JP2010136146A - Optical receiving device - Google Patents

Optical receiving device Download PDF

Info

Publication number
JP2010136146A
JP2010136146A JP2008310625A JP2008310625A JP2010136146A JP 2010136146 A JP2010136146 A JP 2010136146A JP 2008310625 A JP2008310625 A JP 2008310625A JP 2008310625 A JP2008310625 A JP 2008310625A JP 2010136146 A JP2010136146 A JP 2010136146A
Authority
JP
Japan
Prior art keywords
optical
signals
receiving
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008310625A
Other languages
Japanese (ja)
Inventor
Lars Jansen Sander
ラース ヤンセン サンダー
Itsuro Morita
逸郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2008310625A priority Critical patent/JP2010136146A/en
Publication of JP2010136146A publication Critical patent/JP2010136146A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical receiving device which requires a smaller number of optical components than the conventional technology. <P>SOLUTION: Provided is a device for receiving transmitted optical signals including a plurality of subcarriers from an optical transmission device. The device includes a laser diode for generating local light and a reception means. The reception means includes: a first means which receives transmitted optical signals by coherent reception using the local light and outputs in-phase and orthogonal optical signals; a second means which converts the optical signals output from the first means into electrical signals and outputs them; a third means which converts the output of the second means into digital signals; a fourth means which compensates for dispersion of the resulting digital in-phase and orthogonal signals; and a fifth means which Fourier-transforms the in-phase and orthogonal signals compensated for dispersion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数のサブキャリアを用いる光通信システムの光受信装置に関する。   The present invention relates to an optical receiver of an optical communication system using a plurality of subcarriers.

現在、40Gb/sの光伝送システムが実用化されており、100Gb/sのシステムが検討されている(例えば、非特許文献1参照。)。   Currently, a 40 Gb / s optical transmission system has been put into practical use, and a 100 Gb / s system has been studied (for example, see Non-Patent Document 1).

非特許文献1によると、送信側において、マッハツェンダ変調器(MZM)は、レーザダイオードが生成した連続光から2つのサブキャリアを生成し、マッハツェンダ干渉計を利用したフィルタ(MZI)が2つのサブキャリアを分離して、それぞれを、変調速度が25GBaudの差動四相位相偏移変調(DQPSK)変調器に出力し、各DQPSK変調器の出力を合波することで、100Gb/sの光信号を得ている。   According to Non-Patent Document 1, on the transmission side, a Mach-Zehnder modulator (MZM) generates two subcarriers from continuous light generated by a laser diode, and a filter (MZI) using a Mach-Zehnder interferometer has two subcarriers. Are output to a differential quadrature phase shift keying (DQPSK) modulator having a modulation rate of 25 GBaud, and the outputs of the DQPSK modulators are combined to generate an optical signal of 100 Gb / s. It has gained.

また、受信側においては分散補償後、マッハツェンダ遅延干渉計(MZDI)とMZMによる光ゲートで構成される離散フーリエ変換回路(例えば、非特許文献2、参照。)を用いて受信光信号を復調している。   On the receiving side, after dispersion compensation, the received optical signal is demodulated using a discrete Fourier transform circuit (for example, see Non-Patent Document 2) including a Mach-Zehnder delay interferometer (MZDI) and an optical gate formed by MZM. ing.

A.Sano,et al.,“30×100‐Gb/s all−optical OFDM transmission over 1300km SMF with 10 ROADMnodes”,A. Sano, et al. “30 × 100-Gb / sall-optical OFDM transmission over 1300 km SMF with 10 ROADMModes”, Hiroaki Sanjoh,et al.,“Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1bit/s/Hz”,OFC2002、Paper ThD1,2002年Hiroaki Sanjoh, et al. , “Optical orthogonal frequency division multiplexing using frequency / time domain filtering for high spectral up to 1 bit / s / Hz2”, FC2

本発明は、100Gb/sの光伝送システムにも適用可能であり、従来技術より、必要な光部品を削減できる光受信装置を提供することを目的とする。また、従来技術より、受信及び復調処理における誤りの発生を抑えることができる光受信装置を提供することも目的とする。   The present invention is applicable to an optical transmission system of 100 Gb / s, and an object of the present invention is to provide an optical receiver capable of reducing necessary optical components from the prior art. It is another object of the present invention to provide an optical receiver that can suppress the occurrence of errors in reception and demodulation processing from the prior art.

本発明における光受信装置によれば、
光送信装置からの複数のサブキャリアを含む送信光信号を受信する装置であって、局発光生成のためのレーザダイオードと、受信手段とを備えており、前記受信手段は、局発光を用いて送信光信号をコヒーレント受信し、同相及び直交の光信号を出力する第1の手段と、第1の手段が出力する光信号を電気信号に変換して出力する第2の手段と、第2の手段の出力をデジタル信号に変換する第3の手段と、デジタル変換後の同相及び直交信号に対して分散補償を行う第4の手段と、分散補償後の同相及び直交信号のフーリエ変換処理を行う第5の手段とを備えていることを特徴とする。
According to the optical receiver of the present invention,
An apparatus for receiving a transmission optical signal including a plurality of subcarriers from an optical transmission apparatus, comprising a laser diode for generating local light and a receiving means, wherein the receiving means uses local light A first means for coherently receiving a transmission optical signal and outputting in-phase and quadrature optical signals; a second means for converting an optical signal output from the first means into an electrical signal; and a second means Third means for converting the output of the means into a digital signal, fourth means for performing dispersion compensation on the in-phase and quadrature signals after digital conversion, and Fourier transform processing of the in-phase and quadrature signals after dispersion compensation And a fifth means.

本発明の光受信装置における他の実施形態によれば、
受信手段を複数有し、レーザダイオードが出力する連続光から、各受信手段に入力する局発光を生成する手段を、更に、備えていることも好ましい。
According to another embodiment of the optical receiver of the present invention,
It is also preferable to further include means for generating local light to be input to each receiving means from continuous light output from the laser diode.

また、本発明の光受信装置における他の実施形態によれば、
受信手段は、第5の手段の出力信号の偏波モード分散補償を行う第6の手段を、更に、備えていることも好ましい。
According to another embodiment of the optical receiver of the present invention,
The receiving means preferably further comprises sixth means for performing polarization mode dispersion compensation of the output signal of the fifth means.

コヒーレント受信処理と、デジタル信号変換後に実施する補償処理により、従来技術より使用する光部品の数を抑え、かつ、誤りの発生を抑えた光伝送システムを可能にする。特に、デジタル変換後に偏波モード分散補償を行うことで偏波多重を使用するシステムに有利である。   The coherent reception process and the compensation process performed after digital signal conversion enable an optical transmission system in which the number of optical components used compared to the prior art is reduced and errors are suppressed. In particular, it is advantageous for a system using polarization multiplexing by performing polarization mode dispersion compensation after digital conversion.

本発明を実施するための最良の実施形態について、以下では図面を用いて詳細に説明する。なお、以下では、2つのサブキャリアを使用したシステムにて説明を行うが、3つ以上のサブキャリアを使用することも当然に可能である。   The best mode for carrying out the present invention will be described in detail below with reference to the drawings. In the following, a system using two subcarriers will be described, but it is naturally possible to use three or more subcarriers.

図1は、本発明の光伝送システムで使用する光送信装置のブロック図である。図1によると、光送信装置は、レーザダイオード81と、マッハツェンダ変調器82と、分波器83と、DQPSK変調器84及び85と、合波器86とを備えている。   FIG. 1 is a block diagram of an optical transmitter used in the optical transmission system of the present invention. According to FIG. 1, the optical transmission apparatus includes a laser diode 81, a Mach-Zehnder modulator 82, a duplexer 83, DQPSK modulators 84 and 85, and a multiplexer 86.

レーザダイオード81は所定波長の連続光を生成し、マッハツェンダ変調器82は、連続光を位相変調することにより2つのサブキャリアを含む信号を生成し、分波器83は、マッハツェンダ変調器2の出力光信号から、各サブキャリアを取り出して、それぞれ、DQPSK変調器84と85に出力する。DQPSK変調器84及び85は、それぞれ、入力サブキャリアをDQPSK変調して出力し、合波器86は、DQPSK変調器84と85からの光信号を合波して出力する。   The laser diode 81 generates continuous light having a predetermined wavelength, the Mach-Zehnder modulator 82 generates a signal including two subcarriers by phase-modulating the continuous light, and the duplexer 83 outputs the output of the Mach-Zehnder modulator 2. Each subcarrier is extracted from the optical signal and output to DQPSK modulators 84 and 85, respectively. The DQPSK modulators 84 and 85 respectively DQPSK-modulate and output the input subcarriers, and the multiplexer 86 multiplexes and outputs the optical signals from the DQPSK modulators 84 and 85.

例えば、DQPSK変調器84及び85での変調速度を25Gbaudとすると、100Gb/sの伝送速度を得ることができる。   For example, if the modulation rate at the DQPSK modulators 84 and 85 is 25 Gbaud, a transmission rate of 100 Gb / s can be obtained.

図2は、本発明の第1実施形態における光受信装置のブロック図である。図2によると、光受信装置は、レーザダイオード1と、受信部2とを有し、受信部2は、90度ハイブリッド20と、光電気変換器(PD)31及び32と、アナログデジタル変換器(ADC)41及び42と、補償回路50と、フーリエ変換器(FFT)60と、補償回路70を備えている。なお、本実施形態は、光電気変換器31及び32の帯域が、受信する光信号の周波数帯域、つまり、全サブキャリアを含む帯域を処理できる場合に使用可能である。   FIG. 2 is a block diagram of the optical receiver according to the first embodiment of the present invention. According to FIG. 2, the optical receiver includes a laser diode 1 and a receiver 2, and the receiver 2 includes a 90-degree hybrid 20, photoelectric converters (PD) 31 and 32, and an analog-digital converter. (ADC) 41 and 42, a compensation circuit 50, a Fourier transformer (FFT) 60, and a compensation circuit 70 are provided. In addition, this embodiment can be used when the band of the photoelectric converters 31 and 32 can process the frequency band of the received optical signal, that is, the band including all subcarriers.

受信部2は、レーザダイオード1からの局発光により、光送信装置からの光信号のコヒーレント受信を行う。具体的には、90度ハイブリッド2は、局発光と、光送信装置からの光信号を入力して、同相(I)及び直交(Q)光信号を出力する。光電気変換器31及び32は、それぞれ、同相及び直交光信号を、電気信号に変換し、アナログデジタル変換器41及び42は、それぞれ、同相及び直交信号を、アナログ信号からデジタル信号に変換する。   The receiving unit 2 performs coherent reception of an optical signal from the optical transmission device by local light from the laser diode 1. Specifically, the 90-degree hybrid 2 inputs local light and an optical signal from an optical transmission device, and outputs an in-phase (I) and quadrature (Q) optical signal. The photoelectric converters 31 and 32 convert in-phase and quadrature optical signals into electrical signals, respectively, and the analog-digital converters 41 and 42 convert in-phase and quadrature signals from analog signals into digital signals, respectively.

補償回路50は、デジタル化された同相及び直交信号に対して、光伝送路にて加えられた波長分散等の補償を行うFIRフィルタであり、フーリエ変換器60は、分散補償後の信号をフーリエ変換し、フーリエ変換後の信号は、必要に応じて、補償回路70により補償されて復号される。補償回路70は、例えば、トレーニング信号を使用することにより、あるいは、Blind Optimization Algorithmを用いて信号の補償を行う。補償回路70により、偏波モード分散(PMD:Polarization Mode Dispersion)の補償も可能であり、よって、偏波多重(PDM:Polarization Division Multiplexing)使用時における信号劣化を効率的に抑えることができる。   The compensation circuit 50 is an FIR filter that compensates the digitized in-phase and quadrature signals for chromatic dispersion and the like applied in the optical transmission line, and the Fourier transformer 60 applies the signal after dispersion compensation to the Fourier transform. The signal after conversion and Fourier transform is compensated and decoded by the compensation circuit 70 as necessary. The compensation circuit 70 compensates for a signal by using, for example, a training signal or by using a Blind Optimization Algorithm. The compensation circuit 70 can also compensate for polarization mode dispersion (PMD: Polarization Mode Dispersion), so that signal degradation when using polarization division multiplexing (PDM) can be efficiently suppressed.

図3は、本発明の第2実施形態における光受信装置のブロック図である。図3によると、光受信装置は、レーザダイオード1と、マッハツェンダ変調器3と、分波器4と、各サブキャリアに対応する受信部2とを有する。なお、受信部2の機能ブロックは、図2に示すものと同じである。本実施形態において、マッハツェンダ変調器3は、図1に示す光送信装置と同じく、レーザダイオード1が生成する連続光を位相変調して、受信部2と同じ数の局発光を含む信号を生成し、分波器4は、マッハツェンダ変調器3が出力する、それぞれが異なる周波数である複数の局発光を含む光信号を分波し、各局発光を受信部2に出力し、受信部2は、対象とするサブキャリに対して第1実施形態にて説明したのと同じ処理を行う。   FIG. 3 is a block diagram of an optical receiver according to the second embodiment of the present invention. According to FIG. 3, the optical receiver includes a laser diode 1, a Mach-Zehnder modulator 3, a duplexer 4, and a receiving unit 2 corresponding to each subcarrier. The functional block of the receiving unit 2 is the same as that shown in FIG. In this embodiment, the Mach-Zehnder modulator 3 phase-modulates continuous light generated by the laser diode 1 and generates a signal including the same number of local lights as the receiver 2, as in the optical transmission device shown in FIG. The demultiplexer 4 demultiplexes an optical signal including a plurality of local lights each having a different frequency, which is output from the Mach-Zehnder modulator 3, and outputs each local light to the receiving unit 2. The receiving unit 2 The same processing as described in the first embodiment is performed on the sub-carrier.

なお、各受信部2が受信する局発光の周波数は、受信部2の90度ハイブリッド20が出力する光信号の、当該受信部2が処理すべきサブキャリの周波数が、光電気変換器31及び32の周波数帯域内となる値であり、マッハツェンダ変調器3においてレーザダイオード1が出力する連続光を位相変調する電気信号は、各局発光の周波数が、上記条件を満たすように設計される。   The frequency of local light received by each receiver 2 is the subcarrier frequency to be processed by the receiver 2 of the optical signal output from the 90-degree hybrid 20 of the receiver 2. The electric signal for phase modulating the continuous light output from the laser diode 1 in the Mach-Zehnder modulator 3 is designed so that the frequency of each local light emission satisfies the above conditions.

以上、コヒーレント受信処理と、デジタル信号変換後に補償回路50及び70で実施する補償処理により、従来技術より使用する光部品の数を抑え、かつ、誤りの発生を抑えた光伝送システムを可能にする。特に、補償回路70における補償処理によりPDMを使用するシステムに有利である。   As described above, the coherent reception process and the compensation process performed by the compensation circuits 50 and 70 after the digital signal conversion enable an optical transmission system in which the number of optical components used and the occurrence of errors are suppressed compared to the prior art. . In particular, it is advantageous for a system using a PDM by the compensation processing in the compensation circuit 70.

なお、図2と図3の中間、すなわち、複数のサブキャリアを処理する受信部2を、複数個、設ける構成であっても良い。   2 or 3, that is, a configuration in which a plurality of receiving units 2 that process a plurality of subcarriers are provided may be employed.

光送信装置のブロック図である。It is a block diagram of an optical transmitter. 本発明の第1実施形態における光受信装置のブロック図である。It is a block diagram of the optical receiver in 1st Embodiment of this invention. 本発明の第2実施形態における光受信装置のブロック図である。It is a block diagram of the optical receiver in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1、81 レーザダイオード
2 受信部
3、82 マッハツェンダ変調器
4、83 分波器
20 90度ハイブリッド
31、32 光電気変換器
41、42 アナログデジタル変換器
50、70 補償回路
60 フーリエ変換器
84、85 DQPSK変調器
86 合波器
DESCRIPTION OF SYMBOLS 1,81 Laser diode 2 Receiving part 3,82 Mach-Zehnder modulator 4,83 Demultiplexer 20 90 degree hybrid 31,32 Photoelectric converter 41,42 Analog-digital converter 50,70 Compensation circuit 60 Fourier transformer 84,85 DQPSK modulator 86 multiplexer

Claims (3)

光送信装置からの複数のサブキャリアを含む送信光信号を受信する装置であって、
局発光生成のためのレーザダイオードと、
受信手段と、
を備えており、
前記受信手段は、
局発光を用いて送信光信号をコヒーレント受信し、同相及び直交の光信号を出力する第1の手段と、
第1の手段が出力する光信号を電気信号に変換して出力する第2の手段と、
第2の手段の出力をデジタル信号に変換する第3の手段と、
デジタル変換後の同相及び直交信号に対して分散補償を行う第4の手段と、
分散補償後の同相及び直交信号のフーリエ変換処理を行う第5の手段と、
を備えている受信装置。
An apparatus for receiving a transmission optical signal including a plurality of subcarriers from an optical transmission apparatus,
A laser diode for generating local light;
Receiving means;
With
The receiving means includes
First means for coherently receiving a transmission optical signal using local light and outputting in-phase and quadrature optical signals;
Second means for converting the optical signal output by the first means into an electrical signal and outputting the electrical signal;
Third means for converting the output of the second means into a digital signal;
A fourth means for performing dispersion compensation on the in-phase and quadrature signals after digital conversion;
A fifth means for performing Fourier transform processing of the in-phase and quadrature signals after dispersion compensation;
A receiving device.
前記受信手段を複数有し、
レーザダイオードが出力する連続光から、各受信手段に入力する局発光を生成する手段を、更に、備えている、
請求項1に記載の装置。
A plurality of receiving means;
Means for generating local light to be input to each receiving means from the continuous light output from the laser diode;
The apparatus of claim 1.
前記受信手段は、第5の手段の出力信号の偏波モード分散補償を行う第6の手段を、更に、備えている、
請求項1又は2に記載の装置。
The receiving means further includes sixth means for performing polarization mode dispersion compensation of the output signal of the fifth means.
The apparatus according to claim 1 or 2.
JP2008310625A 2008-12-05 2008-12-05 Optical receiving device Withdrawn JP2010136146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310625A JP2010136146A (en) 2008-12-05 2008-12-05 Optical receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310625A JP2010136146A (en) 2008-12-05 2008-12-05 Optical receiving device

Publications (1)

Publication Number Publication Date
JP2010136146A true JP2010136146A (en) 2010-06-17

Family

ID=42346969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310625A Withdrawn JP2010136146A (en) 2008-12-05 2008-12-05 Optical receiving device

Country Status (1)

Country Link
JP (1) JP2010136146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060052A1 (en) 2010-11-01 2012-05-10 日本電気株式会社 Coherent light receiving device, system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060052A1 (en) 2010-11-01 2012-05-10 日本電気株式会社 Coherent light receiving device, system and method

Similar Documents

Publication Publication Date Title
US9270381B2 (en) Method and apparatus for transmitting and receiving coherent optical OFDM
US9374260B2 (en) Method and apparatus for directly detected optical transmission systems based on carrierless amplitude-phase modulation
US8437638B2 (en) Optical modulation circuit and optical transmission system
JP5916611B2 (en) Digital coherent detection of multicarrier optical signals
US8582979B2 (en) Method and arrangement for transmitting an optical OFDM-signal
WO2011151913A1 (en) Optical communication system, optical receiver, optical transponder, wavelength multiplexing optical communication system, wavelength multiplexing receiving device, and wavelength multiplexing optical transponder
EP2559173B1 (en) Method and device for transmission and reception of a polarization multiplexed optical signal
WO2014122815A1 (en) Signal processing device and signal processing method
JP2010041706A (en) Method and apparatus for phase modulation of optical orthogonal frequency division multiplexing signal
JP5583788B2 (en) Optical communication system, optical transmitter and transponder
WO2014155775A1 (en) Signal processing device, optical communication system, and signal processing method
JP4905951B2 (en) Optical modulation circuit and optical transmission system
CN110915151B (en) Optical transmitter, optical receiver, and communication system
EP3016303B1 (en) Method, device, and system for sending and receiving signal
JP2010136146A (en) Optical receiving device
JP4864910B2 (en) Optical communication apparatus, system, and optical communication method
JP6363933B2 (en) Optical transmitter / receiver, optical receiver, and optical transmitter / receiver method
JP5322227B2 (en) Optical orthogonal frequency division multiplexing communication apparatus and communication method
WO2012003856A1 (en) Method and device for data processing in an optical communication network
JP2008206063A (en) Optical transmission device and method
JP5189528B2 (en) Optical transmitter and optical communication system
Lowery et al. Nanosecond-latency IM/DD/DSB short-haul to coherent/SSB long-haul converter
JP2009278304A (en) Polarization multiplexed optical transmission method and optical transmission equipment
JP5235721B2 (en) Optical transmitter, optical receiver, and optical communication system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100730

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207