JP2010143951A - Ester-crosslinked rubber and method for producing the same, curable rubber composition and hydroxy-modified copolymer for production of the same, and molded article including the same - Google Patents

Ester-crosslinked rubber and method for producing the same, curable rubber composition and hydroxy-modified copolymer for production of the same, and molded article including the same Download PDF

Info

Publication number
JP2010143951A
JP2010143951A JP2008319342A JP2008319342A JP2010143951A JP 2010143951 A JP2010143951 A JP 2010143951A JP 2008319342 A JP2008319342 A JP 2008319342A JP 2008319342 A JP2008319342 A JP 2008319342A JP 2010143951 A JP2010143951 A JP 2010143951A
Authority
JP
Japan
Prior art keywords
ester
copolymer
rubber
hydroxyl
crosslinked rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319342A
Other languages
Japanese (ja)
Other versions
JP5467278B2 (en
Inventor
Toshihiro Imada
俊洋 今田
Kazunori Takagi
和典 高木
Takashi Sawaguchi
孝志 澤口
Toshinori Hagiwara
俊紀 萩原
Toru Hoshi
徹 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Nihon University
Original Assignee
Nippon Chemi Con Corp
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp, Nihon University filed Critical Nippon Chemi Con Corp
Priority to JP2008319342A priority Critical patent/JP5467278B2/en
Priority to PCT/JP2009/006865 priority patent/WO2010070875A1/en
Publication of JP2010143951A publication Critical patent/JP2010143951A/en
Application granted granted Critical
Publication of JP5467278B2 publication Critical patent/JP5467278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crosslinked rubber excellent in crosslinkability and heat resistance, which is obtained from a curable rubber composition excellent in moldability. <P>SOLUTION: The crosslinked rubber includes an ester-crosslinked rubber wherein a rubbery copolymer, obtained by copolymerization of an isomonoolefin and an aliphatic diene, is crosslinked through an ester linkage. The rubbery copolymer is dissolved in a solvent, hydroborated, then oxidized and hydrolyzed to give a hydroxy-modified copolymer having a hydroxy group added to a C-C double bond of the rubbery copolymer, which copolymer is mixed with a crosslinking agent having at least two functional groups which can form an ester linkage by reaction between the hydroxy-modified copolymer and a hydroxy group to give a curable rubber composition. A hydroxy group of the hydroxy-modified copolymer in the curable rubber composition is subjected to an esterification reaction with the functional group of the crosslinking agent to give the crosslinked rubber. The ester-crosslinked rubber is stable at the temperature of 150°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィンと4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエンとを共重合させたゴム状共重合体がエステル結合を介して架橋したエステル架橋ゴム及びその製造方法に関する。本発明はさらに、上記エステル架橋ゴムを製造するために使用可能な硬化性ゴム組成物及びヒドロキシル変性共重合体、さらには上記エステル架橋ゴムを含有する成形体に関する。   The present invention relates to a rubbery copolymer obtained by copolymerizing at least one isomonoolefin having 4 to 7 carbon atoms and at least one aliphatic diene having 4 to 14 carbon atoms. The present invention relates to an ester crosslinked rubber crosslinked through a bond and a method for producing the same. The present invention further relates to a curable rubber composition and a hydroxyl-modified copolymer that can be used for producing the ester-crosslinked rubber, and further to a molded article containing the ester-crosslinked rubber.

イソブテン、イソペンテンなどの4〜7個の炭素原子を有するイソモノオレフィンと少量のイソプレン、ブタジエンなどの4〜14個の炭素原子を有する脂肪族ジエンとを共重合させたゴム状共重合体(以下、単に「ゴム状共重合体」と表す。)は、「ブチルゴム類」とも言われ、その架橋ゴムは、衝撃吸収能が高く、気体透過性が極めて低く、酸、アルカリ、オゾンなどにも安定であるため、防振材、自動車のタイヤのチューブ、医薬用ゴム製品、コンデンサや電池の封口体、ベルト、ホース等の幅広い用途に使用されている。   A rubbery copolymer obtained by copolymerizing an isomonoolefin having 4 to 7 carbon atoms such as isobutene or isopentene and a small amount of an aliphatic diene having 4 to 14 carbon atoms such as isoprene or butadiene Is simply referred to as “rubber-like copolymer”), and is also referred to as “butyl rubbers”, and its crosslinked rubber has high impact absorption capacity, extremely low gas permeability, and is stable to acids, alkalis, ozone, etc. Therefore, they are used in a wide range of applications such as vibration-proof materials, automobile tire tubes, pharmaceutical rubber products, capacitor and battery sealing bodies, belts, hoses and the like.

このゴム状共重合体の架橋方法として、従来からイオウ架橋、キノイド架橋、樹脂架橋が知られている。   Conventionally, sulfur crosslinking, quinoid crosslinking, and resin crosslinking are known as methods for crosslinking the rubbery copolymer.

イオウ架橋は、イオウ或いはイオウ供与体をチアゾール類、ジチオカーバメート類、チウラム類などの架橋促進剤と併用することにより行われる。しかしながら、高温で長時間の加熱が必要であるため生産効率の点から好ましくなく、ブリードやブルームが生じやすいという問題も有している。p−キノンジオキシム、p,p´−ジベンゾイルキノンジオキシムのようなキノンジオキシム類を用いたキノイド架橋では、キノイドを活性化させるための酸化剤として鉛丹や二酸化鉛が用いられるが、これらの鉛化合物は人体に有害であるため、環境衛生上の問題がある。また、キノイド架橋により得られた架橋ゴムは十分な耐熱性を有していない。さらに、ハロゲン化したアルキルフェノール・ホルムアルデヒド樹脂、或いはフェノール・ホルムアルデヒド樹脂と二塩化スズのような無機ハロゲン化物、クロロプレンのようなハロゲン含有エラストマーとを使用した樹脂架橋は、架橋速度が著しく遅く、高温で長時間の加熱が必要であるため、生産効率の点から好ましくない。また、樹脂架橋により得られるゴム製品は架橋が完了していない状態で製品化されるため、ゴム製品の使用中に架橋反応が進行してその物性が大きく変化するという問題もある。   Sulfur crosslinking is performed by using sulfur or a sulfur donor in combination with a crosslinking accelerator such as thiazoles, dithiocarbamates, or thiurams. However, since heating at a high temperature for a long time is necessary, it is not preferable from the viewpoint of production efficiency, and there is a problem that bleed and bloom are likely to occur. In quinoid crosslinking using quinonedioximes such as p-quinonedioxime and p, p′-dibenzoylquinonedioxime, lead tan or lead dioxide is used as an oxidizing agent for activating the quinoid. Since these lead compounds are harmful to the human body, they have environmental health problems. Moreover, the crosslinked rubber obtained by quinoid crosslinking does not have sufficient heat resistance. Furthermore, resin crosslinking using halogenated alkylphenol-formaldehyde resins, or phenol-formaldehyde resins and inorganic halides such as tin dichloride, or halogen-containing elastomers such as chloroprene, has a significantly slow crosslinking rate and is long at high temperatures. Since heating of time is required, it is not preferable from the viewpoint of production efficiency. Moreover, since the rubber product obtained by resin crosslinking is commercialized in a state where the crosslinking is not completed, there is a problem that the physical properties of the rubber product change greatly due to the progress of the crosslinking reaction during the use of the rubber product.

一方、ジエン系ゴム等の架橋方法として好適であるベンゾイルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物を用いた架橋は、ゴム状共重合体の架橋のためには通常用いられない。ゴム状共重合体の炭素炭素二重結合に起因する脱水素反応が生じるため、共重合体が分解、低分子化してしまい、架橋が進行しないからである。しかしながら、有機過酸化物による架橋は、架橋速度が非常に速く、得られる架橋ゴムがイオウのような不純物を含まない点で有利であるため、有機過酸化物単独での架橋が可能な特殊なゴム状共重合体が検討されてきた。   On the other hand, crosslinking using an organic peroxide such as benzoyl peroxide or dicumyl peroxide, which is suitable as a crosslinking method for diene rubbers, is not usually used for crosslinking rubbery copolymers. This is because a dehydrogenation reaction caused by the carbon-carbon double bond of the rubber-like copolymer occurs, so that the copolymer is decomposed and reduced in molecular weight and crosslinking does not proceed. However, crosslinking with an organic peroxide is advantageous in that the crosslinking speed is very fast and the resulting crosslinked rubber does not contain impurities such as sulfur. Rubbery copolymers have been investigated.

例えば、特許文献1(米国特許明細書第3584080号)は、イソブテンのような4〜7個の炭素原子を有するイソモノオレフィンと、イソプレンのような4〜14個の炭素原子を有する脂肪族ジエンと、ジビニルベンゼンのような芳香族ジビニル化合物とを共重合させた、有機過酸化物単独での架橋が可能な部分架橋ゴムを記載している。また、このような部分架橋ゴムとして、イソブテン97モル%−イソプレン1.7モル%−ジビニルベンゼン1.3モル%の部分架橋ゴムが、バイエル社から「XL−10000」の名称で市販されている。これらの部分架橋ゴムにおけるビニル基が有機過酸化物により架橋される。   For example, US Pat. No. 3,584,080 describes an isomonoolefin having 4 to 7 carbon atoms such as isobutene and an aliphatic diene having 4 to 14 carbon atoms such as isoprene. And a partially crosslinked rubber obtained by copolymerizing an aromatic divinyl compound such as divinylbenzene and capable of crosslinking with an organic peroxide alone. Further, as such partially crosslinked rubber, a partially crosslinked rubber of 97 mol% of isobutene-1.7 mol% of isoprene-1.3 mol% of divinylbenzene is commercially available from Bayer under the name “XL-10000”. . The vinyl groups in these partially crosslinked rubbers are crosslinked with an organic peroxide.

この部分架橋ゴムの有機過酸化物による架橋は迅速に進行し、得られた架橋ゴムは耐熱性の点で上述のイオウ架橋等による架橋ゴムより優れている。例えば、特許文献2(特開2003−109880号公報)は、電解コンデンサにおいて、XL−10000にジクミルパーオキサイド、充填材、加工助剤、老化防止剤及び架橋助剤を添加した硬化性ゴム組成物を硬化させた架橋ゴムを封口体として使用し、さらにスルホラン、γ−ブチルラクトン、フタル酸1−エチル−2,3−ジメチルイミダゾリニウムを含む電解液を駆動用電解液として使用することにより、電解コンデンサの150℃の使用温度においても封口体の劣化が抑制されることを開示している。   Crosslinking of this partially crosslinked rubber with an organic peroxide proceeds rapidly, and the obtained crosslinked rubber is superior to the above-described crosslinked rubber by sulfur crosslinking in terms of heat resistance. For example, Patent Document 2 (Japanese Patent Laid-Open No. 2003-109880) discloses a curable rubber composition obtained by adding dicumyl peroxide, a filler, a processing aid, an antiaging agent, and a crosslinking aid to XL-10000 in an electrolytic capacitor. By using a crosslinked rubber obtained by curing a product as a sealing body, and further using an electrolyte containing sulfolane, γ-butyllactone, and 1-ethyl-2,3-dimethylimidazolinium phthalate as a driving electrolyte. Further, it is disclosed that the deterioration of the sealing body is suppressed even at the use temperature of 150 ° C. of the electrolytic capacitor.

米国特許明細書第3584080号U.S. Pat. No. 3,584,080 特開2003−109880号公報JP 2003-109880 A

しかしながら、上述の部分架橋ブチルゴムは、ムーニー粘度が高く、かつゲル含有量が非常に高いので、加工性に極めて乏しい。また、有機過酸化物架橋により得られた架橋ゴムの硬度及び引裂強度が十分であるとはいえず、架橋ゴム製品が変形或いは割れてしまうことがある。   However, the partially crosslinked butyl rubber described above has a high Mooney viscosity and a very high gel content, so that the processability is extremely poor. Moreover, it cannot be said that the hardness and tear strength of the crosslinked rubber obtained by the organic peroxide crosslinking are sufficient, and the crosslinked rubber product may be deformed or cracked.

また、最近では、自動車部品、電気部品などの分野で用いられる架橋ゴムには、さらに高い耐熱性が要求されるようになってきた。したがって、上述の部分架橋ゴムの有機過酸化物架橋によって得られた架橋ゴムを超える耐熱性を有する架橋ゴムの開発が望まれる。   Moreover, recently, higher heat resistance has been required for crosslinked rubber used in the fields of automobile parts, electrical parts and the like. Therefore, it is desired to develop a crosslinked rubber having heat resistance exceeding the crosslinked rubber obtained by organic peroxide crosslinking of the above partially crosslinked rubber.

そこで、本発明の課題は、加工性に優れた硬化性ゴム組成物から得ることができ、架橋性に優れ、その上耐熱性にも優れた架橋ゴム及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a crosslinked rubber which can be obtained from a curable rubber composition excellent in processability, has excellent crosslinkability and also has excellent heat resistance, and a method for producing the same.

上述の課題は、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体が、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とのエステル化反応により架橋された、エステル結合を介して架橋されたエステル架橋ゴムによって達成される。   The above-mentioned problems are addressed by 90 to 99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and at least one aliphatic diene having 4 to 14 carbon atoms 0.5 to 10 A hydroxyl-modified copolymer in which a hydroxyl group is added to a carbon-carbon double bond of a rubber-like copolymer copolymerized with a mol% has at least 2 functional groups capable of forming an ester bond by reaction with the hydroxyl group. This is achieved by an ester cross-linked rubber cross-linked through an ester bond cross-linked by an esterification reaction with individual cross-linking agents.

上記ゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体は、エステル化反応のための官能基となるヒドロキシル基を有し、また炭素炭素二重結合が飽和化しているため耐熱性に優れる。そして、上記ヒドロキシル変性共重合体のヒドロキシル基と上記架橋剤の官能基とのエステル化反応により、エステル結合を介して架橋したエステル架橋ゴムが得られるが、架橋前の上記ヒドロキシル変性共重合体と上記架橋剤との混合物は加工性に優れ、架橋後のエステル架橋ゴムは、従来の部分架橋ゴムを架橋したゴムより架橋性に優れ、耐熱性においても優れている。   The hydroxyl-modified copolymer in which a hydroxyl group is added to the carbon-carbon double bond of the rubber-like copolymer has a hydroxyl group that becomes a functional group for the esterification reaction, and the carbon-carbon double bond is saturated. Excellent heat resistance. An ester-crosslinked rubber crosslinked through an ester bond is obtained by an esterification reaction between the hydroxyl group of the hydroxyl-modified copolymer and the functional group of the crosslinking agent, and the hydroxyl-modified copolymer before crosslinking and The mixture with the crosslinking agent is excellent in processability, and the crosslinked ester-crosslinked rubber is superior in crosslinkability and heat resistance as compared with a rubber obtained by crosslinking a conventional partially crosslinked rubber.

本発明のエステル架橋ゴムにおいて、上記ゴム状共重合体における結合脂肪族ジエン量は、一般的には0.5〜10.0モル%の範囲である。結合脂肪族ジエン量が10.0モル%より多いと、エステル架橋ゴムのゴム弾性が低下し、0.5モル%未満であると十分な本発明の効果が得られにくい。上記ゴム状共重合体における結合脂肪族ジエン量は、0.6〜2.5モル%の範囲であるのが特に好ましい。   In the ester crosslinked rubber of the present invention, the amount of bonded aliphatic diene in the rubbery copolymer is generally in the range of 0.5 to 10.0 mol%. When the amount of the bonded aliphatic diene is more than 10.0 mol%, the rubber elasticity of the ester-crosslinked rubber is lowered, and when it is less than 0.5 mol%, sufficient effects of the present invention are hardly obtained. The amount of bonded aliphatic diene in the rubbery copolymer is particularly preferably in the range of 0.6 to 2.5 mol%.

気体透過性が極めて低く、耐薬品性にも優れた望ましい架橋ゴムはブチルゴム、すなわち、イソブテン−イソプレン共重合体を架橋した架橋ゴムである。本発明においても、上記ゴム状共重合体におけるイソモノオレフィンをイソブテンとし、脂肪族ジエンをイソプレンとすることによって、気体透過性が極めて低く、耐薬品性にも優れた望ましいエステル架橋ゴムを得ることができる。   A desirable crosslinked rubber having extremely low gas permeability and excellent chemical resistance is butyl rubber, that is, a crosslinked rubber obtained by crosslinking an isobutene-isoprene copolymer. Also in the present invention, by using isobutene as the isomonoolefin in the rubbery copolymer and isoprene as the aliphatic diene, it is possible to obtain a desirable ester-crosslinked rubber having extremely low gas permeability and excellent chemical resistance. Can do.

炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体が架橋されていると、得られたエステル架橋ゴムの主鎖に炭素炭素二重結合が存在せず、耐熱性に優れるため、特に好ましい。しかしながら、ヒドロキシル変性共重合体に炭素炭素二重結合が一部残っていても本発明の効果を得ることができる。   When a hydroxyl-modified copolymer substantially free of carbon-carbon double bonds is cross-linked, there is no carbon-carbon double bond in the main chain of the resulting ester-crosslinked rubber, and heat resistance is excellent. preferable. However, even if some carbon-carbon double bonds remain in the hydroxyl-modified copolymer, the effects of the present invention can be obtained.

なお、「炭素炭素二重結合が実質的に存在しない」とは、ヒドロキシル変性共重合体のH−NMR測定において、炭素炭素二重結合由来のシグナルが消失していることを意味する。 Note that “substantially no carbon-carbon double bond” means that the signal derived from the carbon-carbon double bond disappears in 1 H-NMR measurement of the hydroxyl-modified copolymer.

例えば、以下の式(I)

Figure 2010143951
で表されるイソブテン−イソプレン共重合体(未架橋ブチルゴム)の炭素炭素二重結合にヒドロキシル基を導入すると、有利には、以下の式(II)
Figure 2010143951
で表される反マルコフニコフ水和化物がヒドロキシル変性共重合体として得られるが、この場合には、式(I)のHで示す水素のH−NMRのシグナルが消失しているかどうかにより、炭素炭素二重結合が実質的に存在しないかどうかを判断することができる(図1参照)。 For example, the following formula (I)
Figure 2010143951
When a hydroxyl group is introduced into the carbon-carbon double bond of the isobutene-isoprene copolymer (uncrosslinked butyl rubber) represented by the following formula (II),
Figure 2010143951
While in anti-Markovnikov hydration product represented is obtained as hydroxyl modified copolymer, in this case, depending on whether the 1 H-NMR signal of the hydrogen indicated by H a of formula (I) is lost It can be determined whether substantially no carbon-carbon double bond is present (see FIG. 1).

本発明のエステル架橋ゴムは、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体を溶媒に溶解し、ヒドロホウ素化し、さらに酸化、加水分解することによって、上記ゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体を得る変性工程、上記ヒドロキシル変性共重合体と、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とを混合することによって、硬化性ゴム組成物を得る調製工程、及び、上記硬化性ゴム組成物中の上記ヒドロキシル変性共重合体のヒドロキシル基と上記架橋剤の官能基とをエステル化反応させることによって、エステル結合を介して架橋したエステル架橋ゴムを得る架橋工程を含むことを特徴とするエステル架橋ゴムの製造方法によって、好適に得ることができる。したがって、本発明はまた、このエステル架橋ゴムの製造方法に関する。   The ester-crosslinked rubber of the present invention comprises 90 to 99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and at least one aliphatic diene having 4 to 14 carbon atoms. A rubbery copolymer copolymerized with 5 to 10 mol% is dissolved in a solvent, hydroborated, further oxidized and hydrolyzed, whereby a hydroxyl group is bonded to the carbon-carbon double bond of the rubbery copolymer. A modification step for obtaining a hydroxyl-modified copolymer to which is added, by mixing the hydroxyl-modified copolymer with a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with a hydroxyl group, The preparation step for obtaining the curable rubber composition, and the hydroxyl group of the hydroxyl-modified copolymer in the curable rubber composition and the functional group of the cross-linking agent By etherification reaction can be by a production method of an ester cross-linked rubber, characterized in that it comprises a cross-linking step to give the ester crosslinked rubber crosslinked via an ester bond, obtained suitably. Accordingly, the present invention also relates to a method for producing this ester-crosslinked rubber.

上記ゴム状共重合体の炭素炭素二重結合にヒドロキシル基を付加することによって、炭素炭素二重結合が飽和化すると共に、エステル化反応のための官能基が導入される。炭素炭素二重結合が飽和化するため、耐熱性が向上する。また、このヒドロキシル変性共重合体は架橋構造を有していないため、このヒドロキシル変性共重合体をヒドロキシル基と反応してエステル結合を形成可能な官能基を少なくとも2個有する架橋剤と混合した硬化性ゴム組成物を所望の形状に成形する際にも、良好な加工性を示す。そして、上記ヒドロキシル変性共重合体の官能基としてのヒドロキシル基と上記架橋剤の官能基とのエステル化反応によりエステル結合を介して架橋したエステル架橋ゴムが得られるが、得られたエステル架橋ゴムは、従来の部分架橋ゴムを架橋したゴムより架橋性に優れ、耐熱性においても優れている。   By adding a hydroxyl group to the carbon-carbon double bond of the rubber-like copolymer, the carbon-carbon double bond is saturated and a functional group for esterification reaction is introduced. Since the carbon-carbon double bond is saturated, the heat resistance is improved. In addition, since this hydroxyl-modified copolymer does not have a crosslinked structure, this hydroxyl-modified copolymer is mixed with a crosslinking agent having at least two functional groups capable of reacting with hydroxyl groups to form ester bonds. Good processability is also exhibited when the functional rubber composition is molded into a desired shape. An ester crosslinked rubber crosslinked through an ester bond is obtained by an esterification reaction between a hydroxyl group as a functional group of the hydroxyl-modified copolymer and a functional group of the crosslinking agent. Further, it is superior in crosslinkability and heat resistance as compared with a rubber obtained by crosslinking a conventional partially crosslinked rubber.

本発明のエステル架橋ゴムの製造方法において、上記ゴム状共重合体における結合脂肪族ジエン量は、0.6〜2.5モル%であるのが特に好ましい。また、上記イソモノオレフィンがイソブテンであり、上記脂肪族ジエンがイソプレンであるのが好ましい。   In the method for producing an ester-crosslinked rubber according to the present invention, the amount of bonded aliphatic diene in the rubbery copolymer is particularly preferably 0.6 to 2.5 mol%. The isomonoolefin is preferably isobutene and the aliphatic diene is preferably isoprene.

上記ヒドロキシル変性共重合体において、上記ゴム状共重合体の炭素炭素二重結合の全てにヒドロキシル基が付加されていると、最終的に得られるエステル架橋ゴムの主鎖に炭素炭素二重結合が存在せず、耐熱性に優れたエステル架橋ゴムが得られるため好ましい。しかしながら、ヒドロキシル変性共重合体に炭素炭素二重結合が一部残っていても本発明の効果を得ることができる。炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体は、上記変性工程において、ヒドロホウ素化を結合脂肪族ジエン1当量あたり3〜15当量のヒドロホウ素化剤を用いて行うことによって得られる。ここで、結合脂肪族ジエンにおける炭素炭素二重結合1個に対して1個のB−H基が反応する場合を1当量とする。ヒドロホウ素化剤の量が3当量未満であると、ヒドロホウ素化が十分に進まず、15当量を超えると、ヒドロキシル変性共重合体を回収する際の洗浄等の後処理が面倒になり、経済的に不利になる。   In the hydroxyl-modified copolymer, when hydroxyl groups are added to all of the carbon-carbon double bonds of the rubber-like copolymer, carbon-carbon double bonds are present in the main chain of the ester-crosslinked rubber finally obtained. It is preferable because an ester cross-linked rubber that does not exist and has excellent heat resistance can be obtained. However, even if some carbon-carbon double bonds remain in the hydroxyl-modified copolymer, the effects of the present invention can be obtained. A hydroxyl-modified copolymer substantially free of carbon-carbon double bonds is obtained by performing hydroboration in the above modification step using 3 to 15 equivalents of a hydroborating agent per equivalent of bonded aliphatic diene. It is done. Here, the case where one BH group reacts with one carbon-carbon double bond in the bonded aliphatic diene is defined as one equivalent. If the amount of hydroborating agent is less than 3 equivalents, hydroboration does not proceed sufficiently, and if it exceeds 15 equivalents, post-treatment such as washing when recovering the hydroxyl-modified copolymer becomes troublesome and economical. Disadvantageous.

上記変性工程に置いて、2個以上のB−H基を有するヒドロホウ素化剤を使用すると、同じ当量のB−H基を1個しか有していないヒドロホウ素化剤を使用するよりも、ヒドロホウ素化が進行しやすくなるが、同時に架橋反応により溶液のゲル化が生じやすくなり、ヒドロホウ素化反応が抑制され、結果的にヒドロキシル基の付加が抑制される。そのため、上記変性工程において2個以上のB−H結合を有するヒドロホウ素化剤を使用する場合には、炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体を得るために、上記ゴム状共重合体の濃度が1w/v%以下の溶液中でヒドロホウ素化を行うのが好ましい。   When using a hydroborating agent having two or more B—H groups in the modification step, rather than using a hydroborating agent having only one B—H group of the same equivalent. Hydroboration is likely to proceed, but at the same time, gelation of the solution is likely to occur due to the crosslinking reaction, and the hydroboration reaction is suppressed, and as a result, the addition of hydroxyl groups is suppressed. Therefore, when a hydroborating agent having two or more B—H bonds is used in the modification step, the rubber is obtained in order to obtain a hydroxyl-modified copolymer substantially free of carbon-carbon double bonds. The hydroboration is preferably carried out in a solution having a concentration of a state copolymer of 1 w / v% or less.

本発明のエステル架橋ゴムにおいて使用する架橋剤としては、ヒドロキシル基と反応してエステル結合を形成可能な官能基を少なくとも2個有する化合物であれば、特に制限無く使用することができるが、ジカルボン酸、ジカルボン酸無水物、ジカルボン酸ハロゲン化物及びジカルボン酸エステルの中から架橋剤を選択すると、架橋が効率的に進むため好ましい。このような架橋剤は、前記ゴム状共重合体における結合脂肪族ジエン1当量あたり(したがって、ヒドロキシル基1当量あたり)1〜3当量の量を使用すると、ヒドロキシル変性共重合体のほとんどのヒドロキシル基がエステル結合するため好ましい。   The crosslinking agent used in the ester crosslinked rubber of the present invention can be used without particular limitation as long as it is a compound having at least two functional groups capable of reacting with a hydroxyl group to form an ester bond. It is preferable to select a cross-linking agent from among dicarboxylic acid anhydrides, dicarboxylic acid halides and dicarboxylic acid esters because the cross-linking proceeds efficiently. Such crosslinkers are used in amounts of 1-3 equivalents per equivalent of bound aliphatic diene in the rubbery copolymer (and thus per equivalent of hydroxyl group), and most hydroxyl groups of the hydroxyl-modified copolymer. Is preferable because it forms an ester bond.

上述の本発明のエステル架橋ゴムの製造方法における調製工程において得ることができる硬化性ゴム組成物は、予め架橋構造を有する共重合体を含有しないため、架橋ゴム製品を得るために所望の形状に成形する際には良好な加工性を示し、引裂強度に優れた架橋ゴムを与えることができる。したがって、本発明はさらに、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体と、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とを含有する硬化性ゴム組成物に関する。   The curable rubber composition that can be obtained in the preparation step in the method for producing the ester-crosslinked rubber of the present invention does not contain a copolymer having a crosslinked structure in advance. When molding, a cross-linked rubber that exhibits good processability and excellent tear strength can be provided. Accordingly, the present invention further relates to 90-99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and at least one aliphatic diene having 4 to 14 carbon atoms. A hydroxyl-modified copolymer in which a hydroxyl group is added to a carbon-carbon double bond of a rubbery copolymer copolymerized with 10 mol%, and a functional group capable of forming an ester bond by reaction with the hydroxyl group. The present invention relates to a curable rubber composition containing at least two crosslinking agents.

上述の本発明のエステル架橋ゴムの製造方法における変性工程において得ることができる炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体は、耐熱性が高く、官能基としてのヒドロキシル基が導入されているため、耐熱性を有するエステル架橋ゴムを製造するために特に好適である。したがって、本発明はさらに、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されており、炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体に関する。   The hydroxyl-modified copolymer substantially free of carbon-carbon double bonds that can be obtained in the modification step in the method for producing the ester-crosslinked rubber of the present invention described above has high heat resistance, and a hydroxyl group as a functional group is introduced. Therefore, it is particularly suitable for producing ester-crosslinked rubber having heat resistance. Accordingly, the present invention further relates to 90-99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and at least one aliphatic diene having 4 to 14 carbon atoms. The present invention relates to a hydroxyl-modified copolymer in which a hydroxyl group is added to a carbon-carbon double bond of a rubbery copolymer copolymerized with 10 mol%, and the carbon-carbon double bond is substantially absent.

上記エステル架橋ゴムは、架橋性に優れる上に耐熱性にも優れ、このエステル架橋ゴムを製造するための組成物は加工性に優れるため、本発明のエステル架橋ゴムはさまざまな形状及び用途の成形体、特に耐熱老化性や長寿命性が要求される成形体を得るために好適に使用することができる。したがって、本発明はさらに、上記エステル架橋ゴムを含有する成形体に関する。   The ester-crosslinked rubber is excellent in crosslinkability and heat resistance. Since the composition for producing the ester-crosslinked rubber is excellent in processability, the ester-crosslinked rubber of the present invention is molded in various shapes and uses. It can be suitably used to obtain a molded body, particularly a molded body that is required to have heat aging resistance and long life. Therefore, the present invention further relates to a molded article containing the ester crosslinked rubber.

本発明のエステル架橋ゴムの製造方法によると、上記変性工程において、炭素炭素二重結合が飽和化すると共に、ヒドロキシル基が導入される。炭素炭素二重結合が飽和化するため、耐熱性が向上し、ヒドロキシル基はエステル化反応のための官能基となる。また、このヒドロキシル変性共重合体は架橋構造を有していないため、上記ヒドロキシル変性共重合体を上記架橋剤と混合した硬化性ゴム組成物を所望の形状に成形する際に、良好な加工性を示す。そして、上記ヒドロキシル変性共重合体の官能基としてのヒドロキシル基と上記架橋剤の官能基とのエステル化反応によりエステル結合を介して架橋したエステル架橋ゴムを得ることができるが、得られた本発明のエステル架橋ゴムは、従来の部分架橋ゴムを架橋したゴムより、架橋性に優れ、耐熱性においても優れている。したがって、所望形状を有する極めて安定な成形体を容易に得ることができる。   According to the method for producing an ester-crosslinked rubber of the present invention, the carbon-carbon double bond is saturated and a hydroxyl group is introduced in the modification step. Since the carbon-carbon double bond is saturated, the heat resistance is improved, and the hydroxyl group becomes a functional group for the esterification reaction. Further, since this hydroxyl-modified copolymer does not have a cross-linked structure, good processability is obtained when a curable rubber composition obtained by mixing the hydroxyl-modified copolymer with the cross-linking agent is molded into a desired shape. Indicates. Then, an ester-crosslinked rubber crosslinked through an ester bond can be obtained by an esterification reaction between a hydroxyl group as a functional group of the hydroxyl-modified copolymer and a functional group of the crosslinking agent. This ester-crosslinked rubber is superior in crosslinkability and heat resistance to a rubber obtained by crosslinking a conventional partially crosslinked rubber. Therefore, it is possible to easily obtain a very stable molded body having a desired shape.

本発明の架橋ゴムは、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体(該ゴム状共重合体におけるイソモノオレフィンと脂肪族ジエンとの合計量は100モル%である。)の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体が、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とのエステル化反応により架橋されていることを特徴とし、エステル結合を介して架橋されたエステル架橋ゴムである。このエステル架橋ゴムは、上記ゴム状共重合体を溶媒に溶解し、ヒドロホウ素化し、さらに酸化、加水分解することによって上記ゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体を得る変性工程、上記ヒドロキシル変性共重合体と、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とを混合することによって硬化性ゴム組成物を得る調製工程、及び、上記硬化性ゴム組成物中の上記ヒドロキシル変性共重合体のヒドロキシル基と上記架橋剤の官能基とをエステル化反応させることによって、エステル結合を介して架橋されたエステル架橋ゴムを得る架橋工程により、好適に得ることができる。以下、各工程について詳細に説明する。   The crosslinked rubber of the present invention comprises 90-99.5 mol% of at least one isomonoolefin having 4-7 carbon atoms and at least one aliphatic diene having 4-14 carbon atoms. To the carbon-carbon double bond of a rubbery copolymer copolymerized with 10 mol% (the total amount of isomonoolefin and aliphatic diene in the rubbery copolymer is 100 mol%). The hydroxyl-modified copolymer to which a group is added is crosslinked by an esterification reaction with a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with the hydroxyl group. This is an ester crosslinked rubber crosslinked via This ester-crosslinked rubber is obtained by dissolving the rubber-like copolymer in a solvent, hydroborating it, and further oxidizing and hydrolyzing it, thereby adding a hydroxyl group to the carbon-carbon double bond of the rubber-like copolymer. A curable rubber composition is obtained by mixing a modification step for obtaining a modified copolymer, the hydroxyl-modified copolymer and a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with a hydroxyl group. And a crosslinked ester ester rubber crosslinked via an ester bond by esterifying the hydroxyl group of the hydroxyl-modified copolymer in the curable rubber composition and the functional group of the crosslinking agent. It can obtain suitably by the bridge | crosslinking process of obtaining. Hereinafter, each step will be described in detail.

(a)変性工程
本発明の製造方法では、4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィンと4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエンとを共重合させたゴム状共重合体を出発材料とする。
(A) Modification step In the production method of the present invention, at least one isomonoolefin having 4 to 7 carbon atoms and at least one aliphatic diene having 4 to 14 carbon atoms are copolymerized. A rubbery copolymer is used as a starting material.

4〜7個の炭素原子を有するイソモノオレフィンの例としては、イソブテン、2−メチル−1−ブテン、3−メチル−1−ブテン、2−メチル−2−ブテン、4−メチル−1−ペンテン及びそれらの混合物が挙げられる。イソモノオレフィンとしては、イソブテンが好ましい。   Examples of isomonoolefins having 4 to 7 carbon atoms include isobutene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene, 4-methyl-1-pentene And mixtures thereof. As the isomonoolefin, isobutene is preferable.

4〜14個の炭素原子を有する脂肪族ジエンの例としては、イソプレン、ブタジエン、1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、2,4−ヘキサジエン、2−ネオペンチルブタジエンのような共役ジエン、1,4−ペンタジエン、2−メチル−1,4−ペンタジエン、1,5−ヘキサジエン、2−メチル−1,5−ヘキサジエン、1,6−ヘプタジエン、2−メチル−1,6−ヘプタジエンのような非共役ジエンが挙げられる。これらの2種以上を使用しても良い。脂肪族ジエンとしては、イソプレンが好ましい。   Examples of aliphatic dienes having 4 to 14 carbon atoms include isoprene, butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 2,4-hexadiene, and 2-neopentylbutadiene. Conjugated dienes, 1,4-pentadiene, 2-methyl-1,4-pentadiene, 1,5-hexadiene, 2-methyl-1,5-hexadiene, 1,6-heptadiene, 2-methyl-1,6- Non-conjugated dienes such as heptadiene are mentioned. Two or more of these may be used. As the aliphatic diene, isoprene is preferred.

これらのゴム状共重合体は、公知の溶液重合及び懸濁重合によって製造可能である。不活性溶媒中のモノマー混合物を、フリーデルクラフツ触媒の存在下、低温で重合させることにより製造することができ、例えば、好適なイソブテン−イソプレン共重合体(未架橋ブチルゴム)は、塩化メチル中、無水塩化アルミニウム触媒の存在下で、モノマー混合物を−100℃程度の低温で重合させることにより得ることができる。また、市販のゴム状共重合体、例えば市販の未架橋ブチルゴムを使用することもできる。これらのゴム状共重合体の重合度には厳密な制限が無いが、分子量が50000〜1000000の範囲が好ましい。   These rubbery copolymers can be produced by known solution polymerization and suspension polymerization. A monomer mixture in an inert solvent can be produced by polymerizing at a low temperature in the presence of a Friedel-Crafts catalyst, for example, a suitable isobutene-isoprene copolymer (uncrosslinked butyl rubber) is obtained in methyl chloride, It can be obtained by polymerizing the monomer mixture at a low temperature of about −100 ° C. in the presence of an anhydrous aluminum chloride catalyst. Commercially available rubbery copolymers such as commercially available uncrosslinked butyl rubber can also be used. Although the degree of polymerization of these rubbery copolymers is not strictly limited, the molecular weight is preferably in the range of 50,000 to 1,000,000.

本発明において使用するゴム状共重合体における結合脂肪族ジエン量は、一般的には0.5〜10.0モル%の範囲である。結合脂肪族ジエン量が10.0モル%より多いと、最終的に得られるエステル架橋ゴムのゴム弾性が低下し、0.5モル%未満であると十分な本発明の効果が得られにくい。上記ゴム状共重合体における結合脂肪族ジエン量は、0.5〜4.0モル%の範囲であるのが好ましく、0.6〜2.5モル%の範囲であるのが特に好ましい。   The amount of bonded aliphatic diene in the rubbery copolymer used in the present invention is generally in the range of 0.5 to 10.0 mol%. When the amount of bonded aliphatic diene is more than 10.0 mol%, the rubber elasticity of the finally obtained ester-crosslinked rubber is lowered, and when it is less than 0.5 mol%, sufficient effects of the present invention are hardly obtained. The amount of bonded aliphatic diene in the rubbery copolymer is preferably in the range of 0.5 to 4.0 mol%, particularly preferably in the range of 0.6 to 2.5 mol%.

本発明では、出発材料の上記ゴム状共重合体を、必要に応じて加熱しながら溶媒に溶解させた後、ヒドロホウ素化と、これに続く酸化、加水分解により、炭素炭素二重結合にヒドロキシル基を付加する。なお、ヒドロホウ素化と、これに続く酸化、加水分解により炭素炭素二重結合にヒドロキシル基を導入する反応自体は公知である。   In the present invention, the rubbery copolymer as a starting material is dissolved in a solvent while being heated, if necessary, and then hydroborated, followed by oxidation and hydrolysis to form a hydroxyl group on a carbon-carbon double bond. Add a group. The reaction itself for introducing a hydroxyl group into a carbon-carbon double bond by hydroboration and subsequent oxidation and hydrolysis is known.

上記ゴム状共重合体の溶解のために使用可能な溶媒には、反応を損なわない不活性溶媒であれば特に限定は無いが、例えば、ベンゼン、トルエン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、ジエチルエーテル、ジイソプロピルエーテル、メチル−t−ブチルエーテル、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、クロルベンゼン、クロロホルム等のハロゲン化炭化水素、或いはこれらの混合溶媒が挙げられる。特に、テトラヒドロフラン又はテトラヒドロフランを含む混合溶媒は、ヒドロホウ素化を促進させるため好ましい。   The solvent that can be used for dissolving the rubbery copolymer is not particularly limited as long as it is an inert solvent that does not impair the reaction. For example, aromatic hydrocarbons such as benzene and toluene, hexane, heptane, and the like Aliphatic hydrocarbons such as diethyl ether, diisopropyl ether, methyl-t-butyl ether, dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran, dioxane and other ethers, halogenated hydrocarbons such as chlorobenzene and chloroform, or these The mixed solvent is mentioned. In particular, tetrahydrofuran or a mixed solvent containing tetrahydrofuran is preferable because it promotes hydroboration.

得られたゴム状共重合体の溶液にヒドロホウ素化剤を作用させ、ヒドロホウ素化を行う。使用可能なヒドロホウ素化剤の例としては、ボラン及びそのオリゴマー、メチルボラン、ジメチルボラン、エチルボラン、ジエチルボラン、ジシアミルボラン、テキシルボラン、カテコールボラン、ジシクロヘキシルボラン、9−ボラビシクロ[3,3,1]−ノナン、ジイソピノカンフェニルボラン、フェニルボラン、塩化ボラン、臭化ボラン、メトキシボラン、エトキシボラン、フェノキシボラン、ボラン・テトラヒドロフラン錯体、ボラン・ジエチルエーテル錯体、ボラン・ジメチルスルフィド錯体、ボラン・トリエチルアミン錯体が挙げられる。溶媒としてテトラヒドロフラン又はテトラヒドロフラン混合溶媒を使用する場合には、ボラン・テトラヒドロフラン錯体を使用するのが好ましい。ヒドロホウ素化反応は、一般的には0〜100℃の温度で行われる。反応時間は、通常は1時間以上、好適には5時間以上である。   Hydroboration is performed by allowing a hydroborating agent to act on the resulting rubbery copolymer solution. Examples of hydroborating agents that can be used include borane and its oligomers, methylborane, dimethylborane, ethylborane, diethylborane, dicyamylborane, texylborane, catecholborane, dicyclohexylborane, 9-borabicyclo [3,3,1] -nonane, Diisopinocan phenylborane, phenylborane, borane chloride, borane bromide, methoxyborane, ethoxyborane, phenoxyborane, borane / tetrahydrofuran complex, borane / diethyl ether complex, borane / dimethyl sulfide complex, borane / triethylamine complex . When tetrahydrofuran or a tetrahydrofuran mixed solvent is used as the solvent, it is preferable to use borane-tetrahydrofuran complex. The hydroboration reaction is generally performed at a temperature of 0 to 100 ° C. The reaction time is usually 1 hour or longer, preferably 5 hours or longer.

例えば、以下の式(III)

Figure 2010143951
で表されるブチルゴムを出発材料とし、ボラン・テトラヒドロフラン錯体をヒドロホウ素化剤とした場合には、有利には炭素炭素二重結合に対する反マルコフニコフ付加により、以下の式(IV)
Figure 2010143951
で表されるヒドロホウ素化物が得られるが、マルコフニコフ付加によるヒドロホウ素化部分も混在する。 For example, the following formula (III)
Figure 2010143951
Is used as a starting material, and borane / tetrahydrofuran complex is used as a hydroborating agent, preferably by anti-Markovnikov addition to a carbon-carbon double bond, the following formula (IV)
Figure 2010143951
Is obtained, but a hydroboration portion by Markovnikov addition is also mixed.

上記ヒドロホウ素化剤の添加量は、基本的には、上記ゴム状共重合体中の全ての炭素炭素二重結合がヒドロホウ素化するように選択される。全ての炭素炭素二重結合がヒドロホウ素化すれば、次の酸化、加水分解において、全ての炭素炭素二重結合にヒドロキシル基が導入される。しかしながら、ヒドロキシル変性共重合体に炭素炭素二重結合が残るようにヒドロホウ素化剤の量を選択しても良い。特に、上記ゴム状共重合体における結合脂肪族ジエン量が比較的多くなると、炭素炭素二重結合の全てにヒドロキシル基が導入されると、最終的に得られるエステル架橋ゴムのゴム弾性が低下する傾向があるため、耐熱性の点ではわずかに不利になるものの、炭素炭素二重結合が残るようにヒドロホウ素化剤の量を選択しても良い。ヒドロキシル変性共重合体における残留炭素炭素二重結合量は、一般的には上記ゴム状共重合体の炭素炭素二重結合量の80%以下、好ましくは70%以下である。炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体を得るためには、上記ゴム状共重合体の結合脂肪族ジエン1当量あたり、3〜15当量のヒドロホウ素化剤を使用するのが好ましい。ヒドロホウ素化剤の量が3当量未満であると、ヒドロホウ素化が十分に進行せず、15当量を超えると、ヒドロキシル変性共重合体を回収する際の洗浄等の後処理が面倒になり、経済的に不利である。   The amount of the hydroborating agent added is basically selected so that all the carbon-carbon double bonds in the rubbery copolymer are hydroborated. If all the carbon-carbon double bonds are hydroborated, hydroxyl groups are introduced into all the carbon-carbon double bonds in the subsequent oxidation and hydrolysis. However, the amount of hydroborating agent may be selected so that carbon-carbon double bonds remain in the hydroxyl-modified copolymer. In particular, when the amount of bonded aliphatic diene in the rubbery copolymer is relatively large, when a hydroxyl group is introduced into all of the carbon-carbon double bonds, the rubber elasticity of the finally obtained ester-crosslinked rubber is lowered. Although there is a tendency, the amount of the hydroborating agent may be selected so that a carbon-carbon double bond remains, although it is slightly disadvantageous in terms of heat resistance. The amount of residual carbon-carbon double bonds in the hydroxyl-modified copolymer is generally 80% or less, preferably 70% or less, of the amount of carbon-carbon double bonds in the rubbery copolymer. In order to obtain a hydroxyl-modified copolymer substantially free of carbon-carbon double bonds, 3 to 15 equivalents of a hydroborating agent is used per equivalent of the bonded aliphatic diene of the rubbery copolymer. Is preferred. If the amount of hydroborating agent is less than 3 equivalents, hydroboration does not proceed sufficiently, and if it exceeds 15 equivalents, post-treatment such as washing when recovering the hydroxyl-modified copolymer becomes troublesome, It is economically disadvantageous.

2個以上のB−H結合を有するヒドロホウ素化剤を使用すると、同じ当量の9−ボラビシクロ[3,3,1]−ノナンのようなB−H結合を1個しか有していないヒドロホウ素化剤を使用するよりも、ヒドロホウ素化が進行しやすくなるが、同時に架橋反応により溶液のゲル化が生じやすくなる。このゲルは、次の酸化、加水分解反応の過程で溶解する傾向にあるため、ある程度ゲル化が進行しても良いが、ゲル化が急速に進行しすぎると、ヒドロホウ素化反応が抑制され、結果的にヒドロキシル基の導入が抑制されるため、また次の酸化、加水分解反応の後でもゲルが一部残存することがあるため、好ましくない。ゴム状共重合体溶液の濃度が濃いと、ゲル化が急速に進行するため、2個以上のB−H結合を有するヒドロホウ素化剤を使用する場合には、ゴム状共重合体の濃度を2w/v%(溶媒の体積に対するゴム状共重合体の重量%)以下、好ましくは1.5w/v%以下、特に好ましくは1.0w/v%以下とするのが、炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体を得るために好ましい。1.0w/v%以下のゴム状共重合体溶液の濃度では、溶液のゲル化が認められなかった。   When using a hydroborating agent having two or more B—H bonds, a hydroboron having only one B—H bond, such as the same equivalent of 9-borabicyclo [3,3,1] -nonane. Hydroboration is more likely to proceed than using an agent, but at the same time gelation of the solution is likely to occur due to a crosslinking reaction. Since this gel tends to dissolve in the process of the next oxidation and hydrolysis reaction, the gelation may proceed to some extent, but if the gelation proceeds too rapidly, the hydroboration reaction is suppressed, As a result, the introduction of hydroxyl groups is suppressed, and part of the gel may remain even after the subsequent oxidation or hydrolysis reaction, which is not preferable. When the concentration of the rubber-like copolymer solution is high, gelation proceeds rapidly. Therefore, when a hydroborating agent having two or more B—H bonds is used, the concentration of the rubber-like copolymer is reduced. The carbon-carbon double bond is 2 w / v% (weight% of the rubbery copolymer with respect to the volume of the solvent) or less, preferably 1.5 w / v% or less, particularly preferably 1.0 w / v% or less. Is preferable for obtaining a hydroxyl-modified copolymer substantially free of. No gelation of the solution was observed at a rubbery copolymer solution concentration of 1.0 w / v% or less.

次に、ヒドロホウ素化後の溶液を、アルカリ性過酸化水素により酸化、加水分解し、ヒドロキシル変性共重合体を得る。過酸化物として、過酸化水素のほか、過安息香酸、過酸化ベンゾイル等を使用することができるが、過酸化水素を使用するのが好ましい。この酸化、加水分解反応は、通常0〜60℃の温度で行われる。反応時間は、通常は1時間以上、好適には5時間以上である。   Next, the solution after hydroboration is oxidized and hydrolyzed with alkaline hydrogen peroxide to obtain a hydroxyl-modified copolymer. As the peroxide, in addition to hydrogen peroxide, perbenzoic acid, benzoyl peroxide and the like can be used, but it is preferable to use hydrogen peroxide. This oxidation and hydrolysis reaction is usually performed at a temperature of 0 to 60 ° C. The reaction time is usually 1 hour or longer, preferably 5 hours or longer.

この酸化、加水分解反応により、上の式(IV)で表される有利に生成するヒドロホウ素化物は、以下の式(V)

Figure 2010143951
で表される反マルコフニコフ水和化物に変化するが、マルコフニコフ水和部分も混在する。 By this oxidation and hydrolysis reaction, the advantageously formed hydroborated product represented by the above formula (IV) is represented by the following formula (V):
Figure 2010143951
It changes to the anti-Markovnikov hydrate represented by the formula, but the Markovnikov hydrate part is also mixed.

得られたヒドロキシル変性共重合体の回収は、メタノール等の貧溶媒に酸化、加水分解後の溶液を投入してヒドロキシル変性共重合体を析出させ、十分洗浄した後、ろ過することにより容易に行うことができる。乾燥して溶媒を除去後、以下に示す調製工程において使用する。ヒドロキシル変性共重合体のヒドロキシル基導入度(したがって炭素炭素二重結合残留度)は、H−NMRにより確認することができる。 The obtained hydroxyl-modified copolymer is easily recovered by adding the solution after oxidation and hydrolysis to a poor solvent such as methanol to precipitate the hydroxyl-modified copolymer, washing it thoroughly, and then filtering it. be able to. After drying and removing the solvent, it is used in the preparation process shown below. The hydroxyl group introduction degree (and hence the carbon-carbon double bond residual degree) of the hydroxyl-modified copolymer can be confirmed by 1 H-NMR.

この工程で得ることができる本発明の炭素炭素二重結合を実質的に有していないヒドロキシル変性共重合体は、二重結合の全てが実質的に飽和化されているため、極めて熱安定性に優れ、エステル架橋ゴムを製造するための材料として極めて好適である。   The hydroxyl-modified copolymer substantially free of carbon-carbon double bonds of the present invention that can be obtained in this step is extremely heat stable because all of the double bonds are substantially saturated. And is extremely suitable as a material for producing ester-crosslinked rubber.

(b)調製工程
次に、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤と上記ヒドロキシル変性共重合体とを混合し、硬化性ゴム組成物を得る。
(B) Preparation Step Next, a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with a hydroxyl group and the hydroxyl-modified copolymer are mixed to obtain a curable rubber composition.

本発明では、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤であれば、特に制限無く使用することができる。ヒドロキシル基と反応してカルボン酸エステルを形成可能な架橋剤、例えば、ジカルボン酸、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、シクロヘキサ−4−エン−1,2−ジカルボン酸、ビシクロ[2,2,1]ヘプタ−5−エン−2,3−ジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、5−メチルイソフタル酸、4,5−メトキシフタル酸、ビフェニル−2,2´−ジカルボン酸、ナフタレン−2,6−ジカルボン酸;トリカルボン酸、例えば、エタン−1,1,2−トリカルボン酸、ブタン−1,2,4−トリカルボン酸、ヘキサン−2,3,5−トリカルボン酸、ベンゼン−1,2,3−トリカルボン酸、ベンゼン−1,2,4−トリカルボン酸、ベンゼン−1,3,5−トリカルボン酸、ナフタレン−1,2,4−トリカルボン酸;テトラカルボン酸、例えば、1,2,3,4−ブタンテトラカルボン酸、シクロヘキサン−1,2,4,5−テトラカルボン酸、ベンゼン−1,2,3,4−テトラカルボン酸、ベンゼン−1,2,3,5−テトラカルボン酸、ベンゼン−1,2,4,5−テトラカルボン酸、ナフタレン−1,4,5,8−テトラカルボン酸;ペンタカルボン酸、例えばベンゼンペンタカルボン酸;ヘキサカルボン酸、例えば、ベンゼンヘキサカルボン酸、及び、これらの誘導体、例えば、これらの酸ハロゲン化物、酸無水物及びエステルを使用することができる。誘導体は、1分子中に例えばカルボキシル基と酸無水物基のように2種以上の異なる種類の官能基を有していても良い。これらの架橋剤は、単独で使用しても2種以上の架橋剤を混合して使用しても良い。ジカルボン酸及びその誘導体から選択された架橋剤を使用すると、架橋が効率的に進むため好ましい。また、脂肪族カルボン酸を使用する場合には、炭素炭素二重結合を含まないものを使用するのが好ましい。   In the present invention, any crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with a hydroxyl group can be used without particular limitation. Crosslinkers capable of reacting with hydroxyl groups to form carboxylic acid esters, such as dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Maleic acid, fumaric acid, itaconic acid, citraconic acid, cyclohex-4-ene-1,2-dicarboxylic acid, bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid, phthalic acid, isophthalic acid Acid, terephthalic acid, 5-methylisophthalic acid, 4,5-methoxyphthalic acid, biphenyl-2,2'-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid; tricarboxylic acid such as ethane-1,1,2, -Tricarboxylic acid, butane-1,2,4-tricarboxylic acid, hexane-2,3,5-tricarboxylic acid, benzene-1,2,3- Recarboxylic acid, benzene-1,2,4-tricarboxylic acid, benzene-1,3,5-tricarboxylic acid, naphthalene-1,2,4-tricarboxylic acid; tetracarboxylic acid such as 1,2,3,4- Butanetetracarboxylic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, benzene-1,2,3,4-tetracarboxylic acid, benzene-1,2,3,5-tetracarboxylic acid, benzene-1 , 2,4,5-tetracarboxylic acid, naphthalene-1,4,5,8-tetracarboxylic acid; pentacarboxylic acid, such as benzenepentacarboxylic acid; hexacarboxylic acid, such as benzenehexacarboxylic acid, and these Derivatives such as these acid halides, acid anhydrides and esters can be used. The derivative may have two or more different types of functional groups such as a carboxyl group and an acid anhydride group in one molecule. These crosslinking agents may be used alone or as a mixture of two or more crosslinking agents. It is preferable to use a crosslinking agent selected from dicarboxylic acids and derivatives thereof because crosslinking proceeds efficiently. Moreover, when using aliphatic carboxylic acid, it is preferable to use what does not contain a carbon-carbon double bond.

また、ヒドロキシル基と反応してリン酸エステルを形成可能な架橋剤、例えば、オキシ塩化リン、五酸化リン、三塩化リン、五塩化リン、オルトリン酸、リン酸エステル、及びこれらの混合物を使用することができる。   Also use crosslinkers that can react with hydroxyl groups to form phosphate esters, such as phosphorus oxychloride, phosphorus pentoxide, phosphorus trichloride, phosphorus pentachloride, orthophosphoric acid, phosphate esters, and mixtures thereof. be able to.

架橋剤は、ヒドロキシル変性共重合体のほとんどのヒドロキシル基をエステル化するため、出発材料のゴム状共重合体における結合脂肪族ジエン1当量(したがってヒドロキシル基1当量)あたり、1〜3当量の量で使用される。   Since the crosslinking agent esterifies most hydroxyl groups of the hydroxyl-modified copolymer, an amount of 1-3 equivalents per equivalent of bound aliphatic diene (and thus one equivalent of hydroxyl group) in the starting rubbery copolymer. Used in.

硬化性ゴム組成物は、溶媒を添加して液状組成物としても良く、溶媒を使用せずに固相組成物としても良い。成形体製造用の組成物は、固相組成物とするのが好ましい。   The curable rubber composition may be a liquid composition by adding a solvent, or may be a solid phase composition without using a solvent. The composition for producing a molded body is preferably a solid phase composition.

液状組成物において使用可能な溶媒としては、反応を損なわない不活性溶媒であれば特に限定は無いが、例えば、ベンゼン、トルエン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、ジエチルエーテル、ジイソプロピルエーテル、メチル−t−ブチルエーテル、ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、クロルベンゼン、クロロホルム等のハロゲン化炭化水素、或いはこれらの混合溶媒が挙げられる。   The solvent that can be used in the liquid composition is not particularly limited as long as it is an inert solvent that does not impair the reaction. For example, aromatic hydrocarbons such as benzene and toluene, aliphatic hydrocarbons such as hexane and heptane, diethyl Examples include ether, diisopropyl ether, methyl-t-butyl ether, dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ethers such as tetrahydrofuran and dioxane, halogenated hydrocarbons such as chlorobenzene and chloroform, and mixed solvents thereof.

硬化性ゴム組成物には、さらに、エステル化反応を促進するための塩酸、トルエンスルホン酸、シリカ、アルミナ、ゼオライト、ヘテロポリ酸のようなプロトン酸触媒或いは水酸化ナトリウム、水酸化カリウム、ピリジン、ピペリジン、トリメチルアミン、トリブチルアミンのような塩基、珪酸塩化合物のような吸着剤の他、カーボンブラック、タルク、クレー、マイカのような充填剤、酸化防止剤、老化防止剤、熱安定剤、光安定剤、オゾン安定剤、加工助剤、染料、顔料などの慣用の添加剤を必要に応じて添加しても良い。   The curable rubber composition further includes a protonic acid catalyst such as hydrochloric acid, toluenesulfonic acid, silica, alumina, zeolite, heteropolyacid or sodium hydroxide, potassium hydroxide, pyridine, piperidine for accelerating the esterification reaction. , Bases such as trimethylamine and tributylamine, adsorbents such as silicate compounds, fillers such as carbon black, talc, clay and mica, antioxidants, anti-aging agents, heat stabilizers, light stabilizers Conventional additives such as ozone stabilizers, processing aids, dyes and pigments may be added as necessary.

変性工程において得られたヒドロキシル変性共重合体及び架橋剤の他、必要に応じて、溶媒、プロトン酸触媒或いは塩基、慣用の添加剤を、好適な混合手段を使用して混合することにより、硬化性ゴム組成物を得ることができる。固相組成物を得る場合には、混合手段として密閉式ミキサー、オープンロールミル等を好適に使用することができる。   In addition to the hydroxyl-modified copolymer and the crosslinking agent obtained in the modification step, if necessary, a solvent, a proton acid catalyst or base, and a conventional additive are mixed by using a suitable mixing means to cure. A rubber composition can be obtained. When obtaining a solid phase composition, a closed mixer, an open roll mill or the like can be suitably used as a mixing means.

この工程で得ることができる本発明の硬化性ゴム組成物は、予め架橋構造を有する共重合体を含有していないため、所定形状に加工する際の加工性に優れ、良好な引裂強度を有するエステル架橋ゴムを得るために好適に使用することができる。   Since the curable rubber composition of the present invention that can be obtained in this step does not contain a copolymer having a crosslinked structure in advance, it has excellent processability when processed into a predetermined shape and has good tear strength. It can be suitably used to obtain an ester crosslinked rubber.

(c)架橋工程
上述の調製工程で得られた硬化性ゴム組成物を加温することにより、上記ヒドロキシル変性共重合体と上記架橋剤とを反応させ、エステル結合を介して架橋したエステル架橋ゴムを得る。
(C) Crosslinking process The curable rubber composition obtained in the above preparation process is heated to react the hydroxyl-modified copolymer with the crosslinking agent to crosslink via an ester bond. Get.

例えば、上の式(V)で表される有利に生成するヒドロキシル変性共重合体と、架橋剤としてのイソフタル酸或いはその誘導体とを含有する硬化性ゴム組成物を使用すると、架橋工程により、以下の式(VI)で表されるエステル架橋ゴムが得られる。

Figure 2010143951
For example, when a curable rubber composition containing an advantageously generated hydroxyl-modified copolymer represented by the above formula (V) and isophthalic acid or a derivative thereof as a crosslinking agent is used, An ester-crosslinked rubber represented by the formula (VI) is obtained.
Figure 2010143951

硬化性ゴム組成物が液状組成物の場合には、そのまま、或いは所定の基体上に塗布後、加温してエステル化反応を進める。溶媒量が多い組成物の場合には、一般的には還流下でエステル化反応を進める。反応時間は、一般には1時間、好適には5時間以上である。反応後の組成物をメタノールなどの貧溶媒に投入してエステル架橋ゴムを析出させ、十分洗浄した後、ろ過することにより容易にエステル架橋ゴムを得ることができる。   When the curable rubber composition is a liquid composition, it is heated as it is or after coating on a predetermined substrate, and the esterification reaction proceeds. In the case of a composition having a large amount of solvent, the esterification reaction is generally carried out under reflux. The reaction time is generally 1 hour, preferably 5 hours or longer. The ester-crosslinked rubber can be easily obtained by adding the composition after the reaction to a poor solvent such as methanol to precipitate the ester-crosslinked rubber, washing it thoroughly, and filtering.

固相組成物は、押出法、成型法等により所望の形状にした後、必要に応じて加圧しながら加温することによりエステル化反応を進める。温度、圧力、反応時間は、使用する架橋剤の種類、成形体の形状、使用金型等により異なり、厳密な制限は無いが、温度は、一般には50〜200℃、好適には150〜200℃の範囲であり、圧力は、一般的には0.1〜30Mpa、好ましくは3〜20Mpaの範囲であり、反応時間は、一般的には5分〜10時間、好ましくは5分〜1時間の範囲である。得られたエステル架橋ゴムは、必要に応じて二次加硫を行うことができる。また、得られたエステル架橋ゴムを、必要に応じて後加工し、所定形状の成形体を得ることができる。   The solid phase composition is formed into a desired shape by an extrusion method, a molding method, or the like, and then the esterification reaction proceeds by heating while applying pressure as necessary. The temperature, pressure, and reaction time vary depending on the type of crosslinking agent used, the shape of the molded body, the mold used, and the like, and are not strictly limited, but the temperature is generally 50 to 200 ° C., preferably 150 to 200. The pressure is generally in the range of 0.1 to 30 Mpa, preferably 3 to 20 Mpa, and the reaction time is generally 5 minutes to 10 hours, preferably 5 minutes to 1 hour. Range. The obtained ester crosslinked rubber can be subjected to secondary vulcanization as necessary. Further, the obtained ester-crosslinked rubber can be post-processed as necessary to obtain a molded article having a predetermined shape.

上述のエステル架橋ゴムによって製造することができる本発明のエステル架橋ゴムは、従来のXL−10000のような部分架橋ゴムを架橋したゴムより、架橋性に優れており、高硬度を示し、耐熱性においても優れている。また、低い気体透過性を有するブチルゴム類を出発材料としているため、同様に低い気体透過性を示す。さらに、硬化性ゴム組成物が予め架橋構造を有する共重合体を含有していないため、所定形状に加工する際の加工性に優れ、良好な引裂強度を有する架橋ゴムが得られる。したがって、自動車・自転車のタイヤのチューブ、自動車部品、キュアリングバック類、医薬用ゴム製品、電気部品、コンデンサや電池等の封口体、電線被覆、ベルト、ホース、制振材等の幅広い用途の製品を得るために好適に用いることができる。特に、本発明のエステル架橋ゴムは、気体遮断性が要求される成形体、或いは耐熱老化性、長寿命性が要求される成形体、特に150℃程度の高い温度での耐熱老化性が要求される用途の製品のために極めて好適である。   The ester-crosslinked rubber of the present invention that can be produced by the above-mentioned ester-crosslinked rubber is more excellent in crosslinkability than a rubber obtained by crosslinking a partially crosslinked rubber such as conventional XL-10000, exhibits high hardness, and heat resistance. Is also excellent. Moreover, since the butyl rubber which has low gas permeability is used as a starting material, low gas permeability is shown similarly. Furthermore, since the curable rubber composition does not contain a copolymer having a crosslinked structure in advance, a crosslinked rubber having excellent processability when processed into a predetermined shape and having good tear strength can be obtained. Therefore, products for a wide range of applications such as automobile and bicycle tire tubes, automobile parts, curing bags, pharmaceutical rubber products, electrical parts, sealing bodies such as capacitors and batteries, wire coverings, belts, hoses, vibration damping materials, etc. It can be suitably used to obtain In particular, the ester-crosslinked rubber of the present invention is required to have a molded product requiring gas barrier properties, or a molded product required to have heat aging resistance and long life, particularly heat aging resistance at a high temperature of about 150 ° C. It is very suitable for products for various applications.

以下に本発明の実施例を示すが、本発明は以下の実施例に限定されない。   Examples of the present invention are shown below, but the present invention is not limited to the following examples.

1.ヒドロキシル変性共重合体の製造
実施例1
未架橋ブチルゴム(結合イソプレン含有量;2モル%、分子量;約400000)を細片にし、その3gを容量1000mLの三口フラスコに攪拌子と共に導入した。次にこのフラスコにテトラヒドロフラン400mLを導入し、フラスコ内の雰囲気を窒素置換した後、攪拌しながら未架橋ブチルゴムをテトラヒドロフランに溶解させた。
1. Production of hydroxyl-modified copolymer Example 1
Uncrosslinked butyl rubber (bound isoprene content; 2 mol%, molecular weight; about 400,000) was cut into small pieces, and 3 g thereof was introduced into a 1000 mL three-necked flask with a stirrer. Next, 400 mL of tetrahydrofuran was introduced into the flask, and the atmosphere in the flask was replaced with nitrogen. Then, the uncrosslinked butyl rubber was dissolved in tetrahydrofuran while stirring.

次いで、フラスコ内にボラン・テトラヒドロフラン錯体(関東化学)の7.2mL(結合イソプレン1当量あたりB−H基6.7当量)を添加した。温度90℃のオイルバスで加熱しながら、還流下で5時間、ヒドロホウ素化反応を行った。溶液はゲル化しなかった。   Next, 7.2 mL of borane / tetrahydrofuran complex (Kanto Chemical) (6.7 equivalents of B—H groups per equivalent of bound isoprene) was added to the flask. The hydroboration reaction was carried out under reflux for 5 hours while heating in an oil bath at a temperature of 90 ° C. The solution did not gel.

次いで、フラスコを氷浴で冷却し、水酸化ナトリウム3.93gをメタノールに溶解させた液の11.8mLを攪拌しながら滴下した。さらに、過酸化水素水(過酸化水素31%、関東化学)の9.12mLを滴下した。滴下終了後、温度60℃のオイルバスで加熱し、攪拌しながら15時間、酸化、加水分解反応を行った。   Next, the flask was cooled in an ice bath, and 11.8 mL of a solution obtained by dissolving 3.93 g of sodium hydroxide in methanol was added dropwise with stirring. Further, 9.12 mL of hydrogen peroxide solution (hydrogen peroxide 31%, Kanto Chemical) was added dropwise. After completion of the dropping, the mixture was heated in an oil bath at a temperature of 60 ° C. and subjected to oxidation and hydrolysis reaction for 15 hours while stirring.

得られた反応液をメタノール中に攪拌しながら滴下した。沈殿を回収し、乾燥させて溶媒を除去し、ヒドロキシル変性共重合体を得た。   The obtained reaction solution was added dropwise to methanol with stirring. The precipitate was collected and dried to remove the solvent to obtain a hydroxyl-modified copolymer.

実施例2
実施例1で使用した未架橋ブチルゴム3gを450mLのテトラヒドロフランが導入されたフラスコ内で溶解し、ボラン・テトラヒドロフラン錯体を12mL(結合イソプレン1当量あたりB−H基11当量)、水酸化ナトリウム3.93gをメタノールに溶解させた液20mL、過酸化水素水15.2mLを使用して実施例1の手順を繰り返した。ヒドロホウ素化後、溶液はゲル化しなかった。
Example 2
3 g of uncrosslinked butyl rubber used in Example 1 was dissolved in a flask in which 450 mL of tetrahydrofuran was introduced, 12 mL of borane / tetrahydrofuran complex (11 equivalents of B—H group per equivalent of bound isoprene), 3.93 g of sodium hydroxide The procedure of Example 1 was repeated using 20 mL of a solution in which methanol was dissolved in methanol and 15.2 mL of hydrogen peroxide. The solution did not gel after hydroboration.

実施例3
実施例1で使用した未架橋ブチルゴム3gを400mLのテトラヒドロフランが導入されたフラスコ内で溶解し、ボラン・テトラヒドロフラン錯体を3.6mL(結合イソプレン1当量あたりB−H基3.3当量)、水酸化ナトリウム3.93gをメタノールに溶解させた液5.8mL、過酸化水素水4.56mLを使用して実施例1の手順を繰り返した。ヒドロホウ素化後、溶液はゲル化しなかった。
Example 3
3 g of uncrosslinked butyl rubber used in Example 1 was dissolved in a flask into which 400 mL of tetrahydrofuran was introduced, 3.6 mL of borane / tetrahydrofuran complex (3.3 equivalents of B—H groups per equivalent of bound isoprene), hydroxylated The procedure of Example 1 was repeated using 5.8 mL of a solution obtained by dissolving 3.93 g of sodium in methanol and 4.56 mL of hydrogen peroxide. The solution did not gel after hydroboration.

実施例4
実施例1で使用した未架橋ブチルゴム6gを450mLのテトラヒドロフランが導入されたフラスコ内で溶解し、ボラン・テトラヒドロフラン錯体を12mL(結合イソプレン1当量あたりB−H基5.5当量)、水酸化ナトリウム3.93gをメタノールに溶解させた液20mL、過酸化水素水15.2mLを使用して実施例1の手順を繰り返した。ヒドロホウ素化後に溶液はゲル化したが、次の酸化、加水分解反応の過程で溶解し、反応終了後に粘性のある反応液が得られた。
Example 4
6 g of uncrosslinked butyl rubber used in Example 1 was dissolved in a flask into which 450 mL of tetrahydrofuran was introduced, 12 mL of borane / tetrahydrofuran complex (5.5 equivalents of B—H group per equivalent of bound isoprene), sodium hydroxide 3 The procedure of Example 1 was repeated using 20 mL of a solution obtained by dissolving .93 g in methanol and 15.2 mL of aqueous hydrogen peroxide. The solution gelled after hydroboration, but dissolved in the course of the next oxidation and hydrolysis reaction, and a viscous reaction solution was obtained after the reaction.

実施例5
実施例1で使用した未架橋ブチルゴム6gを450mLのテトラヒドロフランが導入されたフラスコ内で溶解し、9−ボラビシクロ[3,3,1]−ノナン(関東化学)を24mL(結合イソプレン1当量あたりB−H基11当量)、水酸化ナトリウム3.93gをメタノールに溶解させた液20mL、過酸化水素水15.5mLを使用して実施例1の手順を繰り返した。ヒドロホウ素化後、溶液はゲル化しなかった。
Example 5
6 g of uncrosslinked butyl rubber used in Example 1 was dissolved in a flask introduced with 450 mL of tetrahydrofuran, and 9-borabicyclo [3,3,1] -nonane (Kanto Chemical) was dissolved in 24 mL (B-per equivalent of bound isoprene). The procedure of Example 1 was repeated using 20 mL of a solution of 11 equivalents of H groups), 3.93 g of sodium hydroxide in methanol, and 15.5 mL of hydrogen peroxide. The solution did not gel after hydroboration.

比較例1
実施例1で使用した未架橋ブチルゴム3gを400mLのテトラヒドロフランが導入されたフラスコ内で溶解し、ボラン・テトラヒドロフラン錯体を2.5mL(結合イソプレン1当量あたりB−H基2.3当量)、水酸化ナトリウム3.93gをメタノールに溶解させた液4.0mL、過酸化水素水3.18mLを使用して実施例1の手順を繰り返した。ヒドロホウ素化後、溶液はゲル化しなかった。
Comparative Example 1
3 g of the uncrosslinked butyl rubber used in Example 1 was dissolved in a flask in which 400 mL of tetrahydrofuran was introduced, and 2.5 mL of borane / tetrahydrofuran complex (2.3 equivalents of B—H groups per equivalent of bound isoprene) was hydroxylated. The procedure of Example 1 was repeated using 4.0 mL of a solution prepared by dissolving 3.93 g of sodium in methanol and 3.18 mL of hydrogen peroxide. The solution did not gel after hydroboration.

図1に、実施例1で得られたヒドロキシル変性共重合体と出発材料の未架橋ブチルゴムのH−NMRデータを示す。日本電子(株)製AL−400MHz−NMRスペクトロメータを使用し、溶媒としての重クロロホルム1mLに10〜50mgのヒドロキシル変性共重合体又は出発材料を溶解し、24℃で測定した。ケミカルシフトδ5.05ppmのシグナルが式(I)の未架橋ブチルゴムにおけるHのシグナルに相当し、δ3.30ppmのシグナルが式(II)の反マルコフニコフ水和化物におけるHのシグナルに相当する。マルコフニコフ水和部分のシグナルは、他のシグナルと重なり、認めることができなかった。 FIG. 1 shows 1 H-NMR data of the hydroxyl-modified copolymer obtained in Example 1 and the starting material, uncrosslinked butyl rubber. Using an AL-400 MHz-NMR spectrometer manufactured by JEOL Ltd., 10 to 50 mg of the hydroxyl-modified copolymer or starting material was dissolved in 1 mL of deuterated chloroform as a solvent and measured at 24 ° C. Signal chemical shift δ5.05ppm corresponds to the signal of the H a in uncrosslinked butyl rubber of the formula (I), signal δ3.30ppm corresponds to the signal of the H b at the anti-Markovnikov hydration product of formula (II) . The signal of the Markovnikov hydration part overlapped with other signals and could not be recognized.

図1から明らかなように、実施例1のヒドロキシル変性共重合体においては、ケミカルシフトδ5.05ppmのシグナルが消失しており、ヒドロキシル変性共重合体が炭素炭素二重結合を実質的に有していないことが分かる。   As is clear from FIG. 1, in the hydroxyl-modified copolymer of Example 1, the signal of chemical shift δ5.05 ppm disappeared, and the hydroxyl-modified copolymer substantially has a carbon-carbon double bond. I understand that it is not.

以下の表には、各実施例1〜5及び比較例1において、ケミカルシフトδ5.05ppmのシグナルとδ3.30ppmのシグナルの有無をまとめた。

Figure 2010143951
The following table summarizes the presence or absence of a signal with a chemical shift of δ5.05 ppm and a signal of δ3.30 ppm in each of Examples 1 to 5 and Comparative Example 1.
Figure 2010143951

以上の結果から、同じ当量数であれば、ボラン・テトラヒドロフラン錯体の方が9−ボラビシクロ[3,3,1]−ノナンより未架橋ブチルゴムのヒドロホウ素化のために好適であり、また、ボラン・テトラヒドロフラン錯体が2.3当量ではヒドロホウ素化が進行し難いことがわかる。   From the above results, the borane-tetrahydrofuran complex is more suitable for hydroboration of uncrosslinked butyl rubber than 9-borabicyclo [3,3,1] -nonane if the number of equivalents is the same. It can be seen that the hydroboration hardly proceeds when the tetrahydrofuran complex is 2.3 equivalents.

図2は、実施例1で得られたヒドロキシル変性共重合体と出発材料の未架橋ブチルゴムの熱重量分析データを示す。セイコー電子工業(株)製TG/DTA6200熱重量分析計を使用し、窒素気流(100mL/分)中、昇温速度10℃/分の条件で測定した。ヒドロキシル変性共重合体の熱分解開始温度は約360℃であり、未架橋ブチルゴムの熱分解開始温度は約280℃であり、炭素炭素二重結合の飽和化により耐熱性が向上したことが分かる。   FIG. 2 shows thermogravimetric analysis data of the hydroxyl-modified copolymer obtained in Example 1 and the starting material uncrosslinked butyl rubber. A TG / DTA6200 thermogravimetric analyzer manufactured by Seiko Denshi Kogyo Co., Ltd. was used, and measurement was performed in a nitrogen stream (100 mL / min) at a temperature rising rate of 10 ° C./min. The thermal decomposition starting temperature of the hydroxyl-modified copolymer is about 360 ° C., and the thermal decomposition starting temperature of the uncrosslinked butyl rubber is about 280 ° C. It can be seen that the heat resistance is improved by saturation of the carbon-carbon double bond.

2.硬化性ゴム組成物の調製と架橋
実施例6
実施例1で得られたヒドロキシル変性共重合体と、架橋剤としてのイソフタル酸塩化物、及びトリブチルアミンを2本ロールミルにより混練し、固相組成物を得た。ヒドロキシル変性共重合体におけるヒドロキシル基1当量あたり、イソフタル酸塩化物1当量、トリブチルアミン1当量とした。
2. Preparation and crosslinking of curable rubber composition Example 6
The hydroxyl-modified copolymer obtained in Example 1, the isophthalic acid chloride as a crosslinking agent, and tributylamine were kneaded by a two-roll mill to obtain a solid phase composition. One equivalent of isophthalic acid chloride and one equivalent of tributylamine were used per equivalent of hydroxyl group in the hydroxyl-modified copolymer.

得られた固相組成物について、ALPHA TECHNOLOGIES製Rheometer MDR2000を使用し、195℃、測定圧力0.35MPaの条件下でレオメーター曲線(時間−トルク、時間−tanδ)の測定を行った。   About the obtained solid-phase composition, rheometer curve (time-torque, time-tan-delta) was measured on condition of 195 degreeC and measurement pressure 0.35MPa using ALPHA TECHNOLOGIES Rheometer MDR2000.

さらに、レオメーター曲線測定後のエステル架橋ゴム成形体について、Perkin−Elmer製1600−FT−IR赤外分光計を用いてフィルム法によりFT−IRスペクトルを測定した。また、成形体を150℃に保持し、ショアーA硬度(ピーク硬度)の変化及び重量損失を測定した。   Furthermore, about the ester crosslinked rubber molding after rheometer curve measurement, the FT-IR spectrum was measured by the film method using Perkin-Elmer 1600-FT-IR infrared spectrometer. Moreover, the molded object was hold | maintained at 150 degreeC and the change of the Shore A hardness (peak hardness) and the weight loss were measured.

比較例2
バイエル社製部分架橋ゴムXL−10000の100gにジクミルパーオキサイド(40%希釈品)2gを添加し、混練して固相組成物を得た。実施例1と同様に、ALPHA TECHNOLOGIES製Rheometer MDR2000を使用し、得られた固相組成物について、170℃、測定圧力0.35MPaの条件下でレオメーター曲線(時間−トルク、時間−tanδ)の測定を行った。また、実施例6と同様に、レオメーター曲線測定後の架橋ゴム成形体を150℃に保持し、ショアーA硬度(ピーク硬度)の変化及び重量損失を測定した。
Comparative Example 2
To 100 g of Bayer's partially crosslinked rubber XL-10000, 2 g of dicumyl peroxide (40% diluted product) was added and kneaded to obtain a solid phase composition. In the same manner as in Example 1, a rheometer MDR2000 manufactured by ALPHA TECHNOLOGIES was used, and the obtained solid phase composition was subjected to a rheometer curve (time-torque, time-tan δ) under the conditions of 170 ° C. and measurement pressure 0.35 MPa. Measurements were made. Further, in the same manner as in Example 6, the crosslinked rubber molded body after the rheometer curve measurement was held at 150 ° C., and the change in Shore A hardness (peak hardness) and the weight loss were measured.

図3には、実施例6のエステル架橋ゴムと出発材料の未架橋ブチルゴムのFT−IRスペクトルデータを示す。エステル架橋ゴムのスペクトルには、1720±10cm−1にエステル結合したイソフタル酸のC=O伸縮振動バンドが認められる。イソフタル酸塩化物におけるC=O伸縮振動バンドは1710±10cm−1及び1765±5cm−1に認められるが、これらのバンドがエステル架橋ゴムのFT−IRスペクトルには認められないため、イソフタル酸塩化物の全てが実質的に反応したことがわかる。 FIG. 3 shows FT-IR spectrum data of the ester crosslinked rubber of Example 6 and the uncrosslinked butyl rubber starting material. In the spectrum of the ester-crosslinked rubber, a C═O stretching vibration band of isophthalic acid ester-bonded at 1720 ± 10 cm −1 is observed. Although the C═O stretching vibration bands in isophthalic acid chlorides are observed at 1710 ± 10 cm −1 and 1765 ± 5 cm −1 , these bands are not observed in the FT-IR spectrum of the ester-crosslinked rubber. It can be seen that all of the objects have reacted substantially.

図4には、実施例6及び比較例2におけるレオメーター曲線を示す。架橋が進行するほど、トルク値は大きくなり、tanδ値は小さくなる。架橋開始時には、実施例6におけるトルク値が比較例2におけるトルク値より小さく、本発明の硬化性ゴム組成物の加工性が従来の部分架橋ゴムを使用した硬化性ゴム組成物より良好であることが分かる。一方、比較例2においては、Maxトルク値が3.0dNmであるのに対し、実施例6においては、架橋終了までに約5分程度を要するものの、Maxトルク値が4.3dNmに達し、本発明のエステル架橋ゴムが従来の部分架橋ゴムを架橋したゴムより架橋性に優れていることが分かる。なお、tanδ値は、実施例6及び比較例2とも0.1以下であり、両者とも良好な値であった。   FIG. 4 shows rheometer curves in Example 6 and Comparative Example 2. As the crosslinking proceeds, the torque value increases and the tan δ value decreases. At the start of crosslinking, the torque value in Example 6 is smaller than the torque value in Comparative Example 2, and the processability of the curable rubber composition of the present invention is better than the curable rubber composition using the conventional partially crosslinked rubber. I understand. On the other hand, in Comparative Example 2, the Max torque value is 3.0 dNm, whereas in Example 6, although it takes about 5 minutes to complete the crosslinking, the Max torque value reaches 4.3 dNm. It can be seen that the ester-crosslinked rubber of the invention is superior in crosslinkability to a rubber obtained by crosslinking a conventional partially crosslinked rubber. The tan δ value was 0.1 or less in both Example 6 and Comparative Example 2, and both were good values.

図5は、実施例6の本発明のエステル架橋ゴムと比較例2の従来の架橋ゴムの150℃雰囲気中での老化試験における硬度変化を示す図である。初期のショアーA硬度は、実施例6において30Hs、比較例2において25Hsであり、実施例6の本発明のエステル架橋ゴムの方が比較例2の従来の架橋ゴムよりも大きな値を示した。この結果は、図4からも理解されるように、本発明のエステル架橋ゴムが従来の架橋ゴムより架橋性に優れていることを反映しているものと考えられる。   FIG. 5 is a graph showing changes in hardness in an aging test in an atmosphere of 150 ° C. of the ester crosslinked rubber of the present invention of Example 6 and the conventional crosslinked rubber of Comparative Example 2. The initial Shore A hardness was 30 Hs in Example 6 and 25 Hs in Comparative Example 2, and the ester crosslinked rubber of the present invention of Example 6 showed a larger value than the conventional crosslinked rubber of Comparative Example 2. As can be understood from FIG. 4, this result is considered to reflect that the ester crosslinked rubber of the present invention is superior in crosslinkability than the conventional crosslinked rubber.

実施例6の本発明のエステル架橋ゴムは、150℃で24時間経過しても、ショアーA硬度は低下せず、約33Hsを維持していた。これに対し、比較例2の従来の架橋ゴムは、150℃で1時間経過しただけでショアーA硬度が大幅に低下し、その後は測定不能であった。   The ester-crosslinked rubber of the invention of Example 6 did not decrease Shore A hardness and maintained about 33 Hs even after 24 hours at 150 ° C. On the other hand, the conventional crosslinked rubber of Comparative Example 2 had a Shore A hardness greatly reduced only after 1 hour at 150 ° C., and was not measurable thereafter.

図6は、実施例6の本発明のエステル架橋ゴムと比較例2の従来の架橋ゴムの150℃雰囲気中での老化試験における重量変化を示す図である。150℃で24時間経過後に、比較例2の従来の架橋ゴムは実施例6の本発明のエステル架橋ゴムの約2倍の重量損失を示した。   6 is a graph showing changes in weight in an aging test in an atmosphere of 150 ° C. of the ester crosslinked rubber of the present invention of Example 6 and the conventional crosslinked rubber of Comparative Example 2. FIG. After 24 hours at 150 ° C., the conventional crosslinked rubber of Comparative Example 2 showed about twice the weight loss of the inventive ester crosslinked rubber of Example 6.

図5、図6から理解されるように、本発明のエステル架橋ゴムは、従来の部分架橋ゴムを有機過酸化物で架橋した架橋ゴムより耐熱性及び硬度において優れている。   As understood from FIGS. 5 and 6, the ester crosslinked rubber of the present invention is superior in heat resistance and hardness to a crosslinked rubber obtained by crosslinking a conventional partially crosslinked rubber with an organic peroxide.

ヒドロキシル変性共重合体と出発材料の未架橋ブチルゴムのH−NMRデータを示す図である。It is a diagram showing 1 H-NMR data of the hydroxyl modified copolymer uncrosslinked butyl rubber of the starting materials. ヒドロキシル変性共重合体と出発材料の未架橋ブチルゴムの熱重量分析曲線を示す図であるである。It is a figure which shows the thermogravimetric analysis curve of the hydroxyl-modified copolymer and the uncrosslinked butyl rubber of a starting material. 本発明のエステル架橋ゴムと出発材料の未架橋ブチルゴムのFT−IRスペクトルデータを示す図である。It is a figure which shows the FT-IR spectrum data of the ester crosslinked rubber of this invention, and the uncrosslinked butyl rubber of a starting material. 本発明のエステル架橋ゴムと従来の部分架橋ゴムのレオメーター曲線を示す図である。It is a figure which shows the rheometer curve of the ester crosslinked rubber of this invention, and the conventional partial crosslinked rubber. 本発明のエステル架橋ゴムと従来の部分架橋ゴムの150℃雰囲気中での老化試験における硬度変化を示す図である。It is a figure which shows the hardness change in the aging test in 150 degreeC atmosphere of the ester crosslinked rubber of this invention, and the conventional partial crosslinked rubber. 本発明のエステル架橋ゴムと従来の部分架橋ゴムの150℃雰囲気中での老化試験における重量損失を示す図である。It is a figure which shows the weight loss in the aging test in 150 degreeC atmosphere of the ester crosslinked rubber of this invention, and the conventional partial crosslinked rubber.

Claims (14)

4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体が、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とのエステル化反応により架橋された、エステル結合を介して架橋されたエステル架橋ゴム。   90 to 99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and 0.5 to 10 mol% of at least one aliphatic diene having 4 to 14 carbon atoms A hydroxyl-modified copolymer in which a hydroxyl group is added to a carbon-carbon double bond of a polymerized rubber-like copolymer, a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with the hydroxyl group; An ester-crosslinked rubber crosslinked through an ester bond, crosslinked by an esterification reaction. 前記ゴム状共重合体における結合脂肪族ジエン量が0.6〜2.5モル%である、請求項1に記載のエステル架橋ゴム。   The ester-crosslinked rubber according to claim 1, wherein the amount of bonded aliphatic diene in the rubbery copolymer is 0.6 to 2.5 mol%. 前記イソモノオレフィンがイソブテンであり、前記脂肪族ジエンがイソプレンである、請求項1又は2に記載のエステル架橋ゴム。   The ester-crosslinked rubber according to claim 1 or 2, wherein the isomonoolefin is isobutene and the aliphatic diene is isoprene. 炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体が架橋されている、請求項1〜3のいずれか1項に記載のエステル架橋ゴム。   The ester-crosslinked rubber according to any one of claims 1 to 3, wherein a hydroxyl-modified copolymer substantially free of carbon-carbon double bonds is crosslinked. 4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体を溶媒に溶解し、ヒドロホウ素化し、さらに酸化、加水分解することによって、前記ゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体を得る変性工程、
前記ヒドロキシル変性共重合体と、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とを混合することによって、硬化性ゴム組成物を得る調製工程、及び、
前記硬化性ゴム組成物中の前記ヒドロキシル変性共重合体のヒドロキシル基と前記架橋剤の官能基とをエステル化反応させることによって、エステル結合を介して架橋されたエステル架橋ゴムを得る架橋工程
を含むことを特徴とするエステル架橋ゴムの製造方法。
90 to 99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and 0.5 to 10 mol% of at least one aliphatic diene having 4 to 14 carbon atoms A hydroxyl-modified copolymer in which a hydroxyl group is added to the carbon-carbon double bond of the rubber-like copolymer by dissolving the polymerized rubber-like copolymer in a solvent, hydroborating, further oxidizing and hydrolyzing. A denaturing step to obtain a coalescence,
A preparation step of obtaining a curable rubber composition by mixing the hydroxyl-modified copolymer and a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with a hydroxyl group; and
A cross-linking step of obtaining an ester cross-linked rubber cross-linked via an ester bond by esterifying the hydroxyl group of the hydroxyl-modified copolymer in the curable rubber composition and the functional group of the cross-linking agent. A method for producing an ester-crosslinked rubber characterized by the above.
前記ゴム状共重合体における結合脂肪族ジエン量が0.6〜2.5モル%である、請求項5に記載のエステル架橋ゴムの製造方法。   The method for producing an ester-crosslinked rubber according to claim 5, wherein the amount of bonded aliphatic diene in the rubbery copolymer is 0.6 to 2.5 mol%. 前記イソモノオレフィンがイソブテンであり、前記脂肪族ジエンがイソプレンである、請求項5又は6に記載のエステル架橋ゴムの製造方法。   The method for producing an ester-crosslinked rubber according to claim 5 or 6, wherein the isomonoolefin is isobutene and the aliphatic diene is isoprene. 前記変性工程において、前記ゴム状共重合体における結合脂肪族ジエン1当量あたり3〜15当量のヒドロホウ素化剤を用いてヒドロホウ素化を行い、炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体を得る、請求項5〜7のいずれか1項に記載のエステル架橋ゴムの製造方法。   In the modification step, hydroboration is performed using 3 to 15 equivalents of a hydroborating agent per equivalent of bonded aliphatic diene in the rubbery copolymer, so that the hydroxyl modification is substantially free of carbon-carbon double bonds. The method for producing an ester-crosslinked rubber according to any one of claims 5 to 7, wherein a copolymer is obtained. 前記変性工程において、2個以上のB−H結合を有するヒドロホウ素化剤を使用し、前記ゴム状共重合体の濃度が1w/v%以下の溶液中でヒドロホウ素化を行う、請求項8に記載のエステル架橋ゴムの製造方法。   The hydroboration is performed in a solution having a concentration of the rubbery copolymer of 1 w / v% or less using a hydroborating agent having two or more B—H bonds in the modification step. The manufacturing method of ester crosslinked rubber as described in any one of Claims 1-3. 前記調製工程において、前記架橋剤として、ジカルボン酸、ジカルボン酸無水物、ジカルボン酸ハロゲン化物及びジカルボン酸エステルの中から選択された少なくとも1種の化合物を使用する、請求項5〜9のいずれか1項に記載のエステル架橋ゴムの製造方法。   In the said preparation process, at least 1 sort (s) of compound selected from dicarboxylic acid, dicarboxylic anhydride, dicarboxylic acid halide, and dicarboxylic acid ester is used as said crosslinking agent. The manufacturing method of ester crosslinked rubber as described in claim | item. 前記調製工程において、前記ゴム状共重合体における結合脂肪族ジエン1当量あたり1〜3当量の前記架橋剤を使用する、請求項10に記載のエステル架橋ゴムの製造方法。   The method for producing an ester-crosslinked rubber according to claim 10, wherein in the preparation step, 1 to 3 equivalents of the crosslinking agent is used per equivalent of bonded aliphatic diene in the rubbery copolymer. 4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されたヒドロキシル変性共重合体と、ヒドロキシル基との反応によりエステル結合を形成可能な官能基を少なくとも2個有する架橋剤とを含有する硬化性ゴム組成物。   90 to 99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and 0.5 to 10 mol% of at least one aliphatic diene having 4 to 14 carbon atoms A hydroxyl-modified copolymer in which a hydroxyl group is added to a carbon-carbon double bond of a polymerized rubber-like copolymer, and a crosslinking agent having at least two functional groups capable of forming an ester bond by reaction with the hydroxyl group; A curable rubber composition containing 4〜7個の炭素原子を有する少なくとも1種のイソモノオレフィン90〜99.5モル%と4〜14個の炭素原子を有する少なくとも1種の脂肪族ジエン0.5〜10モル%とを共重合させたゴム状共重合体の炭素炭素二重結合にヒドロキシル基が付加されており、炭素炭素二重結合が実質的に存在しないヒドロキシル変性共重合体。   90 to 99.5 mol% of at least one isomonoolefin having 4 to 7 carbon atoms and 0.5 to 10 mol% of at least one aliphatic diene having 4 to 14 carbon atoms A hydroxyl-modified copolymer in which a hydroxyl group is added to a carbon-carbon double bond of a polymerized rubbery copolymer, and the carbon-carbon double bond is substantially absent. 請求項1〜4のいずれか1項に記載のエステル架橋ゴムを含有する成形体。   The molded object containing the ester crosslinked rubber of any one of Claims 1-4.
JP2008319342A 2008-12-16 2008-12-16 Ester-crosslinked rubber and method for producing the same, curable rubber composition for producing ester-crosslinked rubber, and molded article containing ester-crosslinked rubber Expired - Fee Related JP5467278B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008319342A JP5467278B2 (en) 2008-12-16 2008-12-16 Ester-crosslinked rubber and method for producing the same, curable rubber composition for producing ester-crosslinked rubber, and molded article containing ester-crosslinked rubber
PCT/JP2009/006865 WO2010070875A1 (en) 2008-12-16 2009-12-15 Ester-crosslinked rubber, process for prodution of same, curable rubber composition and hydroxyl-modified copolymer for producing ester-crosslinked rubber, and molded products containing ester-crosslinked rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319342A JP5467278B2 (en) 2008-12-16 2008-12-16 Ester-crosslinked rubber and method for producing the same, curable rubber composition for producing ester-crosslinked rubber, and molded article containing ester-crosslinked rubber

Publications (2)

Publication Number Publication Date
JP2010143951A true JP2010143951A (en) 2010-07-01
JP5467278B2 JP5467278B2 (en) 2014-04-09

Family

ID=42268555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319342A Expired - Fee Related JP5467278B2 (en) 2008-12-16 2008-12-16 Ester-crosslinked rubber and method for producing the same, curable rubber composition for producing ester-crosslinked rubber, and molded article containing ester-crosslinked rubber

Country Status (2)

Country Link
JP (1) JP5467278B2 (en)
WO (1) WO2010070875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047191A1 (en) * 2015-09-17 2017-03-23 日立造船株式会社 Polyisoprene production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900635B2 (en) * 2012-09-25 2016-04-06 Jsr株式会社 Method for producing modified conjugated diene polymer, method for producing polymer composition, method for producing crosslinked polymer, and method for producing tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115402A (en) * 1989-09-29 1991-05-16 Nippon Zeon Co Ltd Production of hydroxylated polymer
JPH03201525A (en) * 1989-12-28 1991-09-03 Nippon Chemicon Corp Electrolytic capacitor
JPH05222243A (en) * 1992-02-08 1993-08-31 Nippon Zeon Co Ltd Rubber composition
JPH07278216A (en) * 1992-07-15 1995-10-24 Polysar Rubber Corp Production of butyl rubber having double-humped molecular weight distribution
JP2007273925A (en) * 2006-03-31 2007-10-18 Nippon Chemicon Corp Electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115402A (en) * 1989-09-29 1991-05-16 Nippon Zeon Co Ltd Production of hydroxylated polymer
JPH03201525A (en) * 1989-12-28 1991-09-03 Nippon Chemicon Corp Electrolytic capacitor
JPH05222243A (en) * 1992-02-08 1993-08-31 Nippon Zeon Co Ltd Rubber composition
JPH07278216A (en) * 1992-07-15 1995-10-24 Polysar Rubber Corp Production of butyl rubber having double-humped molecular weight distribution
JP2007273925A (en) * 2006-03-31 2007-10-18 Nippon Chemicon Corp Electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047191A1 (en) * 2015-09-17 2017-03-23 日立造船株式会社 Polyisoprene production method
JP2017057298A (en) * 2015-09-17 2017-03-23 日立造船株式会社 Polyisoprene production process

Also Published As

Publication number Publication date
JP5467278B2 (en) 2014-04-09
WO2010070875A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP2019533738A (en) Rubber composition containing improved tread enhancing additive and use thereof
KR101872550B1 (en) Vegetable oil derivatives as extender oils for elastomer compositions
JPH10195114A (en) Polymer stopped with novel amine compound containing side-chain organic halide part exhibiting reactivity, and elastomer compound and product thereof
TW201936651A (en) Composition, cross-linked molded body, and tire
KR20150110668A (en) Rubber composition for tire tread, and pneumatic tire
WO2018101361A1 (en) Rubber composition and pneumatic tire
JP2017186533A (en) Conjugated diene-based rubber production process
JPH1053671A (en) Rubber composition
US8034868B2 (en) Rubber composition containing modified conjugated diene-based polymer bonded to fullerene
JP5467278B2 (en) Ester-crosslinked rubber and method for producing the same, curable rubber composition for producing ester-crosslinked rubber, and molded article containing ester-crosslinked rubber
JP6954305B2 (en) Rubber composition and pneumatic tires
JP2018021145A (en) Rubber composition and tire
JP5527657B2 (en) Ester-crosslinked rubber and method for producing the same, curable rubber composition and modified copolymer for producing ester-crosslinked rubber, and molded article containing ester-crosslinked rubber
US8680210B2 (en) Method for making functionalized polymer
JP4348795B2 (en) Diolefin polymer composition, process for producing the same, and rubber composition for vulcanization
JPH0243775B2 (en)
CN112739762B (en) Rubber composition and tire
JP2020070329A (en) Rubber composition and pneumatic tire using the same
WO2018101360A1 (en) Rubber composition and pneumatic tire
JP2008120936A (en) Rubber composition and tire using it
JP7065671B2 (en) Conjugated diene polymer
JP6828737B2 (en) Silane-modified hydrocarbon resin and elastomer composition for tires
JP2009030034A (en) Method for producing conjugated diene polymer, conjugated diene polymer, and conjugated diene polymer composition
WO2020090665A1 (en) Rubber composition and pneumatic tire using same
WO2016148277A1 (en) Rubber composition for tire treads, and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5467278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees