JP2010138305A - Carbon nanotube (cnt) compounded resin material - Google Patents

Carbon nanotube (cnt) compounded resin material Download PDF

Info

Publication number
JP2010138305A
JP2010138305A JP2008316592A JP2008316592A JP2010138305A JP 2010138305 A JP2010138305 A JP 2010138305A JP 2008316592 A JP2008316592 A JP 2008316592A JP 2008316592 A JP2008316592 A JP 2008316592A JP 2010138305 A JP2010138305 A JP 2010138305A
Authority
JP
Japan
Prior art keywords
cnt
resin material
resin
matrix resin
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008316592A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nagamori
博之 永森
Takuji Komukai
拓治 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonac KK
Original Assignee
Sonac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonac KK filed Critical Sonac KK
Priority to JP2008316592A priority Critical patent/JP2010138305A/en
Publication of JP2010138305A publication Critical patent/JP2010138305A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin material less in bubble residue, more enhanced in strength, and preferably improved in conductivity. <P>SOLUTION: The resin material comprises a matrix resin 4 in which a CNT material comprising a plurality of CNT 1 are compounded so as to impart mainly high strength to the resin material, wherein carbon particles 3 having an aspect ratio smaller than that of the CNT 1 are mixed into spaces of the CNT 1 in such a manner that the proportion of the particles is higher than the matrix resin 4 in the spaces. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マトリクス樹脂中に複数のカーボンナノチューブ(CNT)からなるCNT材が混合されて機械的強度が強化されたCNT配合樹脂材料に関するものであり、特に、上記樹脂材料の機械的強度および、好ましくは電気ないしは熱伝導性をさらに向上させることに関するものである。   The present invention relates to a CNT-containing resin material in which a CNT material composed of a plurality of carbon nanotubes (CNT) is mixed in a matrix resin to enhance mechanical strength, and in particular, mechanical strength of the resin material and Preferably, it relates to further improving electrical or thermal conductivity.

CNTは、炭素原子が六角形に配置されたグラフェンシートを筒状に巻いた形状で長さ方向にほぼ一様な直径形状をなし、長さと直径との比であるアスペクト比が大きく直径が微細であるが、機械的強度が高く、導電性に優れている(特許文献1参照)。そして、この性質を利用することにより、CNTの複数からなるCNT材を樹脂材に混合してCNT配合樹脂材料(以下、樹脂材料)となし、この樹脂材料を、高強度樹脂、導電性樹脂、透明導電フィルム、等の用途の開発が行われている。   CNT is a shape in which a graphene sheet with carbon atoms arranged in a hexagonal shape is wound in a cylindrical shape, and has a substantially uniform diameter shape in the length direction. The aspect ratio, which is the ratio of length to diameter, is large and the diameter is fine. However, it has high mechanical strength and excellent electrical conductivity (see Patent Document 1). And by using this property, a CNT material composed of a plurality of CNTs is mixed with a resin material to form a CNT-blended resin material (hereinafter referred to as a resin material), and this resin material is made of a high-strength resin, a conductive resin, Development of applications such as transparent conductive films has been carried out.

図2で示す樹脂材料は、CNT材を構成する複数のCNT1の隙間2に、マトリクス樹脂4が入り込み、このマトリクス樹脂4が複数のCNT1同士を結合させる結合材としての役割を果たしている。この構成では、樹脂材料の特徴である高強度、あるいは電気や熱伝導性のためにマトリクス樹脂4と比較してCNT1の混合率が極めて高くなっている。そして、この構成で注目すべきは、マトリクス樹脂4中に気泡5が混入していることである。   The resin material shown in FIG. 2 plays a role as a binding material in which the matrix resin 4 enters the gaps 2 between the plurality of CNTs 1 constituting the CNT material, and the matrix resin 4 bonds the plurality of CNTs 1 to each other. In this configuration, the mixing ratio of CNT1 is extremely high as compared with the matrix resin 4 due to the high strength, which is a characteristic of the resin material, or due to electric and thermal conductivity. What should be noted in this configuration is that bubbles 5 are mixed in the matrix resin 4.

以下にこの樹脂材料の製法を説明すると、まず、CNT分散溶液とマトリクス樹脂溶液とを混ぜてCNT入り樹脂溶液を作る。この場合、高強度、高伝導性を得る目的でマトリクス樹脂に比較してCNTの混合率を高くしている。そして、上記溶液を脱液するのであるが、CNT材の混合率が高いためにCNT1の隙間2内にマトリクス樹脂4が十分に入り込むことができにくくなる。そのため、CNT1の隙間2中には気泡5が多数残留している。このような状態で次の脱液過程では、CNT1の隙間2中に残留していた気泡5が脱液作用でも外部に出ずに内部に残留してしまうこととなる。   The method for producing this resin material will be described below. First, a CNT-containing resin solution is prepared by mixing a CNT dispersion solution and a matrix resin solution. In this case, in order to obtain high strength and high conductivity, the mixing ratio of CNTs is set higher than that of the matrix resin. And although the said solution is drained, since the mixing rate of CNT material is high, it becomes difficult for the matrix resin 4 to enter into the clearance gap 2 of CNT1 enough. Therefore, many bubbles 5 remain in the gap 2 of the CNT 1. In such a state, in the next liquid removal process, the bubbles 5 remaining in the gap 2 of the CNT 1 remain inside without being exposed to the outside even in the liquid removal action.

こうして図2で示すように内部に気泡5が残留した樹脂材料が得られる。この気泡5は樹脂材料の機械的強度、電気や熱伝導性の大幅な低下を招いてしまう。   In this way, as shown in FIG. 2, a resin material in which bubbles 5 remain is obtained. The bubbles 5 cause a significant decrease in the mechanical strength, electricity and thermal conductivity of the resin material.

一方、CNT1の混合率を下げた場合では、CNT1同士の接触率やCNT1間の隙間2の形成率も低下して脱液工程で気泡5が残留する率も下がるものの、それでは、高強度、高伝導性の樹脂材料を得難くなってしまう。そのため、CNT1の混合率を高く維持して高強度、高伝導性を保持できた状態とする一方で、上記気泡5の残留率を大幅に下げることに加えて、さらに、より高強度、高伝導性を高くできるような樹脂材料の開発が求められ、本願発明者は鋭意研究した。
特開2001−303250号公報
On the other hand, when the mixing ratio of the CNTs 1 is lowered, the contact ratio between the CNTs 1 and the formation ratio of the gaps 2 between the CNTs 1 are also reduced, and the rate of remaining bubbles 5 in the liquid removal process is also reduced. It becomes difficult to obtain a conductive resin material. Therefore, while maintaining the mixing ratio of CNT1 high and maintaining high strength and high conductivity, in addition to greatly reducing the residual ratio of the bubbles 5, the strength and conductivity are further increased. Development of a resin material that can improve the properties is required, and the inventors of the present application have conducted intensive research.
JP 2001-303250 A

本発明により解決する主たる課題は、気泡残留を少なくし、かつ、少なくとも強度をより増強させ、好ましくは、電気や熱の伝導性を改善することである。その他の課題は後述から明らかであろう。   The main problem to be solved by the present invention is to reduce the residual bubbles and at least increase the strength, preferably to improve the electrical and thermal conductivity. Other issues will be apparent from the following.

本発明に係る樹脂材料は、当該樹脂材料に主として高強度を付与する目的で複数のカーボンナノチューブ(CNT)からなるCNT材が、マトリクス樹脂中に配合されてなる樹脂材料において、アスペクト比がCNTより小さい複数のカーボン粒子が、上記各CNTの隙間内でマトリクス樹脂よりもその存在割合が高くなるように当該隙間中に混合されている、ことを特徴とするものである。   The resin material according to the present invention is a resin material in which a CNT material composed of a plurality of carbon nanotubes (CNT) is blended in a matrix resin mainly for the purpose of imparting high strength to the resin material. A plurality of small carbon particles are mixed in the gaps so that the existence ratio is higher than that of the matrix resin in the gaps of the CNTs.

上記「主として」の意義は、高強度だけでなく、高電気伝導性、高熱伝導性を付与することを目的とすることも含むことができる意義である。カーボンナノチューブは一般に電気や熱伝導性に優れており、上記カーボン粒子は、CNTの隙間中に存在することで、マトリクス樹脂に起因した気泡の残留が減り、カーボンナノチューブの上記性状を補助することができる。   The meaning of the “mainly” means that not only high strength but also the purpose of imparting high electrical conductivity and high thermal conductivity can be included. Carbon nanotubes are generally excellent in electrical and thermal conductivity, and the presence of the carbon particles in the gaps between the CNTs reduces the residual bubbles caused by the matrix resin, and assists the properties of the carbon nanotubes. it can.

以上のごとく、本発明では、上記CNTの隙間内でのカーボン粒子の存在割合がマトリクス樹脂よりも高いので必然的にマトリクス樹脂中の気泡残留率が下がった樹脂材料となっている。そのため、本発明では、従来よりも強度がより向上した樹脂材料を提供できる。   As described above, in the present invention, since the existence ratio of the carbon particles in the gaps of the CNTs is higher than that of the matrix resin, the resin material is inevitably reduced in the residual ratio of bubbles in the matrix resin. Therefore, in this invention, the resin material which the intensity | strength improved more than before can be provided.

具体的に、CNTとカーボン粒子とマトリクス樹脂それぞれの存在意義を説明すると、まず、機械的強度に関しては、CNTは引張強度が高い。マトリクス樹脂はCNT同士を接着する役割を有する一方、本発明では、CNTの隙間中にカーボン粒子がマトリクス樹脂よりも高い存在割合で含まれるので、その引張強度だけでなく圧縮、曲げ、加工強度が極めて高くなっている。そのため、強化歯車や、強化ケース等の各種用途に適した樹脂材料を提供することができるようになる。また、電気伝導性においては、CNTの隙間中にカーボン粒子が高い存在割合で存在することにより、電気伝導性に寄与できる断面積拡大により、電気伝導性がより高くなっている。また、熱伝導性に関しては、CNTの隙間中にカーボン粒子がマトリクス樹脂よりも高い存在割合で存在しているので、熱伝導性に劣るマトリクス樹脂がCNTの隙間中に多く存在する樹脂材料よりも、その熱伝導性はより高くなっている。   Specifically, the existence significance of CNT, carbon particles, and matrix resin will be described. First, regarding mechanical strength, CNT has high tensile strength. While the matrix resin has a role of adhering CNTs to each other, in the present invention, carbon particles are contained in the gaps between the CNTs at a higher ratio than the matrix resin, so that not only the tensile strength but also the compression, bending, and processing strength are not limited. It is extremely high. Therefore, it becomes possible to provide a resin material suitable for various uses such as a reinforced gear and a reinforced case. In addition, in terms of electrical conductivity, the presence of carbon particles in a high ratio in the gaps between CNTs increases the electrical conductivity due to the increased cross-sectional area that can contribute to electrical conductivity. Regarding the thermal conductivity, carbon particles are present in the gaps between the CNTs at a higher rate than the matrix resin, so that the matrix resin having a poor thermal conductivity is larger than the resin material existing in the gaps between the CNTs. , Its thermal conductivity is higher.

そして、本発明の樹脂材料では、CNTの隙間中がカーボン粒子でほぼ埋め尽くされているので、微小加工した場合、加工面にCNT間の隙間による空隙が現れにくく、ミリ単位あるはミクロン単位という微小な加工精度が要求される各種加工物の材料に適したものとなる。   In the resin material of the present invention, the gaps between the CNTs are almost completely filled with carbon particles. Therefore, when microfabrication is performed, voids due to the gaps between the CNTs hardly appear on the processed surface. It is suitable for materials of various workpieces that require minute machining accuracy.

以上から本発明の樹脂材料では、従来のそれよりも、より一層の高強度が付与されるうえ、伝導性も大幅に改善された樹脂材料とすることができるようになる。   From the above, in the resin material of the present invention, it is possible to obtain a resin material that has higher strength than that of the conventional material and that has greatly improved conductivity.

本発明の樹脂材料は、さらに、高電気伝導性ないし高熱伝導性を付与することを目的とすることが好ましい。この場合、高電気伝導性では体積抵抗率(Ω・cm)のことであり、高熱伝導性では熱伝導率(W/m・k)のことと定義することができる。   It is preferable that the resin material of the present invention further aims to impart high electrical conductivity or high thermal conductivity. In this case, it can be defined as volume resistivity (Ω · cm) for high electrical conductivity and thermal conductivity (W / m · k) for high thermal conductivity.

本発明においては、上記CNT材を構成するCNTは、単層CNTでも、多層CNTでもよい。本発明のCNT材は、基板表面上の触媒微粒子の作用で成長する複数の多層CNTの集合で構成することができる。   In the present invention, the CNT constituting the CNT material may be a single-wall CNT or a multi-wall CNT. The CNT material of the present invention can be constituted by an assembly of a plurality of multilayer CNTs that grow by the action of catalyst fine particles on the substrate surface.

本発明の樹脂材料はその用途に限定されるものではないが、用途の例としては、高強度としては、ケース材料、プーリ材料、建築材料、等、高電気伝導性としては静電除去材料、また、高熱伝導性としては放熱器材料、等を例示することができる。   The resin material of the present invention is not limited to its use, but as an example of use, as high strength, case material, pulley material, building material, etc., high electrical conductivity, electrostatic removal material, In addition, examples of the high thermal conductivity include a radiator material.

本発明の樹脂材料は、高強度、高電気伝導性、好ましくは、さらに高熱伝導性とした場合、透明で光波長以下の極薄の導電フィルム材料に用いることができる。このフィルム材料は、例えば電子電界放出用エミッタからの電子を引き寄せるアノード電極に用いることができる。   The resin material of the present invention can be used for a transparent conductive film material that is transparent and has a light wavelength or less when it has high strength and high electrical conductivity, and preferably high thermal conductivity. This film material can be used, for example, for an anode electrode that attracts electrons from an electron field emission emitter.

本発明の樹脂材料をケース材料、例えば携帯電話のケース材料とした場合、ソフト軽量でかつ高強度の携帯電話ケースを作ることができる。   When the resin material of the present invention is used as a case material, for example, a mobile phone case material, it is possible to make a mobile phone case that is soft and lightweight and has high strength.

本発明の樹脂材料は、CNTの隙間中でマトリクス樹脂よりもカーボン粒子の存在割合が高いために、従来の樹脂材料よりも気泡残留率が下がり、その分、高強度、好ましくは、高伝導性の樹脂材料を提供することができる。   Since the resin material of the present invention has a higher proportion of carbon particles in the gap between the CNTs than the matrix resin, the residual ratio of bubbles is lower than that of the conventional resin material, and accordingly, the strength is high, preferably high conductivity. The resin material can be provided.

以下、添付した図面を参照して、本発明の実施の形態に係る樹脂材料を詳細に説明する。   Hereinafter, a resin material according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、実施の形態の樹脂材料の断面構成を示す。図1を参照して、実施の形態の樹脂材料は、CNT材を構成する複数のCNT1の隙間2に、カーボン粒子3とマトリクス樹脂4とが入り込む一方で、CNT1の隙間2中でのカーボン粒子3の存在割合は、マトリクス樹脂4のそれよりも高くなっている。これにより、マトリクス樹脂4内の気泡5の存在は少ない。   FIG. 1 shows a cross-sectional configuration of the resin material of the embodiment. Referring to FIG. 1, the resin material according to the embodiment has carbon particles 3 and matrix resin 4 entering gaps 2 between a plurality of CNTs 1 constituting the CNT material, while carbon particles in gaps 2 of CNT1. The presence ratio of 3 is higher than that of the matrix resin 4. Thereby, the presence of the bubbles 5 in the matrix resin 4 is small.

CNT1は、単層、多層のCNTであり、単層CNTだけ、あるいは多層CNTだけ、あるいはこれら両者の混合CNTで構成することができる。CNT1の隙間2の大きさは例えば100μm以下程度であり、このCNT1の隙間2中におけるカーボン粒子3個々の平均断面寸法は0.1μm〜200μm程度であり、また、マトリクス樹脂4に対する存在割合は例えば体積の20〜80%程度である。   The CNT 1 is a single-layer or multi-layer CNT, and can be composed of only a single-wall CNT, only a multi-wall CNT, or a mixed CNT of both. The size of the gap 2 of the CNT 1 is, for example, about 100 μm or less, and the average cross-sectional size of each carbon particle 3 in the gap 2 of the CNT 1 is about 0.1 μm to 200 μm. It is about 20 to 80% of the volume.

マトリクス樹脂4として、耐衝撃・エラストマーを例示することができる。用途別にすると、例えば耐衝撃用途では高剛性材料の樹脂、エラストマーとなる様な用途では粘、弾性体の樹脂を好ましく例示することができる。   Examples of the matrix resin 4 include impact resistance and elastomer. By application, for example, a resin having a high rigidity material can be preferably exemplified for impact resistant applications, and a resin having a viscosity or an elastic body can be preferably exemplified for applications such as an elastomer.

このカーボン粒子3は、アスペクト比がCNTよりも小さく粒子径がサブミクロンオーダーの粒子であり、その形状は球形、矩形、線形、無定形、等に限定されず、例えば、アモルファスカーボン、グラファイト、カーボンブラックを適用することができる。カーボンブラックとしては、例えばケッチェンブラック、アセチレンブラック、SRF、GPF、FEF、HAF、ISAF、SAF等を例示することができる。   The carbon particles 3 are particles having an aspect ratio smaller than that of CNTs and a particle diameter of submicron order, and the shape thereof is not limited to spherical, rectangular, linear, amorphous, etc. For example, amorphous carbon, graphite, carbon Black can be applied. Examples of the carbon black include ketjen black, acetylene black, SRF, GPF, FEF, HAF, ISAF, and SAF.

本実施の形態の樹脂材料では、まず、機械的強度に関しては、CNT1は引張強度が高い。マトリクス樹脂4はCNT1同士を接着するが、本発明では、CNT1の多くの隙間2中で、カーボン粒子3がマトリクス樹脂4よりも高い存在割合で含まれるので、その圧縮強度が極めて高くなっている。そのため、強化歯車や、強化ケースの用途に適した樹脂材料を提供することができるようになる。また、電気伝導性においては、CNT1の隙間2中にカーボン粒子3がマトリクス樹脂4よりも高い存在割合で存在することにより、電気伝導性がより高くなっている。また、熱伝導性に関しては、CNT1の隙間2中にカーボン粒子3がマトリクス樹脂4よりも高い存在割合で存在しているので、熱伝導性に劣るマトリクス樹脂4がCNT1の隙間2中に多く存在する樹脂材料よりも、その熱伝導性はより高くなっている。   In the resin material of the present embodiment, first, CNT1 has high tensile strength with respect to mechanical strength. The matrix resin 4 bonds the CNTs 1 to each other, but in the present invention, the carbon particles 3 are contained in a higher proportion in the gaps 2 of the CNTs 1 than the matrix resin 4, so that the compressive strength is extremely high. . Therefore, it becomes possible to provide a resin material suitable for the use of a reinforced gear or a reinforced case. In terms of electrical conductivity, the carbon particles 3 are present in the gaps 2 of the CNTs 1 in a higher proportion than the matrix resin 4, so that the electrical conductivity is higher. As for thermal conductivity, since the carbon particles 3 are present in the gap 2 of the CNT 1 at a higher ratio than the matrix resin 4, there are many matrix resins 4 inferior in thermal conductivity in the gap 2 of the CNT 1. The thermal conductivity is higher than that of the resin material.

以上から本発明の樹脂材料では、従来のそれよりも、より一層の高強度が付与されるうえ、伝導性も大幅に改善された樹脂材料とすることができるようになる。   From the above, in the resin material of the present invention, it is possible to obtain a resin material that has higher strength than that of the conventional material and that has greatly improved conductivity.

なお、上記樹脂材料は、例えば、次の製造方法で製造することができる。すなわち、マトリクス樹脂溶液とCNT分散溶液とを混合する混合工程において、上記カーボン粒子を上記CNTと共に分散溶液中に分散させて混合するか、あるいはまた、マトリクス樹脂溶液とCNT分散溶液とは別の溶液中にカーボン粒子を分散させた分散溶液を混合させる。そして、次にこの混合溶液を脱液することで、本発明の樹脂材料が得られる。   In addition, the said resin material can be manufactured with the following manufacturing method, for example. That is, in the mixing step of mixing the matrix resin solution and the CNT dispersion solution, the carbon particles are dispersed and mixed in the dispersion solution together with the CNTs, or alternatively, a solution different from the matrix resin solution and the CNT dispersion solution. A dispersion solution in which carbon particles are dispersed is mixed. Then, the resin material of the present invention is obtained by draining this mixed solution.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

図1は本発明の実施の形態に係る樹脂材料を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a resin material according to an embodiment of the present invention. 図2は従来の樹脂材料を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a conventional resin material.

符号の説明Explanation of symbols

1 CNT
2 CNTの隙間
3 カーボン粒子
4 マトリクス樹脂
5 気泡
1 CNT
2 CNT gap 3 Carbon particles 4 Matrix resin 5 Air bubbles

Claims (2)

当該樹脂材料に主として高強度を付与する目的で複数のカーボンナノチューブ(CNT)からなるCNT材が、マトリクス樹脂中に配合されてなる樹脂材料において、アスペクト比がCNTより小さい複数のカーボン粒子が、上記各CNTの隙間内でマトリクス樹脂よりもその存在割合が高くなるように当該隙間中に混合されている、ことを特徴とするCNT配合樹脂材料。   In a resin material in which a CNT material composed of a plurality of carbon nanotubes (CNT) is blended in a matrix resin for the purpose of mainly imparting high strength to the resin material, a plurality of carbon particles having an aspect ratio smaller than CNT are A CNT-containing resin material, characterized in that the CNT-containing resin material is mixed in the gap so that the abundance ratio is higher than that of the matrix resin in the gap of each CNT. 上記カーボン粒子が、高電気伝導性および/または高熱伝導性を有する、請求項1に記載のCNT配合樹脂材料。   The CNT-containing resin material according to claim 1, wherein the carbon particles have high electrical conductivity and / or high thermal conductivity.
JP2008316592A 2008-12-12 2008-12-12 Carbon nanotube (cnt) compounded resin material Pending JP2010138305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316592A JP2010138305A (en) 2008-12-12 2008-12-12 Carbon nanotube (cnt) compounded resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316592A JP2010138305A (en) 2008-12-12 2008-12-12 Carbon nanotube (cnt) compounded resin material

Publications (1)

Publication Number Publication Date
JP2010138305A true JP2010138305A (en) 2010-06-24

Family

ID=42348705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316592A Pending JP2010138305A (en) 2008-12-12 2008-12-12 Carbon nanotube (cnt) compounded resin material

Country Status (1)

Country Link
JP (1) JP2010138305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121787A (en) * 2009-12-08 2011-06-23 Nitta Corp Cnt network structure and method for producing the same
JP2013216786A (en) * 2012-04-09 2013-10-24 Riken Technos Corp Resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2004277637A (en) * 2003-03-18 2004-10-07 Nichias Corp Conductive resin composition, fuel cell separator and method for producing fuel cell separator
JP2005068386A (en) * 2003-08-28 2005-03-17 Nissin Kogyo Co Ltd Carbon fiber composite material, method for producing the same, carbon fiber composite molded article and method for producing the same molded article
JP2006312726A (en) * 2005-04-04 2006-11-16 Showa Denko Kk Conductive curable resin composition, cured material and molded article of the same
JP2007217684A (en) * 2006-01-20 2007-08-30 Ezaki Glico Co Ltd Aqueous composition for electrically conductive coating
WO2007119172A2 (en) * 2006-04-14 2007-10-25 Arkema France Conductive carbon nanotube-polymer composite
WO2008041965A2 (en) * 2005-08-08 2008-04-10 Cabot Corporation Polymeric compositions containing nanotubes
JP2008200608A (en) * 2007-02-20 2008-09-04 Tokai Univ Production method of conductive fluororesin thin film and conductive fluororesin thin film
JP2008223780A (en) * 2007-03-08 2008-09-25 Nissin Kogyo Co Ltd Piston seal member and disc brake using the piston seal member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2004277637A (en) * 2003-03-18 2004-10-07 Nichias Corp Conductive resin composition, fuel cell separator and method for producing fuel cell separator
JP2005068386A (en) * 2003-08-28 2005-03-17 Nissin Kogyo Co Ltd Carbon fiber composite material, method for producing the same, carbon fiber composite molded article and method for producing the same molded article
JP2006312726A (en) * 2005-04-04 2006-11-16 Showa Denko Kk Conductive curable resin composition, cured material and molded article of the same
WO2008041965A2 (en) * 2005-08-08 2008-04-10 Cabot Corporation Polymeric compositions containing nanotubes
JP2007217684A (en) * 2006-01-20 2007-08-30 Ezaki Glico Co Ltd Aqueous composition for electrically conductive coating
WO2007119172A2 (en) * 2006-04-14 2007-10-25 Arkema France Conductive carbon nanotube-polymer composite
JP2008200608A (en) * 2007-02-20 2008-09-04 Tokai Univ Production method of conductive fluororesin thin film and conductive fluororesin thin film
JP2008223780A (en) * 2007-03-08 2008-09-25 Nissin Kogyo Co Ltd Piston seal member and disc brake using the piston seal member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121787A (en) * 2009-12-08 2011-06-23 Nitta Corp Cnt network structure and method for producing the same
JP2013216786A (en) * 2012-04-09 2013-10-24 Riken Technos Corp Resin composition

Similar Documents

Publication Publication Date Title
Lahiri et al. An all-graphene based transparent and flexible field emission device
JP3823784B2 (en) Nanowire and manufacturing method thereof, and nanonetwork using the same, manufacturing method of nanonetwork, carbon structure, and electronic device
JP5266889B2 (en) Method for manufacturing light transmissive conductor
US7763187B1 (en) Carbon nanotubes-reinforced conductive silver ink
Viskadouros et al. Enhanced field emission from reduced graphene oxide polymer composites
Hazarika et al. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene
Afzal et al. Perspectives of polystyrene composite with fullerene, carbon black, graphene, and carbon nanotube: a review
Jeong et al. Flexible field emission from thermally welded chemically doped graphene thin films
Alim et al. Recent advances on thermally conductive adhesive in electronic packaging: a review
Koh et al. Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition
JP2007242613A (en) Electroluminescent element using nano-rod
Chen et al. Field emission performance enhancement of Au nanoparticles doped graphene emitters
JP2010037660A (en) Method for production of paper containing carbon nanotube
Laszczyk Field emission cathodes to form an electron beam prepared from carbon nanotube suspensions
Ha et al. Highly stable carbon nanotube field emitters on small metal tips against electrical arcing
Holesinger et al. Carbon nanotube coated conductors
JP2010138305A (en) Carbon nanotube (cnt) compounded resin material
KR101761752B1 (en) Copper-carbon composite powder and manufacturing method the same
Zeng et al. Atomic vacancy defects in the electronic properties of semi-metallic carbon nanotubes
KR20040039325A (en) Field electron emitting device
KR101890888B1 (en) Carbon-eutectic gallium indium composite material, and method of manufacturing the same, and electrode material having the same
JP2007115591A (en) Surface-treated electron-emitting material and its manufacturing method as well as electrode
JP4394655B2 (en) Electron emission material, electrode substrate, electron emission device, field emission display, and illumination device
Kumar et al. Review on functionalized graphenes and their applications
KR101816173B1 (en) Nano complex body being a combination of single wall carbon nano tube and cellulose fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903