
G グリース
D メカニカルダンパ
M 真空装置
P 真空ポンプ
PS 吸気口部
TP ターボ分子ポンプ
DESCRIPTION OF SYMBOLS 1 Pump case 2 Bellows 3A, 3B Flange part 4 Vibration damping member 5-1 1st uneven part 5-2 2nd uneven part 5A, 5B, 5C Notch 5D, 5E Protrusion L Center axis line S1 upper side of vibration damping member Lower surface S2 of the vibration damping member upper end surface S3 of the vibration damping member upper surface S4 of the lower flange portion C lower end surface of the vibration damping member C Chamber G Grease D Mechanical damper M Vacuum apparatus P Vacuum pump PS Inlet port TP Turbo molecular pump

Claims (3)

メカニカルダンパを介して真空装置のチャンバに接続される真空ポンプの防振構造であって、
前記メカニカルダンパは、大気と真空の境界を維持する筒状のベローズと、ベローズの両端に取り付けたフランジ部と、その両端のフランジ部間に介在させた筒状の振動減衰部材とを備え、前記一方のフランジ部を前記チャンバに接続し、前記他方のフランジ部を前記真空ポンプの吸気口部に接続した構造からなり、
前記フランジ部と前記振動減衰部材との間に凹凸部を設けたこと
を特徴とする真空ポンプ防振構造。
A vibration-proof structure of a vacuum pump connected to a chamber of a vacuum device via a mechanical damper,
The mechanical damper includes a cylindrical bellows that maintains a boundary between air and vacuum, flange portions attached to both ends of the bellows, and cylindrical vibration damping members interposed between the flange portions on both ends, One flange portion is connected to the chamber, and the other flange portion is connected to the suction port portion of the vacuum pump.
An anti-vibration structure for a vacuum pump, wherein an uneven portion is provided between the flange portion and the vibration damping member.
前記凹凸部は、前記フランジ部の下面と対向する前記振動減衰部材の上端面に切り欠きを設けて形成される、又は、前記フランジ部の上面と対向する前記振動吸収部材の下端面に切り欠きを設けて形成されること
を特徴とする請求項1に記載の真空ポンプ防振構造。
The concavo-convex portion is formed by providing a notch on the upper end surface of the vibration damping member facing the lower surface of the flange portion, or is notched on the lower end surface of the vibration absorbing member facing the upper surface of the flange portion. The vacuum pump vibration-proof structure according to claim 1, wherein the vacuum pump vibration-proof structure is provided.
前記凹凸部は、前記振動減衰部材の上端面と対向する前記フランジ部の下面に突起を設けて形成される、又は、前記振動減衰部材の下端面と対向する前記フランジ部の上面に突起を設けて形成されること
を特徴とする請求項1に記載の真空ポンプ防振構造。
The concavo-convex portion is formed by providing a protrusion on the lower surface of the flange portion facing the upper end surface of the vibration damping member, or a protrusion is provided on the upper surface of the flange portion facing the lower end surface of the vibration damping member. The anti-vibration structure for a vacuum pump according to claim 1, wherein the anti-vibration structure is formed by:
JP2007063995A 2007-03-13 2007-03-13 Vibration proof structure for vacuum pump Withdrawn JP2010144740A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007063995A JP2010144740A (en) 2007-03-13 2007-03-13 Vibration proof structure for vacuum pump
PCT/JP2008/051493 WO2008111335A1 (en) 2007-03-13 2008-01-31 Vibration-proof structure for vacuum pump and vacuum pump with the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063995A JP2010144740A (en) 2007-03-13 2007-03-13 Vibration proof structure for vacuum pump

Publications (1)

Publication Number Publication Date
JP2010144740A true JP2010144740A (en) 2010-07-01

Family

ID=42565384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063995A Withdrawn JP2010144740A (en) 2007-03-13 2007-03-13 Vibration proof structure for vacuum pump

Country Status (1)

Country Link
JP (1) JP2010144740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180013165A (en) * 2016-07-28 2018-02-07 오영한 Fluid heating pump using frictional heat
KR20200093691A (en) * 2012-04-26 2020-08-05 젠자임 코포레이션 SERPINC1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093691A (en) * 2012-04-26 2020-08-05 젠자임 코포레이션 SERPINC1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
KR102254380B1 (en) 2012-04-26 2021-05-25 젠자임 코포레이션 SERPINC1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
KR20180013165A (en) * 2016-07-28 2018-02-07 오영한 Fluid heating pump using frictional heat
KR101950378B1 (en) * 2016-07-28 2019-02-20 오영한 Fluid heating pump using frictional heat

Similar Documents

Publication Publication Date Title
JP5226979B2 (en) Vacuum pump shaft support device
JP5046647B2 (en) Damper and vacuum pump
JP5919745B2 (en) Vacuum pump
US8961106B2 (en) Turbomolecular pump and connector device therefor
JP2005307971A (en) Damping adapter of vacuum pump
WO2013118774A1 (en) Control cable device
JP5303174B2 (en) Bearing device
JP2010144740A (en) Vibration proof structure for vacuum pump
JP2005147151A (en) Vacuum pump provided with vibration damper
JP2010144739A (en) Vibration proof structure for vacuum pump
WO2019181705A1 (en) Vacuum pump and damper for vacuum pump
JP2011226479A (en) Pulley, torsional vibration damper and crankshaft of internal combustion engine
JP2007309361A (en) Vibration damping device
JP5064832B2 (en) Vacuum pump anti-vibration structure
JP2019011781A (en) Damper mechanism and pump device
JP2014196693A (en) Vacuum pump connecting device connecting vacuum pump to lens barrel of electronic beam application device and method for installing vacuum pump connecting device
JP2005344610A (en) Evacuation device
JP2010014171A (en) Damping device
JP2006077714A (en) Damper and vacuum pump
CN117588390B (en) Gas generating device with protective structure and fluid control module
US6095684A (en) X-ray tube frame support assembly
JP2002295399A (en) Vacuum pump having damper
JP7230514B2 (en) damper device
JP2009287576A (en) Molecular pump and flange
JP2005098326A (en) Vibration eliminating device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706