JP2010141359A - Organic electroluminescent device and light emitting device - Google Patents

Organic electroluminescent device and light emitting device Download PDF

Info

Publication number
JP2010141359A
JP2010141359A JP2010060315A JP2010060315A JP2010141359A JP 2010141359 A JP2010141359 A JP 2010141359A JP 2010060315 A JP2010060315 A JP 2010060315A JP 2010060315 A JP2010060315 A JP 2010060315A JP 2010141359 A JP2010141359 A JP 2010141359A
Authority
JP
Japan
Prior art keywords
layer
organic
transport layer
organic electroluminescent
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010060315A
Other languages
Japanese (ja)
Inventor
Tadashi Ishibashi
義 石橋
Mari Ichimura
眞理 市村
Naoyuki Ueda
尚之 植田
Shinichiro Tamura
眞一郎 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010060315A priority Critical patent/JP2010141359A/en
Publication of JP2010141359A publication Critical patent/JP2010141359A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent device which has a high fluorescence yield, and excellent red color purity, high brightness and stable red luminescence using a compound excellent also in heat stability. <P>SOLUTION: In the organic electroluminescent device, on a glass substrate 1, an ITO transparent electrode 2, a hole transport layer 6, an electron transport layer 7, and a metal electrode 3 are laminated in this order, the hole transport layer 6 and/or the electron transport layer 7 consist of an aminostyryl compound expressed with general formula [I], and a hole blocking layer 30 is provided between the hole transport layer 6 and the electron transport layer 7. In the general formula [I] where X<SP>1</SP>is aryl group, such as phenyl group with substituent, such as nitro group, and Y<SP>1</SP>and Y<SP>2</SP>are groups having aminophenyl group, etc. in their skeletons. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子(有機EL素子)、及びこれを用いたディスプレイデバイス等の発光装置に関するものである。   The present invention relates to an organic electroluminescent element (organic EL element) in which an organic layer having a light emitting region is provided between an anode and a cathode, and a light emitting device such as a display device using the same.

軽量で高効率のフラットパネルディスプレイが、例えばコンピュータやテレビジョンの画面表示用として盛んに研究、開発されている。   Lightweight and high-efficiency flat panel displays have been actively researched and developed for display on computers and televisions, for example.

まず、ブラウン管(CRT)は、輝度が高く、色再現性が良いため、現在ディスプレイとして最も多く使われているが、嵩高く、重く、また消費電力も高いという問題がある。   First, a cathode ray tube (CRT) is currently used most frequently as a display because of its high luminance and good color reproducibility, but it has a problem that it is bulky, heavy, and consumes high power.

また、軽量で高効率のフラットパネルディスプレイとして、アクティブマトリックス駆動等の液晶ディスプレイが商品化されているが、液晶ディスプレイは視野角が狭く、また自発光でないために、周囲が暗い環境下ではバックライトの消費電力が大きいことや、今後実用化が期待されている高精細度の高速ビデオ信号に対して十分な応答性能を有しない等の問題点がある。特に、大画面サイズのディスプレイを製造することは困難であり、そのコストが高い等の課題もある。   In addition, liquid crystal displays such as active matrix drive have been commercialized as lightweight and highly efficient flat panel displays. However, liquid crystal displays have a narrow viewing angle and are not self-luminous. However, there is a problem that the power consumption of the high-definition video signal is large and that the high-definition high-speed video signal expected to be put into practical use in the future does not have sufficient response performance. In particular, it is difficult to produce a display with a large screen size, and there are problems such as high cost.

これに対する代替として、発光ダイオードを用いたディスプレイの可能性があるが、やはり製造コストが高く、また、1つの基板上に発光ダイオードのマトリックス構造を形成することが難しい等の問題があり、ブラウン管に取って代わる低価格のディスプレイ候補としては、実用化までの課題が大きい。   As an alternative to this, there is a possibility of a display using light-emitting diodes, but there are problems such as high manufacturing cost and difficulty in forming a matrix structure of light-emitting diodes on one substrate. As a low-priced display candidate to replace, there is a big problem until practical use.

これらの諸課題を解決する可能性のあるフラットパネルディスプレイとして、最近、有機発光材料を用いた有機電界発光素子(有機EL素子)が注目されている。即ち、発光材料として有機化合物を用いることにより、自発光で、応答速度が高速であり、視野角依存性の無いフラットパネルディスプレイの実現が期待されている。   Recently, an organic electroluminescent element (organic EL element) using an organic light emitting material has attracted attention as a flat panel display that can solve these problems. That is, by using an organic compound as a light-emitting material, it is expected to realize a flat panel display that is self-luminous, has a high response speed, and has no viewing angle dependency.

有機電界発光素子の構成は、透光性の正極と金属陰極との間に、電流の注入によって発光する発光材料を含む有機薄膜を形成したものである。C. W. Tang、S. A. VanSlyke等はApplied Physics Letters 第51巻12号913〜915頁(1987年)掲載の研究報告において、有機薄膜を正孔輸送性材料からなる薄膜と電子輸送性材料からなる薄膜との2層構造として、各々の電極から有機膜中に注入されたホールと電子が再結合することにより発光する素子構造を開発した(シングルヘテロ構造の有機EL素子)。   The structure of the organic electroluminescent element is such that an organic thin film containing a light emitting material that emits light by current injection is formed between a light transmitting positive electrode and a metal cathode. CW Tang, SA Van Slyke, et al., In Applied Physics Letters, Vol. 51, No. 12, pp. 913-915 (1987), reported that organic thin films consist of a thin film made of a hole transporting material and a thin film made of an electron transporting material. As a two-layer structure, an element structure was developed that emits light by recombination of holes and electrons injected from each electrode into the organic film (single heterostructure organic EL element).

この素子構造では、正孔輸送材料または電子輸送材料のいずれかが発光材料を兼ねており、発光は発光材料の基底状態と励起状態のエネルギーギャップに対応した波長帯で起きる。このような2層構造とすることにより、大幅な駆動電圧の低減、発光効率の改善が行われた。   In this element structure, either the hole transport material or the electron transport material serves as the light emitting material, and light emission occurs in a wavelength band corresponding to the energy gap between the ground state and the excited state of the light emitting material. By adopting such a two-layer structure, the driving voltage was greatly reduced and the luminous efficiency was improved.

その後、C. Adachi、S. Tokita、T. Tsutsui、S. Saito等の Japanese Journal of Applied Physics 第27巻2号L269〜L271頁(1988年)掲載の研究報告に記載されているように、正孔輸送材料、発光材料、電子輸送材料の3層構造(ダブルヘテロ構造の有機EL素子)が開発され、更に、C. W. Tang、S. A. VanSlyke、C. H. Chen等の Journal of Applied Physics 第65巻9号3610〜3616頁(1989年)掲載の研究報告に記載されているように、電子輸送材料中に発光材料を含ませた素子構造などが開発された。これらの研究により、低電圧で、高輝度の発光の可能性が検証され、近年、研究開発が非常に活発に行われている。   Then, as described in a research report published in Japanese Journal of Applied Physics Vol. 27, No. 2, pages L269-L271 (1988) by C. Adachi, S. Tokita, T. Tsutsui, S. Saito, etc. A three-layer structure (a double heterostructure organic EL device) of a hole transport material, a light-emitting material, and an electron transport material was developed. Furthermore, Journal of Applied Physics Vol. 65, No. 9, 3610 from CW Tang, SA Van Slyke, CH Chen, etc. As described in a research report published on page 3616 (1989), an element structure in which a light emitting material is included in an electron transport material has been developed. These studies have verified the possibility of light emission at low voltage and high brightness, and research and development have been very active in recent years.

発光材料に用いる有機化合物は、その多様性から、理論的には分子構造を変化させることによって発光色を任意に変えることができるという利点があると言える。従って、分子設計を施すことにより、フルカラーディスプレイに必要な色純度の良いR(赤)、G(緑)、B(青)の3色を揃えることは、無機物を用いた薄膜EL素子と比べて容易であると言える。   It can be said that the organic compound used for the light emitting material has an advantage that the emission color can be arbitrarily changed by changing the molecular structure in theory. Therefore, by applying molecular design, aligning the three colors of R (red), G (green), and B (blue) with good color purity required for full-color displays is less than thin film EL devices using inorganic materials. It can be said that it is easy.

しかしながら、実際には有機電界発光素子においても、解決しなければならない問題がある。安定した高輝度の赤色発光素子の開発は難しく、現在報告されている電子輸送材料として、トリス(8−キノリノール)アルミニウム(以下、Alq3と略称。)にDCM〔4−ジシアノメチレン−6−(p−ジメチルアミノスチリル)−2−メチル−4H−ピラン〕をドープした赤色発光の例(後記の非特許文献1)等があるが、輝度、信頼性ともにディスプレイ材料としては満足のいくものではない。 However, there are actually problems that need to be solved even in organic electroluminescent devices. Development of a stable, high-brightness red light-emitting element is difficult, and as an electron transport material currently reported, tris (8-quinolinol) aluminum (hereinafter abbreviated as Alq 3 ) and DCM [4-dicyanomethylene-6- ( p-Dimethylaminostyryl) -2-methyl-4H-pyran] is an example of red light emission (non-patent document 1 described later). However, neither luminance nor reliability is satisfactory as a display material. .

また、T. Tsutsui, D. U. Kim が後記の非特許文献2で報告したBSB−BCNは、1000cd/m2以上の高い輝度を実現しているが、フルカラーに対応する赤色としての色度が完全なものとは言えない。 In addition, BSB-BCN reported by T. Tsutsui and DU Kim in Non-Patent Document 2 described later achieves a high luminance of 1000 cd / m 2 or more, but has full chromaticity as red corresponding to full color. Not a thing.

さらに高輝度で安定かつ色純度の高い赤色発光素子の実現が、望まれているのが現状である。   In addition, the realization of a red light-emitting element that has high brightness, is stable, and has high color purity is desired.

また、後記の特許文献1においては、特定のジスチリル化合物を有機電界発光材料とすることを提案しているが、目的の発光色が青色であり、赤色用ではない。   Further, in Patent Document 1 described later, it is proposed to use a specific distyryl compound as an organic electroluminescent material, but the target emission color is blue and not for red.

本発明の目的は、高い蛍光収率を有し、熱安定性にも優れた化合物を用いて、赤色の色純度が良く、高輝度かつ安定な赤色発光を有する有機電界発光素子を提供することにある。   An object of the present invention is to provide an organic electroluminescence device having a high fluorescence yield, a compound having excellent thermal stability, good red color purity, high luminance and stable red emission. It is in.

本発明の他の目的は、本来高い量子収率を有する化合物を含有する有機電界発光素子において、発光層でのホールと電子の再結合を促進し、さらに高輝度かつ高効率な発光を呈する有機電界発光素子を提供することにある。   Another object of the present invention is to promote organic recombination of holes and electrons in a light emitting layer in an organic electroluminescent device containing a compound having an inherently high quantum yield, and to further exhibit high luminance and highly efficient light emission. The object is to provide an electroluminescent device.

本発明者は、上記課題を解決するために鋭意検討した結果、特に、特定のアミノスチリル化合物と、これに効率良くエネルギーを伝達することが可能な材料とから発光領域を構成した有機電界発光素子を作製すれば、高輝度、高信頼性の赤色発光素子を提供できることを見出し、本発明に到達したものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventor, in particular, an organic electroluminescent device in which a light emitting region is composed of a specific aminostyryl compound and a material capable of efficiently transmitting energy thereto. As a result, it has been found that a red light emitting element with high luminance and high reliability can be provided, and the present invention has been achieved.

即ち、本発明は、発光領域を有する有機層が陽極と陰極との間に設けられ、電流の注入によって発光する有機物質を構成要素として含む有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、下記一般式[I]で表されるアミノスチリル化合物の少なくとも1種(1種であってよいが、2種又はそれ以上であってもよい。)を含んだ混合物層からなることを特徴とする有機電界発光素子(以下、本発明の第1の有機EL素子と称することがある。)に係るものである。   That is, the present invention relates to an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode and includes an organic substance that emits light by current injection as a constituent element. A mixture layer containing at least one aminostyryl compound represented by the following general formula [I] (which may be one, but may be two or more). The present invention relates to an organic electroluminescent element (hereinafter sometimes referred to as a first organic EL element of the present invention).

Figure 2010141359
[但し、前記一般式[I]において、X1は下記一般式(1)〜(7)のいずれかで表される基であり
Figure 2010141359
(但し、前記一般式(1)〜(3)において、R1〜R4のうち少なくとも一つ(例えば一つ又は二つ)はハロゲン原子(フッ素原子、塩素原子、臭素原子等:以下、同様)、ニトロ基、シアノ基及びフルオロアルキル基(トリフルオロメチル基等:以下、同様)から選ばれた基であり、その他は水素原子、アルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、それらが同一であっても異なっていてもよく、また前記一般式(4)〜(7)において、R5〜R10うち少なくとも一つ(例えば一つ又は二つ)はハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、その他は水素原子、アルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、それらが同一であっても異なっていてもよい。)、
また、Y1は下記一般式(8)、又は(9)で表される基であり、Y2は下記一般式(8)、(9)又は(10)で表される基である。
Figure 2010141359
(但し、前記一般式(8)〜(10)において、R11及びR12は水素原子、置換基を有してもよいアルキル基及び置換基を有してもよいアリール基から選ばれた基であり、それらが同一であっても異なっていてもよく、またR13〜R35は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、それらが同一であっても異なっていてもよい。)]
Figure 2010141359
[However, in the said general formula [I], X < 1 > is group represented by either of the following general formula (1)-(7).
Figure 2010141359
(However, in the general formulas (1) to (3), at least one (for example, one or two) of R 1 to R 4 is a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.). ), A nitro group, a cyano group, and a fluoroalkyl group (trifluoromethyl group and the like: the same applies hereinafter), and the others are a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a halogen atom, a nitro group, A group selected from a cyano group and a fluoroalkyl group, which may be the same or different, and in the general formulas (4) to (7), at least one of R 5 to R 10 ( For example, one or two) is a group selected from a halogen atom, a nitro group, a cyano group and a fluoroalkyl group, and the others are a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a halogen atom. A nitro group, a group selected from cyano group and a fluoroalkyl group, may be different even if they are identical.)
Y 1 is a group represented by the following general formula (8) or (9), and Y 2 is a group represented by the following general formula (8), (9) or (10).
Figure 2010141359
(However, in the general formulas (8) to (10), R 11 and R 12 are groups selected from a hydrogen atom, an alkyl group which may have a substituent, and an aryl group which may have a substituent. And they may be the same or different, and R 13 to R 35 are each a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. A group selected from an alkoxy group, a halogen atom, a nitro group, a cyano group, and a fluoroalkyl group, which may have the same, or they may be the same or different.

前記一般式[I]において、X1は下記構造式(11)〜(14)のいずれかで表される基であり、

Figure 2010141359
また、Y1及びY2は下記一般式(8)又は(9)で表される基であってよい(以下、同様)。
Figure 2010141359
(但し、前記一般式(8)及び(9)において、R11及びR12は前記したものと同じであり、R13〜R30は前記したものと同じであるが、フルオロアルキル基の場合はトリフルオロメチル基である。) In the general formula [I], X 1 is a group represented by any one of the following structural formulas (11) to (14),
Figure 2010141359
Y 1 and Y 2 may be a group represented by the following general formula (8) or (9) (hereinafter the same).
Figure 2010141359
(However, in the general formulas (8) and (9), R 11 and R 12 are the same as those described above, and R 13 to R 30 are the same as those described above. A trifluoromethyl group.)

本発明の有機電界発光素子によれば、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層の少なくとも1層に前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種が混合物として又は単独に含まれているので、この特定のアミノスチリル化合物及び/又はこれに効率良くエネルギーを伝達することが可能な材料から発光領域を構成でき、高い蛍光収率で熱安定性に優れ、赤色純度が良く、高輝度、高信頼性の赤色発光素子を提供できる。   According to the organic electroluminescent element of the present invention, in the organic electroluminescent element in which the organic layer having a light emitting region is provided between the anode and the cathode, the general formula [ I]], at least one of the aminostyryl compounds represented by the mixture is contained as a mixture or alone, so that the specific aminostyryl compound and / or a material capable of efficiently transferring energy to the light emitting region Thus, it is possible to provide a red light emitting device having high fluorescence yield, excellent thermal stability, good red purity, high luminance and high reliability.

しかも、前記ホールブロッキング層を設けることによって、本来高い量子収率を有する上記アミノスチリル化合物を含有する有機電界発光素子において、発光層でのホールと電子の再結合を促進し、さらに高輝度かつ高効率な発光を呈する有機電界発光素子を提供することができる。   In addition, by providing the hole blocking layer, in the organic electroluminescence device containing the aminostyryl compound having a high quantum yield, the recombination of holes and electrons in the light emitting layer is promoted, and the brightness and the brightness are increased. An organic electroluminescent element that exhibits efficient light emission can be provided.

本発明に基づく有機電界発光素子の要部概略断面図である。It is a principal part schematic sectional drawing of the organic electroluminescent element based on this invention. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other example of an organic electroluminescent element equally. 同、有機電界発光素子の更に他の例の要部概略断面図である。It is a principal part schematic sectional drawing of the other another example of an organic electroluminescent element equally. 同、有機電界発光素子を用いたフルカラーの平面ディスプレイの構成図である。It is a block diagram of a full-color flat display using an organic electroluminescent element.

本発明の第1の有機EL素子において、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記電子輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなってよい。   In the first organic EL element of the present invention, the organic layer has an organic stacked structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer in the organic stacked structure includes: The mixture layer may contain at least one aminostyryl compound represented by the general formula [I].

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記ホール輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and at least the hole transport layer in the organic laminated structure is represented by the general formula [I]. The mixture layer may contain at least one aminostyryl compound.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなり、かつ前記電子輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   The organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer is at least one aminostyryl compound represented by the general formula [I]. And the electron transport layer may be composed of the mixture layer containing at least one aminostyryl compound represented by the general formula [I].

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記発光層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is represented by the general formula [I]. The mixture layer may contain at least one aminostyryl compound represented.

本発明において、前記アミノスチリル化合物を含む混合物層を形成するのに使用可能な材料としては、前記アミノスチリル化合物の他に、ホール輸送材料(例えば、芳香族アミン類等)、電子輸送材料(例えば、Alq3、ピラゾリン類等)、又は一般に赤色発光用ドーパントとして用いられる一連の化合物(DCM及びその類似化合物、ポルフィリン類、フタロシアニン類、ペリレン化合物、ナイルレッド、スクアリリウム化合物等)が挙げられる(以下、同様)。 In the present invention, materials that can be used to form the mixture layer containing the aminostyryl compound include, in addition to the aminostyryl compound, a hole transport material (for example, aromatic amines), an electron transport material (for example, , Alq 3 , pyrazolines, etc.), or a series of compounds generally used as dopants for red light emission (DCM and its similar compounds, porphyrins, phthalocyanines, perylene compounds, Nile red, squarylium compounds, etc.) The same).

この場合、混合物層において上記アミノスチリル化合物の少なくとも1種は、その他の化合物と混合する場合、重量比で0.1〜95%の割合で含有されており、この範囲内でドーパントとしての含有量を決めることができる(以下、同様)。   In this case, at least one of the aminostyryl compounds in the mixture layer is contained in a proportion of 0.1 to 95% by weight when mixed with other compounds, and the content as a dopant within this range. Can be determined (the same applies hereinafter).

なお、ここで「混合物層」とは、典型的には、上記アミノスチリル化合物とその他の化合物との混合物層を意味するが、これ以外にも、上記アミノスチリル化合物に包含される2種又はそれ以上のアミノスチリル化合物の混合物層も意味する場合がある。このような混合物層とすることによって、複数の化合物の組み合せで所望の輝度や色度の赤色発光を生ぜしめることができる。   Here, the “mixture layer” typically means a mixture layer of the aminostyryl compound and other compounds, but in addition to this, two or more kinds included in the aminostyryl compound are included. It may also mean a mixture layer of the above aminostyryl compounds. By setting it as such a mixture layer, red light emission of desired brightness | luminance and chromaticity can be produced by the combination of a some compound.

本発明の有機電界発光素子は、例えばディスプレイデバイスとして構成された発光装置に用いて好適なものである(以下、同様)。   The organic electroluminescent element of the present invention is suitable for use in, for example, a light emitting device configured as a display device (hereinafter the same).

本発明はまた、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、下記構造式(15)−1〜(15)−12、(16)−1〜(16)−12、(17)−1〜(17)−6、及び(18)−1〜(18)−6で表されるアミノスチリル化合物の少なくとも1種(1種であってよいが、2種又はそれ以上であってもよい。)を含んだ混合物層からなることを特徴とする有機電界発光素子(以下、本発明の第2の有機EL素子と称することがある。)を提供するものである。

Figure 2010141359
Figure 2010141359
Figure 2010141359
In the organic electroluminescent device in which the organic layer having a light emitting region is provided between the anode and the cathode, at least one of the constituent layers of the organic layer has the following structural formula (15)- Aminostyryl represented by 1 to (15) -12, (16) -1 to (16) -12, (17) -1 to (17) -6, and (18) -1 to (18) -6 An organic electroluminescent device (hereinafter referred to as the second embodiment of the present invention) comprising a mixture layer containing at least one kind of compound (which may be one kind, but may be two kinds or more). It may be referred to as an organic EL element.).
Figure 2010141359
Figure 2010141359
Figure 2010141359

本発明の第2の有機EL素子において、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも電子輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   In the second organic EL device of the present invention, the organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer in the organic multilayer structure has the above-described structure. The mixture layer may contain at least one aminostyryl compound.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくともホール輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the hole transport layer in the organic multilayer structure includes at least one kind of the aminostyryl compound. It may consist of the mixture layer.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなり、かつ前記電子輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer is composed of the mixture layer containing at least one kind of the aminostyryl compound, And the said electron carrying layer may consist of the said mixture layer containing at least 1 sort (s) of the said amino styryl compound.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも発光層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is at least one kind of the aminostyryl compound. It may consist of the said mixture layer containing.

また、前記有機層の構成層のうちの前記少なくとも1層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上、例えば600〜700nm(以下、同様)の範囲に発光極大を有する赤色発光色素とを含んだ前記混合物層からなっていてよい。   Further, the at least one of the constituent layers of the organic layer includes at least one kind of the aminostyryl compound and a red light emitting dye having a light emission maximum in a range of 600 nm or more, for example, 600 to 700 nm (hereinafter the same). It may consist of the said mixture layer containing.

この場合、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機層の構成層のうちの前記少なくとも1層が少なくとも前記電子輸送層であってよい。   In this case, the organic layer has an organic stacked structure in which a hole transport layer and an electron transport layer are stacked, and at least one of the constituent layers of the organic layer is at least the electron transport layer. Good.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機層の構成層のうちの前記少なくとも1層が少なくとも前記ホール輸送層であってよい。   Further, the organic layer may have an organic stacked structure in which a hole transport layer and an electron transport layer are stacked, and at least one of the constituent layers of the organic layer may be at least the hole transport layer. .

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記混合物層からなり、かつ前記電子輸送層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記混合物層からっていてよい。   The organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer has a light emission maximum in a range of 600 nm or more with at least one of the aminostyryl compounds. And the mixture layer containing at least one aminostyryl compound and a red light emitting dye having a light emission maximum in a range of 600 nm or more. May be layered.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記発光層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記混合物層からなっていてよい。   The organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is at least one of the aminostyryl compounds. The mixture layer may include a seed and a red light-emitting dye having a light emission maximum in a range of 600 nm or more.

本発明はまた、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種(1種であってよいが2種又はそれ以上であってもよい。)を含んだ発光性の混合物層からなり、かつ前記発光性の混合物層の陰極側に(特に接して)ホールブロッキング層が存在することを特徴とする有機電界発光素子(以下、本発明の第3の有機EL素子と称することがある。)を提供するものである。   The present invention also provides an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, wherein at least one of the constituent layers of the organic layer is represented by the general formula [I]. A cathode of the light-emitting mixture layer, comprising a light-emitting mixture layer containing at least one aminostyryl compound represented (one type may be two or more). The present invention provides an organic electroluminescence device (hereinafter, sometimes referred to as a third organic EL device of the present invention) characterized in that a hole blocking layer is present on the side (particularly in contact).

本発明の第3の有機EL素子において、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記電子輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなっていてよい。   In the third organic EL device of the present invention, the organic layer has an organic stacked structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer in the organic stacked structure includes: The luminescent mixture layer may contain at least one aminostyryl compound represented by the general formula [I].

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記ホール輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and at least the hole transport layer in the organic laminated structure is represented by the general formula [I]. The luminescent mixture layer may contain at least one aminostyryl compound.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなり、前記電子輸送層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなり、かつこの電子輸送性の発光性の混合物層の陰極側に前記ホールブロッキング層が存在していてよい。   The organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer is at least one aminostyryl compound represented by the general formula [I]. And the electron transport layer is composed of the luminescent mixture layer containing at least one aminostyryl compound represented by the general formula [I], and the electron transport layer. The hole blocking layer may be present on the cathode side of the transporting light-emitting mixture layer.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記発光層が、前記一般式[I]で表されるアミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is represented by the general formula [I]. The light-emitting mixture layer may contain at least one aminostyryl compound represented.

本発明の第3の有機EL素子において、前記ホールブロッキング層は、発光層でのホールと電子の再結合を促進し、さらに高輝度かつ高効率な発光を得ることができるものであって、このようなホールブロッキング層に適した材料は、次のようなエネルギー状態を有するものであることが望ましい(以下、同様)。すなわち、ホールブロッキング層を形成する材料の最高占有分子軌道レベルが、ホールブロッキング層の陽極側に接する層を形成する材料の最高占有分子軌道レベルより低いエネルギーレベルにあること、なおかつ、ホールブロッキング層を形成する材料の最低非占有分子軌道レベルが、ホールブロッキング層の陽極側に接する層を形成する材料の最低非占有分子軌道レベルより高いエネルギーレベルにあり、またホールブロッキング層の陰極側に接する層を形成する材料の最低非占有分子軌道レベルより低いエネルギーレベルにあることである。   In the third organic EL device of the present invention, the hole blocking layer promotes recombination of holes and electrons in the light emitting layer, and can obtain light emission with high brightness and high efficiency. It is desirable that a material suitable for such a hole blocking layer has the following energy state (the same applies hereinafter). That is, the highest occupied molecular orbital level of the material forming the hole blocking layer is at an energy level lower than the highest occupied molecular orbital level of the material forming the layer in contact with the anode side of the hole blocking layer, and the hole blocking layer is The lowest unoccupied molecular orbital level of the material to be formed is at an energy level higher than the lowest unoccupied molecular orbital level of the material forming the layer that contacts the anode side of the hole blocking layer, and the layer that contacts the cathode side of the hole blocking layer is The energy level is lower than the lowest unoccupied molecular orbital level of the material to be formed.

このような材料として、特開平10−79297号、特開平11−204258号、特開平11−204264号、特開平11−204259号の各公報等に示されたフェナントロリン誘導体が挙げられるが、上記のエネルギーレベルの条件を満たすものであれば、フェナントロリン誘導体に限定されるものではない。使用可能なフェナントロリン誘導体を下記に示す。   Examples of such materials include phenanthroline derivatives disclosed in JP-A-10-79297, JP-A-11-204258, JP-A-11-204264, JP-A-11-204259, and the like. The phenanthroline derivative is not limited as long as the energy level is satisfied. The phenanthroline derivatives that can be used are shown below.

Figure 2010141359
(この一般式中、R1〜R8は、水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換のアリール基、置換もしくは非置換のアミノ基、ハロゲン原子、ニトロ基、シアノ基又は水酸基を表わす。)
Figure 2010141359
Figure 2010141359
(In this general formula, R 1 to R 8 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group, or a hydroxyl group. Represents.)
Figure 2010141359

本発明はまた、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、前記構造式(15)−1〜(15)−12、(16)−1〜(16)−12、(17)−1〜(17)−6、及び(18)−1〜(18)−6で表されるアミノスチリル化合物の少なくとも1種(1種であってよいが、2種又はそれ以上であってもよい。)を含んだ発光性の混合物層からなり、かつ前記発光性の混合物層の陰極側にホールブロッキング層が存在することを特徴とする有機電界発光素子(以下、本発明の第4の有機EL素子と称することがある。)を提供するものである。   According to the present invention, in the organic electroluminescent element in which the organic layer having a light emitting region is provided between the anode and the cathode, at least one of the constituent layers of the organic layer is the structural formula (15)- Aminostyryl represented by 1 to (15) -12, (16) -1 to (16) -12, (17) -1 to (17) -6, and (18) -1 to (18) -6 It consists of a luminescent mixture layer containing at least one kind of compound (which may be one kind, but may be two or more kinds), and hole blocking on the cathode side of the luminescent mixture layer The present invention provides an organic electroluminescent device (hereinafter, sometimes referred to as a fourth organic EL device of the present invention) characterized in that a layer is present.

本発明の第4の有機EL素子において、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも電子輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなっていてよい。   In the fourth organic EL element of the present invention, the organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer in the organic multilayer structure includes The luminescent mixture layer may contain at least one aminostyryl compound.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくともホール輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなっていてよい。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the hole transport layer in the organic multilayer structure includes at least one kind of the aminostyryl compound. However, it may consist of the luminescent mixture layer.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなり、前記電子輸送層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなり、かつこの電子輸送性の発光性の混合物層の陰極側に前記ホールブロッキング層が存在していてよい。   The organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the light-emitting mixture layer contains at least one of the aminostyryl compounds. The electron-transporting layer is composed of the light-emitting mixture layer containing at least one aminostyryl compound, and the hole-blocking layer is present on the cathode side of the electron-transporting light-emitting mixture layer You can do it.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも発光層が、前記アミノスチリル化合物の少なくとも1種を含んだ前記発光性の混合物層からなっていてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is at least one kind of the aminostyryl compound. It may consist of the said luminescent mixture layer containing.

また、前記有機層の構成層のうちの前記少なくとも1層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記発光性の混合物層からなっていてよい。 In addition, the at least one of the constituent layers of the organic layer includes the luminescent mixture layer containing at least one aminostyryl compound and a red luminescent dye having a luminescence maximum in a range of 600 nm or more. It may be.

この場合、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機層の構成層のうちの前記少なくとも1層が少なくとも前記電子輸送層であってよい。   In this case, the organic layer has an organic stacked structure in which a hole transport layer and an electron transport layer are stacked, and at least one of the constituent layers of the organic layer is at least the electron transport layer. Good.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機層の構成層のうちの前記少なくとも1層が少なくとも前記ホール輸送層であってよい。   Further, the organic layer may have an organic stacked structure in which a hole transport layer and an electron transport layer are stacked, and at least one of the constituent layers of the organic layer may be at least the hole transport layer. .

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記発光性の混合物層からなり、前記電子輸送層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記発光性の混合物層からなり、かつこの電子輸送性の発光性の混合物層の陰極側に前記ホールブロッキング層が存在していてよい。   The organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer has a light emission maximum in a range of 600 nm or more with at least one of the aminostyryl compounds. And the electron transport layer includes at least one aminostyryl compound and a red light-emitting dye having a light emission maximum in a range of 600 nm or more. The hole blocking layer may be formed on the cathode side of the light-emitting mixture layer made of the light-emitting mixture layer.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記発光層が、前記アミノスチリル化合物の少なくとも1種と、600nm以上の範囲に発光極大を有する赤色発光色素とを含んだ前記発光性の混合物層からなっていてよい。   The organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is at least one of the aminostyryl compounds. The light-emitting mixture layer may include a seed and a red light-emitting dye having a light emission maximum in a range of 600 nm or more.

本発明はまた、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、前記一般式[I]で表されるアミノスチリル化合物単独で構成されたアミノスチリル化合物層からなり、かつ前記アミノスチリル化合物層の陰極側に(特に接して)ホールブロッキング層が存在することを特徴とする有機電界発光素子(以下、本発明の第5の有機EL素子と称することがある。)を提供するものである。   The present invention also provides an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, wherein at least one of the constituent layers of the organic layer is represented by the general formula [I]. An organic electroluminescent device comprising an aminostyryl compound layer composed of a single aminostyryl compound represented by the present invention and having a hole blocking layer (particularly in contact) on the cathode side of the aminostyryl compound layer , Sometimes referred to as a fifth organic EL element of the present invention).

本発明の第5の有機EL素子において、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記電子輸送層が前記アミノスチリル化合物層からなっていてよい。   In the fifth organic EL element of the present invention, the organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer in the organic multilayer structure is the It may consist of an aminostyryl compound layer.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記ホール輸送層が前記アミノスチリル化合物層からなっていてよい。   The organic layer may have an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and at least the hole transport layer in the organic laminated structure may be composed of the aminostyryl compound layer. .

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が前記アミノスチリル化合物層からなり、前記電子輸送層が前記アミノスチリル化合物層からなり、かつこの電子輸送性のアミノスチリル化合物層の陰極側に前記ホールブロッキング層が存在していてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, the hole transport layer is composed of the aminostyryl compound layer, and the electron transport layer is the aminostyryl compound layer. The hole blocking layer may be present on the cathode side of the electron-transporting aminostyryl compound layer.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記発光層が前記アミノスチリル化合物層からなっていてよい。   The organic layer has an organic multilayer structure in which a hole transport layer, a light-emitting layer, and an electron transport layer are stacked, and at least the light-emitting layer of the organic multilayer structure includes the aminostyryl compound layer. It's okay.

本発明の第5の有機EL素子におけるホールブロッキング層は、本発明の第3の有機EL素子における前記ホールブロッキング層と同様に構成されていてよい。   The hole blocking layer in the fifth organic EL element of the present invention may be configured in the same manner as the hole blocking layer in the third organic EL element of the present invention.

本発明は更に、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、前記構造式(15)−1〜(15)−12、(16)−1〜(16)−12、(17)−1〜(17)−6、及び(18)−1〜(18)−6で表されるアミノスチリル化合物単独で構成されたアミノスチリル化合物層からなり、かつ前記アミノスチリル化合物層の陰極側にホールブロッキング層が存在することを特徴とする有機電界発光素子(以下、本発明の第6の有機EL素子と称することがある。)も提供するものである。 In the organic electroluminescence device in which an organic layer having a light emitting region is provided between an anode and a cathode, at least one of the constituent layers of the organic layer is the structural formula (15)- Aminostyryl represented by 1 to (15) -12, (16) -1 to (16) -12, (17) -1 to (17) -6, and (18) -1 to (18) -6 An organic electroluminescent element (hereinafter referred to as the sixth organic EL element of the present invention) comprising an aminostyryl compound layer composed of a compound alone and having a hole blocking layer on the cathode side of the aminostyryl compound layer Is also provided).

本発明の第6の有機EL素子において、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも電子輸送層が前記アミノスチリル化合物層からなっていてよい。   In the sixth organic EL element of the present invention, the organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer in the organic multilayer structure is the amino layer. It may consist of a styryl compound layer.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくともホール輸送層が前記アミノスチリル化合物層からなっていてよい。   The organic layer may have an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the hole transport layer in the organic multilayer structure may be composed of the aminostyryl compound layer.

また、前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が前記アミノスチリル化合物層からなると共に、前記電子輸送層が前記アミノスチリル化合物層からなり、かつこの電子輸送性のアミノスチリル化合物層の陰極側に前記ホールブロッキング層が存在していてよい。   Further, the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, the hole transport layer is composed of the aminostyryl compound layer, and the electron transport layer is the aminostyryl compound. The hole blocking layer may be present on the cathode side of the electron-transporting aminostyryl compound layer.

また、前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも発光層が前記アミノスチリル化合物層からなっていてよい。   The organic layer has an organic laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated, and at least the light emitting layer of the organic laminated structure is composed of the aminostyryl compound layer. Good.

図1〜図9には、本発明に基づく有機電界発光素子(有機EL素子)の例をそれぞれ示す。   1 to 9 show examples of organic electroluminescent elements (organic EL elements) according to the present invention.

図1は、陰極3を発光光20が透過する透過型有機電界発光素子Aであって、発光光20は保護層4の側からも観測できる。図2は、陰極3での反射光も発光光20として得る反射型有機電界発光素子Bを示す。   FIG. 1 shows a transmissive organic electroluminescent device A in which the emitted light 20 is transmitted through the cathode 3, and the emitted light 20 can be observed from the protective layer 4 side. FIG. 2 shows a reflective organic electroluminescent device B that obtains reflected light at the cathode 3 as emitted light 20.

図中、1は有機電界発光素子を形成するための基板である。ガラス、プラスチック及び他の適宜の材料を用いることができる。また、有機電界発光素子を他の表示素子と組み合わせて用いる場合には、基板を共用することもできる。2は透明電極であり、ITO(Indium tin oxide)、SnO2等が使用できる。 In the figure, reference numeral 1 denotes a substrate for forming an organic electroluminescent element. Glass, plastic and other suitable materials can be used. Moreover, when using an organic electroluminescent element in combination with another display element, a board | substrate can also be shared. 2 is a transparent electrode, and ITO (Indium tin oxide), SnO 2 or the like can be used.

また、5は有機発光層であり、上記したアミノスチリル化合物を発光材料として含有している(但し、上記アミノスチリル化合物は、少なくとも1種がその他の化合物と混合して、或いは複数種のアミノスチリル化合物を併用して含有:以下、同様)。この発光層について、有機電界発光20を得る層構成としては、従来公知の種々の構成を用いることができる。後記するように、例えば、正孔(ホール)輸送層と電子輸送層のいずれかを構成する材料が発光性を有する場合、これらの薄膜を積層した構造が使用できる。更に、本発明の目的を満たす範囲で電荷輸送性能を上げるために、正孔輸送層と電子輸送層のいずれか若しくは両方が、複数種の材料の薄膜を積層した構造、又は、複数種の材料を混合した組成からなる薄膜を使用するのを妨げない。また、発光性能を上げるために、少なくとも1種以上の蛍光性の材料を用いて、この薄膜を正孔輸送層と電子輸送層の間に挟持した構造、更に少なくとも1種以上の蛍光性の材料を正孔輸送層若しくは電子輸送層、又はこれらの両方に含ませた構造を使用してもよい。これらの場合には、発光効率を改善するために、正孔(ホール)又は電子の輸送を制御するための薄膜をその層構成に含ませることも可能である。   Reference numeral 5 denotes an organic light emitting layer, which contains the above aminostyryl compound as a light emitting material (provided that at least one of the above aminostyryl compounds is mixed with other compounds or plural kinds of aminostyryl compounds). Containing compounds in combination: hereinafter the same). About this light emitting layer, conventionally well-known various structures can be used as a layer structure from which the organic electroluminescence 20 is obtained. As will be described later, for example, when a material constituting either the hole transport layer or the electron transport layer has a light emitting property, a structure in which these thin films are stacked can be used. Furthermore, in order to improve the charge transport performance within a range that satisfies the object of the present invention, either or both of the hole transport layer and the electron transport layer are structured by laminating thin films of plural kinds of materials, or plural kinds of materials. It does not prevent the use of a thin film having a composition mixed with Further, in order to improve the light emitting performance, at least one kind of fluorescent material is used, and the thin film is sandwiched between the hole transport layer and the electron transport layer, and at least one kind of fluorescent material. May be used in the hole transport layer, the electron transport layer, or both. In these cases, in order to improve luminous efficiency, a thin film for controlling the transport of holes or electrons can be included in the layer structure.

上記の一般式[I]で表したアミノスチリル化合物は、電子輸送性能と正孔輸送性能の両方を持つため、素子構造中、電子輸送性材料との混合発光層としても、或いは正孔輸送性材料との混合発光層としても用いることが可能である。また、該化合物を含む混合層を電子輸送層と正孔輸送層に挟み込んだ構成で発光材料として用いることも可能である。   Since the aminostyryl compound represented by the above general formula [I] has both electron transport performance and hole transport performance, it can be used as a mixed light-emitting layer with an electron transport material in the device structure or as a hole transport property. It can also be used as a mixed light emitting layer with a material. In addition, a mixed layer containing the compound can be used as a light-emitting material in a structure in which an electron-transport layer and a hole-transport layer are sandwiched.

なお、図1及び図2中、3は陰極であり、電極材料としては、Li、Mg、Ca等の活性な金属とAg、Al、In等の金属との合金或いは積層した構造が使用できる。透過型の有機電界発光素子においては、陰極の厚さを調節することにより、用途に合った光透過率を得ることができる。また、図中、4は封止、保護層であり、有機電界発光素子全体を覆う構造とすることで、その効果が上がる。気密性が保たれれば、適宜の材料を使用することができる。   1 and 2, reference numeral 3 denotes a cathode. As an electrode material, an alloy of an active metal such as Li, Mg, or Ca and a metal such as Ag, Al, or In or a laminated structure can be used. In the transmissive organic electroluminescent device, the light transmittance suitable for the application can be obtained by adjusting the thickness of the cathode. Further, in the figure, reference numeral 4 denotes a sealing / protecting layer, and the effect is enhanced by adopting a structure that covers the entire organic electroluminescent element. An appropriate material can be used as long as the airtightness is maintained.

本発明に基づく有機電界発光素子においては、有機層が、正孔輸送層と電子輸送層とが積層された有機積層構造(シングルへテロ構造)を有しており、正孔輸送層又は電子輸送層の形成材料として前記アミノスチリル化合物を含む混合物層が用いられてよい。或いは、有機層が正孔輸送層と発光層と電子輸送層とが順次積層された有機積層構造(ダブルヘテロ構造)を有しており、発光層の形成材料として前記スチリル化合物を含む混合物層が用いられてよい。   In the organic electroluminescent device according to the present invention, the organic layer has an organic laminated structure (single heterostructure) in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer or the electron transport. A mixture layer containing the aminostyryl compound may be used as a layer forming material. Alternatively, the organic layer has an organic laminated structure (double heterostructure) in which a hole transport layer, a light emitting layer, and an electron transport layer are sequentially laminated, and a mixture layer containing the styryl compound as a light emitting layer forming material is May be used.

このような有機積層構造を有する有機電界発光素子の例を示すと、図3は、透光性の基板1上に、透光性の陽極2と、正孔輸送層6と電子輸送層7とからなる有機層5aと、陰極3とが順次積層された積層構造を有し、この積層構造が保護層4によって封止されてなる、シングルヘテロ構造の有機電界発光素子Cである。   As an example of an organic electroluminescent device having such an organic laminated structure, FIG. 3 shows that a translucent anode 2, a hole transport layer 6 and an electron transport layer 7 are formed on a translucent substrate 1. This is an organic electroluminescent device C having a single hetero structure, which has a laminated structure in which an organic layer 5 a made of the above and a cathode 3 are sequentially laminated, and this laminated structure is sealed by a protective layer 4.

図3に示すように発光層を省略した層構成の場合には、正孔輸送層6と電子輸送層7の界面から所定波長の発光20を発生する。これらの発光は基板1側から観測される。   In the case of a layer configuration in which the light emitting layer is omitted as shown in FIG. 3, light emission 20 having a predetermined wavelength is generated from the interface between the hole transport layer 6 and the electron transport layer 7. These luminescences are observed from the substrate 1 side.

また、図4は、透光性の基板1上に、透光性の陽極2と、正孔輸送層10と発光層11と電子輸送層12とからなる有機層5bと、陰極3とが順次積層された積層構造を有し、この積層構造が保護層4によって封止されてなる、ダブルヘテロ構造の有機電界発光素子Dである。   FIG. 4 shows a light-transmitting substrate 1, a light-transmitting anode 2, an organic layer 5b composed of a hole-transporting layer 10, a light-emitting layer 11, and an electron-transporting layer 12, and a cathode 3 sequentially. This is an organic electroluminescent element D having a double hetero structure, which has a laminated structure in which the laminated structure is sealed by a protective layer 4.

図4に示した有機電界発光素子においては、陽極2と陰極3の間に直流電圧を印加することにより、陽極2から注入された正孔が正孔輸送層10を経て、また陰極3から注入された電子が電子輸送層12を経て、それぞれ発光層11に到達する。この結果、発光層11においては電子/正孔の再結合が生じて一重項励起子が生成し、この一重項励起子から所定波長の発光を発生する。   In the organic electroluminescence device shown in FIG. 4, by applying a DC voltage between the anode 2 and the cathode 3, holes injected from the anode 2 are injected through the hole transport layer 10 and from the cathode 3. The emitted electrons reach the light emitting layer 11 through the electron transport layer 12. As a result, electron / hole recombination occurs in the light emitting layer 11 to generate singlet excitons, and light emission of a predetermined wavelength is generated from the singlet excitons.

上述した各有機電界発光素子C、Dにおいて、基板1は、例えば、ガラス、プラスチック等の光透過性の材料を適宣用いることができる。また、他の表示素子と組み合わせて用いる場合や、図3及び図4に示した積層構造をマトリックス状に配置する場合等は、この基板を共用してもよい。また、素子C、Dはいずれも透過型、反射型のいずれの構造も採りうる。   In each of the organic electroluminescent elements C and D described above, the substrate 1 can be appropriately made of a light transmissive material such as glass or plastic. Further, this substrate may be shared when used in combination with other display elements or when the stacked structure shown in FIGS. 3 and 4 is arranged in a matrix. In addition, the elements C and D can both adopt a transmission type and a reflection type structure.

また、陽極2は、透明電極であり、ITOやSnO2等が使用できる。この陽極2と正孔輸送層6(又は正孔輸送層10)との間には、電荷注入効率を改善する目的で、有機物もしくは有機金属化合物からなる薄膜を設けてもよい。なお、保護層4が金属等の導電性材料で形成されている場合は、陽極2の側面に絶縁膜が設けられていてもよい。 The anode 2 is a transparent electrode, and ITO, SnO 2 or the like can be used. A thin film made of an organic material or an organometallic compound may be provided between the anode 2 and the hole transport layer 6 (or the hole transport layer 10) for the purpose of improving the charge injection efficiency. In addition, when the protective layer 4 is formed of a conductive material such as metal, an insulating film may be provided on the side surface of the anode 2.

また、有機電界発光素子Cにおける有機層5aは、正孔輸送層6と電子輸送層7とが積層された有機層であり、これらのいずれか又は双方に上記したアミノスチリル化合物を含む混合物が含有され、発光性の正孔輸送層6又は電子輸送層7としてよい。有機電界発光素子Dにおける有機層5bは、正孔輸送層10と上記したアミノスチリル化合物を含む混合物からなる発光層11と電子輸送層12とが積層された有機層であるが、その他、種々の積層構造を採ることができる。例えば、正孔輸送層と電子輸送層のいずれか若しくは両方が発光してもよい。   Moreover, the organic layer 5a in the organic electroluminescent element C is an organic layer in which the hole transport layer 6 and the electron transport layer 7 are laminated, and a mixture containing the aminostyryl compound described above is contained in either or both of them. Thus, the light-emitting hole transport layer 6 or the electron transport layer 7 may be used. The organic layer 5b in the organic electroluminescent device D is an organic layer in which a hole transport layer 10, a light emitting layer 11 made of a mixture containing the aminostyryl compound described above, and an electron transport layer 12 are laminated. A laminated structure can be adopted. For example, either or both of the hole transport layer and the electron transport layer may emit light.

また、正孔輸送層において、正孔輸送性能を向上させるため、複数種の正孔輸送材料を積層した正孔輸送層を形成してもよい。   In the hole transport layer, a hole transport layer in which a plurality of types of hole transport materials are stacked may be formed in order to improve hole transport performance.

また、有機電界発光素子Cにおいて、発光層は電子輸送性発光層7であってよいが、電源8から印加される電圧によっては、正孔輸送層6やその界面で発光される場合がある。同様に、有機電界発光素子Dにおいて、発光層は層11以外に、電子輸送層12であってもよく、正孔輸送層10であってもよい。発光性能を向上させるため、少なくとも1種の蛍光性材料を用いた発光層11を正孔輸送層と電子輸送層との間に狭持させた構造であるのがよい。或いは、この蛍光性材料を正孔輸送層又は電子輸送層、或いはこれら両層に含有させた構造を構成してよい。このような場合、発光効率を改善するために、正孔又は電子の輸送を制御するための薄膜(ホールブロッキング層やエキシトン生成層など)をその層構成に含ませることも可能である。   In the organic electroluminescent device C, the light emitting layer may be the electron transporting light emitting layer 7, but depending on the voltage applied from the power supply 8, light may be emitted from the hole transporting layer 6 or its interface. Similarly, in the organic electroluminescent element D, the light emitting layer may be the electron transport layer 12 or the hole transport layer 10 in addition to the layer 11. In order to improve the light emitting performance, it is preferable that the light emitting layer 11 using at least one fluorescent material is sandwiched between the hole transport layer and the electron transport layer. Or you may comprise the structure which contained this fluorescent material in the positive hole transport layer or the electron carrying layer, or these both layers. In such a case, in order to improve luminous efficiency, a thin film (such as a hole blocking layer or an exciton generation layer) for controlling the transport of holes or electrons can be included in the layer configuration.

また、陰極3に用いる材料としては、Li、Mg、Ca等の活性な金属とAg、Al、In等の金属との合金を使用でき、これらの金属層が積層した構造であってもよい。なお、陰極の厚みや材質を適宜選択することによって、用途に見合った有機電界発光素子を作製できる。   The material used for the cathode 3 may be an alloy of an active metal such as Li, Mg, or Ca and a metal such as Ag, Al, or In, and may have a structure in which these metal layers are laminated. It should be noted that an organic electroluminescent element suitable for the application can be produced by appropriately selecting the thickness and material of the cathode.

また、保護層4は、封止膜として作用するものであり、有機電界発光素子全体を覆う構造とすることにより、電荷注入効率や発光効率を向上できる。なお、その気密性が保たれれば、アルミニウム、金、クロム等の単金属又は合金など、適宜その材料を選択できる。   Moreover, the protective layer 4 acts as a sealing film, and can improve the charge injection efficiency and the light emission efficiency by covering the entire organic electroluminescence device. In addition, as long as the airtightness is maintained, a material such as a single metal such as aluminum, gold, or chromium, or an alloy thereof can be appropriately selected.

上記した各有機電界発光素子に印加する電流は通常、直流であるが、パルス電流や交流を用いてもよい。電流値、電圧値は、素子破壊しない範囲内であれば特に制限はないが、有機電界発光素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率良く発光させることが望ましい。   The current applied to each of the organic electroluminescent elements is usually a direct current, but a pulse current or an alternating current may be used. The current value and the voltage value are not particularly limited as long as they are within the range that does not destroy the element. However, considering the power consumption and life of the organic electroluminescence element, it is desirable to efficiently emit light with as little electrical energy as possible.

図5〜図9には、図1〜図4に示した有機EL素子A〜Dにおいて、発光層5、正孔輸送層6、電子輸送層7又は発光層11の陰極3側に接してホールブロッキング層30を設けた例A’〜D’をそれぞれ示す。ここでは、上記アミノスチリル化合物は、上述したように、少なくとも1種がその他の化合物と混合されている以外にも、複数のアミノスチリル化合物が併用されていてもよい。或いは、単一のアミノスチリル化合物単独で層をなしていてもよい。   5 to 9, in the organic EL elements A to D shown in FIGS. 1 to 4, holes are in contact with the light emitting layer 5, the hole transport layer 6, the electron transport layer 7, or the light emitting layer 11 on the cathode 3 side. Examples A ′ to D ′ in which the blocking layer 30 is provided are shown. Here, as described above, the aminostyryl compound may be used in combination with a plurality of aminostyryl compounds in addition to at least one kind being mixed with other compounds. Alternatively, a single aminostyryl compound alone may form a layer.

次に、図10は、本発明の有機電界発光素子を用いた平面ディスプレイの構成例である。図示の如く、例えばフルカラーディスプレイの場合は、赤(R)、緑(G)及び青(B)の3原色を発光可能な有機層5(5a,5b)が、陰極3と陽極2との間に配されている。陰極3及び陽極2は、互いに交差するストライプ状に設けることができ、輝度信号回路14及びシフトレジスタ内蔵の制御回路15により選択されて、それぞれに信号電圧が印加され、これによって、選択された陰極3及び陽極2が交差する位置(画素)の有機層が発光するように構成されている。   Next, FIG. 10 is a configuration example of a flat display using the organic electroluminescent element of the present invention. As shown in the figure, in the case of a full color display, for example, organic layers 5 (5a, 5b) capable of emitting three primary colors of red (R), green (G) and blue (B) are disposed between the cathode 3 and the anode 2. It is arranged in. The cathode 3 and the anode 2 can be provided in stripes crossing each other, and are selected by the luminance signal circuit 14 and the control circuit 15 with a built-in shift register, and a signal voltage is applied to each of them, whereby the selected cathode 3 and the organic layer at the position (pixel) where the anode 2 intersects are configured to emit light.

即ち、図10は例えば8×3RGB単純マトリックスであって、正孔輸送層と、発光層及び電子輸送層のいずれか少なくとも一つからなる積層体5を陰極3と陽極2の間に配設したものである(図3又は図4参照)。陰極と陽極は、ともにストライプ状にパターニングするとともに、互いにマトリクス状に直交させ、シフトレジスタ内蔵の制御回路15及び輝度信号回路14により時系列的に信号電圧を印加し、その交叉位置で発光するように構成されたものである。かかる構成のEL素子は、文字・記号等のディスプレイとしては勿論、画像再生装置としても使用できる。また、陰極3と陽極2のストライプ状パターンを赤(R)、緑(G)、青(B)の各色毎に配し、マルチカラーあるいはフルカラーの全固体型フラットパネルディスプレイを構成することが可能となる。   That is, FIG. 10 is an 8 × 3 RGB simple matrix, for example, in which a laminate 5 composed of a hole transport layer and at least one of a light emitting layer and an electron transport layer is disposed between the cathode 3 and the anode 2. (See FIG. 3 or FIG. 4). The cathode and the anode are both patterned in stripes, orthogonal to each other in a matrix, and a signal voltage is applied in time series by the control circuit 15 and the luminance signal circuit 14 with a built-in shift register so that light is emitted at the crossing position. It is composed of. The EL element having such a structure can be used not only as a display of characters and symbols but also as an image reproducing device. In addition, a striped pattern of the cathode 3 and the anode 2 can be arranged for each color of red (R), green (G), and blue (B) to constitute a multi-color or full-color all-solid-type flat panel display. It becomes.

次に、本発明の実施例を示すが、本発明はこれに限定されるものではない。   Next, although the Example of this invention is shown, this invention is not limited to this.

[実施例1]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−3のアミノスチリル化合物とα−NPD(α−ナフチルフェニルジアミン)との混合物層を正孔輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 1]
In this example, among the aminostyryl compounds of the above general formula [I], a hole is transported through a mixture layer of an aminostyryl compound of the following structural formula (15) -3 and α-NPD (α-naphthylphenyldiamine). This is an example in which an organic electroluminescent element having a single hetero structure was used as a conductive light emitting layer.

Figure 2010141359
Figure 2010141359
Figure 2010141359
Figure 2010141359

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式(15)−3のアミノスチリル化合物と正孔輸送材料であるα−NPDとを重量比1:1で混合した層を例えば50nmの厚さに正孔輸送層(兼発光層)として成膜した。蒸着レートは各々0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a vapor deposition mask is disposed close to the substrate, and the above-mentioned structural formula (15) -3 is applied under vacuum of 10 −4 Pa or less by a vacuum vapor deposition method. A layer in which an aminostyryl compound and α-NPD that is a hole transporting material were mixed at a weight ratio of 1: 1 was formed as a hole transporting layer (also serving as a light emitting layer) with a thickness of, for example, 50 nm. The deposition rate was 0.1 nm / second.

さらに、電子輸送層材料として下記構造式のAlq3(トリス(8−キノリノール)アルミニウム)を正孔輸送層に接して蒸着した。Alq3からなるこの電子輸送層の膜厚も例えば50nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 (tris (8-quinolinol) aluminum) having the following structural formula was deposited as an electron transport layer material in contact with the hole transport layer. The film thickness of this electron transport layer made of Alq 3 was also set to 50 nm, for example, and the deposition rate was set to 0.2 nm / second.

Figure 2010141359
Figure 2010141359

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg膜)及び150nm(Ag膜)の厚さに形成し、実施例1による図3に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg film) and 150 nm (Ag film). An organic electroluminescent device as shown in FIG.

このように作製した実施例1の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで2000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 1 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and as a result of spectroscopic measurement, a spectrum having an emission peak near 630 nm was obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when the voltage-luminance measurement was performed, a luminance of 2000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで900時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it was 900 hours until the luminance was reduced to half.

[実施例2]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 2]
This example uses a mixture layer of the aminostyryl compound represented by the structural formula (15) -3 and the Alq 3 among the aminostyryl compounds represented by the general formula [I] described above as a single heterostructure. This is an example of fabricating an organic electroluminescent element.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で前記構造式のα−NPDを例えば50nmの厚さに成膜した。蒸着レートは0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. As a deposition mask, a plurality of metal masks having 2.0 mm × 2.0 mm unit openings are arranged close to the substrate, and α-NPD of the above structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 50 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3のアミノスチリル化合物と電子輸送性材料であるAlq3とを重量比1:1で混合した層を正孔輸送層に接して蒸着した。上記構造式(15)−3のアミノスチリル化合物とAlq3とからなる電子輸送層(兼発光層)の膜厚も例えば50nmとし、蒸着レートは各々0.2nm/秒とした。 Furthermore, a layer in which the aminostyryl compound of the structural formula (15) -3 and Alq 3 which is an electron transporting material were mixed at a weight ratio of 1: 1 was deposited in contact with the hole transporting layer. The film thickness of the electron transport layer (also serving as the light emitting layer) composed of the aminostyryl compound of the structural formula (15) -3 and Alq 3 was also set to 50 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、図3に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg) and 150 nm (Ag film), and an organic material as shown in FIG. An electroluminescent element was produced.

このように作製した実施例2の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1200cd/m2の輝度が得られた。 The organic electroluminescence device of Example 2 produced in this way was subjected to forward bias DC voltage in a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 630 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1200 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで800時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 800 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例3]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、ダブルヘテロ構造の有機電界発光素子を作製した例である。
[Example 3]
This example uses a mixture layer of the aminostyryl compound represented by the structural formula (15) -3 and Alq 3 among the aminostyryl compounds represented by the general formula [I] described above as an electron-transporting light-emitting layer. This is an example of fabricating an organic electroluminescent element.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式のα−NPDを例えば30nmの厚さに成膜した。蒸着レートは0.2nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. As a deposition mask, a plurality of metal masks having 2.0 mm × 2.0 mm unit openings are arranged close to the substrate, and α-NPD having the above structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 30 nm. The deposition rate was 0.2 nm / second.

さらに、発光材料として上記構造式(15)−3のアミノスチリル化合物とAlq3とを重量比1:1で正孔輸送層に接して蒸着した。上記構造式(15)−3のアミノスチリル化合物とAlq3との混合物層からなる発光層の膜厚も例えば30nmとし、蒸着レートは各々0.2nm/秒とした。 Further, the aminostyryl compound of the structural formula (15) -3 and Alq 3 were deposited as a light emitting material in contact with the hole transport layer at a weight ratio of 1: 1. The film thickness of the light emitting layer composed of a mixture layer of the aminostyryl compound of the structural formula (15) -3 and Alq 3 was also set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

さらに、電子輸送性材料として上記構造式のAlq3を発光層に接して蒸着した。Alq3の膜厚を例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited as an electron transporting material in contact with the light emitting layer. The film thickness of Alq 3 was set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、実施例3による図4に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg) and 150 nm (Ag film). Organic electroluminescent devices as shown were fabricated.

このように作製した実施例3の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、630nmに発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで2500cd/m2の輝度が得られた。 The organic electroluminescence device of Example 3 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak at 630 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 2500 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光して強制劣化させた際、輝度が半減するまで1500時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 and the light was continuously emitted to forcibly deteriorate it, it took 1500 hours until the luminance was reduced to half.

[実施例4]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物と下記構造式(15)−1のアミノスチリル化合物との混合物層を発光層として用い、ダブルヘテロ構造の有機電界発光素子を作製した例である。
[Example 4]
In this example, among the aminostyryl compounds of the above general formula [I], the mixture layer of the aminostyryl compound represented by the structural formula (15) -3 and the aminostyryl compound represented by the following structural formula (15) -1 was emitted. This is an example in which an organic electroluminescent device having a double hetero structure was used as a layer.

Figure 2010141359
Figure 2010141359

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式のα−NPDを例えば30nmの厚さに成膜した。蒸着レートは0.2nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. As a deposition mask, a plurality of metal masks having 2.0 mm × 2.0 mm unit openings are arranged close to the substrate, and α-NPD having the above structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 30 nm. The deposition rate was 0.2 nm / second.

さらに、発光材料として上記構造式(15)−3のアミノスチリル化合物と上記構造式(15)−1のアミノスチリル化合物とを重量比1:3で正孔輸送層に接して共蒸着した。上記構造式(15)−3のアミノスチリル化合物と上記構造式(15)−1のアミノスチリル化合物との混合物層からなる発光層の膜厚も例えば30nmとし、蒸着レートは上記構造式(15)−3の化合物は0.1nm/秒、上記構造式(15)−1の化合物は0.3nm/秒とした。   Further, the aminostyryl compound represented by the structural formula (15) -3 and the aminostyryl compound represented by the structural formula (15) -1 were co-deposited in contact with the hole transport layer at a weight ratio of 1: 3 as a light emitting material. The film thickness of the light emitting layer composed of a mixture layer of the aminostyryl compound of the structural formula (15) -3 and the aminostyryl compound of the structural formula (15) -1 is also set to 30 nm, for example, and the deposition rate is the structural formula (15). The compound of −3 was 0.1 nm / second, and the compound of the structural formula (15) -1 was 0.3 nm / second.

さらに、電子輸送性材料として上記構造式のAlq3を発光層に接して蒸着した。Alq3の膜厚を例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited as an electron transporting material in contact with the light emitting layer. The film thickness of Alq 3 was set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、実施例4による図4に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg) and 150 nm (Ag film). Organic electroluminescent devices as shown were fabricated.

このように作製した実施例4の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、640nmに発光ピークを有するスペクトルを得た。電圧−輝度測定を行ったところ、8Vで3000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 4 produced in this way was subjected to forward bias DC voltage in a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak at 640 nm was obtained. When the voltage-luminance measurement was performed, a luminance of 3000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光して強制劣化させた際、輝度が半減するまで1200時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it was 1200 hours until the luminance was reduced to half.

[実施例5]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物と下記構造式のDCMとの混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。

Figure 2010141359
[Example 5]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of the aminostyryl compound of the structural formula (15) -3 and DCM of the following structural formula was used as an electron transporting light emitting layer. It is the example which produced the organic electroluminescent element of a single heterostructure.
Figure 2010141359

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式のα−NPDを例えば50nmの厚さに成膜した。蒸着レートは0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. As a deposition mask, a plurality of metal masks having 2.0 mm × 2.0 mm unit openings are arranged close to the substrate, and α-NPD having the above structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 50 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3のアミノスチリル化合物と上記DCMとを重量比10:1で混合した層を正孔輸送層に接して蒸着した。上記構造式(15)−3のアミノスチリル化合物と上記DCMからなる電子輸送層(兼発光層)の膜厚も例えば50nmとし、蒸着レートは上記構造式(15)−3の化合物は0.5nm/秒、DCMは0.05nm/秒とした。   Further, a layer in which the aminostyryl compound of the structural formula (15) -3 and the DCM were mixed at a weight ratio of 10: 1 was deposited in contact with the hole transport layer. The film thickness of the electron transport layer (also known as the light emitting layer) composed of the aminostyryl compound of the structural formula (15) -3 and the DCM is also 50 nm, for example, and the deposition rate is 0.5 nm for the compound of the structural formula (15) -3. / Sec, DCM was 0.05 nm / sec.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、図3に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg) and 150 nm (Ag film), and an organic material as shown in FIG. An electroluminescent element was produced.

このように作製した実施例5の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 5 produced in this way was subjected to forward bias DC voltage under a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 630 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで500時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it took 500 hours until the luminance was reduced to half.

[実施例6]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−2のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 6]
This example uses a mixture layer of an aminostyryl compound represented by the following structural formula (15) -2 and Alq 3 as the electron transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I], and has a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例6の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例1と同様に分光測定を行った結果、590nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで850cd/m2の輝度が得られた。 The organic electroluminescence device of Example 6 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 590 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 850 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 600 hours until the luminance was reduced to half.

[実施例7]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−4のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 7]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (15) -4 and Alq 3 was used as an electron-transporting light-emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例7の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、610nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 7 produced in this way was subjected to forward bias DC voltage under a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 610 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで450時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, it was 450 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例8]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−6のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 8]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (15) -6 and Alq 3 was used as an electron transporting light emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例8の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例1と同様に分光測定を行った結果、585nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで500cd/m2の輝度が得られた。 The organic electroluminescence device of Example 8 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 585 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 500 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで200時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to emit light continuously and forcedly deteriorated, it was 200 hours until the luminance was reduced to half.

[実施例9]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−7のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 9]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (15) -7 and Alq 3 was used as an electron transporting light emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例9の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、615nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで580cd/m2の輝度が得られた。 The organic electroluminescence device of Example 9 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 615 nm was obtained. When the voltage-luminance measurement was performed, a luminance of 580 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで300時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it was 300 hours until the luminance was reduced to half.

[実施例10]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−8のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 10]
This example uses a mixture layer of the aminostyryl compound of the following structural formula (15) -8 and Alq 3 among the aminostyryl compounds of the general formula [I] described above as a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例10の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、610nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで430cd/m2の輝度が得られた。 The organic electroluminescence device of Example 10 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 610 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 430 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで150時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to emit light continuously and forcibly deteriorated, it took 150 hours until the luminance was reduced to half.

[実施例11]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−9のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 11]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (15) -9 and Alq 3 was used as an electron transporting light emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例11の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、640nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 11 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 640 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで450時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, it was 450 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例12]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−11のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 12]
This example uses a mixture layer of an aminostyryl compound of the following structural formula (15) -11 and Alq 3 among the aminostyryl compounds of the general formula [I] described above as a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例12の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例1と同様に分光測定を行った結果、580nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 12 produced in this way was subjected to forward bias DC voltage in a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 580 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで750時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 750 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value with an initial luminance of 200 cd / m 2 .

[実施例13]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−12のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 13]
This example uses a mixture layer of an aminostyryl compound represented by the following structural formula (15) -12 and Alq 3 as the electron transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I], and has a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例13の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例1と同様に分光測定を行った結果、600nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで850cd/m2の輝度が得られた。 The organic electroluminescence device of Example 13 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 600 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 850 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 600 hours until the luminance was reduced to half.

[実施例14]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(17)−1のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 14]
This example uses a mixture layer of an aminostyryl compound represented by the following structural formula (17) -1 and Alq 3 as an electron transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I], and has a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例14の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1500cd/m2の輝度が得られた。 The organic electroluminescence device of Example 14 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 620 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 1500 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで800時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 800 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例15]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(17)−2のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 15]
This example uses a mixture layer of the aminostyryl compound represented by the following structural formula (17) -2 and Alq 3 among the aminostyryl compounds represented by the general formula [I] described above as a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例15の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、645nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1200cd/m2の輝度が得られた。 The organic electroluminescence device of Example 15 produced as described above was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 645 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1200 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで700時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 700 hours until the luminance was reduced to half.

[実施例16]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(17)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 16]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (17) -3 and Alq 3 was used as an electron-transporting light-emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例16の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、590nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで780cd/m2の輝度が得られた。 The organic electroluminescence device of Example 16 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 590 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 780 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで500時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it took 500 hours until the luminance was reduced to half.

[実施例17]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(17)−4のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 17]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (17) -4 and Alq 3 was used as an electron-transporting light-emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例17の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1100cd/m2の輝度が得られた。 The organic electroluminescence device of Example 17 produced in this manner was subjected to forward bias DC voltage in a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 620 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1100 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 600 hours until the luminance was reduced to half.

[実施例18]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(17)−5のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 18]
This example uses a mixture layer of the aminostyryl compound represented by the following structural formula (17) -5 and Alq 3 as the electron transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] described above, and has a single heterostructure. This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例18の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、650nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで700cd/m2の輝度が得られた。 The organic electroluminescence device of Example 18 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 650 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 700 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで400時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 400 hours until the luminance was reduced to half.

[実施例19]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、下記構造式(15)−5のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用い、シングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 19]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of an aminostyryl compound of the following structural formula (15) -5 and Alq 3 was used as an electron transporting light emitting layer, and a single heterostructure This is an example of fabricating an organic electroluminescent element.

Figure 2010141359
Figure 2010141359

層構造、成膜法とも実施例2に準拠して有機電界発光素子を作製した。   An organic electroluminescent device was produced in accordance with Example 2 in both the layer structure and the film formation method.

このように作製した実施例19の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例1と同様に分光測定を行った結果、655nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1500cd/m2の輝度が得られた。 The organic electroluminescence device of Example 19 produced in this manner was evaluated for light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 1. As a result, a spectrum having an emission peak near 655 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 1500 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで700時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 700 hours until the luminance was reduced to half.

[実施例20]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物とα−NPDとの混合物層を正孔輸送性発光層として用い、さらに上記構造式(15)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層としたシングルヘテロ構造の有機電界発光素子を作製した例である。
[Example 20]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of the aminostyryl compound of the above structural formula (15) -3 and α-NPD was used as a hole transporting light emitting layer. This is an example in which an organic electroluminescent device having a single heterostructure was produced using a mixture layer of the aminostyryl compound represented by the structural formula (15) -3 and Alq 3 as an electron-transporting light-emitting layer.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式(15)−3のアミノスチリル化合物と正孔輸送材料であるα−NPDを重量比1:1で混合した層を例えば50nmの厚さに正孔輸送層(兼発光層)として成膜した。蒸着レートは各々0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a vapor deposition mask is disposed close to the substrate, and the above-mentioned structural formula (15) -3 is applied under vacuum of 10 −4 Pa or less by a vacuum vapor deposition method. A layer in which an aminostyryl compound and α-NPD which is a hole transporting material were mixed at a weight ratio of 1: 1 was formed as a hole transporting layer (also serving as a light emitting layer) with a thickness of, for example, 50 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3の化合物と電子輸送性材料であるAlq3とを重量比1:1で混合した層を正孔輸送層(兼発光層)に接して蒸着した。上記構造式(15)−3の化合物とAlq3とからなる電子輸送層(兼発光層)の膜厚も例えば50nmとし、蒸着レートは各々0.2nm/秒とした。 Further, a layer in which the compound of the structural formula (15) -3 and Alq 3 which is an electron transporting material were mixed at a weight ratio of 1: 1 was deposited in contact with the hole transporting layer (also serving as the light emitting layer). The film thickness of the electron transport layer (also serving as the light emitting layer) composed of the compound of the structural formula (15) -3 and Alq 3 was also set to 50 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg膜)及び150nm(Ag膜)の厚さに形成し、実施例20よる図3に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, which is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg film) and 150 nm (Ag film). An organic electroluminescent device as shown in FIG.

このように作製した実施例20の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、分光測定を行った結果、635nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで1800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 20 produced in this way was subjected to forward bias DC voltage under a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and as a result of spectroscopic measurement, a spectrum having an emission peak near 635 nm was obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when the voltage-luminance measurement was performed, a luminance of 1800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1000時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcedly deteriorated, it was 1000 hours until the luminance was reduced to half.

[実施例21]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物とα−NPD(α−ナフチルフェニルジアミン)との混合物層を正孔輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 21]
In this example, among the aminostyryl compounds of the above general formula [I], the hole transport is performed on the mixture layer of the aminostyryl compound of the structural formula (15) -3 and α-NPD (α-naphthylphenyldiamine). It is the example which produced the organic electroluminescent element used as a characteristic light emitting layer.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式(15)−3のアミノスチリル化合物と正孔輸送材料であるα−NPDとを重量比1:1で混合した層を例えば50nmの厚さに正孔輸送層(兼発光層)として成膜した。蒸着レートは各々0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a vapor deposition mask is disposed close to the substrate, and the above-mentioned structural formula (15) -3 is applied under vacuum of 10 −4 Pa or less by a vacuum vapor deposition method. A layer in which an aminostyryl compound and α-NPD that is a hole transporting material were mixed at a weight ratio of 1: 1 was formed as a hole transporting layer (also serving as a light emitting layer) with a thickness of, for example, 50 nm. The deposition rate was 0.1 nm / second.

さらに、ホールブロッキング層材料として下記構造式のバソクプロインを正孔輸送層(兼発光層)に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Furthermore, bathocuproine having the following structural formula was deposited as a hole blocking layer material in contact with the hole transport layer (also the light emitting layer). The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

Figure 2010141359
Figure 2010141359

さらに、電子輸送層材料として上記構造式のAlq3(トリス(8−キノリノール)アルミニウム)をホールブロッキング層に接して蒸着した。Alq3からなるこの電子輸送層の膜厚も例えば50nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 (tris (8-quinolinol) aluminum) having the above structural formula was deposited as an electron transport layer material in contact with the hole blocking layer. The film thickness of this electron transport layer made of Alq 3 was also set to 50 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg膜)及び150nm(Ag膜)の厚さに形成し、実施例21による図7に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg film) and 150 nm (Ag film). An organic electroluminescent device as shown in FIG.

このように作製した実施例21の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで2500cd/m2の輝度が得られた。 The organic electroluminescence device of Example 21 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and as a result of spectroscopic measurement, a spectrum having an emission peak near 630 nm was obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when voltage-luminance measurement was performed, a luminance of 2500 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1000時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcedly deteriorated, it was 1000 hours until the luminance was reduced to half.

[実施例22]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 22]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (15) -3 and Alq 3 as an electron-transporting light-emitting layer. This is an example in which an element was manufactured.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で下記構造式のα−NPDを例えば30nmの厚さに成膜した。蒸着レートは0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a deposition mask is disposed close to the substrate, and α-NPD having the following structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 30 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3の化合物と電子輸送性材料であるAlq3とを重量比1:1で混合した層を正孔輸送層に接して共蒸着した。上記構造式(15)−3の化合物とAlq3からなる電子輸送層(兼発光層)の膜厚も例えば30nmとし、蒸着レートは各々0.2nm/秒とした。 Furthermore, a layer in which the compound of the structural formula (15) -3 and Alq 3 which is an electron transporting material were mixed at a weight ratio of 1: 1 was co-deposited in contact with the hole transport layer. The film thickness of the electron transport layer (also serving as the light emitting layer) composed of the compound of the structural formula (15) -3 and Alq 3 was also set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

さらに、ホールブロッキング層材料として上記構造式のバソクプロインを正孔輸送層(兼発光層)に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Further, bathocuproine having the above structural formula was deposited in contact with the hole transport layer (also serving as the light emitting layer) as a hole blocking layer material. The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

さらに、電子輸送層材料として上記構造式のAlq3をホールブロッキング層に接して蒸着した。Alq3からなるこの電子輸送層の膜厚は例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited in contact with the hole blocking layer as an electron transport layer material. The film thickness of this electron transport layer made of Alq 3 was, for example, 30 nm, and the deposition rate was 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、図9に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second to a thickness of, for example, 50 nm (Mg) and 150 nm (Ag film), as shown in FIG. An electroluminescent element was produced.

このように作製した実施例22の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで3400cd/m2の輝度が得られた。 The organic electroluminescence device of Example 22 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 630 nm was obtained. When voltage-luminance measurement was performed, a luminance of 3400 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1200時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 , the current value was constantly supplied to continuously emit light, and forced degradation, it was 1200 hours until the luminance was reduced to half.

[実施例23]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物と上記構造式(15)−1のアミノスチリル化合物との混合物層を発光層として用いた有機電界発光素子を作製した例である。
[Example 23]
In this example, among the aminostyryl compounds of the above general formula [I], the mixture layer of the aminostyryl compound of the above structural formula (15) -3 and the aminostyryl compound of the above structural formula (15) -1 was emitted. It is the example which produced the organic electroluminescent element used as a layer.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式のα−NPDを例えば30nmの厚さに成膜した。蒸着レートは0.2nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. As a deposition mask, a plurality of metal masks having 2.0 mm × 2.0 mm unit openings are arranged close to the substrate, and α-NPD having the above structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 30 nm. The deposition rate was 0.2 nm / second.

さらに、発光材料として上記構造式(15)−3の化合物と上記構造式(15)−1の化合物とを重量比1:3で正孔輸送層に接して共蒸着した。上記構造式(15)−3の化合物と上記構造式(15)−1の化合物との混合物層からなる発光層の膜厚も例えば30nmとし、蒸着レートは上記構造式(15)−3の化合物は0.1nm/秒、上記構造式(15)−1の化合物は0.3nm/秒とした。   Further, the compound of the structural formula (15) -3 and the compound of the structural formula (15) -1 were co-deposited in contact with the hole transport layer at a weight ratio of 1: 3 as a light emitting material. The film thickness of the light emitting layer composed of the mixture layer of the compound of the structural formula (15) -3 and the compound of the structural formula (15) -1 is also set to 30 nm, for example, and the deposition rate is the compound of the structural formula (15) -3. Was 0.1 nm / second, and the compound of the structural formula (15) -1 was 0.3 nm / second.

さらに、ホールブロッキング層材料として上記構造式のバソクプロインを発光層に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Further, bathocuproine having the above structural formula was deposited in contact with the light emitting layer as a hole blocking layer material. The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

さらに、電子輸送性材料として上記構造式のAlq3をホールブロッキング層に接して蒸着した。Alq3の膜厚を例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited in contact with the hole blocking layer as an electron transporting material. The film thickness of Alq 3 was set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、実施例23による図9に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg) and 150 nm (Ag film). Organic electroluminescent devices as shown were fabricated.

このように作製した実施例23の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、640nmに発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで4000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 23 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak at 640 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 4000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光して強制劣化させた際、輝度が半減するまで1600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it was 1600 hours until the luminance was reduced to half.

[実施例24]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物と上記構造式のDCMとの混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 24]
In this example, among the aminostyryl compounds of the above general formula [I], a mixture layer of the aminostyryl compound of the above structural formula (15) -3 and the DCM of the above structural formula was used as the electron transporting light emitting layer. It is the example which produced the organic electroluminescent element.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式のα−NPDを例えば30nmの厚さに成膜した。蒸着レートは0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. As a deposition mask, a plurality of metal masks having 2.0 mm × 2.0 mm unit openings are arranged close to the substrate, and α-NPD having the above structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 30 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3の化合物と上記DCMとを重量比10:1で混合した層を正孔輸送層に接して共蒸着した。上記構造式(15)−3の化合物と上記DCMとからなる電子輸送層(兼発光層)の膜厚も例えば30nmとし、蒸着レートは上記構造式(15)−3の化合物は0.5nm/秒、DCMは0.05nm/秒とした。   Further, a layer in which the compound of the structural formula (15) -3 and the DCM were mixed at a weight ratio of 10: 1 was co-deposited in contact with the hole transport layer. The film thickness of the electron transport layer (also serving as the light emitting layer) composed of the compound of the structural formula (15) -3 and the DCM is also set to 30 nm, for example, and the deposition rate is 0.5 nm / day for the compound of the structural formula (15) -3. Second, DCM was 0.05 nm / second.

さらに、ホールブロッキング層材料として上記構造式のバソクプロインを発光層に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Further, bathocuproine having the above structural formula was deposited in contact with the light emitting layer as a hole blocking layer material. The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

さらに、電子輸送性材料として上記構造式のAlq3をホールブロッキング層に接して蒸着した。Alq3の膜厚を例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited in contact with the hole blocking layer as an electron transporting material. The film thickness of Alq 3 was set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、図9に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg) and 150 nm (Ag film), as shown in FIG. An electroluminescent element was produced.

このように作製した実施例24の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 24 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 630 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 600 hours until the luminance was reduced to half.

[実施例25]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−2のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 25]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the structural formula (15) -2 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例25の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例21と同様に分光測定を行った結果、590nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1100cd/m2の輝度が得られた。 The organic electroluminescence device of Example 25 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 590 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1100 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで700時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 700 hours until the luminance was reduced to half.

[実施例26]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−4のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 26]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the structural formula (15) -4 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例26の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、610nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 26 produced as described above was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 610 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで550時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 550 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例27]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−6のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 27]
In this example, among the above-mentioned aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (15) -6 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例27の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例21と同様に分光測定を行った結果、585nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで600cd/m2の輝度が得られた。 The organic electroluminescence device of Example 27 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 585 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 600 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで300時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it was 300 hours until the luminance was reduced to half.

[実施例28]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−7のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 28]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (15) -7 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例28の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、615nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで650cd/m2の輝度が得られた。 The organic electroluminescence device of Example 28 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 615 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 650 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで350時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 350 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例29]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−8のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 29]
In this example, among the above-mentioned aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (15) -8 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例29の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、610nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで500cd/m2の輝度が得られた。 The organic electroluminescence device of Example 29 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 610 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 500 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで200時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to emit light continuously and forcedly deteriorated, it was 200 hours until the luminance was reduced to half.

[実施例30]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−9のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 30]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the structural formula (15) -9 and Alq 3 as an electron-transporting light-emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例30の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、640nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで920cd/m2の輝度が得られた。 The organic electroluminescence device of Example 30 produced in this way was subjected to forward bias DC voltage in a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 640 nm was obtained. The voltage - was subjected to luminance measurement, the luminance of 920 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで480時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 480 hours until the luminance was reduced to half.

[実施例31]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−11の化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 31]
In this example, an organic electroluminescent element using a mixture layer of the compound represented by the structural formula (15) -11 and Alq 3 as the electron-transporting light-emitting layer among the above-described aminostyryl compounds represented by the general formula [I]. This is a manufactured example.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例31の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例21と同様に分光測定を行った結果、580nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1100cd/m2の輝度が得られた。 The organic electroluminescence device of Example 31 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 580 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1100 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで800時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 800 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例32]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−12のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 32]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (15) -12 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例32の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例21と同様に分光測定を行った結果、600nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで900cd/m2の輝度が得られた。 The organic electroluminescence device of Example 32 produced in this way was subjected to forward bias DC voltage under a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 600 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 900 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで660時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it was 660 hours until the luminance was reduced to half.

[実施例33]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−1のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 33]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the structural formula (17) -1 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例33の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1650cd/m2の輝度が得られた。 The organic electroluminescence device of Example 33 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 620 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 1650 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで880時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to emit light continuously and forcibly deteriorated, it took 880 hours until the luminance was reduced to half.

[実施例34]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−2のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 34]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the structural formula (17) -2 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例34の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、645nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1300cd/m2の輝度が得られた。 The organic electroluminescence device of Example 34 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 645 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1300 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで800時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 800 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例35]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 35]
In this example, among the above-described aminostyryl compounds represented by the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound represented by the structural formula (17) -3 and Alq 3 as an electron-transporting light-emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例35の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、600nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1450cd/m2の輝度が得られた。 The organic electroluminescence device of Example 35 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 600 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1450 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで700時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 700 hours until the luminance was reduced to half.

[実施例36]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−4のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 36]
In this example, among the above-mentioned aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the structural formula (17) -4 and Alq 3 as an electron-transporting light-emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例36の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1200cd/m2の輝度が得られた。 The organic electroluminescence device of Example 36 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 620 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1200 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで650時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, by applying a constant current thereto with an initial luminance 200 cd / m 2 continuous emission, when the forced degradation was 650 hours until the luminance is halved.

[実施例37]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−5のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 37]
In this example, among the above-mentioned aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (17) -5 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例37の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、650nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 37 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 650 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで500時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it took 500 hours until the luminance was reduced to half.

[実施例38]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−5のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 38]
In this example, among the above-described aminostyryl compounds of the general formula [I], organic electroluminescence using a mixture layer of the aminostyryl compound of the above structural formula (15) -5 and Alq 3 as an electron transporting light emitting layer. This is an example in which an element was manufactured.

層構造、成膜法とも実施例22に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced in accordance with Example 22 for both the layer structure and the film formation method.

このように作製した実施例38の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例21と同様に分光測定を行った結果、655nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1720cd/m2の輝度が得られた。 The organic electroluminescence device of Example 38 produced as described above was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 21. As a result, a spectrum having an emission peak near 655 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 1720 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで780時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 780 hours until the luminance was reduced to half when it was subjected to continuous light emission with a constant current value at an initial luminance of 200 cd / m 2 and forced emission.

[実施例39]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物とα−NPDとの混合物層を正孔輸送性発光層として用い、更に上記構造式(15)−3のアミノスチリル化合物とAlq3との混合物層を電子輸送性発光層とした有機電界発光素子を作製した例である。
[Example 39]
In this example, among the aminostyryl compounds represented by the general formula [I], a mixture layer of the aminostyryl compound represented by the structural formula (15) -3 and α-NPD was used as a hole transporting light emitting layer. This is an example in which an organic electroluminescent element was produced using a mixture layer of the aminostyryl compound of the structural formula (15) -3 and Alq 3 as an electron transporting light emitting layer.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式(15)−3の化合物と正孔輸送材料であるα−NPDとを重量比1:1で混合した層を例えば30nmの厚さに正孔輸送層(兼発光層)として成膜した。蒸着レートは各々0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a vapor deposition mask is disposed close to the substrate, and the above-mentioned structural formula (15) -3 is applied under vacuum of 10 −4 Pa or less by a vacuum vapor deposition method. A layer in which the compound and α-NPD as a hole transporting material were mixed at a weight ratio of 1: 1 was formed as a hole transporting layer (also serving as a light emitting layer) with a thickness of, for example, 30 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3の化合物と電子輸送性材料であるAlq3とを重量比1:1で混合した層を正孔輸送層(兼発光層)に接して共蒸着した。上記構造式(15)−3の化合物とAlq3とからなる電子輸送層(兼発光層)の膜厚も例えば30nmとし、蒸着レートは各々0.2nm/秒とした。 Furthermore, a layer in which the compound of the structural formula (15) -3 and Alq 3 which is an electron transporting material were mixed at a weight ratio of 1: 1 was co-deposited in contact with the hole transporting layer (also serving as the light emitting layer). The film thickness of the electron transport layer (also known as light emitting layer) composed of the compound of the structural formula (15) -3 and Alq 3 was also set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

さらに、ホールブロッキング層材料として上記構造式のバソクプロインを電子輸送層(兼発光層)に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Further, bathocuproine having the above structural formula was deposited in contact with the electron transport layer (also serving as the light emitting layer) as a hole blocking layer material. The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

さらに、電子輸送性材料として上記構造式のAlq3をホールブロッキング層に接して蒸着した。Alq3の膜厚を例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited in contact with the hole blocking layer as an electron transporting material. The film thickness of Alq 3 was set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg膜)及び150nm(Ag膜)の厚さに形成し、実施例39による図9に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, which is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg film) and 150 nm (Ag film). An organic electroluminescent device as shown in FIG.

このように作製した実施例39の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、分光測定を行った結果、635nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで2900cd/m2の輝度が得られた。 The organic electroluminescence device of Example 39 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and as a result of spectroscopic measurement, a spectrum having an emission peak near 635 nm was obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when the voltage-luminance measurement was performed, a luminance of 2900 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1100時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 1100 hours until the luminance was reduced to half.

[実施例40]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物を正孔輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 40]
This example is an example in which an organic electroluminescent device using the aminostyryl compound represented by the structural formula (15) -3 among the aminostyryl compounds represented by the general formula [I] as a hole transporting light emitting layer was prepared. is there.

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で上記構造式(15)−3のアミノスチリル化合物を例えば50nmの厚さに正孔輸送層(兼発光層)として成膜した。蒸着レートは0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a vapor deposition mask is disposed close to the substrate, and the above-mentioned structural formula (15) -3 is applied under vacuum of 10 −4 Pa or less by a vacuum vapor deposition method. The aminostyryl compound was formed into a film having a thickness of, for example, 50 nm as a hole transport layer (also serving as a light emitting layer). The deposition rate was 0.1 nm / second.

さらに、ホールブロッキング層材料として上記構造式のバソクプロインを正孔輸送層に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Further, bathocuproine having the above structural formula was deposited in contact with the hole transport layer as a hole blocking layer material. The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

さらに、電子輸送層材料として上記構造式のAlq3(トリス(8−キノリノール)アルミニウム)をホールブロッキング層に接して蒸着した。Alq3からなるこの電子輸送層の膜厚も例えば50nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 (tris (8-quinolinol) aluminum) having the above structural formula was deposited as an electron transport layer material in contact with the hole blocking layer. The film thickness of this electron transport layer made of Alq 3 was also set to 50 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg膜)及び150nm(Ag膜)の厚さに形成し、実施例40による図7に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second, for example, to a thickness of 50 nm (Mg film) and 150 nm (Ag film). An organic electroluminescent device as shown in FIG.

このように作製した実施例40の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、分光測定を行った結果、640nm付近に発光ピークを有するスペクトルを得た。分光測定は、大塚電子社製のフォトダイオードアレイを検出器とした分光器を用いた。また、電圧−輝度測定を行ったところ、8Vで3000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 40 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and as a result of spectroscopic measurement, a spectrum having an emission peak near 640 nm was obtained. For the spectroscopic measurement, a spectroscope using a photodiode array manufactured by Otsuka Electronics Co., Ltd. as a detector was used. Further, when voltage-luminance measurement was performed, a luminance of 3000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1100時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 1100 hours until the luminance was reduced to half.

[実施例41]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−3のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 41]
In this example, an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -3 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

まず、真空蒸着装置中に、100nmの厚さのITOからなる陽極が一表面に形成された30mm×30mmのガラス基板をセッティングした。蒸着マスクとして複数の2.0mm×2.0mmの単位開口を有する金属マスクを基板に近接して配置し、真空蒸着法により10-4Pa以下の真空下で下記構造式のα−NPDを例えば30nmの厚さに成膜した。蒸着レートは0.1nm/秒とした。 First, a 30 mm × 30 mm glass substrate having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum deposition apparatus. A metal mask having a plurality of 2.0 mm × 2.0 mm unit openings as a deposition mask is disposed close to the substrate, and α-NPD having the following structural formula is obtained, for example, under a vacuum of 10 −4 Pa or less by a vacuum deposition method. The film was formed to a thickness of 30 nm. The deposition rate was 0.1 nm / second.

さらに、上記構造式(15)−3の化合物を正孔輸送層に接して蒸着した。上記構造式(15)−3の化合物からなる電子輸送層(兼発光層)の膜厚も例えば30nmとし、蒸着レートは0.2nm/秒とした。   Further, the compound of the structural formula (15) -3 was deposited in contact with the hole transport layer. The film thickness of the electron transport layer (also serving as the light emitting layer) made of the compound of the structural formula (15) -3 was also set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

さらに、ホールブロッキング層材料として上記構造式のバソクプロインを発光層に接して蒸着した。バソクプロインからなるこのホールブロッキング層の膜厚は例えば15nmとし、蒸着レートは0.1nm/秒とした。   Further, bathocuproine having the above structural formula was deposited in contact with the light emitting layer as a hole blocking layer material. The hole blocking layer made of bathocuproine has a thickness of 15 nm, for example, and a deposition rate of 0.1 nm / second.

さらに、電子輸送層材料として上記構造式のAlq3をホールブロッキング層に接して蒸着した。Alq3からなるこの電子輸送層の膜厚も例えば30nmとし、蒸着レートは0.2nm/秒とした。 Further, Alq 3 having the above structural formula was deposited in contact with the hole blocking layer as an electron transport layer material. The thickness of this electron transport layer made of Alq 3 was also set to 30 nm, for example, and the deposition rate was set to 0.2 nm / second.

陰極材料としてはMgとAgの積層膜を採用し、これも蒸着により、蒸着レート1nm/秒として例えば50nm(Mg)及び150nm(Ag膜)の厚さに形成し、図9に示した如き有機電界発光素子を作製した。   As the cathode material, a laminated film of Mg and Ag is adopted, and this is also formed by vapor deposition at a deposition rate of 1 nm / second to a thickness of, for example, 50 nm (Mg) and 150 nm (Ag film), as shown in FIG. An electroluminescent element was produced.

このように作製した実施例41の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、640nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで3800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 41 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 640 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 3800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1500時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it took 1500 hours until the luminance was reduced to half.

[実施例42]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−2のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 42]
In this example, an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -2 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例42の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例40と同様に分光測定を行った結果、600nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1200cd/m2の輝度が得られた。 The organic electroluminescence device of Example 42 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 600 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1200 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで800時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 800 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例43]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−4のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 43]
In this example, an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -4 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例43の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1100cd/m2の輝度が得られた。 The organic electroluminescence device of Example 43 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak in the vicinity of 620 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1100 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 600 hours until the luminance was reduced to half.

[実施例44]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−6の化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 44]
This example is an example in which an organic electroluminescent device using the compound represented by the structural formula (15) -6 among the aminostyryl compounds represented by the general formula [I] as an electron transporting light emitting layer was prepared.

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例44の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例40と同様に分光測定を行った結果、595nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで700cd/m2の輝度が得られた。 The organic electroluminescence device of Example 44 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 595 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 700 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで300時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it was 300 hours until the luminance was reduced to half.

[実施例45]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−7のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 45]
This example is an example in which an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -7 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例45の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで750cd/m2の輝度が得られた。 The organic electroluminescence device of Example 45 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak in the vicinity of 620 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 750 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで450時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, it was 450 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value at an initial luminance of 200 cd / m 2 and forced degradation.

[実施例46]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−8のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 46]
In this example, an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -8 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例46の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、620nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで520cd/m2の輝度が得られた。 The organic electroluminescence device of Example 46 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak in the vicinity of 620 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 520 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで250時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it took 250 hours until the luminance was reduced to half.

[実施例47]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−9のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 47]
In this example, an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -9 among the aminostyryl compounds represented by the general formula [I] described above as an electron-transporting light-emitting layer was produced. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例47の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、650nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1000cd/m2の輝度が得られた。 The organic electroluminescence device of Example 47 produced in this manner was subjected to forward bias DC voltage application under a nitrogen atmosphere to evaluate the light emission characteristics. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 650 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1000 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで600時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized to continuously emit light and forced degradation, it was 600 hours until the luminance was reduced to half.

[実施例48]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−11のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 48]
This example is an example in which an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -11 among the aminostyryl compounds represented by the general formula [I] as an electron-transporting light-emitting layer was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例48の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は橙色であり、実施例40と同様に分光測定を行った結果、590nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1200cd/m2の輝度が得られた。 The organic electroluminescence device of Example 48 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was orange, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 590 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1200 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで850時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it took 850 hours until the luminance was reduced to half.

[実施例49]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−12のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 49]
In this example, an organic electroluminescent element using the aminostyryl compound represented by the structural formula (15) -12 among the aminostyryl compounds represented by the general formula [I] as an electron-transporting light-emitting layer was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例49の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、610nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで930cd/m2の輝度が得られた。 The organic electroluminescence device of Example 49 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 610 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 930 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで700時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it was 700 hours until the luminance was reduced to half.

[実施例50]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−1のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 50]
This example is an example in which an organic electroluminescent element using the aminostyryl compound represented by the structural formula (17) -1 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例50の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1700cd/m2の輝度が得られた。 The organic electroluminescence device of Example 50 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 630 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1700 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで1000時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcedly deteriorated, it was 1000 hours until the luminance was reduced to half.

[実施例51]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−2の化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 51]
This example is an example in which an organic electroluminescent element using the compound represented by the structural formula (17) -2 as the electron transporting light emitting layer among the aminostyryl compounds represented by the general formula [I] was manufactured.

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例51の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、655nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1400cd/m2の輝度が得られた。 The organic electroluminescence device of Example 51 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 655 nm was obtained. Further, when the voltage-luminance measurement was performed, a luminance of 1400 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで850時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was constantly supplied to continuously emit light and forcibly deteriorated, it took 850 hours until the luminance was reduced to half.

[実施例52]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−3の化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 52]
This example is an example in which an organic electroluminescent element using the compound of the above structural formula (17) -3 as the electron transporting light emitting layer among the aminostyryl compounds of the above general formula [I] was produced.

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例52の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、600nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで900cd/m2の輝度が得られた。 The organic electroluminescence device of Example 52 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak in the vicinity of 600 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 900 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで650時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 , the current value was constantly supplied to continuously emit light and forced degradation, it was 650 hours until the luminance was reduced to half.

[実施例53]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−4の化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 53]
This example is an example in which an organic electroluminescent element using the compound represented by the structural formula (17) -4 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was manufactured.

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例53の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、630nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1300cd/m2の輝度が得られた。 The organic electroluminescence device of Example 53 produced in this manner was subjected to evaluation of light emission characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 630 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1300 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで750時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. Further, it was 750 hours until the luminance was reduced to half when the device was subjected to continuous light emission by applying a constant current value with an initial luminance of 200 cd / m 2 .

[実施例54]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(17)−5の化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 54]
This example is an example in which an organic electroluminescent device using the compound of the above structural formula (17) -5 as the electron transporting light emitting layer among the aminostyryl compounds of the general formula [I] was prepared.

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例54の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、660nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで800cd/m2の輝度が得られた。 The organic electroluminescence device of Example 54 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 660 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 800 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで500時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the current value was constantly supplied at an initial luminance of 200 cd / m 2 to continuously emit light and forcibly deteriorated, it took 500 hours until the luminance was reduced to half.

[実施例55]
本実施例は、上述の一般式[I]のアミノスチリル化合物のうち、上記構造式(15)−5のアミノスチリル化合物を電子輸送性発光層として用いた有機電界発光素子を作製した例である。
[Example 55]
This example is an example in which an organic electroluminescent device using the aminostyryl compound represented by the structural formula (15) -5 as the electron-transporting light-emitting layer among the aminostyryl compounds represented by the general formula [I] was prepared. .

層構造、成膜法とも実施例41に準拠して有機電界発光素子を作製した。   An organic electroluminescent element was produced according to Example 41 in both the layer structure and the film formation method.

このように作製した実施例55の有機電界発光素子に、窒素雰囲気下で順バイアス直流電圧を加えて発光特性を評価した。発光色は赤色であり、実施例40と同様に分光測定を行った結果、660nm付近に発光ピークを有するスペクトルを得た。また、電圧−輝度測定を行ったところ、8Vで1700cd/m2の輝度が得られた。 The organic electroluminescence device of Example 55 produced in this manner was subjected to evaluation of luminescence characteristics by applying a forward bias DC voltage in a nitrogen atmosphere. The emission color was red, and spectroscopic measurement was performed in the same manner as in Example 40. As a result, a spectrum having an emission peak near 660 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 1700 cd / m 2 was obtained at 8V.

この有機電界発光素子を作製後、窒素雰囲気下に1カ月間放置したが、素子劣化は観察されなかった。また、初期輝度200cd/m2で電流値を一定に通電して連続発光し、強制劣化させた際、輝度が半減するまで900時間であった。 After this organic electroluminescent device was fabricated, it was left in a nitrogen atmosphere for 1 month, but no device degradation was observed. In addition, when the initial luminance was 200 cd / m 2 and the current value was energized continuously to continuously emit light and forcibly deteriorated, it was 900 hours until the luminance was reduced to half.

本発明は、発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子(有機EL素子)、及びこれを用いたディスプレイデバイス等の発光装置に好適なものである。   The present invention is suitable for an organic electroluminescent element (organic EL element) in which an organic layer having a light emitting region is provided between an anode and a cathode, and a light emitting device such as a display device using the same.

1…基板、2…透明電極(陽極)、3…陰極、4…保護膜、5、5a、5b…有機層、
6…正孔輸送層、7…電子輸送層、8…電源、10…正孔輸送層、11…発光層、
12…電子輸送層、14…輝度信号回路、15…制御回路、20…発光光、
30…ホールブロッキング層、A、B、C、D、A’、B’、C’、D’…有機電界発光素子
DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Transparent electrode (anode), 3 ... Cathode, 4 ... Protective film 5, 5a, 5b ... Organic layer,
6 ... hole transport layer, 7 ... electron transport layer, 8 ... power source, 10 ... hole transport layer, 11 ... light emitting layer,
12 ... Electron transport layer, 14 ... Luminance signal circuit, 15 ... Control circuit, 20 ... Light emission,
30 ... hole blocking layer, A, B, C, D, A ', B', C ', D' ... organic electroluminescence device

特開平7−188649号(特願平6−148798号)JP 7-188649 A (Japanese Patent Application No. 6-148798)

Chem. Funct. Dyes, Proc. Int. Symp., 2nd P.536(1993)Chem. Funct. Dyes, Proc. Int. Symp., 2nd P.536 (1993) T. Tsutsui, D. U. Kim「Inorganic and Organic Electroluminescence会議」(1996、Berlin)T. Tsutsui, D. U. Kim “Inorganic and Organic Electroluminescence Conference” (1996, Berlin)

Claims (15)

発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、下記一般式[I]で表されるアミノスチリル化合物で構成されたアミノスチリル化合物層からなり、かつ前記アミノスチリル化合物層の陰極側にホールブロッキング層が存在することを特徴とする有機電界発光素子。
Figure 2010141359
[但し、前記一般式[I]において、X1は下記一般式(1)〜(7)のいずれかで表される基であり
Figure 2010141359
(但し、前記一般式(1)〜(3)において、R1〜R4のうち少なくとも一つはハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、その他は水素原子、アルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、それらが同一であっても異なっていてもよく、また前記一般式(4)〜(7)において、R5〜R10うち少なくとも一つはハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、その他は水素原子、アルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、それらが同一であっても異なっていてもよい。)、
また、Y1は下記一般式(8)又は(9)で表される基であり、Y2は下記一般式(8)、(9)又は(10)で表される基である。
Figure 2010141359
(但し、前記一般式(8)〜(10)において、R11及びR12は水素原子、置換基を有してもよいアルキル基及び置換基を有してもよいアリール基から選ばれた基であり、それらが同一であっても異なっていてもよく、またR13〜R35は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、ハロゲン原子、ニトロ基、シアノ基及びフルオロアルキル基から選ばれた基であり、それらが同一であっても異なっていてもよい。)]
In the organic electroluminescence device in which an organic layer having a light emitting region is provided between an anode and a cathode, at least one of the constituent layers of the organic layer is an aminostyryl represented by the following general formula [I] An organic electroluminescent device comprising an aminostyryl compound layer composed of a compound and having a hole blocking layer on the cathode side of the aminostyryl compound layer.
Figure 2010141359
[However, in the said general formula [I], X < 1 > is group represented by either of the following general formula (1)-(7).
Figure 2010141359
(However, in the general formulas (1) to (3), at least one of R 1 to R 4 is a group selected from a halogen atom, a nitro group, a cyano group, and a fluoroalkyl group, and the others are hydrogen atoms. , An alkyl group, an aryl group, an alkoxy group, a halogen atom, a nitro group, a cyano group, and a fluoroalkyl group, which may be the same or different, and the above general formula (4) In (7), at least one of R 5 to R 10 is a group selected from a halogen atom, a nitro group, a cyano group and a fluoroalkyl group, and the others are a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, A group selected from a halogen atom, a nitro group, a cyano group and a fluoroalkyl group, which may be the same or different).
Moreover, Y 1 is a group represented by the following general formula (8) or (9), Y 2 is the following general formula (8), a group represented by (9) or (10).
Figure 2010141359
(However, in the general formulas (8) to (10), R 11 and R 12 are groups selected from a hydrogen atom, an alkyl group which may have a substituent, and an aryl group which may have a substituent. And they may be the same or different, and R 13 to R 35 are each a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. A group selected from an alkoxy group, a halogen atom, a nitro group, a cyano group, and a fluoroalkyl group, which may have the same, or they may be the same or different.
前記一般式[I]において、X1は下記構造式(11)〜(14)のいずれかで表される基であり、
Figure 2010141359
また、Y1及びY2は下記一般式(8)又は(9)で表される基である
Figure 2010141359
(但し、前記一般式(8)及び(9)において、R11及びR12は前記したものと同じであり、R13〜R30は前記したものと同じであるが、フルオロアルキル基の場合はトリフルオロメチル基である。)、請求項1に記載した有機電界発光素子。
In the general formula [I], X 1 is a group represented by any one of the following structural formulas (11) to (14),
Figure 2010141359
Y 1 and Y 2 are groups represented by the following general formula (8) or (9).
Figure 2010141359
(However, in the general formulas (8) and (9), R 11 and R 12 are the same as those described above, and R 13 to R 30 are the same as those described above. The organic electroluminescent element according to claim 1, which is a trifluoromethyl group.
前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記電子輸送層が前記アミノスチリル化合物層からなる、請求項1に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer of the organic multilayer structure includes the aminostyryl compound layer. The described organic electroluminescent device. 前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記ホール輸送層が前記アミノスチリル化合物層からなる、請求項1に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the hole transport layer of the organic multilayer structure is composed of the aminostyryl compound layer. The described organic electroluminescent device. 前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が前記アミノスチリル化合物層からなり、前記電子輸送層が前記アミノスチリル化合物層からなり、かつこの電子輸送性のアミノスチリル化合物層の陰極側に前記ホールブロッキング層が存在する、請求項1に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, the hole transport layer is composed of the aminostyryl compound layer, and the electron transport layer is composed of the aminostyryl compound layer. The organic electroluminescent device according to claim 1, wherein the hole blocking layer is present on the cathode side of the electron transporting aminostyryl compound layer. 前記有機層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも前記発光層が前記アミノスチリル化合物層からなる、請求項1に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer, a light-emitting layer, and an electron transport layer are stacked, and at least the light-emitting layer of the organic multilayer structure includes the aminostyryl compound layer. 1. The organic electroluminescent element as described in 1. 請求項1〜6のいずれか1項に記載した有機電界発光素子を用いた発光装置。   The light-emitting device using the organic electroluminescent element as described in any one of Claims 1-6. ディスプレイデバイスとして構成された、請求項7に記載した発光装置。   The light-emitting device according to claim 7, which is configured as a display device. 発光領域を有する有機層が陽極と陰極との間に設けられている有機電界発光素子において、前記有機層の構成層のうちの少なくとも1層が、下記構造式(15)−1〜(15)−12、(16)−1〜(16)−12、(17)−1〜(17)−6、及び(18)−1〜(18)−6で表されるアミノスチリル化合物から選ばれたアミノスチリル化合物で構成されたアミノスチリル化合物層からなり、かつ前記アミノスチリル化合物層の陰極側にホールブロッキング層が存在することを特徴とする有機電界発光素子。
Figure 2010141359
Figure 2010141359
Figure 2010141359
In the organic electroluminescent device in which the organic layer having the light emitting region is provided between the anode and the cathode, at least one of the constituent layers of the organic layer is represented by the following structural formulas (15) -1 to (15): -12, (16) -1 to (16) -12, (17) -1 to (17) -6, and (18) -1 to (18) -6. An organic electroluminescent device comprising an aminostyryl compound layer composed of an aminostyryl compound, wherein a hole blocking layer is present on the cathode side of the aminostyryl compound layer.
Figure 2010141359
Figure 2010141359
Figure 2010141359
前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも電子輸送層が前記アミノスチリル化合物層からなる、請求項9に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the electron transport layer of the organic multilayer structure is composed of the aminostyryl compound layer. Organic electroluminescent device. 前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくともホール輸送層が前記アミノスチリル化合物層からなる、請求項9に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, and at least the hole transport layer of the organic multilayer structure is formed of the aminostyryl compound layer. Organic electroluminescent device. 前記有機層が、ホール輸送層と電子輸送層とが積層された有機積層構造をなしており、前記ホール輸送層が前記アミノスチリル化合物層からなり、前記電子輸送層が前記アミノスチリル化合物層からなり、かつこの電子輸送性のアミノスチリル化合物層の陰極側に前記ホールブロッキング層が存在する、請求項9に記載した有機電界発光素子。   The organic layer has an organic multilayer structure in which a hole transport layer and an electron transport layer are stacked, the hole transport layer is composed of the aminostyryl compound layer, and the electron transport layer is composed of the aminostyryl compound layer. The organic electroluminescent device according to claim 9, wherein the hole blocking layer is present on the cathode side of the electron-transporting aminostyryl compound layer. 前記輸送層が、ホール輸送層と発光層と電子輸送層とが積層された有機積層構造をなしており、前記有機積層構造のうちの少なくとも発光層が前記アミノスチリル化合物層からなる、請求項9に記載した有機電界発光素子。   The transport layer has an organic multilayer structure in which a hole transport layer, a light-emitting layer, and an electron transport layer are stacked, and at least the light-emitting layer of the organic multilayer structure includes the aminostyryl compound layer. The organic electroluminescent element described in 1. 請求項9〜13のいずれか1項に記載した有機電界発光素子を用いた発光装置。   The light-emitting device using the organic electroluminescent element of any one of Claims 9-13. ディスプレイデバイスとして構成された、請求項14に記載した発光装置。   The light-emitting device according to claim 14 configured as a display device.
JP2010060315A 2010-03-17 2010-03-17 Organic electroluminescent device and light emitting device Pending JP2010141359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060315A JP2010141359A (en) 2010-03-17 2010-03-17 Organic electroluminescent device and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060315A JP2010141359A (en) 2010-03-17 2010-03-17 Organic electroluminescent device and light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000106430A Division JP2001291591A (en) 2000-04-07 2000-04-07 Organic electroluminescent element and luminescent device

Publications (1)

Publication Number Publication Date
JP2010141359A true JP2010141359A (en) 2010-06-24

Family

ID=42351137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060315A Pending JP2010141359A (en) 2010-03-17 2010-03-17 Organic electroluminescent device and light emitting device

Country Status (1)

Country Link
JP (1) JP2010141359A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329731A (en) * 1998-05-18 1999-11-30 Sony Corp Organic electroluminescent element
JP2000012225A (en) * 1998-06-26 2000-01-14 Sony Corp Organic electroluminescent element
JP2000012224A (en) * 1998-06-26 2000-01-14 Sony Corp Organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329731A (en) * 1998-05-18 1999-11-30 Sony Corp Organic electroluminescent element
JP2000012225A (en) * 1998-06-26 2000-01-14 Sony Corp Organic electroluminescent element
JP2000012224A (en) * 1998-06-26 2000-01-14 Sony Corp Organic electroluminescent element

Similar Documents

Publication Publication Date Title
JP4161262B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHT EMITTING OR DISPLAY DEVICE USING THE SAME
JP3852552B2 (en) Organic electroluminescence device
JP4655410B2 (en) Organic electroluminescence device
KR100838094B1 (en) Organic electroluminescent element and luminescent apparatus employing the same
JP2000173774A (en) Organic electric field light-emitting element
KR100751464B1 (en) Organic electroluminescent device
JP2002134276A (en) Organic electric field light emitting device
JP3852518B2 (en) Organic electroluminescence device
JP3820752B2 (en) Organic electroluminescence device
JP2000091073A (en) Organic electroluminescence element
JP3852517B2 (en) Organic electroluminescence device
JP3555736B2 (en) Organic electroluminescent device
JP2000091077A (en) Organic electroluminescence element
JP2005005226A (en) Organic electroluminescent element
JP2000012225A (en) Organic electroluminescent element
JP3910010B2 (en) Organic electroluminescence device
JP2000012228A (en) Organic electroluminescent element
US20040219390A1 (en) Benzoxazinone and quinazolinone derivatives
JP3852520B2 (en) Organic electroluminescence device
JP2010141359A (en) Organic electroluminescent device and light emitting device
JP2006107790A (en) Electroluminescent element
JP2000091075A (en) Organic electroluminescence element
JP2000173773A (en) Organic electric field light-emitting element
KR100581640B1 (en) Organic Electroluminescent Device
JP2000091074A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710