JP2010144042A - Urea grease composition - Google Patents

Urea grease composition Download PDF

Info

Publication number
JP2010144042A
JP2010144042A JP2008322604A JP2008322604A JP2010144042A JP 2010144042 A JP2010144042 A JP 2010144042A JP 2008322604 A JP2008322604 A JP 2008322604A JP 2008322604 A JP2008322604 A JP 2008322604A JP 2010144042 A JP2010144042 A JP 2010144042A
Authority
JP
Japan
Prior art keywords
compound
nhconhr
oil
metal
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008322604A
Other languages
Japanese (ja)
Other versions
JP5390849B2 (en
Inventor
Keiji Tanaka
啓司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2008322604A priority Critical patent/JP5390849B2/en
Priority to PCT/EP2009/067263 priority patent/WO2010069984A1/en
Publication of JP2010144042A publication Critical patent/JP2010144042A/en
Application granted granted Critical
Publication of JP5390849B2 publication Critical patent/JP5390849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M115/00Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof
    • C10M115/08Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved urea grease composition. <P>SOLUTION: The improved urea grease composition is represented by the general formula (a): R<SB>1</SB>NHCONHR<SB>2</SB>NHCONHR<SB>1</SB>, the general formula (b): R<SB>3</SB>NHCONHR<SB>2</SB>NHCONHR<SB>3</SB>, and the general formula (c): R<SB>1</SB>NHCONHR<SB>2</SB>NHCONHR<SB>3</SB>respectively, wherein R<SB>2</SB>is a diphenylmethane group, R<SB>1</SB>is an 8C alkyl; and R<SB>3</SB>is 14-20C hydrocarbon group containing an unsaturated component at 20 mol% or more, and either one of the following compositions (1), (2) and (3) is included in a mineral oil or synthetic oil or a mixture thereof. The composition (1) is a mixture including: (a) compound and a (b) compound, wherein the (a) compound accounts for 80-20 mol% of the (a) compound+the (b) compound and the composition (2) is a mixture of the composition (mixture) (1) and the (c) compound; and the composition (3) consists of the (c) compound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はウレアグリース組成物の改良に係り、特に一方が金属で、他方が金属以外の材料により構成される転がりや滑りなどが生ずる潤滑個所での使用に適したものに関する。   The present invention relates to an improvement of a urea grease composition, and more particularly, to a grease suitable for use in a lubricated place where rolling or slipping, etc. in which one is made of metal and the other is made of a material other than metal.

近年自動車産業を初めとして各種産業機械の部品には、軽量化やコスト低減、低摩擦、耐摩耗、または静粛性あるいはリサイクル等の多くの観点からの金属材料以外の部品である樹脂材やゴム材などの高分子材料の使用が目立つようになっているが、部品の構成要素が多様化する中で、新たな課題も多く発生し、様々な技術の改良が行われている。   In recent years, parts of various industrial machines, including the automobile industry, include resin materials and rubber materials that are parts other than metal materials from many viewpoints such as weight reduction, cost reduction, low friction, wear resistance, quietness or recycling. The use of polymer materials such as these has become conspicuous, but as the components of the parts have diversified, many new problems have arisen and various techniques have been improved.

例えば、自動車の電動ドアミラーの可動部やステアリングの伸縮軸の摺動部、R&Pステアリングのラックガイド等の各種摺動部、電動パワーステアリング装置の動力伝達歯車、各種アクチュエータ、エアシリンダ内部の摺動部、工作機械のリニヤガイドやボールネジのリテーナや各種軸受けのリテーナ、クレーンのブームの摺動部、更に、ラジカセ、ビデオテープレコーダー、CDプレーヤ等音響機器の樹脂ギヤ部、プリンター、複写機、ファックス等のOA機器の樹脂ギヤ部、各種電気スイッチの摺動部などにおいて、樹脂と樹脂、又は樹脂と金属或いはゴムと金属などの、金属材料以外の高分子材料とが接触状態で機能する潤滑個所がある。   For example, movable parts of automobile electric door mirrors, sliding parts of telescopic shafts of steering, various sliding parts such as rack guides of R & P steering, power transmission gears of electric power steering devices, various actuators, sliding parts inside air cylinders , Linear guides for machine tools, retainers for ball screws, retainers for various bearings, sliding parts for crane booms, resin gears for acoustic equipment such as radio cassettes, video tape recorders, CD players, printers, copiers, fax machines, etc. There are lubrication points where resin gear parts of OA equipment, sliding parts of various electric switches, etc. function in contact with polymer materials other than metal materials such as resin and resin, or resin and metal or rubber and metal. .

従来、潤滑の分野においては、機械類の構成要素の殆どが金属材料であったため、鉄、アルミ、これらの合金類、真鍮、青銅などといった金属同士の摩擦や摩耗における研究の歴史は古く、広くて深い経験や知見によって多くの技術が蓄積されている。
例えば、金属同士の摩擦や摩耗には、リンやイオウなどの元素を含む極圧剤や耐摩耗剤
が効果的で、これらの添加剤は積極的に金属表面と化学反応を起こすことによって皮膜を形成し、これによって摩擦や摩耗の低減や焼付を防止するなどの機能を発揮させる事はよく知られており、エンジンオイルやギヤーオイル及び高機能な工業用潤滑油やグリースにはこれらの技術が広く応用されている。
Conventionally, in the field of lubrication, most of the components of machinery have been metal materials, so research on friction and wear between metals such as iron, aluminum, their alloys, brass, bronze, etc. has a long history, Many technologies are accumulated through deep experience and knowledge.
For example, extreme pressure agents and antiwear agents containing elements such as phosphorus and sulfur are effective for friction and wear between metals, and these additives actively form a film by causing a chemical reaction with the metal surface. It is well known that it forms functions such as reducing friction and wear and preventing seizure. Engine oil, gear oil, and high-performance industrial lubricants and greases have these technologies. Widely applied.

しかしながら、樹脂同士ないしは、樹脂と金属あるいはゴムと金属などの異種材料との潤滑技術の歴史は浅いにも拘わらず、上記したように近年その用途が広がり、多様化する中で、潤滑グリースに対する種々の要求に対して必ずしも満足できる技術を提供しきれていないのが現状である。
例えば、上記した金属同士の摩擦や摩耗に効果的なリン系やイオウ系添加剤を使用する技術を、樹脂同士ないしは、樹脂と金属あるいはゴムと金属等の潤滑個所に適用した場合は、金属同士で得られるような摩擦低減効果は殆ど得られず、逆に摩擦や耐摩耗の性能が悪化し、却って機械部品の寿命が短くなったりするケースも少なくない。
However, in spite of the short history of lubrication technology between resins or between different materials such as resin and metal or rubber and metal, the application has recently been expanded and diversified as described above. However, the present situation is that it is not always possible to provide a technology that can satisfy all the requirements.
For example, if the technology using phosphorus-based or sulfur-based additives effective for friction and wear between metals described above is applied to lubrication points between resins or between resin and metal or rubber and metal, As a result, the frictional and wear-resistant performances are hardly obtained. On the contrary, there are many cases in which the performance of friction and wear is deteriorated and the life of the machine parts is shortened.

これは、樹脂等の高分子材料の場合は金属に比べると界面の化学活性が微弱なため、摺動面等においてリン系やイオウ系等の有機系の添加剤との反応が殆んど行なわれず、吸着も弱い事から、摩擦や摩耗に対する効果が薄く、このために摩擦低減作用が弱いものと考えられる。また、強制的に温度が上昇する環境等で使用される場合は、これらの添加剤の活性イオウやリンが樹脂内部に浸透し、クラックの発生や脆化を起こしたり、または摩擦や摩耗を促進させたりといった背反作用が起こることもある。   This is because, in the case of polymer materials such as resins, the chemical activity at the interface is weak compared to metals, so the reaction with organic additives such as phosphorus and sulfur is almost performed on the sliding surface. In addition, since the adsorption is weak, the effect on friction and wear is small, and it is considered that the friction reducing action is weak. Also, when used in an environment where the temperature rises forcibly, the active sulfur and phosphorus of these additives penetrate into the resin, causing cracks and embrittlement, or promoting friction and wear. There may be a reaction such as letting go.

上記したような樹脂同士ないしは、樹脂と金属などの異種材料との摩擦を良好にするために、 潤滑油基油と、増ちょう剤と、ポリテトラフルオロエチレン粒子と、窒化ホウ素粒子とを含有することによって潤滑部材との間の摩擦を十分に低減することが可能である技術が提案されたり(特許文献1)、また、ポリオキシアルキレンやエ−テル誘導体等の基油とリチウム石けん系増ちょう剤ならびに、アルケニルコハク酸系の防錆剤からなる組成物は、このゴム部材に対して悪影響を与えることがなく、金属材に対して優れた潤滑性や防錆性を向上させる技術が開示されているが(特許文献2)、更なる改善が望まれている。   In order to improve the friction between the above-mentioned resins or between different materials such as resin and metal, it contains a lubricant base oil, a thickener, polytetrafluoroethylene particles, and boron nitride particles. A technology that can sufficiently reduce the friction between the lubricating member and the base material such as polyoxyalkylene and ether derivatives and lithium soap is increased. And a composition comprising an alkenyl succinic acid-based rust preventive agent does not adversely affect the rubber member, and a technique for improving excellent lubricity and rust preventive property for a metal material is disclosed. (Patent Document 2), however, further improvement is desired.

特開2006−89575号公報JP 2006-89575 A 特開昭63−309591号公報JP-A 63-309591

本発明は、ウレアグリース組成物を改良し、特に、樹脂と樹脂または樹脂と金属あるいはゴムと金属などの異種材料との、相対する少なくとも一方が金属以外の材料により構成されている転がりや滑りなどが生ずる潤滑個所において、摩擦がより軽減され良好な潤滑性が得られるようにしようとするものである。   The present invention improves the urea grease composition, in particular, rolling, sliding, etc. in which at least one of a resin and a resin or a resin and a metal or a different material such as a rubber and a metal is made of a material other than a metal. This is intended to reduce the friction and obtain good lubricity at the lubrication point where the occurrence of the friction occurs.

本発明者は、従来より、金属材料以外の高分子材料などにおけるグリースの潤滑挙動を物理化学的に研究、調査を行っていた処、グリースを形成するある特定のウレア系増ちょう剤の持つ粘弾性と極性により、樹脂と樹脂、または樹脂と金属あるいはゴムと金属となどの相対する材料との界面において、本ウレアグリース特有の物理的な弾性膜を適度に形成し、更に本ウレアグリースの持つ極性が、相対する高分子材料の界面で発生する微弱の電気と相互に作用しているものと考えられ、グリースを含めた潤滑膜をより確実に形成維持することができて、摩擦を低減し良好な潤滑性が得られることを見出し本発明を完成するに至った。   The present inventor has conventionally studied and investigated the lubrication behavior of grease in polymer materials other than metal materials, and found that the viscosity of a specific urea-based thickener that forms grease. Depending on the elasticity and polarity, a physical elastic film peculiar to this urea grease is appropriately formed at the interface between resin and resin, or resin and metal or rubber and metal. It is considered that the polarity interacts with the weak electricity generated at the interface of the opposing polymer material, and it is possible to more reliably form and maintain a lubricating film including grease, reducing friction. The inventors have found that good lubricity can be obtained and have completed the present invention.

本発明は、下記一般式
(a)RNHCONHRNHCONHR
(b)RNHCONHRNHCONHR
(c)RNHCONHRNHCONHR
(式中、Rはジフェニルメタン基、Rは炭素数8のアルキル基、Rは炭素数14〜20の炭化水素基で、不飽和成分を20モル%以上含むもの。)
で表わされる化合物で、
(1)(a)化合物を、(a)化合物+(b)化合物に対して80〜20モル%を含有
する(a)化合物と(b)化合物を含む混合物、
(2)(1)の混合物に(c)化合物を混合した混合物、または
(3)(c)化合物、
の(1)、(2)、(3)の何れかを鉱油または合成油もしくはそれらの混合油に含有せしめてウレアグリース組成物とする。
The present invention relates to the following general formula (a) R 1 NHCONHR 2 NHCONHR 1
(B) R 3 NHCONHR 2 NHCONHR 3
(C) R 1 NHCONHR 2 NHCONHR 3
(In the formula, R 2 is a diphenylmethane group, R 1 is an alkyl group having 8 carbon atoms, R 3 is a hydrocarbon group having 14 to 20 carbon atoms, and contains 20 mol% or more of unsaturated components.)
A compound represented by
(1) (a) a compound containing 80 to 20 mol% of (a) compound + (b) compound, and a mixture containing (a) compound and (b) compound,
(2) a mixture obtained by mixing (c) the compound with the mixture of (1), or (3) (c) the compound,
(1), (2), or (3) is contained in mineral oil, synthetic oil or a mixed oil thereof to form a urea grease composition.

この(1)、(2)、(3)のウレア増ちょう剤は、鉱油または合成油もしくはそれらの混合油に対して、全組成分の約2〜30質量%程度を使用するとよい。このウレアグリース組成物は、転がりや滑りなどが生ずる潤滑個所において、一方が金属で、一方が金属以外の材料により構成される機械部品に使用するとより効果が発揮でき、更に、金属以外の材料が、樹脂またはゴムなどの高分子材料により構成される機械部品に使用すると、その効果が顕著である。   The urea thickeners (1), (2), and (3) may be used in an amount of about 2 to 30% by mass based on the total composition based on mineral oil, synthetic oil, or a mixed oil thereof. This urea grease composition can be more effective when used for mechanical parts that are made of a material other than metal and one of which is made of metal at a lubrication point where rolling or sliding occurs. The effect is remarkable when it is used for a machine part composed of a polymer material such as resin or rubber.

本発明によれば、相対する少なくとも一方が樹脂などの高分子材料により構成されている部材間における転がりや滑りなどが生ずる潤滑個所において、より摩擦が軽減され良好な潤滑性が得られるウレアグリース組成物として広範に用いることができる。   According to the present invention, a urea grease composition in which friction is reduced and good lubricity can be obtained at a lubrication location where rolling or slipping occurs between members at least one of which is made of a polymer material such as a resin. It can be used widely as a product.

本発明における増ちょう剤であるウレア化合物は下記一般式
(a)RNHCONHRNHCONHR
(b)RNHCONHRNHCONHR
(c)RNHCONHRNHCONHR
であり、前記式(a)、(b)、(c)中、Rはジフェニルメタン基、Rは炭素数8のアルキル基、Rは炭素数14〜20の炭化水素基であって不飽和成分を20モル%以上含むものである。上記Rの炭素数が8以外の場合、及びRの炭素数が14〜20の範囲から外れる場合は、グリースの構造粘性を適度に発揮することが難しく、Rの炭素数14〜20の炭化水素基に占める不飽和成分の量が20モル%より少ない場合は、ウレア増ちょう剤の極性が弱くなって、高分子材料との界面で発生する微弱の電気と相互に作用する電気化学的作用が有効に働かないと考えられ、摩擦を低減する効果が少ない。
The urea compound which is a thickener in the present invention has the following general formula (a) R 1 NHCONHR 2 NHCONHR 1
(B) R 3 NHCONHR 2 NHCONHR 3
(C) R 1 NHCONHR 2 NHCONHR 3
In the formulas (a), (b), and (c), R 2 is a diphenylmethane group, R 1 is an alkyl group having 8 carbon atoms, and R 3 is a hydrocarbon group having 14 to 20 carbon atoms. It contains 20 mol% or more of a saturated component. When the carbon number of R 1 is other than 8 and when the carbon number of R 3 is out of the range of 14 to 20, it is difficult to appropriately exhibit the structural viscosity of the grease, and the carbon number of R 3 is 14 to 20 When the amount of the unsaturated component in the hydrocarbon group is less than 20 mol%, the polarity of the urea thickener becomes weak, and the electrochemistry interacts with the weak electricity generated at the interface with the polymer material. It is considered that the mechanical action does not work effectively, and the effect of reducing friction is small.

ウレア増ちょう剤(1)は、上記(a)化合物と(b)化合物を混合して用いるものであって、(a)化合物の量を、(a)化合物と(b)化合物の和に対して80〜20モル%にするものである。この場合、上記(a)化合物と(b)化合物の割合が、80:20〜20:80モル%の範囲を越える場合には、滴点が降下して耐熱性が不十分になったり、摩擦の低減効果が見られなくなることがある。
上記ウレア増ちょう剤(1)に、更に上記(c)化合物を混合したものは、ウレア増ちょう剤(2)として用いることができる。
また、ウレア増ちょう剤(3)としては、上記(c)化合物を単独で用いることができる。
上記したウレア増ちょう剤の(1)、(2)、(3)のいずれかを、鉱油または合成油もしくはそれらの混合油の基油に含有させることによって、ウレアグリース組成物にすることができる。
The urea thickener (1) is a mixture of the above compound (a) and the compound (b), and the amount of the compound (a) is adjusted with respect to the sum of the compound (a) and the compound (b). 80 to 20 mol%. In this case, when the ratio of the compound (a) to the compound (b) exceeds the range of 80:20 to 20:80 mol%, the dropping point is lowered and the heat resistance becomes insufficient, or the friction is reduced. The reduction effect may not be seen.
What mixed the said (c) compound further with the said urea thickener (1) can be used as a urea thickener (2).
As the urea thickener (3), the compound (c) can be used alone.
A urea grease composition can be obtained by including any of the above-described urea thickeners (1), (2), (3) in a base oil of mineral oil, synthetic oil or a mixed oil thereof. .

こうしたウレア増ちょう剤の配合量は、鉱油または合成油もしくはそれらの混合油中に、組成物全量に2〜30質量%程度を用いると好ましい。ウレア増ちょう剤の配合量が、2質量%を下廻る場合には、増ちょう効果が少なく、グリースは軟らかくなりすぎて漏洩などの心配があり、30質量%を上廻る場合には、グリースは硬くなりすぎて流動抵抗が増し、摩擦トルクが上昇したり、介入性も低下することから十分な潤滑効果が得られないことがあるし、また、価格も嵩むことになる。   The blending amount of such a urea thickener is preferably about 2 to 30% by mass based on the total amount of the composition in mineral oil, synthetic oil or mixed oil thereof. If the blending amount of the urea thickener is less than 2% by mass, the thickening effect is small, the grease becomes too soft and there is a risk of leakage, etc. If it exceeds 30% by mass, the grease Since it becomes too hard and the flow resistance increases, the friction torque increases, and the intervention property also decreases, so that a sufficient lubricating effect may not be obtained, and the price increases.

本発明における基油は、一般的に潤滑油の基油やグリースの基油として使用されるものであって、特に限定されるものではないが、例えば、鉱物油、合成油、動植物油、及びこれらの混合油が挙げられる。
特に、API(American Petroleum Institute;米国石油協会)基油カテゴリーでグループ1、グループ2、グループ3、グループ4などに属する基油を、単独または混合して使用することができる。
The base oil in the present invention is generally used as a base oil for lubricating oil or a base oil for grease, and is not particularly limited. For example, mineral oil, synthetic oil, animal and vegetable oil, and These mixed oils are mentioned.
In particular, base oils belonging to Group 1, Group 2, Group 3, Group 4, etc. in the API (American Petroleum Institute) base oil category can be used alone or in combination.

グループ1基油には、例えば、原油を常圧蒸留して得られる潤滑油留分に対して、溶剤精製、水素化精製、脱ろうなどの精製手段を適宜組み合わせて適用することにより得られるパラフィン系鉱油がある。
グループ2基油には、例えば、原油を常圧蒸留して得られる潤滑油留分に対して、水素化分解、脱ろうなどの精製手段を適宜組み合わせて適用することにより得られたパラフィン系鉱油がある。ガルフ社法などの水素化精製法により精製されたグループ2基油は、全イオウ分が10ppm未満、アロマ分が5%以下であり、本発明において好適に用いることができる。
For Group 1 base oils, for example, paraffin obtained by applying a combination of refining means such as solvent refining, hydrorefining, and dewaxing to a lubricating oil fraction obtained by atmospheric distillation of crude oil. There are mineral oils.
For Group 2 base oils, for example, paraffinic mineral oils obtained by appropriately combining refining means such as hydrocracking and dewaxing for lubricating oil fractions obtained by atmospheric distillation of crude oil There is. Group 2 base oils refined by hydrorefining methods such as the Gulf Company method have a total sulfur content of less than 10 ppm and an aroma content of 5% or less, and can be suitably used in the present invention.

グループ3基油およびグループ2プラス基油には、例えば、原油を常圧蒸留して得られる潤滑油留分に対して、高度水素化精製により製造されるパラフィン系鉱油や、脱ろうプロセスにて生成されるワックスをイソパラフィンに変換・脱ろうするISODEWAXプロセスにより精製された基油や、モービルWAX異性化プロセスにより精製された基油があり、これらも本発明において好適に用いることができる。   Group 3 base oil and Group 2 plus base oil include, for example, a paraffinic mineral oil produced by advanced hydrorefining and a dewaxing process for a lubricating oil fraction obtained by atmospheric distillation of crude oil. There are base oils refined by the ISODEWAX process for converting and dewaxing the produced wax to isoparaffins, and base oils refined by the mobile WAX isomerization process, and these can also be suitably used in the present invention.

合成油の具体例としては、例えば、ポリオレフィン、ポリエチレングリコールやポリプロピレングリコール等のポリアルキレングリコール、ジ−2−エチルヘキシルセバケートやジ−2−エチルヘキシルアジペート等のジエステル、トリメチロールプロパンエステルやペンタエリスリトールエステル等のポリオールエステル、パーフルオロアルキルエーテル、シリコーン油、ポリフェニルエーテルその他がある。   Specific examples of synthetic oils include, for example, polyolefins, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, diesters such as di-2-ethylhexyl sebacate and di-2-ethylhexyl adipate, trimethylolpropane ester and pentaerythritol ester. Polyol esters, perfluoroalkyl ethers, silicone oils, polyphenyl ethers and the like.

上記ポリオレフィンには、各種オレフィンの重合物又はこれらの水素化物が含まれる。オレフィンとしては任意のものが用いられるが、例えば、エチレン、プロピレン、ブテン、炭素数5以上のα−オレフィンなどが挙げられる。ポリオレフィンの製造にあたっては、上記オレフィンの1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。特にポリα−オレフィン(PAO)と呼ばれているポリオレフィンが好適であり、これはグループ4基油である。   The polyolefin includes polymers of various olefins or hydrides thereof. Any olefin may be used, and examples thereof include ethylene, propylene, butene, and α-olefins having 5 or more carbon atoms. In the production of polyolefin, one of the above olefins may be used alone, or two or more may be used in combination. Particularly preferred are polyolefins called poly α-olefins (PAO), which are Group 4 base oils.

天然ガスの液体燃料化技術のフィッシャートロプッシュ法により合成されたGTL(ガストゥリキッド)は、原油から精製された鉱油基油と比較して、硫黄分や芳香族分が極めて低く、パラフィン構成比率が極めて高いため、酸化安定性に優れ、蒸発損失も非常に小さいため、本発明の基油として好適に用いることができる。   GTL (Gas Liquid) synthesized by the Fischer-Tropsch method, which is a natural gas liquid fuel technology, has an extremely low sulfur content and aromatic content compared to mineral oil base oil refined from crude oil. Is extremely high, so that it has excellent oxidation stability and very low evaporation loss, and can be suitably used as the base oil of the present invention.

また、動植物油の代表例としては、ひまし油や菜種油等があげられる。
上記した各種の油は、単独で又は混合して基油として使用することができるが、上記のものは単なる例示であって、これによって本発明が限定されるものではない。
Representative examples of animal and vegetable oils include castor oil and rapeseed oil.
The various oils described above can be used alone or in combination as a base oil, but the above are merely examples, and the present invention is not limited thereby.

また、本発明のウレアグリース組成物の添加剤としては、さらに酸化防止剤、防錆剤、油性剤、極圧剤、耐摩耗剤、固体潤滑剤、金属不活性剤、ポリマー等の他の添加剤を適宜に加えることができる。   Further, as the additive of the urea grease composition of the present invention, other additives such as an antioxidant, a rust inhibitor, an oily agent, an extreme pressure agent, an antiwear agent, a solid lubricant, a metal deactivator, and a polymer are further added. Agents can be added as appropriate.

酸化防止剤としては、例えば、2,6−ジ−tブチル−4−メチルフェノール、2,6−ジ−tブチルパラクレゾール、P,P′−ジオクチルジフェニルアミン、N−フェニル−α−ナフチルアミン、フェノチアジンなどがある。   Examples of the antioxidant include 2,6-di-tbutyl-4-methylphenol, 2,6-di-tbutylparacresol, P, P′-dioctyldiphenylamine, N-phenyl-α-naphthylamine, and phenothiazine. and so on.

防錆剤としては、酸化パラフィン、カルボン酸金属塩、スルフォン酸金属塩、カルボン酸エステル、スルフォン酸エステル、サリチル酸エステル、コハク酸エステル、ソルビタンエステルや各種アミン塩どがある。   Examples of the rust preventive include oxidized paraffin, carboxylic acid metal salt, sulfonic acid metal salt, carboxylic acid ester, sulfonic acid ester, salicylic acid ester, succinic acid ester, sorbitan ester, and various amine salts.

油性剤、極圧剤、耐摩耗剤としては、例えば、硫化ジアルキルジチオリン酸亜鉛、硫化ジアリルジチオリン酸亜鉛、硫化ジアルキルジチオカルバミン酸亜鉛、硫化ジアリルジチオカルバミン酸亜鉛、硫化ジアルキルジチオリン酸モリブテン、硫化ジアリルジチオリン酸モリブテン、硫化ジアルキルジチオカルバミン酸モリブテン、硫化ジアリルジチオカルバミン酸モリブテン、有機モリブテン錯体、硫化オレフィン、トリフェニルフォスフェート、トリフェニルフォスフォロチオネート、トリクレジルフォスフェート、その他リン酸エステル類、硫化油脂類、各種脂肪酸などがある。   Examples of oily agents, extreme pressure agents, and antiwear agents include zinc sulfide dialkyldithiophosphate, zinc sulfide diallyldithiophosphate, zinc sulfide dialkyldithiocarbamate, zinc sulfide diallyldithiocarbamate, sulfurized dialkyldithiophosphate molybdenum, sulfide diallyldithiophosphate molybdenum. , Sulfurized dialkyldithiocarbamate molybdate, diallyldithiocarbamate molybdate, organic molybdate complex, sulfurized olefin, triphenyl phosphate, triphenyl phosphorothioate, tricresyl phosphate, other phosphate esters, sulfurized fats and oils, various fatty acids and so on.

固体潤滑剤としては、例えば、二硫化モリブテン、グラファイト、窒化ホウ素、メラミンシアヌレート、PTFE(ポリテトラフルオロエチレン)、二硫化タングステン、マイカ、フッ化黒鉛などがある。
金属不活性剤としては、N,N′ジサリチリデン−1,2−ジアミノプロパン、ベンゾトリアゾール、ベンゾイミダゾール、ベンゾチアゾール、チアジアゾールなどがある。
ポリマーとしては、ポリブテン、ポリイソブテン、ポリイソブチレン、ポリイソプレン、ポリメタクリレートなどが挙げられる。
なお、上記した他の添加剤は、いずれも例示であって何らこれに限られるものではない。
Examples of the solid lubricant include molybdenum disulfide, graphite, boron nitride, melamine cyanurate, PTFE (polytetrafluoroethylene), tungsten disulfide, mica, and graphite fluoride.
Examples of metal deactivators include N, N'disalicylidene-1,2-diaminopropane, benzotriazole, benzimidazole, benzothiazole, thiadiazole and the like.
Examples of the polymer include polybutene, polyisobutene, polyisobutylene, polyisoprene, and polymethacrylate.
In addition, all the above-mentioned other additives are examples, and are not limited thereto.

本発明においては、特に、相対する少なくとも一方が樹脂等の高分子材料などの金属以外の物質により構成される部材間の転がりや滑りなどが見られる潤滑個所において、摩擦を軽減し、良好な潤滑性を得ることができるものである。従って、一方の金属以外の材料と相対する部材は、鉄、銅、アルミニウムその他の金属、及びこれらの合金類などの各種金属材料の他、樹脂等の高分子材料、ゴムやガラス、セラミックなどの無極性材料であってもよく、特に限定されることなく広く用いることができる。   In the present invention, friction is reduced and good lubrication is achieved particularly in a lubricating part where at least one of the opposing surfaces is seen to roll or slip between members composed of a substance other than a metal such as a polymer material such as a resin. It is possible to obtain sex. Therefore, the members facing the material other than one metal include various metal materials such as iron, copper, aluminum and other metals, and alloys thereof, polymer materials such as resins, rubber, glass, ceramics, etc. It may be a nonpolar material and can be widely used without any particular limitation.

また、上記樹脂材料としては、汎用プラスチック、エンジニアリングプラスチックを問わず各種のものに対して使用することができ、例えば、ポリアミド、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、フッ素樹脂、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン、ポリイミド、ポリスチレン、ポリエチレン、ポリプロピレン、フェノール樹脂、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂、ポリ塩化ビニル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、メタクリル樹脂、ABS/ポリカーボネートアロイ等を挙げることができ、ゴム剤としては、アクリルゴム、アクリロニトリルブタジエンゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム、エピクロルヒドリンゴム、クロロプレンゴム、シリコーンゴム、スチレンブタジエンゴム、ブタジエンゴム、フッ素ゴム、ポリイソブチレンなどがあるが、これらに限定されるものではない。   In addition, the resin material can be used for various materials regardless of general-purpose plastics and engineering plastics. For example, polyamide, polyacetal, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polyphenylene ether , Polyphenylene sulfide, fluorine resin, polyarylate, polyamide imide, polyether imide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polystyrene, polyethylene, polypropylene, phenol resin, AS resin, ABS resin, AES resin, AAS Resin, ACS resin, MBS resin, polyvinyl chloride resin, epoxy resin, diallyl phthalate resin, polyester resin, methacrylic resin Examples of the rubber agent include acrylic rubber, acrylonitrile butadiene rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, silicone rubber, styrene butadiene rubber, butadiene rubber. , Fluorine rubber, polyisobutylene and the like, but are not limited thereto.

以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例および比較例において用いた、増ちょう剤の原料成分および潤滑基油に関する略称は、下記のとおりである。
1. ウレア増ちょう剤のジイソシアネート原料は、ジフェニルメタン−4,4′−ジイソシアネート(MDI)(分子量250.26)である。
2. ウレア増ちょう剤のアミンの原料は下記するものである。
アミンA: 炭素数8の飽和炭化水素基を主体(90質量%以上)とする平均分子量128.7の工業用オクチルアミン。
アミンB: 炭素数12の飽和炭化水素基を主体(90質量%以上)とする平均分子量184.6の工業用ドデシルアミン。
アミンC: 炭素数18の飽和炭化水素基を主体(90質量%以上)とする平均分子量258.7の工業用ステアリルアミン。
アミンD: 炭素数14〜18の不飽和炭化水素基と飽和炭化水素基が混合(不飽和/飽和:約43/57)されている平均分子量255.7の工業用牛脂アミン。
アミンE: 炭素数18の不飽和炭化水素基を主体(70質量%以上)とする平均分子量255.0の工業用オレイルアミン。
3.基油
基油A:40℃の動粘度が101.1mm/sの鉱物油である。
基油B:40℃の動粘度が31.2mm/sのポリα−オレフィン油である。
基油C:40℃の動粘度が47.08mm/s、100℃の動粘度が8.04mm/s、粘度指数が146、%CAが1以下、%CNが11.9、%CPが85以上である高度精製油である。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these Examples.
Abbreviations regarding the raw material components of the thickener and the lubricating base oil used in the examples and comparative examples are as follows.
1. The diisocyanate raw material for the urea thickener is diphenylmethane-4,4′-diisocyanate (MDI) (molecular weight 250.26).
2. The raw materials for the amine of the urea thickener are as follows.
Amine A: An industrial octylamine having an average molecular weight of 128.7 mainly composed of a saturated hydrocarbon group having 8 carbon atoms (90% by mass or more).
Amine B: An industrial dodecylamine having an average molecular weight of 184.6 mainly composed of a saturated hydrocarbon group having 12 carbon atoms (90% by mass or more).
Amine C: Industrial stearylamine having an average molecular weight of 258.7 mainly composed of a saturated hydrocarbon group having 18 carbon atoms (90% by mass or more).
Amine D: An industrial tallow amine having an average molecular weight of 255.7 in which an unsaturated hydrocarbon group having 14 to 18 carbon atoms and a saturated hydrocarbon group are mixed (unsaturated / saturated: about 43/57).
Amine E: An industrial oleylamine having an average molecular weight of 255.0 mainly composed of an unsaturated hydrocarbon group having 18 carbon atoms (70% by mass or more).
3. Base oil Base oil A: A mineral oil having a kinematic viscosity at 40 ° C. of 101.1 mm 2 / s.
Base oil B: a poly α-olefin oil having a kinematic viscosity at 40 ° C. of 31.2 mm 2 / s.
Base oil C: kinematic viscosity at 40 ° C. 47.08 mm 2 / s, kinematic viscosity at 100 ° C. 8.04 mm 2 / s, viscosity index 146,% CA is 1 or less,% CN is 11.9,% CP Is a highly refined oil having a ≧ 85.

(実施例1〜10)
表1〜3に示す配合割合にて、MDIの全量と基油(単独または混合基油)の半量をグリース釜に入れ、約50℃に加熱し、MDIを溶解した後、これに1/4の基油に分散させた所要量のアミンA(オクチルアミン)を徐々に加えて激しく攪拌した。約10分後、更に1/4の基油に溶解分散させたアミンE(オレイルアミン)を加え、攪拌を続けた。
ジイソシアネートとアミンとの反応によりグリース釜の内容物の温度は上昇するが、170℃まで加熱し、約30分間この温度を保持して反応を完結させ、室温に放冷後、三本ロールで処理してウレアグリース組成物を得た。
(Examples 1 to 10)
In the blending ratios shown in Tables 1 to 3, the total amount of MDI and half of the base oil (single or mixed base oil) were put in a grease kettle and heated to about 50 ° C. to dissolve MDI, and then 1/4 The required amount of amine A (octylamine) dispersed in the base oil was gradually added and stirred vigorously. After about 10 minutes, amine E (oleylamine) dissolved and dispersed in 1/4 base oil was further added, and stirring was continued.
The temperature of the contents of the grease kettle rises due to the reaction of diisocyanate and amine, but it is heated to 170 ° C, held at this temperature for about 30 minutes to complete the reaction, allowed to cool to room temperature, and then treated with three rolls. Thus, a urea grease composition was obtained.

(実施例11)
表3に示す配合割合にて、MDIの全量と基油Aの半量をグリース釜に入れ、約50℃に加熱し、MDIを溶解した後、これに1/4の基油Aに分散させた所要量のアミンA(オクチルアミン)を徐々に加えて激しく攪拌した。約10分後、更に1/4の基油Aに溶解分散させたアミンC(ステアリルアミン)とアミンE(オレイルアミン)の混合溶液を加え、攪拌を続けた。
ジイソシアネートとアミンとの反応によりグリース釜の内容物の温度は上昇するが、170℃まで加熱し、約30分間この温度を保持して反応を完結させ、室温に放冷後、三本ロールで処理してウレアグリース組成物を得た。
(Example 11)
In the blending ratio shown in Table 3, the total amount of MDI and half of base oil A were put in a grease kettle and heated to about 50 ° C. to dissolve MDI, and then dispersed in 1/4 of base oil A. The required amount of amine A (octylamine) was gradually added and stirred vigorously. After about 10 minutes, a mixed solution of amine C (stearylamine) and amine E (oleylamine) dissolved and dispersed in 1/4 base oil A was added, and stirring was continued.
The temperature of the contents of the grease kettle rises due to the reaction of diisocyanate and amine, but it is heated to 170 ° C, held at this temperature for about 30 minutes to complete the reaction, allowed to cool to room temperature, and then treated with three rolls. Thus, a urea grease composition was obtained.

(実施例12)
表3に示す配合割合にてMDIの全量と基油Aの半量をグリース釜に入れ、約50℃に加熱し、MDIを溶解した後、これに1/4の基油Aに分散させたアミンA(オクチルアミン)を徐々に加えて激しく攪拌した。約10分後、更に1/4の基油Aに溶解分散させたアミンD(牛脂アミン)を加え、攪拌を続けた。
ジイソシアネートとアミンとの反応によりグリース釜の内容物の温度は上昇するが、170℃まで加熱し、約30分間この温度を保持して反応を完結させ、室温に放冷後、三本ロールで処理してウレアグリース組成物を得た。
Example 12
The total amount of MDI and half of base oil A in a mixing ratio shown in Table 3 were put in a grease kettle, heated to about 50 ° C., dissolved in MDI, and then dispersed in 1/4 base oil A. A (octylamine) was gradually added and stirred vigorously. About 10 minutes later, amine D (tallow amine) dissolved and dispersed in 1/4 base oil A was added, and stirring was continued.
The temperature of the contents of the grease kettle rises due to the reaction of diisocyanate and amine, but it is heated to 170 ° C, held at this temperature for about 30 minutes to complete the reaction, allowed to cool to room temperature, and then treated with three rolls. Thus, a urea grease composition was obtained.

(比較例1〜5)
上記実施例の方法と同様にして、表4に示す配合割合にてMDIおよび各種アミンを、基油(単独または混合基油)中で反応させて各種のウレアグリース組成物を得た。
(Comparative Examples 1-5)
In the same manner as in the above examples, MDI and various amines were reacted in a base oil (single or mixed base oil) at the blending ratios shown in Table 4 to obtain various urea grease compositions.

実施例及び比較例の性状及び性能を比較するために、下記の測定、試験を行った。
1.ちょう度 :JIS K2220−7によって測定した。
2.滴 点 :JIS K2220−8によって測定した。
3.基油の動粘度:JIS K2283によって測定した。
4.摩擦試験 :バウデン式摩擦試験を行った。すなわち、バウデン式摩擦試験装置を用い下記の試験条件にて、樹脂(試験材1b)と相対する樹脂以外の材料(試験材1a)間の摩擦係数を測定した。
(1)試験材1a:材質;鋼材S45Cと銅合金ALBC2。
寸法;外形5.0mm、長さ24mmでピン状で、ピンの先端は
r=2.5mmの半球状で、
接触面は直径約1.0mmの平面に加工してある。
(2)試験材1b:材質;ポリアミド樹脂(東レ社製・66ナイロン/アミラン)と
ポリアセタール樹脂(デュポン社製・デルリン500P)
寸法;長さ200mm、幅52mmの板状体である。
(3)温 度 :25℃
(4)すべり速度:1.0mm/s
(5)荷 重 :870g
(6)接触面の面圧:10MPa
なお、ポリアミド樹脂と鋼材間については全実施例及び全比較例についてバウデン式摩擦試験を行い、ポリアセタール樹脂と銅合金間についてはいくつか選択して試験を行った。
In order to compare the properties and performance of Examples and Comparative Examples, the following measurements and tests were performed.
1. Consistency: Measured according to JIS K2220-7.
2. Dropping point: Measured according to JIS K2220-8.
3. Kinematic viscosity of base oil: Measured according to JIS K2283.
4). Friction test: A Bowden friction test was performed. That is, a friction coefficient between a material (test material 1a) other than a resin facing the resin (test material 1b) was measured using a Bowden friction test apparatus under the following test conditions.
(1) Test material 1a: Material: Steel material S45C and copper alloy ALBC2.
Dimensions: Outer 5.0mm, length 24mm, pin-shaped,
r = 2.5mm hemisphere,
The contact surface is processed into a plane having a diameter of about 1.0 mm.
(2) Test material 1b: Material: Polyamide resin (manufactured by Toray Industries, Inc., 66 nylon / amilan) and
Polyacetal resin (DuPont Delrin 500P)
Dimensions: A plate-like body having a length of 200 mm and a width of 52 mm.
(3) Temperature: 25 ° C
(4) Sliding speed: 1.0 mm / s
(5) Load: 870g
(6) Contact surface pressure: 10 MPa
In addition, between the polyamide resin and the steel material, the Bowden-type friction test was performed for all examples and all the comparative examples, and some tests were performed between the polyacetal resin and the copper alloy.

(試験結果)
表1〜4に示すとおりである。
(考察)
実施例1〜8、10〜12のウレアグリース組成物は、全て半固体のグリース状を示し、ちょう度は212〜258の範囲で適度な硬さの値を示し、滴点も250℃以上で良好な状態であった。また、実施例9のものは増ちょう剤が少ないため、ちょう度が368でNLGIグレードの0号ちょう度の範囲(軟らかめのちょう度番号)で、滴点は221℃で若干低い値であるももの、半固体状の良好なグリース状態であった。更に実施例1〜12のものでは、バウデン摩擦試験におけるポリアミド樹脂−鋼の間の摩擦係数は0.051〜0.068であり、ポリアセタール樹脂−銅合金の間の摩擦係数は0.050〜0.066と一様に低く、特に、各種樹脂と銅合金や鋼などの樹脂以外との材料において良好な潤滑性能を示していることが判る。
一方、比較例1〜6のグリース組成物は、全て半固体のグリース状を示し、ちょう度も254〜321で適度な硬さの値を示し、滴点も241℃、250℃以上と良好な状態であったが、バウデン摩擦試験におけるポリアミド樹脂−鋼の間の摩擦係数は0.087〜0.124であり、ポリアセタール樹脂−銅合金の間の摩擦係数も0.097〜0.131と一様に高く、各種樹脂と銅合金や鋼などの樹脂以外との材料との間の潤滑状態において実施例よりもいずれも劣っており、潤滑性能の向上効果が得られていないことが判る。
こうした結果から、ウレア増ちょう剤の端末基を適切なものとすることによって、特殊な添加剤を使用することなく、本発明のウレアグリース組成物は、良好な潤滑性能を示すことが判る。
(Test results)
As shown in Tables 1-4.
(Discussion)
The urea grease compositions of Examples 1 to 8 and 10 to 12 all show a semi-solid grease shape, a consistency value in the range of 212 to 258, an appropriate hardness value, and a dropping point of 250 ° C. or more. It was in good condition. Moreover, since the thing of Example 9 has few thickeners, the consistency is 368 and the range of NLGI grade No. 0 consistency (soft consistency number), and a dropping point is a little low value at 221 degreeC. It was a good semi-solid grease state. Further, in Examples 1 to 12, the friction coefficient between polyamide resin and steel in the Bowden friction test was 0.051 to 0.068, and the friction coefficient between polyacetal resin and copper alloy was 0.050 to 0. 0.06, it is uniformly low, and it can be seen that particularly various materials and materials other than resins such as copper alloy and steel exhibit good lubricating performance.
On the other hand, the grease compositions of Comparative Examples 1 to 6 all show a semi-solid grease, have a consistency of 254 to 321 and an appropriate hardness value, and have good dropping points of 241 ° C. and 250 ° C. or higher. The friction coefficient between the polyamide resin and the steel in the Bowden friction test was 0.087 to 0.124, and the friction coefficient between the polyacetal resin and the copper alloy was also 0.097 to 0.131. Thus, it can be seen that the lubrication state between various resins and materials other than resins such as copper alloys and steels is inferior to that of the examples, and the effect of improving the lubrication performance is not obtained.
From these results, it can be seen that the urea grease composition of the present invention exhibits good lubricating performance without using a special additive by making the terminal group of the urea thickener appropriate.

Figure 2010144042
Figure 2010144042

Figure 2010144042
Figure 2010144042

Figure 2010144042
Figure 2010144042

Figure 2010144042
Figure 2010144042

Claims (5)

一般式
(a)RNHCONHRNHCONHR
(b)RNHCONHRNHCONHR
(c)RNHCONHRNHCONHR
(式中、Rはジフェニルメタン基、Rは炭素数8のアルキル基、Rは炭素数14〜20の炭化水素基であって不飽和成分を20モル%以上含むもの。)
で表わされる化合物で、
(1)(a)化合物を、(a)化合物+(b)化合物に対して80〜20モル%を含有
する(a)化合物と(b)化合物を含む混合物、
(2)(1)の混合物に(c)化合物を混合した混合物、または
(3)(c)化合物、
の(1)、(2)、(3)の何れかを鉱油または合成油もしくはそれらの混合油に含有せしめたことを特徴とするウレアグリース組成物。
Formula (a) R 1 NHCONHR 2 NHCONHR 1
(B) R 3 NHCONHR 2 NHCONHR 3
(C) R 1 NHCONHR 2 NHCONHR 3
(In the formula, R 2 is a diphenylmethane group, R 1 is an alkyl group having 8 carbon atoms, R 3 is a hydrocarbon group having 14 to 20 carbon atoms, and contains 20 mol% or more of unsaturated components.)
A compound represented by
(1) (a) a compound containing 80 to 20 mol% of (a) compound + (b) compound, and a mixture containing (a) compound and (b) compound,
(2) a mixture obtained by mixing (c) the compound with the mixture of (1), or (3) (c) the compound,
Any of (1), (2), and (3) is contained in a mineral oil, a synthetic oil or a mixed oil thereof.
上記(1)、(2)、(3)の何れかを鉱油または合成油もしくはそれらの混合油中に、全組成分に対して2〜30質量%含有せしめたことを特徴とする請求項1に記載のウレアグリース組成物。   2. Any one of the above (1), (2) and (3) is contained in mineral oil, synthetic oil or mixed oil thereof in an amount of 2 to 30% by mass based on the total composition. The urea grease composition described in 1. 転がりや滑りなどが生ずる潤滑個所において、一方が金属で、他方が金属以外の材料により構成される潤滑箇所に使用することを特徴とする請求項1または2に記載のウレアグリース組成物。   3. The urea grease composition according to claim 1, wherein the urea grease composition according to claim 1 is used in a lubricated portion where rolling or slipping occurs, wherein one is a metal and the other is a material other than a metal. 転がりや滑りなどが生ずる潤滑個所において、一方が金属以外の材料で、他方も金属以外の材料により構成される潤滑箇所に使用することを特徴とする請求項1または2に記載のウレアグリース組成物。   3. The urea grease composition according to claim 1, wherein the grease is used in a lubricating part where rolling or slipping occurs, wherein one is a material other than a metal and the other is a material other than a metal. . 潤滑箇所の金属以外の材料が、樹脂またはゴムなどの高分子材料であることを特徴とする請求項3または4に記載のウレアグリース組成物。   The urea grease composition according to claim 3 or 4, wherein the material other than the metal at the lubrication site is a polymer material such as resin or rubber.
JP2008322604A 2008-12-18 2008-12-18 A urea grease composition for gear lubrication made of polyamide or polyacetal resin. Active JP5390849B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008322604A JP5390849B2 (en) 2008-12-18 2008-12-18 A urea grease composition for gear lubrication made of polyamide or polyacetal resin.
PCT/EP2009/067263 WO2010069984A1 (en) 2008-12-18 2009-12-16 Urea grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322604A JP5390849B2 (en) 2008-12-18 2008-12-18 A urea grease composition for gear lubrication made of polyamide or polyacetal resin.

Publications (2)

Publication Number Publication Date
JP2010144042A true JP2010144042A (en) 2010-07-01
JP5390849B2 JP5390849B2 (en) 2014-01-15

Family

ID=42102881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322604A Active JP5390849B2 (en) 2008-12-18 2008-12-18 A urea grease composition for gear lubrication made of polyamide or polyacetal resin.

Country Status (2)

Country Link
JP (1) JP5390849B2 (en)
WO (1) WO2010069984A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199911A1 (en) * 2022-04-11 2023-10-19 協同油脂株式会社 Grease composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168868A1 (en) 2016-03-31 2017-10-05 出光興産株式会社 Mineral oil-based base oil, lubricating oil composition, equipment, lubricating method, and grease composition
JP7220076B2 (en) * 2018-12-27 2023-02-09 シェルルブリカンツジャパン株式会社 Lubricant composition for ball joints

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194095A (en) * 1989-01-20 1990-07-31 Daihatsu Motor Co Ltd Grease composition for ball joint
JP2004204218A (en) * 2002-12-10 2004-07-22 Showa Shell Sekiyu Kk Urea grease composition
JP2005132879A (en) * 2003-10-28 2005-05-26 Showa Shell Sekiyu Kk Urea lubricating grease composition and electric power steering apparatus
JP2006182909A (en) * 2004-12-27 2006-07-13 Showa Shell Sekiyu Kk Urea-based lubricating grease composition, rolling bearing, and electrically powered steering apparatus
JP2006306275A (en) * 2005-04-28 2006-11-09 Jtekt Corp Rolling device using lubricating grease composition and electric power steering device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081156A1 (en) * 2003-03-11 2004-09-23 Nsk Ltd. Grease composition for resin lubrication and electrically operated power steering unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194095A (en) * 1989-01-20 1990-07-31 Daihatsu Motor Co Ltd Grease composition for ball joint
JP2004204218A (en) * 2002-12-10 2004-07-22 Showa Shell Sekiyu Kk Urea grease composition
JP2005132879A (en) * 2003-10-28 2005-05-26 Showa Shell Sekiyu Kk Urea lubricating grease composition and electric power steering apparatus
JP2006182909A (en) * 2004-12-27 2006-07-13 Showa Shell Sekiyu Kk Urea-based lubricating grease composition, rolling bearing, and electrically powered steering apparatus
JP2006306275A (en) * 2005-04-28 2006-11-09 Jtekt Corp Rolling device using lubricating grease composition and electric power steering device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199911A1 (en) * 2022-04-11 2023-10-19 協同油脂株式会社 Grease composition

Also Published As

Publication number Publication date
WO2010069984A1 (en) 2010-06-24
JP5390849B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5330774B2 (en) Grease composition for resin lubrication
JP5330773B2 (en) Grease composition for resin lubrication
KR101652545B1 (en) Grease composition
JP4697225B2 (en) lubricant
JP6546727B2 (en) Grease composition
JP4946868B2 (en) Lubricating oil composition
JP6889664B2 (en) Lubricant composition for resin and resin lubrication method
JP4464495B2 (en) Grease composition for resin
JP5516679B2 (en) Lubricating oil composition
JP2017128702A (en) Grease composition
JP5390849B2 (en) A urea grease composition for gear lubrication made of polyamide or polyacetal resin.
JP5476077B2 (en) Grease composition for resin lubrication
JP5141079B2 (en) Lubricating oil composition
JP2024028640A (en) Grease composition for resin lubrication
JP5259962B2 (en) Grease composition for resin lubrication and reduction device
JP2016014087A (en) Lubricant composition and lubricant composition sealed bearing
JP2005290279A (en) Grease composition and grease-filled bearing
JP5476076B2 (en) Grease composition for resin lubrication
EP3178910B1 (en) Grease composition
JP5405060B2 (en) Lubricating grease composition
JP2023093885A (en) Urea grease composition
JP2015074659A (en) Lubricant composition for propeller shaft sliding yoke mechanism, propeller shaft sliding yoke mechanism, and lubrication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5390849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250