JP2010140189A - Secondary pressure monitoring device and secondary pressure discrimination method - Google Patents

Secondary pressure monitoring device and secondary pressure discrimination method Download PDF

Info

Publication number
JP2010140189A
JP2010140189A JP2008314864A JP2008314864A JP2010140189A JP 2010140189 A JP2010140189 A JP 2010140189A JP 2008314864 A JP2008314864 A JP 2008314864A JP 2008314864 A JP2008314864 A JP 2008314864A JP 2010140189 A JP2010140189 A JP 2010140189A
Authority
JP
Japan
Prior art keywords
pressure
supply path
fluid supply
fluid
secondary pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314864A
Other languages
Japanese (ja)
Inventor
Masayuki Takano
雅之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008314864A priority Critical patent/JP2010140189A/en
Publication of JP2010140189A publication Critical patent/JP2010140189A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a useless processing or operation from being performed by recognizing a state that a secondary pressure is rising due to not the failure of a pressure regulator but other factors. <P>SOLUTION: The secondary pressure monitoring device 17, which monitors a secondary pressure in a pressure regulation facility in which a pressure regulator 2 for freely adjusting the secondary pressure of a fluid feeding path 1 to a set pressure is installed in the middle of the fluid feeding path 1, includes a pressure rising state determination means 19 for determining whether or not it is a normal pressure rising state that the secondary pressure rises due to one or both of the change of the atmosphere of the fluid feeding path 1 and the change of the temperature of the fluid of the fluid feeding path 1 when the secondary pressure rises. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体供給路の二次側圧力を設定圧力に調整自在な整圧器が前記流体供給路の途中に設けられている整圧設備において、二次側圧力を監視する二次側圧力監視装置及び二次側圧力判別方法に関する。   The present invention relates to a secondary pressure monitor for monitoring a secondary pressure in a pressure regulator in which a pressure regulator capable of adjusting a secondary pressure of a fluid supply path to a set pressure is provided in the middle of the fluid supply path. The present invention relates to an apparatus and a secondary pressure determination method.

上記のような整圧設備では、例えば、流体供給路の整圧器よりも下流側を複数の分岐路に分岐してそれら複数の分岐路の夫々を各需要家に接続することにより、複数の需要家に天然ガス等の流体を供給するように構成されている。そして、整圧器によりそれよりも下流側の二次側圧力を上流側の一次側圧力よりも低圧の設定圧力に調整することにより、各需要家に供給する流体圧力が一定範囲内となるようにしている。
このような整圧設備では、整圧器が停止し下流側の流体が一定容積で保持されているとき、本来、二次側圧力は一定となるが、整圧器の故障によってリークが発生すると二次側圧力が上昇することになる。そこで、従来の二次側圧力監視装置では、二次側圧力を監視して、二次側圧力が異常設定値以上となっているか否かを判別している。そして、二次側圧力が異常設定値以上となっていると判別すると、例えば、流体供給路の一次側に配設された遮断弁を作動させる等の異常処理を行う安全機構を備えている(例えば、特許文献1参照。)。
そして、異常処理を行った後は、整圧器の設置箇所等に作業者を派遣して、整圧器の交換や修正等のメンテナンス作業を行ったのち、遮断弁を復帰させる等の復帰作業を作業者が行うようにしている。
In the pressure regulating equipment as described above, for example, a plurality of demands are obtained by branching the downstream side of the fluid pressure regulator to a plurality of branch paths and connecting each of the plurality of branch paths to each consumer. It is configured to supply a fluid such as natural gas to the house. Then, by adjusting the secondary side pressure downstream of the pressure regulator to a set pressure lower than the upstream primary pressure, the fluid pressure supplied to each consumer is within a certain range. ing.
In such a pressure regulator, when the pressure regulator is stopped and the downstream fluid is held at a constant volume, the secondary pressure is essentially constant, but if a leak occurs due to a malfunction of the pressure regulator, The side pressure will increase. Therefore, in the conventional secondary pressure monitoring device, the secondary pressure is monitored to determine whether or not the secondary pressure is equal to or higher than the abnormal set value. Then, if it is determined that the secondary side pressure is equal to or higher than the abnormal set value, for example, a safety mechanism that performs an abnormal process such as operating a shut-off valve disposed on the primary side of the fluid supply path is provided ( For example, see Patent Document 1.)
After performing the abnormal process, dispatch an operator to the place where the pressure regulator is installed, perform maintenance work such as replacement or correction of the pressure regulator, and then perform restoration work such as returning the shut-off valve. To do.

特開2006−283883号公報JP 2006-283833 A

従来の二次側圧力監視装置では、二次側圧力が異常設定値以上となると一律に異常処理が行われる。その結果、整圧器の故障ではなく、流体供給路の雰囲気の変化等の他の要因によって二次側圧力が上昇して、二次側圧力が異常設定値以上となった場合でも、異常処理が行われることになる。流体供給路の雰囲気の変化等の他の要因によって二次側圧力が上昇している場合には、整圧器の故障の場合とは異なった異常処理を行う必要がある。したがって、従来の装置では、整圧器の故障でないにもかかわらず、整圧器故障に対応した異常処理を行うことになり、整圧器の設置箇所等に作業者を派遣することになり、煩わしいものとなっていた。   In the conventional secondary pressure monitoring device, when the secondary pressure becomes equal to or higher than the abnormal set value, the abnormal process is uniformly performed. As a result, even if the pressure on the secondary side rises due to other factors such as a change in the atmosphere of the fluid supply path, not the failure of the pressure regulator, the abnormal processing is not performed even when the secondary side pressure exceeds the abnormal set value. Will be done. When the secondary pressure increases due to other factors such as a change in the atmosphere of the fluid supply path, it is necessary to perform an abnormality process different from the case of the pressure regulator failure. Therefore, in the conventional apparatus, although the pressure regulator is not broken, abnormal processing corresponding to the pressure regulator failure is performed, and an operator is dispatched to the installation location of the pressure regulator, which is troublesome. It was.

本発明は、かかる点に着目してなされたものであり、その目的は、整圧器の故障ではなく、他の要因によって二次側圧力が上昇している状態を認識して、無駄な処理や作業が行われるのを防止できる二次側圧力監視装置及び二次側圧力判別方法を提供する点にある。   The present invention has been made paying attention to such a point, and its purpose is not a failure of the pressure regulator, but a recognition of a state in which the secondary side pressure is rising due to other factors, and wasteful processing or It is in providing a secondary pressure monitoring device and a secondary pressure discrimination method capable of preventing work from being performed.

この目的を達成するために、本発明に係る二次側圧力監視装置の特徴構成は、流体供給路の二次側圧力を設定圧力に調整自在な整圧器が前記流体供給路の途中に設けられている整圧設備において、二次側圧力を監視する二次側圧力監視装置であって、
二次側圧力が上昇したときに、前記流体供給路の雰囲気の変化及び前記流体供給路の流体の温度変化の一方又は双方に起因して二次側圧力が上昇する正常昇圧状態であるか否かを判別する昇圧状態判別手段を備えている点にある。
In order to achieve this object, the characteristic configuration of the secondary pressure monitoring device according to the present invention is such that a pressure regulator capable of adjusting the secondary pressure of the fluid supply path to a set pressure is provided in the middle of the fluid supply path. A secondary pressure monitoring device for monitoring the secondary pressure in the pressure regulating equipment,
Whether the secondary pressure increases normally due to one or both of the change in the atmosphere of the fluid supply path and the temperature change of the fluid in the fluid supply path when the secondary pressure increases There is a boosting state determining means for determining whether or not.

例えば、流体供給路の雰囲気の気温が上昇すると、流体供給路を流動する流体自身の温度も上昇し、その温度膨張により二次側圧力が上昇することになる。また、流体供給路の雰囲気の気圧が低下すると流体の二次側ゲージ圧力が上昇する。流体温度の上昇については、雰囲気の温度上昇の他に、例えば、直射日光による流体の加熱が考えられ、直射日光による加熱の傾向を日照率で置き換えることが可能である。よって、日照率の変化と二次側圧力の昇圧に相関があることも考えられる。また、整圧器による減圧によって流体温度が低下すると、その直後に負荷がなくなり整圧器が停止すれば、二次側の流体温度が上昇して二次側圧力が上昇することも考えられる。
そこで、本発明の二次側圧力監視装置では、昇圧状態判別手段を備え、流体供給路の雰囲気の変化や流体供給路の流体の温度変化を捉えて正常昇圧状態であるか否かを判別する。これにより、二次側圧力が異常設定値以上となっても、その要因が正常昇圧状態であることを認識できる。よって、作業者等が正常昇圧状態であることを認識することができるので、正常昇圧状態の場合には、二次側圧力が異常設定値以上となっても、整圧器故障に対応した異常処理の実行を阻止することができ、整圧器の設置箇所等に作業者を派遣することも阻止できる。その結果、整圧器の故障ではなく、他の要因によって二次側圧力が上昇している状態を認識して、無駄な処理や作業が行われるのを防止できる。
For example, when the temperature of the atmosphere of the fluid supply path rises, the temperature of the fluid itself flowing through the fluid supply path also rises, and the secondary side pressure rises due to the temperature expansion. Further, when the atmospheric pressure in the atmosphere of the fluid supply path decreases, the secondary gauge pressure of the fluid increases. Regarding the increase in the fluid temperature, in addition to the increase in the temperature of the atmosphere, for example, heating of the fluid by direct sunlight can be considered, and the tendency of heating by direct sunlight can be replaced by the sunlight rate. Therefore, it is conceivable that there is a correlation between the change in the sunshine rate and the increase in the secondary pressure. In addition, when the fluid temperature is reduced by the pressure reduction by the pressure regulator, if the load is removed immediately after that and the pressure regulator is stopped, the secondary fluid temperature rises and the secondary pressure rises.
In view of this, the secondary pressure monitoring apparatus of the present invention is provided with a pressure increase state determination unit, and determines whether the pressure is in a normal pressure increase state by detecting a change in the atmosphere of the fluid supply path or a temperature change of the fluid in the fluid supply path. . Thereby, even if the secondary side pressure becomes equal to or higher than the abnormal set value, it can be recognized that the factor is the normal boosting state. Therefore, the operator can recognize that the boosting state is normal, so in the normal boosting state, even if the secondary side pressure is higher than the abnormal set value, abnormal processing corresponding to the pressure regulator failure Can be prevented, and dispatching an operator to a location where the pressure regulator is installed can also be prevented. As a result, it is possible to recognize that the secondary side pressure is rising due to other factors rather than a failure of the pressure regulator, and prevent unnecessary processing and work from being performed.

本発明に係る二次側圧力監視装置の更なる特徴構成は、前記昇圧状態判別手段にて前記正常昇圧状態であると判別すると、前記流体供給路の一次側に配設された遮断手段の作動を禁止する又はその遮断手段の作動を禁止するための作動禁止情報を出力する遮断禁止手段を備えている点にある。   A further characteristic configuration of the secondary pressure monitoring device according to the present invention is that the operation of the shut-off means disposed on the primary side of the fluid supply path is determined when the boosted state determining unit determines that the normal boosted state is established. Is provided with a shut-off prohibiting means for outputting operation prohibiting information for prohibiting the operation or the operation of the shut-off means.

本特徴構成によれば、正常昇圧状態である場合に、二次側圧力が異常設定値以上となっても、遮断禁止手段が遮断手段の作動を禁止することにより、安全機構により異常処理が行われることを自動的に阻止することができる。また、正常昇圧状態であると遮断禁止手段が作動禁止情報を出力する場合にも、安全機構や作業者に対して作動禁止情報を出力することにより、異常処理が行われることを阻止できる。よって、正常昇圧状態である場合に、異常処理の実行を確実に阻止することができる。   According to this feature configuration, even when the secondary pressure is higher than the abnormal set value in the normal boost state, the safety prohibition means performs the abnormality process by prohibiting the operation of the cutoff means. Can be prevented automatically. Further, even when the shut-off prohibiting means outputs the operation prohibition information in the normal boosting state, the abnormal processing can be prevented from being performed by outputting the operation prohibition information to the safety mechanism or the operator. Therefore, it is possible to reliably prevent the execution of the abnormality process in the normal boosting state.

本発明に係る二次側圧力監視装置の更なる特徴構成は、前記昇圧状態判別手段は、前記流体供給路の雰囲気の温度変化を監視して、前記正常昇圧状態であるか否かを判別するように構成されている点にある。   In a further characteristic configuration of the secondary pressure monitoring apparatus according to the present invention, the pressure increase state determination means determines whether or not the normal pressure increase state by monitoring a temperature change in the atmosphere of the fluid supply path. It is in the point comprised as follows.

本特徴構成によれば、昇圧状態判別手段は、流体供給路の雰囲気の温度変化を監視することにより、例えば気温の上昇等により流体供給路の雰囲気の温度が上昇していることを捉えることができる。よって、昇圧状態判別手段は、流体供給路の雰囲気の温度が上昇していることを的確に検出して、その雰囲気の温度上昇により正常昇圧状態であることを正確に判別することができる。   According to this characteristic configuration, the pressure increase state determination unit can detect that the temperature of the atmosphere of the fluid supply path is rising due to, for example, an increase in temperature by monitoring the temperature change of the atmosphere of the fluid supply path. it can. Therefore, the boosting state determination means can accurately detect that the temperature of the atmosphere of the fluid supply path has risen, and can accurately determine that it is in the normal boosting state due to the temperature increase of the atmosphere.

本発明に係る二次側圧力監視装置の更なる特徴構成は、前記昇圧状態判別手段は、前記流体供給路の雰囲気の圧力変化を監視して、前記正常昇圧状態であるか否かを判別するように構成されている点にある。   In a further characteristic configuration of the secondary pressure monitoring apparatus according to the present invention, the pressure increase state determination means determines whether or not the normal pressure increase state by monitoring a pressure change in the atmosphere of the fluid supply path. It is in the point comprised as follows.

本特徴構成によれば、昇圧状態判別手段は、流体供給路の雰囲気の圧力変化を監視することにより、例えば、気圧の低下等により流体供給路内部の流体のゲージ圧力が昇圧していることを捉えることができる。よって、昇圧状態判別手段は、その雰囲気の気圧の低下により正常昇圧状態であることを正確に判別することができる。   According to this characteristic configuration, the pressure increase state determination means monitors the pressure change in the atmosphere of the fluid supply path, for example, to confirm that the gauge pressure of the fluid inside the fluid supply path is increased due to a decrease in atmospheric pressure or the like. Can be caught. Therefore, the boosting state determination means can accurately determine that the pressure is in the normal boosting state due to a decrease in atmospheric pressure.

本発明に係る二次側圧力判別方法の特徴構成は、流体供給路の二次側圧力を設定圧力に調整自在な整圧器が流体供給路の途中に設けられている整圧設備において、二次側圧力を監視する二次側圧力判別方法であって、
二次側圧力が上昇したときに、前記流体供給路の雰囲気の変化及び前記流体供給路の流体の温度変化の一方又は双方に起因して二次側圧力が上昇する正常昇圧状態であるか否かを判別する点にある。
The characteristic configuration of the secondary side pressure discrimination method according to the present invention is the pressure regulating equipment in which a pressure regulator capable of adjusting the secondary side pressure of the fluid supply path to a set pressure is provided in the middle of the fluid supply path. A secondary pressure discriminating method for monitoring the side pressure,
Whether the secondary pressure increases normally due to one or both of the change in the atmosphere of the fluid supply path and the temperature change of the fluid in the fluid supply path when the secondary pressure increases The point is to determine whether.

本特徴構成によれば、本発明に係る二次側圧力監視装置の特徴構成で述べた如く、流体供給路の雰囲気の変化や流体供給路の流体の温度変化を捉えて正常昇圧状態であるか否かを判別することができ、二次側圧力が異常設定値以上となっても、その要因が正常昇圧状態であることを認識できる。よって、整圧器の故障ではなく、他の要因によって二次側圧力が上昇している状態を認識して、無駄な処理や作業が行われるのを防止できる。   According to this characteristic configuration, as described in the characteristic configuration of the secondary-side pressure monitoring apparatus according to the present invention, whether the pressure is in a normal boosted state by capturing the change in the atmosphere of the fluid supply path or the temperature change of the fluid in the fluid supply path. Whether or not the secondary pressure is equal to or higher than the abnormal set value can be recognized as the cause of the normal pressure increase state. Therefore, it is possible to recognize that the secondary side pressure is rising due to other factors, not a failure of the pressure regulator, and prevent unnecessary processing and work from being performed.

本発明に係る二次側圧力監視装置の実施形態について図面に基づいて説明する。
この二次側圧力監視装置は、図1に示すように、流体供給路1の二次側圧力を設定圧力に調整自在な整圧器2が流体供給路1の途中に設けられている整圧設備において、整圧器2の二次側圧力を監視するものである。
An embodiment of a secondary pressure monitoring device according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the secondary pressure monitoring apparatus includes a pressure regulator 2 in which a pressure regulator 2 capable of adjusting the secondary pressure of the fluid supply path 1 to a set pressure is provided in the middle of the fluid supply path 1. The secondary pressure of the pressure regulator 2 is monitored.

この整圧設備は、図示は省略するが、例えば、流体供給路1の整圧器2よりも下流側を複数の分岐路に分岐してそれら複数の分岐路の夫々を各需要家に接続することにより、複数の需要家に天然ガス等の流体を供給するように構成されている。そして、整圧器2によりそれよりも下流側の二次側圧力を上流側の一次側圧力よりも低圧の設定圧力に調整するように構成されている。流体供給路1において整圧器2よりも上流側の一次側には、整圧器2への流体の供給を遮断する遮断手段としての遮断弁3が設けられている。   Although not shown in the figure, for example, the pressure regulator is branched downstream from the pressure regulator 2 of the fluid supply path 1 into a plurality of branch paths, and each of the plurality of branch paths is connected to each consumer. Thus, a fluid such as natural gas is supplied to a plurality of consumers. Then, the secondary pressure on the downstream side is adjusted by the pressure regulator 2 to a set pressure lower than the primary pressure on the upstream side. On the primary side upstream of the pressure regulator 2 in the fluid supply path 1, a shutoff valve 3 is provided as a shutoff means for shutting off the supply of fluid to the pressure regulator 2.

整圧器2としての主ガバナ4は、流体供給路1に設けられており、パイロットガバナ5は、主ガバナ4よりも流体供給路1の上流側から分岐されて主ガバナ4よりも流体供給路1の下流側に合流する分岐合流路6に設けられている。
主ガバナ4は、ダイヤフラム7にて弁体8を移動させて弁体8を開閉させるように構成されている。ダイヤフラム7は、弁体8を開き側に移動させるようにバネ9により付勢されている。ダイヤフラム7にて区画された圧力検出室10には、分岐合流路6が接続されている。そして、分岐合流路6には、流体供給路1の分岐箇所6aから圧力検出室10に分岐接続される分岐接続箇所6bとの間に絞り11が設けられている。
パイロットガバナ5は、主ガバナ4と同様に、パイロット用ダイヤフラム12にてパイロット用弁体13を移動させてパイロット用弁体13を開閉させるように構成されている。パイロット用ダイヤフラム12は、パイロット用弁体13を開き側に移動させるようにパイロット用バネ14により付勢されている。
The main governor 4 as the pressure regulator 2 is provided in the fluid supply path 1, and the pilot governor 5 is branched from the upstream side of the fluid supply path 1 with respect to the main governor 4, and the fluid supply path 1 with respect to the main governor 4. It is provided in the branch joint channel 6 which joins the downstream side.
The main governor 4 is configured to open and close the valve body 8 by moving the valve body 8 with a diaphragm 7. The diaphragm 7 is urged by a spring 9 so as to move the valve body 8 to the open side. A branch joint channel 6 is connected to the pressure detection chamber 10 partitioned by the diaphragm 7. In the branch joint channel 6, a throttle 11 is provided between the branch point 6 a of the fluid supply path 1 and the branch connection point 6 b branched and connected to the pressure detection chamber 10.
Similar to the main governor 4, the pilot governor 5 is configured to open and close the pilot valve body 13 by moving the pilot valve body 13 with the pilot diaphragm 12. The pilot diaphragm 12 is urged by a pilot spring 14 so as to move the pilot valve body 13 to the open side.

主ガバナ4の下流側圧力となる整圧器2の二次側圧力が設定圧力よりも高い場合には、パイロットガバナ5におけるパイロット用圧力検出室15の圧力が高く、その圧力によりパイロット用バネ14の付勢力に抗してパイロット用弁体13が閉じ側に移動する。これにより、主ガバナ4の圧力検出室10の圧力は、流体供給路1の主ガバナ4よりも上流側の高圧の一次側圧力となり、バネ9の付勢力に抗して弁体8が閉じ側に移動する。その結果、整圧器2は停止して流体が二次側に供給されない。
逆に、整圧器2の二次側圧力が設定圧力よりも低い場合には、パイロット用バネ14の付勢力によりパイロット用弁体13が開き側に移動する。これにより、分岐合流路6では、絞り11により流体の流量が絞られているので、圧力検出室10の流体がパイロットガバナ5の側に流動する。よって、圧力検出室10の圧力が低下してバネ9の付勢力により弁体8が開き側に移動する。その結果、流体が二次側に供給されて、整圧器2の二次側圧力が上昇して設定圧力に調整される。
When the secondary pressure of the pressure regulator 2 that is the downstream pressure of the main governor 4 is higher than the set pressure, the pressure of the pilot pressure detection chamber 15 in the pilot governor 5 is high, and the pressure of the pilot spring 14 is increased by the pressure. The pilot valve body 13 moves to the closing side against the urging force. As a result, the pressure in the pressure detection chamber 10 of the main governor 4 becomes a primary pressure on the upstream side of the main governor 4 in the fluid supply path 1, and the valve body 8 closes against the biasing force of the spring 9. Move to. As a result, the pressure regulator 2 stops and no fluid is supplied to the secondary side.
Conversely, when the secondary pressure of the pressure regulator 2 is lower than the set pressure, the pilot valve body 13 moves to the open side by the biasing force of the pilot spring 14. Thereby, in the branch joint flow path 6, the flow rate of the fluid is restricted by the restriction 11, so that the fluid in the pressure detection chamber 10 flows toward the pilot governor 5. Therefore, the pressure in the pressure detection chamber 10 decreases and the valve body 8 moves to the open side by the biasing force of the spring 9. As a result, the fluid is supplied to the secondary side, and the secondary side pressure of the pressure regulator 2 is increased and adjusted to the set pressure.

流体供給路1の整圧器2よりも下流側の二次側には、二次側圧力を検出する二次側圧力検出センサ16が設けられている。そして、二次側圧力検出センサ16の検出情報を入力することにより、二次側圧力を監視する二次側圧力監視装置17が設けられており、この二次側圧力監視装置17が、本発明に係る二次側圧力監視装置である。二次側圧力監視装置17は、二次側圧力検出センサ16の検出情報をリアルタイムで入力して、二次側圧力をリアルタイムで監視するように構成されている。   On the secondary side downstream of the pressure regulator 2 in the fluid supply path 1, a secondary pressure detection sensor 16 that detects the secondary pressure is provided. And the secondary side pressure monitoring apparatus 17 which monitors a secondary side pressure by inputting the detection information of the secondary side pressure detection sensor 16 is provided, and this secondary side pressure monitoring apparatus 17 is this invention. It is the secondary side pressure monitoring apparatus which concerns on this. The secondary pressure monitoring device 17 is configured to input detection information from the secondary pressure detection sensor 16 in real time and monitor the secondary pressure in real time.

整圧器2が停止し下流側の流体が一定容積で保持されているときには、本来、二次側圧力は一定となるが、整圧器2の故障によってリークが発生すると二次側圧力が上昇することになる。そこで、二次側圧力監視装置17は、二次側圧力が異常設定値(例えば、2.75や3.5KPa)以上となっていると判別すると、遮断弁3を作動させて整圧器2への流体の供給を遮断する遮断処理を行う遮断手段18を備えている。   When the pressure regulator 2 is stopped and the downstream fluid is held at a constant volume, the secondary pressure is essentially constant, but if a leak occurs due to a failure of the pressure regulator 2, the secondary pressure increases. become. Therefore, when the secondary pressure monitoring device 17 determines that the secondary pressure is equal to or higher than an abnormal set value (eg, 2.75 or 3.5 KPa), the shut-off valve 3 is actuated to the pressure regulator 2. There is provided a blocking means 18 for performing a blocking process for blocking the supply of the fluid.

二次側圧力が上昇する要因としては、整圧器2の故障だけでなく、それ以外の場合もあるので、図2〜図4の計測結果に基づいて、整圧器2の故障以外の要因について説明する。図2〜図4の夫々は、ある整圧設備において実際に二次側圧力を計測した結果を示したものである。   Factors other than failure of the pressure regulator 2 will be described as factors that cause the secondary pressure to rise, not only because of the failure of the pressure regulator 2 but also in other cases. To do. Each of FIGS. 2 to 4 shows the result of actually measuring the secondary pressure in a certain pressure regulating equipment.

図2は、実際に計測した二次側圧力P1、流体供給路1における整圧器2の配設箇所における気温T、その気温を流体温度と同一と仮定してボイル・シャルルの法則から演算した流体供給路1の二次側における計算圧力P2の夫々について、時間経過に伴う変化を示したグラフである。
この図2により、実際に計測した二次側圧力P1と気温を用いて演算した計算圧力P2とがほぼ一致して変化していることが分かる。よって、二次側圧力は、気温の変化に伴って変化すると言えるので、二次側圧力が上昇する要因として、気温の上昇等による流体供給路1の雰囲気の温度変化が考えられる。逆に、このようにして演算した圧力の変化であれば、整圧器2に異常はないと判断できる。
FIG. 2 shows the actually measured secondary pressure P1, the temperature T at the location of the pressure regulator 2 in the fluid supply path 1, and the fluid calculated from Boyle-Charles's law assuming that the temperature is the same as the fluid temperature. It is the graph which showed the change with progress of time about each of the calculation pressure P2 in the secondary side of the supply path.
From FIG. 2, it can be seen that the actually measured secondary pressure P1 and the calculated pressure P2 calculated using the air temperature change substantially coincident with each other. Therefore, it can be said that the secondary pressure changes as the temperature changes, and therefore, the temperature change of the atmosphere of the fluid supply path 1 due to the rise in temperature or the like can be considered as a factor that increases the secondary pressure. On the contrary, if the pressure is changed in this way, it can be determined that there is no abnormality in the pressure regulator 2.

図3は、実際に計測した二次側圧力P3、流体供給路1における整圧器2の配設箇所における気圧P4(例えば、気象庁の気圧データ)、その気圧データを用いて演算した流体供給路1の二次側における計算圧力P5の夫々について、時間経過に伴う変化を示したグラフである。
この図3により、実際に計測した二次側圧力P3と気圧を用いて演算した計算圧力P5とがほぼ一致して変化していることが分かる。一般に二次側圧力はゲージ圧で表示されるが、当然のことながら気圧の変化分だけ二次側圧力は変化するので、二次側圧力が上昇する要因として、気圧の低下等による流体供給路1の雰囲気の圧力変化が考えられる。逆に、このようにして演算した圧力の変化であれば、整圧器2に異常はないと判断できる。
FIG. 3 shows the actually measured secondary pressure P3, the atmospheric pressure P4 (for example, the atmospheric pressure data of the Japan Meteorological Agency) at the location of the pressure regulator 2 in the fluid supply path 1, and the fluid supply path 1 calculated using the atmospheric pressure data. It is the graph which showed the change with progress of time about each of the calculation pressure P5 in the secondary side.
It can be seen from FIG. 3 that the actually measured secondary pressure P3 and the calculated pressure P5 calculated using the atmospheric pressure change substantially in agreement. Generally, the secondary pressure is displayed as a gauge pressure, but naturally the secondary pressure changes by the change in atmospheric pressure, so the fluid supply path due to a decrease in atmospheric pressure is the cause of the increase in secondary pressure. The pressure change of the atmosphere of 1 is considered. On the contrary, if the pressure is changed in this way, it can be determined that there is no abnormality in the pressure regulator 2.

図4は、実際に計測した二次側圧力P6、流体供給路1における整圧器2の配設箇所における日照率Qの夫々について、ある1日の時間経過に伴う変化を示したグラフである。ここで、日照率については、例えば、太陽の中心が東の水平線に現れてから西の水平線に沈むまでの時間を可照時間とし、その可照時間と日照時間とを用いて下記の〔数1〕から日照率を求めることができる。
〔数1〕
日照率(%)=日照時間÷可照時間×100
FIG. 4 is a graph showing changes over time of one day for each of the actually measured secondary pressure P6 and the sunshine rate Q at the location where the pressure regulator 2 is disposed in the fluid supply path 1. Here, with regard to the sunshine rate, for example, the time from when the center of the sun appears on the eastern horizon until it sinks to the west horizon is defined as the illuminating time, and the following [ 1], the sunshine rate can be obtained.
[Equation 1]
Sunlight rate (%) = Sunlight time / Visible time x 100

この図4により、実際に計測した二次側圧力P6は、日照率Qの上昇に伴って上昇し、日照率Qの低下に伴って低下していることが分かる。よって、二次側圧力は日照率の変化に伴って変化していると言える。二次側圧力が上昇する要因として、気温上昇の他に直射日光による流体の加熱が考えられ、直射日光による加熱の傾向を日照率で置き換えることができる。このように日照率の変化と二次側圧力の昇圧に相関があれば、整圧器2に異常はないと判断できる。   4 that the actually measured secondary pressure P6 increases as the sunshine rate Q increases, and decreases as the sunshine rate Q decreases. Therefore, it can be said that the secondary pressure changes with a change in the sunshine rate. As a factor for increasing the secondary side pressure, fluid heating by direct sunlight can be considered in addition to temperature rise, and the tendency of heating by direct sunlight can be replaced by the sunshine rate. Thus, if there is a correlation between the change in the sunlight rate and the increase in the secondary pressure, it can be determined that there is no abnormality in the pressure regulator 2.

また、整圧器2にて高圧の一次側圧力を低圧の二次側圧力に減圧する際に、ジュール・トムソン効果により流体供給路1を流動する流体の温度が変化する。例えば、整圧器2が長時間、大流量で流体を流動させたときに、整圧器2による減圧によって流体の温度が低下すると、その直後に負荷がなくなり整圧器2が停止すれば、流体供給路1の二次側における流体の温度が上昇することになり、その温度膨張により二次側圧力が上昇することになる。よって、二次側圧力が上昇する要因として、流体供給路1の流体の減圧に起因する温度変化が考えられる。   When the high pressure primary pressure is reduced to a low pressure secondary pressure by the pressure regulator 2, the temperature of the fluid flowing through the fluid supply path 1 changes due to the Joule-Thomson effect. For example, when the pressure regulator 2 causes the fluid to flow at a large flow rate for a long time, if the temperature of the fluid decreases due to the pressure reduction by the pressure regulator 2, if there is no load immediately after that and the pressure regulator 2 stops, the fluid supply path The temperature of the fluid on the secondary side of 1 will rise, and the secondary side pressure will rise by the temperature expansion. Therefore, the temperature change resulting from the pressure reduction of the fluid in the fluid supply path 1 can be considered as a factor that increases the secondary pressure.

以上のことから、二次側圧力が上昇する要因としては、整圧器2の故障だけでなく、流体供給路1の雰囲気の温度変化や圧力変化である場合、或いは、流体供給路1の流体の温度変化である場合が考えられる。よって、整圧器2の故障以外の要因によっても、二次側圧力が上昇して二次側圧力が異常設定値以上となる場合がある。例えば、図2に示した計測を行った整圧設備では、異常設定値を例えば3.5KPaとしているが、気温Tの上昇により二次側圧力P1が3.5KPa以上となっている。また、図3及び図4に示した計測を行った整圧設備では、異常設定値を例えば2.75KPaとしているが、気圧P4や日照率Qの変化により二次側圧力P3,P6が2.75KPa以上となっている。
一方、二次側圧力が上昇した要因が、流体供給路1の雰囲気の温度変化や圧力変化である場合、或いは、流体供給路1の流体の温度変化である場合には、整圧器2の故障の場合とは異なり、二次側圧力の昇圧量はあるレベルで収まるので、遮断手段18による遮断処理を行って整圧器2への流体の供給を遮断しなければならないほどの危険性はなく、点検等の他の方法で対応可能である。
From the above, the cause of the increase in the secondary side pressure is not only the failure of the pressure regulator 2, but also the temperature change or pressure change of the atmosphere of the fluid supply path 1, or the fluid in the fluid supply path 1 A case where the temperature is changed is conceivable. Therefore, the secondary side pressure may rise and the secondary side pressure may become an abnormal set value or more due to factors other than the failure of the pressure regulator 2. For example, in the pressure regulating equipment that has performed the measurement shown in FIG. 2, the abnormal set value is, for example, 3.5 KPa, but the secondary pressure P <b> 1 is 3.5 KPa or more as the temperature T rises. Moreover, in the pressure regulation equipment which performed the measurement shown in FIG.3 and FIG.4, although the abnormal setting value is 2.75 KPa, for example, the secondary side pressure P3 and P6 are 2. with the change of the atmospheric | air pressure P4 and the sunlight rate Q. 75 KPa or more.
On the other hand, if the cause of the increase in the secondary pressure is a change in temperature or pressure in the atmosphere of the fluid supply path 1, or a change in temperature of the fluid in the fluid supply path 1, the pressure regulator 2 has failed. Unlike the case of the above, since the amount of pressure increase of the secondary side pressure falls within a certain level, there is no danger of having to shut off the fluid supply to the pressure regulator 2 by performing the shut-off process by the shut-off means 18, It can be handled by other methods such as inspection.

そこで、本発明に係る二次側圧力監視装置17では、二次側圧力が上昇したときに、流体供給路1の雰囲気の圧力変化や温度変化、及び、流体供給路1の流体の温度変化を監視することにより、流体供給路1の雰囲気の変化及び流体供給路1の流体の温度変化の一方又は双方に起因して二次側圧力が上昇する正常昇圧状態であるか否かを判別する昇圧状態判別手段19と、昇圧状態判別手段19にて正常昇圧状態であると判別すると、遮断手段18による遮断処理の実行を禁止する遮断禁止手段20とを備えている。これにより、正常昇圧状態である場合には、二次側圧力が異常設定値以上となっても、遮断手段18による遮断処理の実行を禁止して、遮断処理が無駄に行われることを防止している。   Therefore, in the secondary side pressure monitoring device 17 according to the present invention, when the secondary side pressure increases, the pressure change and temperature change of the atmosphere in the fluid supply path 1 and the temperature change of the fluid in the fluid supply path 1 are detected. By monitoring, boosting is performed to determine whether or not it is a normal boosting state in which the secondary pressure increases due to one or both of the change in the atmosphere of the fluid supply path 1 and the temperature change of the fluid in the fluid supply path 1 When the state determining unit 19 and the step-up state determining unit 19 determine that a normal boosting state is present, the state determining unit 19 includes a blocking prohibiting unit 20 that prohibits execution of the blocking process by the blocking unit 18. As a result, even when the secondary pressure is equal to or higher than the abnormal set value in the normal pressure increase state, execution of the blocking process by the blocking unit 18 is prohibited, and the blocking process is prevented from being performed wastefully. ing.

昇圧状態判別手段19は、流体供給路1における整圧器2の配設箇所における気圧、気温、地中温度、流体供給路1の管表面温度、日照時間及び日光の熱放射量、流体温度、並びに、整圧器2における流体の流量又は整圧器2の開度、整圧器2による減圧幅の夫々をリアルタイムで取得しており、その取得した各種情報を用いて正常昇圧状態であるか否かを判別するように構成されている。   The pressurization state discriminating means 19 includes an atmospheric pressure, an air temperature, an underground temperature, a tube surface temperature of the fluid supply path 1, a sunshine duration and a heat radiation amount of sunlight, a fluid temperature, and a fluid temperature at the location where the pressure regulator 2 is disposed in the fluid supply path 1. The flow rate of the fluid in the pressure regulator 2 or the opening of the pressure regulator 2 and the pressure reduction width by the pressure regulator 2 are acquired in real time, and it is determined whether or not it is in a normal pressure-up state using the acquired various information. Is configured to do.

昇圧状態判別手段19は、例えば、整圧器2が停止している時、二次側圧力検出センサ16にて検出する二次側圧力が判別用設定値(異常設定値よりも小さい値とする)以上となる、又は、二次側圧力検出センサ16にて検出する二次側圧力の昇圧速度が判別用設定速度以上となると、判別開始タイミングであると判別する。そして、昇圧状態判別手段19は、図3に示すように、リアルタイムで取得する気圧を用いて計算圧力(P5参照)の演算を開始して、二次側圧力検出センサ16にて検出した二次側圧力(P3参照)の変化履歴と演算した計算圧力(P5参照)の変化履歴とを比較する。昇圧状態判別手段19は、例えば、判別開始タイミングから設定時間が経過するまでの二次側圧力の変化履歴と計算圧力の変化履歴とが合致する、或いは、二次側圧力と計算圧力とが連続して設定回数以上一致する等により、両者の変化履歴が合致していると、二次側圧力が上昇している要因は流体供給路1の雰囲気の圧力変化であるとして、正常昇圧状態であると判別する。   For example, when the pressure regulator 2 is stopped, the pressure increase state determination means 19 is such that the secondary pressure detected by the secondary pressure detection sensor 16 is a set value for determination (a value smaller than the abnormal set value). When the pressure increase speed of the secondary pressure detected by the secondary pressure detection sensor 16 becomes equal to or higher than the set speed for determination, it is determined that it is the determination start timing. Then, as shown in FIG. 3, the pressure increase state determination means 19 starts calculation of the calculated pressure (see P5) using the atmospheric pressure acquired in real time, and detects the secondary detected by the secondary pressure detection sensor 16. The change history of the side pressure (see P3) and the calculated change history of the calculated pressure (see P5) are compared. For example, the pressure increase state determination means 19 matches the change history of the secondary pressure and the change history of the calculated pressure until the set time elapses from the determination start timing, or the secondary pressure and the calculated pressure are continuous. If the change histories of the two coincide with each other due to the coincidence over the set number of times, it is assumed that the cause of the increase in the secondary pressure is the change in the pressure of the atmosphere of the fluid supply path 1, and the normal pressure increase state. Is determined.

また、昇圧状態判別手段19は、判別開始タイミングになると、図2に示すように、リアルタイムで取得する気温を用いて計算圧力(P2参照)の演算を開始し、二次側圧力検出センサ16にて検出した二次側圧力(P1参照)の変化履歴と演算した計算圧力(P2参照)の変化履歴とを比較する。そして、昇圧状態判別手段19は、両者の変化履歴が合致していると、二次側圧力が上昇している要因は流体供給路1の雰囲気の温度変化であるとして、正常昇圧状態であると判別する。ここで、気温を用いることに加えて、流体温度は言うまでもなく、地中温度や流体供給路1の管表面温度を用いることができる。なお、流体供給路1が地中に埋設されている場合には、気温や直射日光の影響をあまり受けないことから、気温や直射日光以外の要因(気圧変化や減圧による流体温度変化等)のみで演算してもある程度の精度を確保できる。   Further, at the determination start timing, as shown in FIG. 2, the pressure increase state determination means 19 starts calculation of the calculated pressure (see P2) using the air temperature acquired in real time, and the secondary pressure detection sensor 16 The change history of the detected secondary pressure (see P1) and the calculated change history of the calculated pressure (see P2) are compared. Then, if the change history of the two coincides, the pressurization state determination means 19 assumes that the cause of the increase in the secondary pressure is the temperature change of the atmosphere of the fluid supply path 1 and is in the normal pressurization state. Determine. Here, in addition to using the air temperature, it is possible to use the ground temperature or the pipe surface temperature of the fluid supply path 1 as well as the fluid temperature. In addition, when the fluid supply path 1 is buried in the ground, it is not affected by air temperature and direct sunlight, so only factors other than the air temperature and direct sunlight (such as changes in fluid temperature due to changes in atmospheric pressure or reduced pressure). A certain degree of accuracy can be ensured even if the calculation is performed with.

また、昇圧状態判別手段19は、日照時間から日照率をリアルタイムで求め、その日照率の変化履歴と二次側圧力検出センサ16にて検出した二次側圧力の変化履歴とを比較して、日照率が上昇したときに二次側圧力も上昇し且つ日照率が低下したときに二次側圧力も低下しているというように日照率と二次側圧力とが上下する傾向が合致していると、二次側圧力が上昇している要因は流体供給路1の雰囲気の温度変化であるとして、正常昇圧状態であると判別する。ここで、日照率に加えて、日光の熱放射量を用いることもできる。つまり、日光の熱放射量が多くなるほど日照率が高いと言えるので、日光の熱放射量が上昇したときに二次側圧力も上昇し且つ日光の熱放射量が低下したときに二次側圧力も低下しているというように日光の熱放射量と二次側圧力とが上下する傾向が合致していると、二次側圧力が上昇している要因は流体供給路1の雰囲気の温度変化であるとして、正常昇圧状態であると判別することができる。   Further, the pressurization state determination means 19 obtains the sunshine rate in real time from the sunshine time, compares the change rate of the sunshine rate with the change history of the secondary side pressure detected by the secondary side pressure detection sensor 16, and When the sunshine rate increases, the secondary pressure also increases, and when the sunshine rate decreases, the secondary side pressure also decreases. If so, the factor that the secondary side pressure is rising is determined to be the temperature change of the atmosphere of the fluid supply path 1, and is determined to be in the normal pressure-up state. Here, in addition to the sunshine rate, the amount of heat radiation of sunlight can also be used. In other words, it can be said that the greater the amount of sunlight radiated, the higher the sunshine rate.Therefore, when the amount of sunlight radiated increases, the secondary pressure also increases and when the amount of sunlight radiates decreases, the secondary pressure increases. If the tendency that the amount of heat radiation of sunlight and the secondary side pressure increase and decrease agrees, the cause of the increase in the secondary side pressure is the temperature change of the atmosphere of the fluid supply path 1 As such, it can be determined that the voltage is in a normal boosted state.

更に、昇圧状態判別手段19は、リアルタイムで取得する流体供給路1の流体温度の変化履歴と二次側圧力検出センサ16にて検出した二次側圧力の変化履歴とを比較して、流体温度が上昇しているときに二次側圧力も上昇しているというように流体温度と二次側圧力の上昇傾向が合致していると、二次側圧力が上昇している要因は流体供給路1の流体の温度変化であるとして、正常昇圧状態であると判別する。
流体温度を用いることに加えて、整圧器2における流体の流量又は整圧器2の開度、及び、整圧器2による減圧幅を用いることができる。上述の如く、例えば、整圧器2が長時間、大流量で流体を流動させたときに、整圧器2による減圧によって流体の温度が低下するが、その直後に負荷がなくなり整圧器2が停止すれば、流体供給路1の二次側における流体の温度が上昇する。よって、整圧器2における流体の流量又は整圧器2の開度、及び、整圧器2による減圧幅により、整圧器2が長時間、大流量で流体を減圧させているか否かを判別することができる。そして、整圧器2が長時間、大流量で流体を減圧させていると判別した直後に、流量負荷がなくなり整圧器2が停止し、二次側圧力が上昇すると、二次側圧力が上昇している要因は流体供給路1の流体の減圧に起因する温度変化であるとして、正常昇圧状態であると判別することができる。
Further, the pressure increase state determination means 19 compares the change history of the fluid temperature of the fluid supply path 1 acquired in real time with the change history of the secondary pressure detected by the secondary pressure detection sensor 16 to determine the fluid temperature. If the upward trend of the fluid temperature and the secondary pressure are matched such that the secondary pressure also rises when the pressure rises, the cause of the rise of the secondary pressure is the fluid supply path It is determined that the pressure is normal, assuming that the temperature change of the first fluid.
In addition to using the fluid temperature, the flow rate of the fluid in the pressure regulator 2 or the opening of the pressure regulator 2 and the pressure reduction width by the pressure regulator 2 can be used. As described above, for example, when the pressure regulator 2 causes the fluid to flow at a large flow rate for a long time, the temperature of the fluid decreases due to the pressure reduction by the pressure regulator 2, but immediately after that, the load is removed and the pressure regulator 2 is stopped. For example, the temperature of the fluid on the secondary side of the fluid supply path 1 increases. Therefore, it is possible to determine whether or not the pressure regulator 2 has decompressed the fluid at a large flow rate for a long time, based on the flow rate of the fluid in the pressure regulator 2 or the opening of the pressure regulator 2 and the pressure reduction width by the pressure regulator 2. it can. Immediately after it is determined that the pressure regulator 2 is depressurizing the fluid at a large flow rate for a long time, the flow pressure load disappears and the pressure regulator 2 stops and the secondary side pressure rises, so that the secondary side pressure rises. It can be determined that the increased pressure is due to a temperature change caused by the pressure reduction of the fluid in the fluid supply path 1.

ここで、昇圧状態判別手段19は、流体供給路1の雰囲気の温度変化、流体供給路1の雰囲気の圧力変化、流体供給路1の流体の温度変化の何れかにより二次側圧力が上昇していると、正常昇圧状態であると判別しているが、例えば、流体供給路1の雰囲気の温度変化、流体供給路1の雰囲気の圧力変化、流体供給路1の流体の温度変化の全てによって二次側圧力が上昇している現象が生じている場合に、正常昇圧状態であると判別してもよい。また、例えば、流体供給路1の流体の温度変化を最優先条件として、流体供給路1の流体の温度変化により二次側圧力が上昇しているという単独条件が満たされると正常昇圧状態であると判別するとともに、流体供給路1の雰囲気の気温変化及び流体供給路1の雰囲気の気圧変化の双方により二次側圧力が上昇していると複数条件が満たされると正常昇圧状態であると判別することもできる。このように、設置状況等に応じて複数の要因のうち優先順位を設定して、その優先順位に従って正常昇圧状態であるか否かを判別することもできる。   Here, the pressure increase state discriminating means 19 increases the secondary pressure due to any one of the temperature change of the atmosphere of the fluid supply path 1, the pressure change of the atmosphere of the fluid supply path 1, and the temperature change of the fluid of the fluid supply path 1. However, it is determined that, for example, all of the temperature change of the atmosphere of the fluid supply path 1, the pressure change of the atmosphere of the fluid supply path 1, and the temperature change of the fluid of the fluid supply path 1 When the phenomenon in which the secondary side pressure is rising occurs, it may be determined that the pressure is in the normal boosted state. In addition, for example, when the temperature change of the fluid in the fluid supply path 1 is a top priority condition, and the single condition that the secondary pressure is increased by the temperature change of the fluid in the fluid supply path 1 is satisfied, the normal pressure increase state is established. And when the secondary pressure increases due to both the temperature change in the atmosphere of the fluid supply path 1 and the atmospheric pressure change in the atmosphere of the fluid supply path 1, it is determined that the normal pressure increase state is satisfied when a plurality of conditions are satisfied. You can also As described above, it is possible to set a priority order among a plurality of factors according to the installation status and the like, and to determine whether or not the normal boosting state is set according to the priority order.

〔別実施形態〕
(1)上記実施形態において、二次側圧力が異常設定値以上となっていると判別すると、遮断弁3を作動させて整圧器2への流体の供給を遮断するための遮断情報を遮断弁3の作動を遠隔制御可能な遠隔制御装置等に出力するように遮断手段18を構成することもできる。この場合には、遮断禁止手段20が、昇圧状態判別手段19にて正常昇圧状態であると判別すると、遮断弁3の作動を禁止する遮断禁止情報を遠隔制御装置等に出力するように構成される。
[Another embodiment]
(1) In the above embodiment, when it is determined that the secondary side pressure is equal to or higher than the abnormal set value, the cutoff information for shutting off the fluid supply to the pressure regulator 2 by operating the cutoff valve 3 is shown as the cutoff valve. The blocking means 18 can be configured to output the operation of 3 to a remote control device or the like that can be remotely controlled. In this case, when the shut-off prohibiting unit 20 determines that the boosting state discriminating unit 19 is in the normal boosting state, the shut-off prohibiting information for prohibiting the operation of the shut-off valve 3 is output to the remote control device or the like. The

(2)上記実施形態において、昇圧状態判別手段19は、流体供給路1における整圧器2の配設箇所における気圧、気温、地中温度、流体供給路1の管表面温度、日照時間及び日光の熱放射量、流体温度、並びに、整圧器2における流体の流量又は整圧器2の開度、整圧器2による減圧幅の夫々をリアルタイムで取得しているが、これら全ての情報を取得する必要はなく、例えば、整圧設備の設置条件等に基づいて選択した情報のみを取得して、正常昇圧状態であるか否かを判別することもできる。例えば、整圧整備が、気圧の影響をほとんど受けず、気温の影響を受けやすい箇所に設置されている場合には、気温、地中温度、流体供給路1の管表面温度等の流体供給路1の雰囲気の温度変化に関する情報のみ取得して、正常昇圧状態であるかを判別することができる。 (2) In the above-described embodiment, the pressurization state determination means 19 is configured to detect the atmospheric pressure, the air temperature, the underground temperature, the pipe surface temperature of the fluid supply path 1, the sunlight time, and the sunlight at the location where the pressure regulator 2 is provided in the fluid supply path 1. The amount of heat radiation, the fluid temperature, the flow rate of the fluid in the pressure regulator 2, the opening of the pressure regulator 2, and the pressure reduction width by the pressure regulator 2 are acquired in real time, but it is necessary to acquire all these information Instead, for example, it is possible to acquire only information selected based on the installation conditions of the pressure regulating equipment, and determine whether or not it is in a normal pressure-up state. For example, when the pressure regulation maintenance is installed in a place that is hardly affected by the atmospheric pressure and is easily affected by the air temperature, the fluid supply path such as the air temperature, the underground temperature, and the pipe surface temperature of the fluid supply path 1 Only the information related to the temperature change of the atmosphere 1 can be acquired, and it can be determined whether or not it is in the normal boosting state.

本発明は、流体供給路の二次側圧力を設定圧力に調整自在な整圧器が前記流体供給路の途中に設けられている整圧設備において、整圧器の故障ではなく、他の要因によって二次側圧力が上昇している状態を認識して、無駄な処理や作業が行われるのを防止できる各種の二次側圧力監視装置及び二次側圧力判別方法に適応することができる。   The present invention provides a pressure regulator that is provided in the middle of the fluid supply path with a pressure regulator that can adjust the secondary side pressure of the fluid supply path to a set pressure. The present invention can be applied to various secondary pressure monitoring devices and secondary pressure determination methods that can recognize a state in which the secondary pressure is rising and prevent unnecessary processing and work from being performed.

整圧設備の概略構成を示す図Diagram showing schematic configuration of pressure regulating equipment 気温、二次側圧力及び計算圧力の夫々についての時間経過に伴う変化を示すグラフGraph showing changes over time for each of air temperature, secondary pressure and calculated pressure 気圧、二次側圧力及び計算圧力の夫々についての時間経過に伴う変化を示すグラフGraph showing changes over time for each of atmospheric pressure, secondary pressure and calculated pressure 日照率及び二次側圧力の時間経過に伴う変化を示すグラフA graph showing changes in sunshine rate and secondary pressure over time

符号の説明Explanation of symbols

1 流体供給路
2 整圧器
17 二次側圧力監視装置
19 昇圧状態判別手段
20 遮断禁止手段
DESCRIPTION OF SYMBOLS 1 Fluid supply path 2 Pressure regulator 17 Secondary side pressure monitoring apparatus 19 Pressure | voltage rise state determination means 20 Blocking prohibition means

Claims (5)

流体供給路の二次側圧力を設定圧力に調整自在な整圧器が前記流体供給路の途中に設けられている整圧設備において、二次側圧力を監視する二次側圧力監視装置であって、
二次側圧力が上昇したときに、前記流体供給路の雰囲気の変化及び前記流体供給路の流体の温度変化の一方又は双方に起因して二次側圧力が上昇する正常昇圧状態であるか否かを判別する昇圧状態判別手段を備えている二次側圧力監視装置。
A secondary pressure monitoring device for monitoring a secondary pressure in a pressure regulator in which a pressure regulator capable of adjusting a secondary pressure of a fluid supply path to a set pressure is provided in the middle of the fluid supply path. ,
Whether the secondary pressure increases normally due to one or both of the change in the atmosphere of the fluid supply path and the temperature change of the fluid in the fluid supply path when the secondary pressure increases A secondary-side pressure monitoring device comprising a boosting state determining means for determining whether or not.
前記昇圧状態判別手段にて前記正常昇圧状態であると判別すると、前記流体供給路の一次側に配設された遮断手段の作動を禁止する又はその遮断手段の作動を禁止するための作動禁止情報を出力する遮断禁止手段を備えている請求項1に記載の二次側圧力監視装置。   When the boosting state determining means determines that the normal boosted state is present, the operation prohibition information for prohibiting the operation of the shutoff means disposed on the primary side of the fluid supply path or prohibiting the operation of the shutoff means The secondary side pressure monitoring apparatus according to claim 1, further comprising: a shut-off prohibiting unit that outputs 前記昇圧状態判別手段は、前記流体供給路の雰囲気の温度変化を監視して、前記正常昇圧状態であるか否かを判別するように構成されている請求項1又は2に記載の二次側圧力監視装置。   3. The secondary side according to claim 1, wherein the boosting state determination unit is configured to monitor a temperature change in an atmosphere of the fluid supply path to determine whether or not the normal boosting state is set. Pressure monitoring device. 前記昇圧状態判別手段は、前記流体供給路の雰囲気の圧力変化を監視して、前記正常昇圧状態であるか否かを判別するように構成されている請求項1〜3の何れか1項に記載の二次側圧力監視装置。   The pressure increase state determination unit is configured to monitor a pressure change in the atmosphere of the fluid supply path to determine whether or not the normal pressure increase state is present. The secondary side pressure monitoring apparatus as described. 流体供給路の二次側圧力を設定圧力に調整自在な整圧器が流体供給路の途中に設けられている整圧設備において、二次側圧力を監視する二次側圧力判別方法であって、
二次側圧力が上昇したときに、前記流体供給路の雰囲気の変化及び前記流体供給路の流体の温度変化の一方又は双方に起因して二次側圧力が上昇する正常昇圧状態であるか否かを判別する二次側圧力判別方法。
In a pressure regulator in which a pressure regulator capable of adjusting the secondary pressure of the fluid supply path to a set pressure is provided in the middle of the fluid supply path, a secondary pressure determination method for monitoring the secondary pressure,
Whether the secondary pressure increases normally due to one or both of the change in the atmosphere of the fluid supply path and the temperature change of the fluid in the fluid supply path when the secondary pressure increases Secondary pressure discriminating method to discriminate.
JP2008314864A 2008-12-10 2008-12-10 Secondary pressure monitoring device and secondary pressure discrimination method Pending JP2010140189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314864A JP2010140189A (en) 2008-12-10 2008-12-10 Secondary pressure monitoring device and secondary pressure discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314864A JP2010140189A (en) 2008-12-10 2008-12-10 Secondary pressure monitoring device and secondary pressure discrimination method

Publications (1)

Publication Number Publication Date
JP2010140189A true JP2010140189A (en) 2010-06-24

Family

ID=42350291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314864A Pending JP2010140189A (en) 2008-12-10 2008-12-10 Secondary pressure monitoring device and secondary pressure discrimination method

Country Status (1)

Country Link
JP (1) JP2010140189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051841A (en) * 2013-09-06 2015-03-19 東芝エレベータ株式会社 Elevator control device and elevator control method
CN104847934A (en) * 2014-02-17 2015-08-19 刘海亮 Automatic valve triggered to act by instability of pressure rod under overpressure working condition
CN112947611A (en) * 2021-02-01 2021-06-11 上海威派格智慧水务股份有限公司 Scheduling method and system based on pressure monitoring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051841A (en) * 2013-09-06 2015-03-19 東芝エレベータ株式会社 Elevator control device and elevator control method
CN104847934A (en) * 2014-02-17 2015-08-19 刘海亮 Automatic valve triggered to act by instability of pressure rod under overpressure working condition
CN112947611A (en) * 2021-02-01 2021-06-11 上海威派格智慧水务股份有限公司 Scheduling method and system based on pressure monitoring
CN112947611B (en) * 2021-02-01 2022-11-22 上海威派格智慧水务股份有限公司 Scheduling method and system based on pressure monitoring

Similar Documents

Publication Publication Date Title
EP2666002B1 (en) Fluid leakage detection system
US7201180B2 (en) Water supply system
US20070095400A1 (en) Shut-off valve system
US8678025B2 (en) Method and apparatus for controlling fluid pressure
US20150260398A1 (en) Furnace combustion cross limit control with real-time diagnostic features
JP2010140189A (en) Secondary pressure monitoring device and secondary pressure discrimination method
US7392656B2 (en) Steam turbine plant
US10908623B2 (en) Remote gas regulating and control systems and related devices
US9476590B2 (en) Method of testing and compensating gas supply of gas appliance for safety
KR20190099878A (en) Integrated pipe pressure control system for multiple pipeline
JP2007046576A (en) Steam turbine power generation plant and its control method
JP2009245112A (en) Pressure-governing facility system
EP2869037B1 (en) Flow rate measurement device
JP4439195B2 (en) Utility consumer equipment operation recognition device
US20080295897A1 (en) Dual range flow sensor
EA016949B1 (en) Pipeline for transport of gas
JP4262054B2 (en) Pressure regulator operation test method and apparatus, and standby pressure setting method
JP2002139401A (en) Leak monitoring apparatus for pipeline
JP2005291608A (en) Gas pressure regulating apparatus
JP2005338012A (en) Minute gas leakage sensing device of continuously monitored type
JP4296915B2 (en) Gas shut-off device
JP2015103014A (en) Pressure control facility and pressure control method
JPH11212656A (en) Pressure governing mechanism
JP6420633B2 (en) Combustible gas supply device
JP3469989B2 (en) Earthquake-resistant gas supply equipment