JP2010134344A - Adaptive signal processing system and transfer characteristic setting method for the same - Google Patents

Adaptive signal processing system and transfer characteristic setting method for the same Download PDF

Info

Publication number
JP2010134344A
JP2010134344A JP2008312147A JP2008312147A JP2010134344A JP 2010134344 A JP2010134344 A JP 2010134344A JP 2008312147 A JP2008312147 A JP 2008312147A JP 2008312147 A JP2008312147 A JP 2008312147A JP 2010134344 A JP2010134344 A JP 2010134344A
Authority
JP
Japan
Prior art keywords
adaptive
transfer
transfer characteristic
signal
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008312147A
Other languages
Japanese (ja)
Inventor
Tomohiko Ise
友彦 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2008312147A priority Critical patent/JP2010134344A/en
Publication of JP2010134344A publication Critical patent/JP2010134344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adaptive signal processing system and a transfer characteristic setting method for the same, capable of reducing a calculation amount required for calculation of a coefficient update equation of adaptive signal processing, while reducing an amount of a transfer characteristic to be stored. <P>SOLUTION: When the adaptive signal processing is performed in a frequency domain, the transfer characteristic from each speaker to each microphone is calculated for each frequency component, and a transfer gain is calculated by each transfer characteristic in two or more adding terms of the coefficient update equation, and compared for each frequency. When a gain difference is a preset value or less, the adding term with a smaller transfer gain is considered as 0, and the transfer characteristic of the adding term with a larger gain is set in an adaptive control section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は適応信号処理システム及びその伝達特性設定方法に関わり、特に、各制御音源(スピーカ)から各マイクまでの伝達特性を適応制御部に設定し、適応制御部において該伝達特性を含む係数更新式を用いて誤差信号電力が最小となるように適応フィルタの係数を決定する適応信号処理システム及びその伝達特性設定方法に関する。   The present invention relates to an adaptive signal processing system and a transfer characteristic setting method thereof, and in particular, sets a transfer characteristic from each control sound source (speaker) to each microphone in an adaptive control unit, and updates the coefficient including the transfer characteristic in the adaptive control unit The present invention relates to an adaptive signal processing system that determines a coefficient of an adaptive filter so that error signal power is minimized using an equation, and a transfer characteristic setting method thereof.

適応制御部(Filtered-x-LMSアルゴリズムやSingle frequency Adaptive Notch Filter アルゴリズムなど)を用いたアクティブ騒音制御装置が普及している。アクティブ騒音制御装置では、一般的に、マイクロホン設置位置(観測点)での騒音のパワーが最小となるように適応制御部が自動で動作をすることで、アクティブ消音を実現している。
図11はFiltered-x-LMSアルゴリズムを採用した従来のアクティブ騒音制御装置の構成図(特許文献1)であり、参照信号発生部1は消音したい騒音と相関のある参照信号xを生成して出力する。適応制御装置2は、参照信号発生部1から発生する参照信号xを入力されると共に、車室内の騒音キャンセル位置(観測点であり例えば運転者の耳元近傍)における騒音NZとキャンセル音CNの合成音信号をエラー信号eとして入力され、該エラー信号のパワーが最小となるように適応信号処理を行って騒音キャンセル信号yを出力する。適応制御装置2は、適応信号処理部ADPと、デジタルフィルタ構成の適応フィルタADFと、参照信号xにスピーカから騒音キャンセル点までのキャンセル音伝達系の伝達特性を畳み込んで信号処理用参照信号を作成する信号処理フィルタSFTを備えている。キャンセルスピ−カ3は適応フィルタ出力信号を入力されて騒音キャンセル音CNを放射し、エラーマイク4は騒音キャンセル点に配置され、騒音NZとキャンセル音CNの合成音を検出し、合成音信号をエラー信号eとして騒音キャンセルコントローラ2の適応信号処理部ADPに入力する。
Active noise control devices using an adaptive control unit (Filtered-x-LMS algorithm, Single frequency Adaptive Notch Filter algorithm, etc.) have become widespread. In an active noise control apparatus, in general, active muffling is realized by an adaptive control unit that automatically operates so that the power of noise at a microphone installation position (observation point) is minimized.
FIG. 11 is a block diagram of a conventional active noise control apparatus that employs a Filtered-x-LMS algorithm (Patent Document 1). The reference signal generator 1 generates and outputs a reference signal x correlated with the noise to be silenced. To do. The adaptive control device 2 receives the reference signal x generated from the reference signal generator 1, and combines the noise NZ and the cancellation sound CN at the noise cancellation position (observation point, for example, near the driver's ear) in the passenger compartment. A sound signal is input as an error signal e, and adaptive signal processing is performed so that the power of the error signal is minimized, and a noise cancellation signal y is output. The adaptive control device 2 convolves the transmission characteristic of the canceling sound transmission system from the speaker to the noise cancellation point into the reference signal x by convolution of the adaptive signal processing unit ADP, the adaptive filter ADF having a digital filter configuration, and the reference signal x. A signal processing filter SFT to be created is provided. The cancel speaker 3 receives the adaptive filter output signal and radiates the noise canceling sound CN. The error microphone 4 is arranged at the noise canceling point, detects the synthesized sound of the noise NZ and the canceling sound CN, and outputs the synthesized sound signal. The error signal e is input to the adaptive signal processing unit ADP of the noise cancellation controller 2.

適応信号処理部ADPは騒音キャンセル点におけるエラー信号eと信号処理フィルタSFTを介して入力される信号処理用参照信号を入力され、これら信号を用いて騒音キャンセル点における騒音をキャンセルするように適応信号処理を行って適応フィルタADFの係数を決定する。例えば適応信号処理部ADPは周知のFiltered-x-LMS (Least Mean Square)適応アルゴリズムに従って、エラーマイク4から入力されたエラー信号eの電力が最小となるように適応フィルタADFの係数を決定する。適応フィルタADFは適応信号処理部ADPにより決定された係数に従って参照信号xにデジタルフィルタ処理を施して騒音キャンセル信号yを出力する。尚、参照信号xは、消去したい騒音NZと相関の高い信号でなくてはならず、参照信号と相関のない音は消去されない。   The adaptive signal processing unit ADP receives the error signal e at the noise cancellation point and the signal processing reference signal input via the signal processing filter SFT, and uses these signals to cancel the noise at the noise cancellation point. Processing is performed to determine the coefficient of the adaptive filter ADF. For example, the adaptive signal processing unit ADP determines the coefficient of the adaptive filter ADF so that the power of the error signal e input from the error microphone 4 is minimized according to a well-known Filtered-x-LMS (Least Mean Square) adaptive algorithm. The adaptive filter ADF performs a digital filter process on the reference signal x according to the coefficient determined by the adaptive signal processing unit ADP and outputs a noise cancellation signal y. The reference signal x must be a signal having a high correlation with the noise NZ to be deleted, and a sound having no correlation with the reference signal is not deleted.

図12は騒音キャンセルコントローラ2における信号処理フィルタSFTに設定されるスピーカから騒音キャンセル点までの音響伝達特性Cを同定する伝達特性同定部のブロック図であり、図11と同一部分には同一符号を付している。
白色雑音発生部5を起動すると、白色雑音は適応制御装置6に入力して適応フィルタADF′でフィルタリング処理を施されルート共に、スピーカ3より車室内音響空間に放射され、マイクロホン4により検出される。演算部7はマイクロホン4による検出信号から適応フィルタADF′の出力信号を減算し、その差をエラー信号eとして適応制御装置6にフィードバックする。適応信号処理部ADP′は誤差信号eのパワーが最小になるようLMSアルゴリズムによる適応制御を行って適応フィルタADF′の係数を決定して設定する。以後、上記適応制御が繰り返され、最終的に適応フィルタADF′の出力とマイクロホン出力が等しくなり、これにより適応フィルタADF′にスピーカ3からマイク4までの音響伝達特性C′が設定される。音響伝達特性C′の同定が終了した後、適応フィルタADF′の係数(伝達特性)を図11の信号処理フィルタSFTにコピーする。
FIG. 12 is a block diagram of a transfer characteristic identification unit for identifying the acoustic transfer characteristic C from the speaker to the noise cancellation point set in the signal processing filter SFT in the noise cancellation controller 2, and the same parts as those in FIG. It is attached.
When the white noise generating unit 5 is activated, the white noise is input to the adaptive control device 6 and subjected to filtering processing by the adaptive filter ADF ′. Both the routes are radiated from the speaker 3 to the vehicle interior acoustic space and detected by the microphone 4. . The calculation unit 7 subtracts the output signal of the adaptive filter ADF ′ from the detection signal from the microphone 4 and feeds back the difference as an error signal e to the adaptive control device 6. The adaptive signal processor ADP ′ performs adaptive control by the LMS algorithm so as to minimize the power of the error signal e, and determines and sets the coefficient of the adaptive filter ADF ′. Thereafter, the above adaptive control is repeated, and finally, the output of the adaptive filter ADF ′ and the microphone output become equal, whereby the acoustic transfer characteristic C ′ from the speaker 3 to the microphone 4 is set in the adaptive filter ADF ′. After the identification of the acoustic transfer characteristic C ′ is completed, the coefficient (transfer characteristic) of the adaptive filter ADF ′ is copied to the signal processing filter SFT of FIG.

図11のアクティブ騒音制御装置は、時間領域の参照信号およびエラー信号を用いる例であるが、これら時間領域の信号を周波数領域の信号に変換し、適応信号処理を周波数領域で行うアクティブ騒音制御装置がある。図13は適応信号処理を周波数領域で行うアクティブ騒音制御装置のブロック図であり、図11と同一部分には同一符号を付している。
FFT部8aは時間領域の参照信号xを周波数領域(周波数f1, f2,・・・fF)の信号X(Xf1,Xf2,・・・XfF)に変換し、FFT部8bは誤差信号eを周波数領域の信号E(Ef1,Ef2,・・・EfF)に変換し、適応制御部9は周波数成分毎に係数更新式を用いて図示しない適応フィルタ係数W(Wf1,Wf2,・・・WfF)を決定し、IFFT部8cは周波数成分毎に適応フィルタから出力される信号を時間領域の信号に変換してスピーカ3に入力する。適応制御部9のLMSアルゴリズムは、基本的に次式

Figure 2010134344
により、周波数毎に現時刻k+1の適応フィルタ係数WM(fj,k+1)(j=1〜F)を1時刻前の適応フィルタ係数WM(fj,k) (j=1〜F)を用いて更新することで消音を実現している。
特許第3419878号 The active noise control device in FIG. 11 is an example using a time domain reference signal and an error signal. The active noise control device converts these time domain signals into frequency domain signals and performs adaptive signal processing in the frequency domain. There is. FIG. 13 is a block diagram of an active noise control apparatus that performs adaptive signal processing in the frequency domain, and the same components as those in FIG. 11 are denoted by the same reference numerals.
The FFT unit 8a converts the reference signal x in the time domain into a signal X (Xf 1 , Xf 2 ,... Xf F ) in the frequency domain (frequency f 1 , f 2 ,... F F ), and the FFT unit 8b. Converts the error signal e into a frequency domain signal E (Ef 1 , Ef 2 ,... Ef F ), and the adaptive control unit 9 uses an coefficient update equation for each frequency component to show an adaptive filter coefficient W (Wf 1 , Wf 2 ,... Wf F ), and the IFFT unit 8 c converts the signal output from the adaptive filter for each frequency component into a time domain signal and inputs it to the speaker 3. The LMS algorithm of the adaptive controller 9 is basically
Figure 2010134344
Thus, the adaptive filter coefficient W M (f j , k + 1) (j = 1 to F) at the current time k + 1 is changed to the adaptive filter coefficient W M (f j , k) (j = 1 to Silence is realized by updating with F).
Patent No. 3419888

ところで、近年,環境面の要求から自動車の軽量化・低燃費化が進んでおり、それに伴ってアクティブ騒音制御装置のよりいっそうの低価格化と多車種展開が要望されている。しかし、消音用の音源(スピーカ)数Mやマイクロホン数Lが増えると、適応制御部の数が増えたり、伝達特性C′の数が増えるために、演算量や伝達特性の保存量が増えて、コストアップの要因となっている。
また、アクティブ騒音制御装置を多車種展開するにあたり、製造コストのマスメリットを出そうと、1台のアクティブ騒音制御装置をそのまま多車種に導入しようという要望があり、このような場合には伝達特性C′の保存量が車種数分増えてしまうため、更にサイズの大きいメモリが必要となって、これもコストアップの要因となる。
以上から本発明の目的は、係数更新式の演算に要する演算量を減少することである。
本発明の別の目的は保存する伝達特性C′の量を削減して必要とするメモリサイズを削減することである。
By the way, in recent years, automobiles are becoming lighter and more fuel-efficient due to environmental requirements, and accordingly, further reduction in the price of active noise control devices and the development of various types of vehicles are demanded. However, as the number of sound sources (speakers) for muting and the number of microphones L increase, the number of adaptive control units and the number of transfer characteristics C 'increase, which increases the amount of computation and storage of the transfer characteristics. This is a cause of cost increase.
In addition, when deploying multiple types of active noise control devices, there is a demand to introduce one active noise control device directly into multiple vehicle types in order to achieve mass merit in manufacturing costs. Since the amount of storage of C ′ increases by the number of models, a larger memory is required, which also increases costs.
From the above, an object of the present invention is to reduce the amount of calculation required for the calculation of the coefficient update formula.
Another object of the present invention is to reduce the memory size required by reducing the amount of transfer characteristic C ′ to be stored.

本発明は、各スピーカから各マイクまでの伝達特性を適応制御部に設定し、適応制御部において該伝達特性を含む係数更新式を用いて誤差信号電力が最小となるように前記適応フィルタの係数を決定する適応信号処理システム及びその伝達特性設定方法である。
・伝達特性設定方法
本発明の伝達特性設定方法は、各スピーカから各マイクまでの伝達特性を算出するステップ、前記係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較するステップ、ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性のみを適応制御部に設定するステップ、を備えている。
適応制御部に入力される参照信号と誤差信号を周波数領域の信号に変換し、該適応制御部が周波数成分毎に係数更新式を用いて適応フィルタの係数を決定し、周波数毎に各適応フィルタから出力される信号を時間領域の信号に変換してスピーカに入力する場合、周波数成分毎に、各スピーカから各マイクまでの伝達特性を求め、周波数成分毎に係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較し、ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性のみを適応制御部に設定する。
The present invention sets the transfer characteristic from each speaker to each microphone in the adaptive control unit, and uses the coefficient update formula including the transfer characteristic in the adaptive control unit so that the error signal power is minimized. Is an adaptive signal processing system for determining a transmission characteristic and a transfer characteristic setting method thereof.
Transfer characteristic setting method In the transfer characteristic setting method of the present invention, a transfer characteristic from each speaker to each microphone is calculated, and a transfer gain is obtained from each transfer characteristic in two or more addition terms of the coefficient update equation and compared. Step, when the gain difference is less than or equal to the set value, the addition term with the smaller transfer gain is regarded as 0, and only the transfer characteristic of the larger addition term is set in the adaptive control unit.
The reference signal and the error signal input to the adaptive control unit are converted into a frequency domain signal, and the adaptive control unit determines a coefficient of the adaptive filter for each frequency component using a coefficient update formula, and each adaptive filter for each frequency. When the signal output from the signal is converted into a time-domain signal and input to the speaker, the transfer characteristic from each speaker to each microphone is obtained for each frequency component, and two or more addition terms in the coefficient update equation are calculated for each frequency component. If the gain difference is less than or equal to the set value, the transfer term with the smaller transfer gain is regarded as 0 and only the transfer characteristic with the larger addition term is set in the adaptive control unit. To do.

・適応信号処理システム
本発明の適応信号処理システムは、参照信号と誤差信号を入力されて適応信号処理する適応制御部と、該適応制御部置の適応フィルタから出力される信号が入力される2以上のスピーカと、各スピーカから出力される音響信号を検出する1以上のマイクと、各スピーカから各マイクまでの伝達特性を算出する伝達特性算出部と、前記係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較する比較部と、ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性のみを前記適応制御部に設定する伝達特性設定部を備えている。
本発明の適応信号処理システムは、更に、前記参照信号を周波数領域の信号に変換するFFT部、前記誤差信号を周波数領域の信号に変換するFFT部、周波数成分毎に適応フィルタから出力される信号を時間領域の信号に変換して前記スピーカに入力するIFFT部を備え、前記伝達特性算出部は周波数成分毎に各スピーカから各マイクまでの伝達特性を算出し、前記比較部は周波数毎に係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較し、伝達特性設定部はゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性のみを前記適応制御部に設定する。
Adaptive signal processing system An adaptive signal processing system according to the present invention receives an input of a reference signal and an error signal, an adaptive control unit for adaptive signal processing, and a signal output from an adaptive filter of the adaptive control unit 2 The above speaker, one or more microphones that detect acoustic signals output from each speaker, a transfer characteristic calculation unit that calculates transfer characteristics from each speaker to each microphone, and two or more addition terms in the coefficient update equation The comparison unit that obtains and compares the transfer gain from each transfer characteristic in FIG. 5 and the gain difference is equal to or smaller than the set value, the addition term with the smaller transfer gain is regarded as 0, and only the transfer characteristic with the larger addition term is applied. A transfer characteristic setting unit to be set in the control unit is provided.
The adaptive signal processing system of the present invention further includes an FFT unit that converts the reference signal into a frequency domain signal, an FFT unit that converts the error signal into a frequency domain signal, and a signal output from the adaptive filter for each frequency component. The IFFT unit converts the signal into a time domain signal and inputs it to the speaker, the transfer characteristic calculation unit calculates the transfer characteristic from each speaker to each microphone for each frequency component, and the comparison unit calculates the coefficient for each frequency. Transfer gain is obtained from each transfer characteristic in two or more addition terms in the update formula and compared. When the gain difference is less than the set value, the transfer characteristic setting unit regards the addition term with the smaller transfer gain as 0 and the larger one Only the transfer characteristic of the addition term is set in the adaptive control unit.

本発明によれば、各スピーカから各マイクまでの伝達特性を算出し、係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較し、ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性のみを適応制御部に設定するようにしたから、係数更新式における加算項を減少できる。このため、演算数を減少でき、高速処理が可能になった。また、伝達ゲインが小さい方の加算項の伝達特性を適応制御部に設定する必要がないため、これら伝達特性を保存するメモリの使用量を削減できる。
また、時間領域の信号を周波数領域の信号に変換し、適応信号処理を周波数領域で行う場合、周波数成分毎に、各スピーカから各マイクまでの伝達特性を求め、周波数成分毎に係数更新式の2以上の加算項における各伝達特性を用いて伝達ゲインを求めて比較し、ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性のみを適応制御部に設定するようにしたから、周波数成分数をF個(例えば200個)とすれば、時間領域の適応信号処理に本願発明を適用する場合の演算数の減少量に比べてF倍減少でき、高速処理が可能になった。また、適応制御部に設定する伝達特性の数を著しく減少でき、これにより、これら伝達特性を保存するメモリの使用量の削減、コストダウンを図ることができる。
また、車種毎に伝達特性を特定するパラメータを保存する場合であっても、保存する伝達特性の数を少なくでき、メモリサイズを小さくすることができる。
According to the present invention, the transfer characteristic from each speaker to each microphone is calculated, the transfer gain is calculated from each transfer characteristic in the addition term of two or more of the coefficient update formula, and compared, and when the gain difference is less than the set value, Since the addition term with the smaller transfer gain is regarded as 0 and only the transfer characteristic of the larger addition term is set in the adaptive control unit, the addition term in the coefficient update equation can be reduced. For this reason, the number of operations can be reduced, and high-speed processing has become possible. In addition, since it is not necessary to set the transfer characteristic of the addition term having a smaller transfer gain in the adaptive control unit, it is possible to reduce the amount of memory used to store these transfer characteristics.
Also, when the time domain signal is converted to the frequency domain signal and adaptive signal processing is performed in the frequency domain, the transfer characteristic from each speaker to each microphone is obtained for each frequency component, and the coefficient update equation is calculated for each frequency component. Transfer gains are obtained and compared using transfer characteristics in two or more addition terms, and if the gain difference is less than or equal to the set value, the addition term with the smaller transfer gain is regarded as 0, and the transfer characteristics of the larger addition term Therefore, if the number of frequency components is set to F (for example, 200), the number of operations when the present invention is applied to adaptive signal processing in the time domain is smaller than the amount of reduction in the number of operations. F times can be reduced, enabling high-speed processing. In addition, the number of transfer characteristics set in the adaptive control unit can be significantly reduced, thereby reducing the amount of memory used for storing these transfer characteristics and reducing costs.
Further, even when parameters for specifying transfer characteristics for each vehicle type are stored, the number of stored transfer characteristics can be reduced, and the memory size can be reduced.

(A)本発明の概略
本発明は、適応フィルタ係数更新式の2以上の加算項における各伝達特性より求まる伝達ゲインを比較し、ゲインの差が設定値以下の場合、ゲインが小さい方の加算項を0とみなすことにより、使用する伝達特性の量を削減し、また、該加算項の演算を不要にし、メモリ量および演算量を削減してコストダウンを達成する。
以下、簡単な事例を用いて、本発明の原理を説明する。
図1はアクティブ騒音制御システムの車室内音響系の一例であり、車室CSP内の適所に(図では車室内前部と後部)に2つの消音用音源(スピーカ)SP1,SP2を設け、騒音キャンセルポイントに2つのマイクMIC1,MIC2を設けた例である。図2は図1の車室内音響系を判りやすく書き換えたものである。スピーカSP1から発生した音響信号は伝達特性C11,C21を介してそれぞれマイクMIC1,MIC2に到達し、スピーカSP2から発生した音響信号は伝達特性C12,C22を介してそれぞれマイクMIC1,MIC2に到達して検出される。また、各マイクMIC1,MIC2は消音したい騒音dも検出する。なお、STF,STBは前座席、後座席である。
(A) Outline of the present invention The present invention compares the transfer gains determined from the transfer characteristics in the two or more addition terms of the adaptive filter coefficient update equation, and if the gain difference is less than the set value, the smaller gain is added. By considering the term as 0, the amount of transfer characteristics to be used is reduced, the calculation of the addition term is unnecessary, the memory amount and the computation amount are reduced, and the cost is reduced.
Hereinafter, the principle of the present invention will be described using simple examples.
Fig. 1 shows an example of the vehicle interior acoustic system of the active noise control system. Two sound source (speakers) SP1 and SP2 are installed at appropriate locations in the vehicle interior CSP (front and rear in the vehicle interior). In this example, two microphones MIC1 and MIC2 are provided at the cancellation point. FIG. 2 is a rewritten version of the vehicle interior acoustic system of FIG. Each microphone acoustic signal generated from the speaker SP1 via the transmission characteristic C 11, C 21 MIC1, reaches the MIC2, each acoustic signal generated from the speaker SP2 via the transfer characteristics C 12, C 22 microphone MIC1, MIC2 Will be detected. Each microphone MIC1, MIC2 also detects the noise d to be silenced. STF and STB are front and rear seats.

図3は、2つの消音用音源(スピーカ)、2つのマイク、2つの適応制御部を備えたアクティブ騒音制御システムの構成図であり、適応信号処理を周波数領域で行う場合である。アクティブ騒音制御システムは、参照信号xを周波数領域の信号Xに変換するFFT部11、マイクMC1,MIC2から出力する誤差信号e1,e2を周波数領域の信号E1,E2に変換するFFT部121,122、適応信号処理を周波数領域で行う2つの適応制御部131,132、周波数成分毎に適応制御部131,132の各適応フィルタから出力される周波数領域の信号Y1,Y2を時間領域の信号y1,y2に変換して出力するIFFT部141,142、信号y1,y2が入力される車室内音響系15を備えている。車室内音響系15は、図1の車室内音響系をモデル化して示しており、SP1,SP2はスピーカ、MIC1,MIC2はマイク、Cijは各スピーカから各マイクまでの音響伝達特性、CB1,CB2は合成部である。
音源とマイクロホンが2個ずつあるために、それらの間の音響伝達系はC11〜C22の4系統ある。適応制御部131,132のLMSアルゴリズムに基づく適応フィルタの係数更新式はそれぞれ、

Figure 2010134344
となる。なお、Mは消音用音源数、Lはマイクロホン数である。 FIG. 3 is a configuration diagram of an active noise control system including two sound-reducing sound sources (speakers), two microphones, and two adaptive control units, and is a case where adaptive signal processing is performed in the frequency domain. The active noise control system includes an FFT unit 11 that converts a reference signal x into a frequency domain signal X, and an FFT that converts error signals e 1 and e 2 output from the microphones MC1 and MIC2 into frequency domain signals E 1 and E 2. Units 12 1 , 12 2 , two adaptive control units 13 1 , 13 2 that perform adaptive signal processing in the frequency domain, frequency domain signals output from the adaptive filters of the adaptive control units 13 1 , 13 2 for each frequency component An IFFT section 14 1 , 14 2 for converting Y 1 , Y 2 to time domain signals y 1 , y 2 and outputting them, and a vehicle interior acoustic system 15 to which the signals y 1 , y 2 are input are provided. The vehicle interior acoustic system 15 is shown by modeling the vehicle interior acoustic system of FIG. 1, SP1 and SP2 are speakers, MIC1 and MIC2 are microphones, Cij is an acoustic transfer characteristic from each speaker to each microphone, CB1 and CB2 Is a synthesis part.
For the sound source and the microphone is two by two, an acoustic transfer system between them are four systems of C 11 -C 22. The coefficient update formulas of the adaptive filter based on the LMS algorithm of the adaptive control units 13 1 and 13 2 are respectively
Figure 2010134344
It becomes. Note that M is the number of sound sources for muting and L is the number of microphones.

図4は適応制御部131の構成図であり、(2a)式に従って適応フィルタ係数を更新する構成を備えている。(2a)式は各周波数f1,f2,・・・fF毎に書き換えると以下の係数更新式

Figure 2010134344
になる。
適応信号処理部21は、周波数f1,f2,・・・fF毎に上式の演算を実行し、周波数毎の適応フィルタの係数W1(f1,k+1)、W1(f2,k+1)・・・W1(fF,k+1)を計算し、適応フィルタ22はW1(f1,k+1)、W1(f2,k+1)・・・W1(fF,k+1)を周波数領域に変換した参照信号X1(f1)、X1(f2)・・・X1(fF)に乗算し、乗算結果を図3のIFFT部141に入力する。 Figure 4 is a block diagram of an adaptive control unit 13 1 has a structure that updates the adaptive filter coefficients according to expression (2a). (2a) Formula Each frequencies f 1, f 2, rewritten every · · · f F and the following coefficient update equation
Figure 2010134344
become.
The adaptive signal processing unit 21 performs the above calculation for each of the frequencies f 1 , f 2 ,... F F, and performs adaptive filter coefficients W 1 (f 1 , k + 1), W 1 ( f 2 , k + 1)... W 1 (f F , k + 1) is calculated, and the adaptive filter 22 uses W 1 (f 1 , k + 1), W 1 (f 2 , k + 1). ·· W 1 (f F, k + 1) reference signal X 1 converted into the frequency domain (f 1), X 1 ( f 2) multiplying the ··· X 1 (f F), FIG multiplication result 3 is input to IFFT section 14 1 .

適応信号処理部21において、311〜31Fは参照信号X1(f1)、X1(f2)・・・X1(fF)の複素共役を算出して出力する複素共役演算部、321〜32Fは前回の適応フィルタ係数W1(f1,k)、W1(f2,k)・・・W1(fF,k)を所定時刻遅延して出力する遅延器、331〜33FはスピーカSP1からマイクMIC1までの周波数毎の伝達特性C′11(f1)〜C′11(fF) を参照信号X1(f1)、X1(f2)・・・X1(fF)の複素共役信号X1 (f1)〜X1 (fF)に乗算する乗算部、34〜34FはスピーカSP1からマイクMIC2までの周波数毎の伝達特性C′21(f1)〜C′21(fF) を参照信号X1(f1)、X1(f2)・・・X1(fF)の複素共役信号X1 (f1)〜X1 (fF)に乗算する乗算部、351〜35Fは乗算部331〜33Fの出力信号と周波数領域に変換した誤算信号E1(f1)〜E1(fF)を乗算する乗算部、361〜36Fは乗算部341〜34Fの出力信号と周波数領域に変換した誤算信号E2(f1)〜E2(fF)を乗算する乗算部、371〜37Fは(3-1)〜(3-F)式の右辺第2項の[ ]内の加算演算を行なう加算器、381〜38Fは加算器の出力信号にステップサイズパラメータ2μを乗算する乗算部、391〜39Fは(3-1)〜(3-F)式の右辺第1項と第2項の加算を行なう加算器である。また、適応フィルタ22において、301〜30Fは周波数毎のフィルタ係数W1(f1,k+1)、W1(f2,k+1)・・・W1(fF,k+1)を周波数領域に変換した参照信号X1(f1)、X1(f2)・・・X1(fF)に乗算する乗算器である。 In the adaptive signal processing unit 21, 31 1 to 31 F are complex conjugate arithmetic units that calculate and output the complex conjugates of the reference signals X 1 (f 1 ), X 1 (f 2 )... X 1 (f F ). , 32 1 to 32 F are delay units for outputting the previous adaptive filter coefficients W 1 (f 1 , k), W 1 (f 2 , k)... W 1 (f F , k) with a predetermined time delay. , 33 1 to 33 F represent the transfer characteristics C ′ 11 (f 1 ) to C ′ 11 (f F ) for each frequency from the speaker SP1 to the microphone MIC1 as reference signals X 1 (f 1 ) and X 1 (f 2 ). · · · X 1 complex conjugate signal X 1 * (f 1) of (f F) ~X 1 * multiplication unit for multiplying the (f F), 34 1 ~34 F is for each frequency from the loudspeaker SP1 to the microphone MIC2 Transfer characteristics C ′ 21 (f 1 ) to C ′ 21 (f F ) are referred to as reference signals X 1 (f 1 ), X 1 (f 2 )... X 1 (f F ) complex conjugate signal X 1 * ( f 1 ) to X 1 * (f F ) are multiplied by multiplication units, 35 1 to 35 F are output signals of the multiplication units 33 1 to 33 F and error calculation signals E 1 (f 1 ) to E 1 converted into the frequency domain. (f F) Multiplying unit for multiplying, 36 1 ~ 36 F multiplication unit for multiplying the multiplication unit 34 1 to 34C F and the output signal from the miscalculation signal converted into the frequency domain, E 2 (f 1) ~E 2 (f F), 37 1 ˜37 F is an adder that performs the addition operation in [] in the second term on the right-hand side of the expressions (3-1) to (3-F), and 38 1 to 38 F are step size parameters of 2 μ to the output signal of the adder. Multipliers 39 1 to 39 F for multiplying are adders for adding the first and second terms on the right side of the equations (3-1) to (3-F). In the adaptive filter 22, 30 1 to 30 F are filter coefficients W 1 (f 1 , k + 1), W 1 (f 2 , k + 1)... W 1 (f F , k +) for each frequency. It is a multiplier that multiplies reference signals X 1 (f 1 ), X 1 (f 2 )... X 1 (f F ) obtained by converting 1) into the frequency domain.

以上は適応制御部131の構成であるが、適応制御部132も同様な構成になる。なお、(2b)式は各周波数f1,f2,・・・fF毎に書き換えると以下の係数更新式

Figure 2010134344
になる。 The above is the configuration of the adaptive control unit 13 1 , but the adaptive control unit 13 2 has the same configuration. Incidentally, (2b) expression each frequencies f 1, f 2, rewritten every · · · f F and the following coefficient update equation
Figure 2010134344
become.

図4及び(2a)〜(2b)式からわかるように、消音用音源であるスピーカが増えることにより制御用フィルタWが増え、また、マイクが増えることによって適応制御部内部の伝達特性に関わる演算と該伝達特性の量が増加することとなり、演算量とメモリ量が増加していくことがわかる。特に、F=200程度になるため、演算量とメモリ量は多くなる。また、騒音制御システムを取り付ける車種が変わることにより、音響伝達系の伝達特性が変化し、一つの騒音制御システムで複数の車種に対応できるようにするためには、車種分の音響伝達特性をメモリに持つ必要があり、演算量とメモリ量の増加は著しい。   As can be seen from FIG. 4 and the equations (2a) to (2b), the number of control filter W increases as the number of speakers as the sound source for mute increases, and the calculation related to the transfer characteristics inside the adaptive control unit due to the increase in microphones. It can be seen that the amount of the transfer characteristic increases and the amount of calculation and the amount of memory increase. In particular, since F = 200, the calculation amount and the memory amount increase. In addition, the transmission characteristics of the acoustic transmission system change as the vehicle model to which the noise control system is installed changes, so that a single noise control system can handle multiple vehicle models. The amount of computation and the amount of memory are significant.

そこで、本発明では(2a)式の右辺第2項の加算式に着目し、各加算項に含まれる伝達特性より伝達ゲインを求めて比較し、
伝達特性C′11(fj)のゲイン >>伝達特性C′21(fj)のゲイン、であれば、C′21(fj)X*(fj,k)E2(fj,k)の項がC′11(fj)X*(fj,k)E1(fj,k)に比べて非常に小さくなるから、C′21(fj)X*(fj,k)E2(fj,k)を0と見なして無視する。また、逆の場合も同様である。
(2b)式でも伝達特性C′12(fj)のゲイン>>伝達特性C′22(fj)のゲイン、であれば、C′22(f)X*(fj,k)E2(fj,k)の項がC′12(fj)X*(fj,k)E1(fj,k)に比べて非常に小さくなるから、C′22(fj)X*(fj,k)E2(fj,k)を0と見なして無視する。また、逆の場合も同様である。
なお、伝達特性Cij′(fj)は、複素数a+bjの形式で表現され、ゲインGと位相差θを用いて次式

Figure 2010134344
により表現できる。 Therefore, in the present invention, paying attention to the addition formula of the second term on the right side of the formula (2a), the transfer gain is obtained from the transfer characteristics included in each addition term, and compared,
Gain of transfer characteristic C ′ 11 (f j ) >> If gain of transfer characteristic C ′ 21 (f j ), then C ′ 21 (f j ) X * (f j , k) E 2 (f j , Since the term of k) is much smaller than C ′ 11 (f j ) X * (f j , k) E 1 (f j , k), C ′ 21 (f j ) X * (f j , k) E 2 (f j , k) is regarded as 0 and ignored. The same applies to the reverse case.
In equation (2b), the gain of transfer characteristic C ′ 12 (f j ) >> the gain of transfer characteristic C ′ 22 (f j ), then C ′ 22 (f) X * (f j , k) E 2 (f j, k) term C of the '12 (f j) X * (f j, k) E 1 (f j, k) from very small compared to, C' 22 (f j) X * (f j , k) E 2 (f j , k) is regarded as 0 and ignored. The same applies to the reverse case.
The transfer characteristic C ij ′ (f j ) is expressed in the form of a complex number a + bj, and the following equation is used by using the gain G and the phase difference θ.
Figure 2010134344
Can be expressed by

以上のように、ゲインの小さい項を0と見なして無視することにより、図4に示した適応制御部131の構成は、図5に示すようになる。すなわち、点線で示すように無視できる部分の係数や回路を削除することができる。ただし、図5では、
C′11(f2)のゲイン >> C′21(f2)のゲイン、C′21(fF)のゲイン >> C′11(fF)のゲイン
であるとしている。
以上より、本発明では、製品搭載車種の音響伝達系(伝達特性)を測定する際、測定した伝達特性C′11(fj)のゲインと伝達特性C′21(fj)のゲイン、伝達特性C′12(fj) のゲインと伝達特性C′22(fj) のゲインをそれぞれ比較して、その差が設定値v[dB] 以上(例えば20dB以上)であれば小さい方の伝達特性を削除する。
As described above, by ignoring the gain a small section is regarded as 0, the adaptive control unit 13 1 of the configuration shown in FIG. 4, as shown in FIG. That is, it is possible to delete a part of a coefficient or a circuit that can be ignored as indicated by a dotted line. However, in FIG.
The gain of C ′ 11 (f 2 ) >> the gain of C ′ 21 (f 2 ) and the gain of C ′ 21 (f F ) >> the gain of C ′ 11 (f F ).
As described above, according to the present invention, when measuring the acoustic transmission system (transmission characteristics) of a vehicle equipped with a product, the gain of the measured transmission characteristics C ′ 11 (f j ), the gain of the transmission characteristics C ′ 21 (f j ), and the transmission The gain of characteristic C ′ 12 (f j ) and the gain of transfer characteristic C ′ 22 (f j ) are compared. If the difference is equal to or greater than the set value v [dB] (for example, 20 dB or greater), the smaller transmission Delete a characteristic.

(B)実施例
図6は音響伝達系(伝達特性)を決定する本発明の実施例構成図であり、図1と同一部分には同一符号を付している。
スイッチ51,52を図示の状態にして、白色雑音発振器53を起動すると、白色雑音は適応制御装置54に入力して適応フィルタADFでフィルタリング処理を施されると共に、スピーカSP1より車室内音響空間CSPに放射され、マイクロホンMIC1により検出される。演算部55はマイクロホンMIC1による検出信号から適応フィルタADFの出力信号を減算し、その差をエラー信号eとして適応制御装置54にフィードバックする。適応信号処理部ADPは誤差信号eのパワーが最小になるようLMSアルゴリズムによる適応制御を行って適応フィルタADFの係数を決定して設定する。以後、上記適応制御が繰り返され、最終的に適応フィルタADFの出力とマイクロホン出力が等しくなり、これにより適応フィルタADFにスピーカSP1からマイクMIC1までの音響伝達特性C11′が設定される。しかる後、FFT演算部56は所定サンプリング速度で適応フィルタADFより所定数(F個)の伝達特性C11′を取り込み、FFT処理することによりF個の周波数f1〜fFの伝達特性C11′(f1)〜C11′(fF)を算出してメモリ57のC11特性部571に保存する。
(B) Embodiment FIG. 6 is a block diagram of an embodiment of the present invention for determining an acoustic transmission system (transfer characteristics). The same reference numerals are given to the same parts as those in FIG.
When the white noise oscillator 53 is activated with the switches 51 and 52 shown in the figure, the white noise is input to the adaptive control device 54 and subjected to filtering processing by the adaptive filter ADF, and the vehicle interior acoustic space CSP is obtained from the speaker SP1. And detected by the microphone MIC1. The computing unit 55 subtracts the output signal of the adaptive filter ADF from the detection signal from the microphone MIC1, and feeds back the difference as an error signal e to the adaptive control device 54. The adaptive signal processing unit ADP performs adaptive control by the LMS algorithm so as to minimize the power of the error signal e, and determines and sets the coefficient of the adaptive filter ADF. Thereafter, the above adaptive control is repeated, and finally, the output of the adaptive filter ADF and the microphone output become equal, whereby the acoustic transfer characteristic C 11 ′ from the speaker SP1 to the microphone MIC1 is set in the adaptive filter ADF. Thereafter, the FFT calculation unit 56 takes in a predetermined number (F) of transfer characteristics C 11 ′ from the adaptive filter ADF at a predetermined sampling rate, and performs FFT processing to transfer characteristics C 11 of F frequencies f 1 to f F. ′ (F 1 ) to C 11 ′ (f F ) are calculated and stored in the C 11 characteristic unit 57 1 of the memory 57.

以上により、伝達特性C11′(f1)〜C11′(fF)の同定処理が終了すれば、スイッチ52を点線側に切り換え、同様の処理によりF個の周波数f1〜fFの伝達特性C21′(f1)〜C21′(fF)を算出してメモリ57のC21特性部572に保存する。以後、スイッチ51,52を切り換え、同様にそれぞれF個の周波数f1〜fFの伝達特性C12′(f1)〜C12′(fF)、C22′(f1)〜C22′(fF)を算出してメモリ57のC12特性部573、C22特性部574に保存する。図7はメモリ57における伝達特性の保存状態説明図である。
全伝達特性の同定処理が終了すれば、第1の特性選択部58は、(2a)式の右辺第2項の加算式における第1加算項の伝達特性C11′(fj)(j=1〜F)のゲインと第2加算項の伝達特性C21′(fj)(j=1〜F)のゲインを比較する。そして、
C11′(fj)のゲイン>>C21′(fj)のゲイン
であれば(設定レベルVdB以上の差があれば)、伝達特性C11′(fj)のみをメモリ60のC11特性部601に保存する。一方、
C11′(fj)のゲイン<< C21′(fj)のゲイン
であれば(設定レベルVdB以上の差があれば)、伝達特性C21′(fj)のみをメモリ60のC21特性部60に保存し、ゲインに設定レベルVdB以上の差がなければ両方をメモリ60のC11特性部601、C21特性部60に保存する。
As described above, when the identification process of the transfer characteristics C 11 ′ (f 1 ) to C 11 ′ (f F ) is completed, the switch 52 is switched to the dotted line side, and F frequencies f 1 to f F are changed by the same process. transfer characteristic C 21 '(f 1) ~C 21' calculates the (f F) is stored in C 21 characteristic unit 57 2 of the memory 57. Thereafter, the switches 51 and 52 are switched, and similarly, transfer characteristics C 12 ′ (f 1 ) to C 12 ′ (f F ) and C 22 ′ (f 1 ) to C 22 of F frequencies f 1 to f F , respectively. '(F F ) is calculated and stored in the C 12 characteristic section 57 3 and the C 22 characteristic section 57 4 of the memory 57. FIG. 7 is an explanatory diagram of the storage state of the transfer characteristic in the memory 57.
When the identification process of all transfer characteristics is completed, the first characteristic selection unit 58 transfers the transfer characteristic C 11 ′ (f j ) (j = 1) of the first addition term in the addition expression of the second term on the right side of the equation (2a). The gain of 1 to F) is compared with the gain of the transfer characteristic C 21 ′ (f j ) (j = 1 to F) of the second addition term. And
If the gain of C 11 ′ (f j ) >> C 21 ′ (f j ) (if there is a difference greater than or equal to the set level VdB), only the transfer characteristic C 11 ′ (f j ) is stored in C of the memory 60. Save to 11 characteristic unit 60 1. on the other hand,
If the gain of C 11 ′ (f j ) << C 21 ′ (f j ) (if there is a difference equal to or higher than the set level VdB), only the transfer characteristic C 21 ′ (f j ) is stored in C of the memory 60. Save 21 characteristic unit 60 2 stores both unless the difference over the set level VdB the gain C 11 characteristic unit 60 1, C 21 characteristic unit 60 2 of the memory 60.

F個の全周波数f1〜fFの伝達特性について上記の処理が終了すれば、第2の特性選択部59は、(2b)式の右辺第2項の加算式における第1加算項の伝達特性C12′(fj)(j=1〜F)のゲインと第2加算項の伝達特性C22′(fj)(j=1〜F)のゲインを比較する。そして、
C12′(fj)のゲイン>>C22′(fj)のゲイン
であれば(設定レベルVdB以上の差があれば)、伝達特性C12′(fj)のみをメモリ60のC12特性部603に保存する。一方、
C12′(fj)のゲイン<< C22′(fj)のゲイン
であれば(設定レベルVdB以上の差があれば)、伝達特性C22′(fj)のみをメモリ60のC22特性部60に保存し、ゲインに設定レベルVdB以上の差が無ければ両方をメモリ60のC12特性部603、C22特性部60に保存する。
When the above processing is completed for the transfer characteristics of F total frequencies f 1 to f F , the second characteristic selection unit 59 transmits the first addition term in the addition expression of the second term on the right side of equation (2b). The gain of the characteristic C 12 ′ (f j ) (j = 1 to F) is compared with the gain of the transfer characteristic C 22 ′ (f j ) (j = 1 to F) of the second addition term. And
If the gain of C 12 ′ (f j ) >> C 22 ′ (f j ) (if there is a difference equal to or higher than the set level VdB), only the transfer characteristic C 12 ′ (f j ) is stored in C of the memory 60. Save to 12 characteristic unit 60 3. on the other hand,
If the gain of C 12 ′ (f j ) << C 22 ′ (f j ) (if there is a difference equal to or higher than the set level VdB), only transfer characteristic C 22 ′ (f j ) is stored in C of memory 60. and stored in 22 characteristic unit 60 4 stores both unless the difference over the set level VdB the gain C 12 characteristic unit 60 3, C 22 characteristic portion 60 4 of the memory 60.

図8はメモリ60における伝達特性の保存状態説明図であり、
C11′(f1)のゲイン>>C21′(f1)のゲイン
C11′(f2)のゲイン<<C21′(f2)のゲイン
C11′(f3)のゲインとC21′(f3)のゲインに設定レベル以上の差なし
・ ・・・・
C11′(fF)のゲイン>>C21′(fF)のゲイン
であり、また、
C12′(f1)のゲイン<<C22′(f1)のゲイン
C12′(f2)のゲイン<<C22′(f2)のゲイン
C12′(f3)のゲイン>>C22′(f3)のゲイン
・ ・・・・
C12′(fF)のゲインとC22′(fF)のゲインに設定レベル以上の差なし
の場合である。
以上により、伝達特性の選択が終了すれば、メモリ60に記憶された伝達特性C11′(fj)、C21′(fj)(j=1〜F)が図3の適応制御部131に設定され、また、伝達特性C12′(fj)、C22′(fj)(j=1〜F)が適応制御部132に設定される。これにより、適応制御部131、適応制御部132の適応信号処理部はそれぞれ、設定された伝達特性を用いて(2a),(2b)式により適応フィルタの係数を決定して騒音キャンセル制御を実行することが可能となる。
FIG. 8 is an explanatory diagram of the storage state of the transfer characteristic in the memory 60.
Gain of C 11 ′ (f 1 ) >> Gain of C 21 ′ (f 1 )
Gain of C 11 ′ (f 2 ) << Gain of C 21 ′ (f 2 )
There is no difference between the gain of C 11 ′ (f 3 ) and the gain of C 21 ′ (f 3 ) above the set level.
The gain of C 11 ′ (f F ) >> the gain of C 21 ′ (f F ), and
Gain of C 12 ′ (f 1 ) << Gain of C 22 ′ (f 1 )
Gain of C 12 ′ (f 2 ) << Gain of C 22 ′ (f 2 )
Gain of C 12 ′ (f 3 ) >> Gain of C 22 ′ (f 3 )
This is the case when the gain of C 12 ′ (f F ) and the gain of C 22 ′ (f F ) are not different from the set level.
When the selection of the transfer characteristic is completed as described above, the transfer characteristics C 11 ′ (f j ) and C 21 ′ (f j ) (j = 1 to F) stored in the memory 60 are changed to the adaptive control unit 13 in FIG. is set to 1, also the transfer characteristic C 12 '(f j), C 22' (f j) (j = 1~F) is set to the adaptive control unit 13 2. As a result, the adaptive signal processing units of the adaptive control unit 13 1 and the adaptive control unit 13 2 determine the coefficients of the adaptive filter by the equations (2a) and (2b) using the set transfer characteristics, respectively, and perform noise cancellation control. Can be executed.

(C)変形例
以上では、本発明をアクティブ騒音制御システムに適用した場合であるが、希望する伝達特性を求めてフィルタに設定し、該フィルタを通してオーディオ音を出力する適応等化制御システムにも適用することができる。
車室内は、密閉された狭い空間である。従って、短時間で反射が起こり、音波が干渉しあうため、聴取点までの伝搬特性は、非常に複雑なものとなる。また、左右非対称な場所で音楽等を聴いているので、左右スピーカからの伝搬特性も大きく違ってしまう。かかる車室内の悪影響を取り除き、車室内における音響特性の改善を目的としたオーディオ装置が望まれており、適応等化システムは再生空間の複数点(制御点)において、振幅、位相特性を含めて所望の特性となるようにする制御する。
(C) Modifications The above is a case where the present invention is applied to an active noise control system. However, an adaptive equalization control system that obtains a desired transfer characteristic and sets it in a filter and outputs audio sound through the filter is also described. Can be applied.
The vehicle interior is a sealed narrow space. Therefore, since reflection occurs in a short time and sound waves interfere with each other, the propagation characteristics up to the listening point are very complicated. In addition, since music or the like is being listened to in an asymmetrical place, the propagation characteristics from the left and right speakers are also greatly different. There is a demand for an audio device that eliminates the adverse effects of the vehicle interior and improves the acoustic characteristics in the vehicle interior, and the adaptive equalization system includes amplitude and phase characteristics at multiple points (control points) in the reproduction space. Control to achieve desired characteristics.

図9は1個のスピーカ、1個のマイクを用いた適応等化システムの基本構成図であり、71はオーディオ信号xを出力するオーディオソース(チューナ、テープデッキ、CDプレーヤ等)、72は目標応答特性(インパルスレスポンス特性)Hが設定され、オーディオ信号xが入力されて目標信号dを出力する目標応答設定部、74は車室内音響空間の聴取位置(観測点)における音を検出するマイク、75は検出されたオーディオ信号zと目標応答設定部72から出力される目標信号dとの誤差eを演算する演算部、76は前記誤差eのパワーが最小となるように信号yを発生する適応制御装置、77は該信号yに応じた音を車室内音響空間78に放射するスピーカ(制御音源)である。目標応答設定部72の目標応答特性Hは、再現したい音場空間に対応する特性が設定されている。
適応制御装置76は、オーディオ信号xを参照信号として入力されると共に、前記演算部75から出力されるエラー信号eを入力され、該エラー信号のパワーが最小となるように適応信号処理を行って信号yを出力する。適応制御装置76は、LMSアルゴリズムに従った適応信号処理を行う適応信号処理部ADPと、FIR型のデジタルフィルタ構成の適応フィルタADFを有している。
適応信号処理部ADPは聴取位置におけるエラー信号eと参照信号xが入力され、これらの信号を用いて(1)式の係数更新式により、聴取位置におけるオーディオ信号zが目標信号dと等しくなるように適応フィルタADFの係数を決定する。適応フィルタADFは適応信号処理部ADPにより決定された係数に従ってオーディオ信号xにデジタルフィルタ処理を施して信号yを出力する。従って、適応信号処理によりエラー信号eのパワーが最小となるように適応フィルタADFの係数が収束すれば、聴取位置において、オーディオ信号zが目標信号dと等しくなる。したがって、目標応答設定部72を切り離すことにより、理想的な空間で音を聴取したのと同等の音の聴取が可能となる。
FIG. 9 is a basic configuration diagram of an adaptive equalization system using one speaker and one microphone. 71 is an audio source (tuner, tape deck, CD player, etc.) for outputting an audio signal x, and 72 is a target. A response characteristic (impulse response characteristic) H is set, an audio signal x is input and a target response setting unit that outputs a target signal d; 74 is a microphone that detects sound at a listening position (observation point) in the vehicle interior acoustic space; 75 is an arithmetic unit for calculating an error e between the detected audio signal z and the target signal d output from the target response setting unit 72, and 76 is an adaptation for generating the signal y so that the power of the error e is minimized. A control device 77 is a speaker (control sound source) that radiates sound corresponding to the signal y to the vehicle interior acoustic space 78. The target response characteristic H of the target response setting unit 72 is set to a characteristic corresponding to the sound field space to be reproduced.
The adaptive control device 76 receives the audio signal x as a reference signal and also receives the error signal e output from the arithmetic unit 75, and performs adaptive signal processing so that the power of the error signal is minimized. The signal y is output. The adaptive control device 76 includes an adaptive signal processing unit ADP that performs adaptive signal processing according to the LMS algorithm, and an adaptive filter ADF having an FIR type digital filter configuration.
The adaptive signal processing unit ADP receives the error signal e and the reference signal x at the listening position, and uses these signals so that the audio signal z at the listening position becomes equal to the target signal d by the coefficient updating formula of the formula (1). Determine the coefficients of the adaptive filter ADF. The adaptive filter ADF performs digital filter processing on the audio signal x according to the coefficient determined by the adaptive signal processing unit ADP and outputs a signal y. Therefore, if the coefficients of the adaptive filter ADF converge so that the power of the error signal e is minimized by adaptive signal processing, the audio signal z becomes equal to the target signal d at the listening position. Therefore, by separating the target response setting unit 72, it is possible to listen to a sound equivalent to the sound heard in an ideal space.

図10は2個のスピーカ、2個のマイクを用いた適応等化システムの構成図であり、各スピーカSP1,SP2、マイクMIC1,MIC2は図1と同様に車室内の適所に配置されており、音響伝達系は図2に示すようになっている。
適応等化システムは、音楽ソース80、参照信号である音楽信号xを周波数領域の信号Xに変換するFFT部81、マイクMC1,MIC2から出力する誤差信号(聴取位置におけるオーディオ信号z1、z2と目標信号d1,d2の誤差信号)e1,e2を周波数領域の信号E1,E2に変換するFFT部821,822、適応信号処理を周波数領域で行う2つの適応制御部831,832、周波数成分毎に適応制御部831,832の各適応フィルタから出力される周波数領域の信号Y1,Y2を時間領域の信号y1,y2に変換して出力するIFFT部841,842、信号y1,y2が入力される車室内音響系85、第1聴取位置(マイクMIC1の設置位置)における目標応答特性H1が設定される第1の目標応答設定部86、第2聴取位置(マイクMIC2の設置位置)における目標応答特性H2が設定される第2の目標応答設定部を備えている。車室内音響系15は、図1あるいは図2の車室内音響系をモデル化して示しており、SP1,SP2はスピーカ、MIC1,MIC2はマイク、Cijは各スピーカから各マイクまでの音響伝達特性、CB1,CB2は合成部である。
適応制御部831,832は図3のアクティブ騒音制御システムの場合と同様に、それぞれ、次式

Figure 2010134344
に示す係数更新式を用いて適応信号処理を行って、第1、第2聴取位置におけるオーディオ信号z1、z2がそれぞれ目標信号d1、d2と等しくなる適応フィルタの係数を決定する。しかる後、目標応答設定部86,87を切り離すことにより、第1、第2聴取位置において理想的な空間で音を聴取したのと同等の音の聴取が可能となる。 FIG. 10 is a block diagram of an adaptive equalization system using two speakers and two microphones. Each speaker SP1, SP2 and microphones MIC1, MIC2 are arranged at appropriate positions in the vehicle interior as in FIG. The acoustic transmission system is as shown in FIG.
The adaptive equalization system includes a music source 80, an FFT unit 81 that converts a music signal x as a reference signal into a signal X in the frequency domain, and error signals output from the microphones MC1 and MIC2 (audio signals z1 and z2 at the listening position and target Error signals of signals d1 and d2) FFT units 82 1 and 82 2 for converting e 1 and e 2 into frequency domain signals E 1 and E 2 , two adaptive control units 83 1 for performing adaptive signal processing in the frequency domain, 83 2, 1 adaptive control unit 83 for each frequency component, 83 signal Y 1 in the frequency domain output from the adaptive filter 2, Y 2 a time signal y 1 region, IFFT section is converted into y 2 outputs 84 1 , 84 2 , interior acoustic system 85 to which signals y 1 and y 2 are input, and a first target response setting unit in which target response characteristics H 1 are set at the first listening position (position where microphone MIC 1 is installed). 86, the target response H 2 is set is at the second listening position (installation position of the microphone MIC2) The second has a target response setting unit that. The vehicle interior acoustic system 15 is shown by modeling the vehicle interior acoustic system of FIG. 1 or FIG. 2, SP1 and SP2 are speakers, MIC1 and MIC2 are microphones, Cij is an acoustic transfer characteristic from each speaker to each microphone, CB1 and CB2 are synthesis units.
Adaptive control unit 83 1, 83 2, like the case of the active noise control system of Figure 3, respectively, the following equation
Figure 2010134344
The adaptive signal processing is performed using the coefficient update equation shown in FIG. 6 to determine the adaptive filter coefficients at which the audio signals z1 and z2 at the first and second listening positions are equal to the target signals d1 and d2, respectively. Thereafter, by separating the target response setting units 86 and 87, it is possible to listen to the sound equivalent to the sound heard in the ideal space at the first and second listening positions.

以上より、適応等化システムにおいても、伝送特性C′11(fj)、C′21(fj)、C′12(fj)、C′22(fj)を適応制御部831,832に設定する必要がある。そして、(6a)〜(6b)式からわかるように、スピーカが増えることにより適応制御部の数が増え、また、マイクが増えることによって適応制御部内部の伝達特性に関わる演算と該伝達特性量が増加することとなり、演算量とメモリ量が増加する。そこで、適応信号処理に使用する伝達特性C′11(fj)、C′21(fj)、C′12(fj)、C′22(fj)を既に説明した図6に示す構成によって設定する。このようにすれば、適応等化制御システムにおいてもアクティブ騒音制御システムと同等の効果を奏することが可能となる。
以上の実施例ではスピーカを2個、マイクを2個使用したシステムの例であるが、スピーカが1個以上、マイクが2個以上を使用する騒音キャンセルシステムや適応等化制御システムにも本発明を適用することができる。
As described above, also in the adaptive equalization system, the transmission characteristics C ′ 11 (f j ), C ′ 21 (f j ), C ′ 12 (f j ), and C ′ 22 (f j ) are assigned to the adaptive control unit 83 1 , It is necessary to set to 83 2 . As can be seen from the equations (6a) to (6b), the number of adaptive control units increases as the number of speakers increases, and the calculation related to the transfer characteristics inside the adaptive control unit and the transfer characteristic amount increase as the number of microphones increases. As a result, the calculation amount and the memory amount increase. Therefore, the transfer characteristics C ′ 11 (f j ), C ′ 21 (f j ), C ′ 12 (f j ), and C ′ 22 (f j ) used for the adaptive signal processing are already shown in FIG. Set by. In this way, the adaptive equalization control system can achieve the same effects as the active noise control system.
The above embodiment is an example of a system using two speakers and two microphones. However, the present invention is also applied to a noise canceling system and adaptive equalization control system using one or more speakers and two or more microphones. Can be applied.

アクティブ騒音制御システムの車室内音響系の一例である。It is an example of the vehicle interior acoustic system of an active noise control system. 図1の車室内音響系を判りやすく書き換えた説明図である。It is explanatory drawing which rewritten the vehicle interior acoustic system of FIG. 1 intelligibly. 2つの消音用音源(スピーカ)、2つのマイク、2つの適応制御部を備えたアクティブ騒音制御システムの構成図である。It is a block diagram of an active noise control system provided with two sound source for mute (speaker), two microphones, and two adaptive control units. 適応制御部の従来の構成図である。It is the conventional block diagram of an adaptive control part. 適応制御部の本発明の構成図である。It is a block diagram of this invention of an adaptive control part. 音響伝達系(伝達特性)を決定する本発明の実施例構成図である。It is an Example block diagram of this invention which determines an acoustic transmission system (transfer characteristic). メモリにおける伝達特性の第1の保存状態説明図である。It is a 1st preservation | save state explanatory drawing of the transfer characteristic in memory. メモリにおける伝達特性の第2の保存状態説明図である。It is a 2nd preservation | save state explanatory drawing of the transfer characteristic in memory. 1個のスピーカ、1個のマイクを用いた適応等化システムの基本構成図である。1 is a basic configuration diagram of an adaptive equalization system using one speaker and one microphone. FIG. 2個のスピーカ、2個のマイクを用いた適応等化システムの構成図である。It is a block diagram of an adaptive equalization system using two speakers and two microphones. Filtered-x-LMSアルゴリズムを採用した従来のアクティブ騒音制御装置の構成図である。It is a block diagram of the conventional active noise control apparatus which employ | adopted Filtered-x-LMS algorithm. スピーカから騒音キャンセル点までの音響伝達特性を同定する伝達特性同定部のブロック図である。It is a block diagram of the transmission characteristic identification part which identifies the acoustic transmission characteristic from a speaker to a noise cancellation point. 適応信号処理を周波数領域で行うアクティブ騒音制御装置のブロック図である。It is a block diagram of the active noise control apparatus which performs adaptive signal processing in a frequency domain.

符号の説明Explanation of symbols

51,52 スイッチ
53 白色雑音発振器
54 適応制御装置
55 演算部
56 FFT演算部
57 メモリ
58 第1の特性選択部
59 第2の特性選択部
60 メモリ
51, 52 Switch 53 White noise oscillator 54 Adaptive control device 55 Calculation unit 56 FFT calculation unit 57 Memory 58 First characteristic selection unit 59 Second characteristic selection unit 60 Memory

Claims (4)

参照信号と誤差信号を入力されて適応信号処理する適応制御部と、該適応制御部の適応フィルタから出力される信号が入力される1以上のスピーカと、各スピーカから出力される音響信号を検出する2以上のマイクとを備え、各スピーカから各マイクまでの伝達特性を適応制御部に設定し、適応制御部において該伝達特性を含む係数更新式を用いて誤差信号電力が最小となるように前記適応フィルタの係数を決定する適応信号処理システムにおける伝達特性設定方法において、
各スピーカから各マイクまでの伝達特性を求め、
前記係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較し、
ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項における伝達特性を適応制御部に設定する、
ことを特徴とする伝達特性設定方法。
An adaptive control unit that receives a reference signal and an error signal and performs adaptive signal processing, one or more speakers that receive signals output from the adaptive filter of the adaptive control unit, and an acoustic signal that is output from each speaker Two or more microphones, and the transfer characteristic from each speaker to each microphone is set in the adaptive control unit so that the error signal power can be minimized by using a coefficient updating formula including the transfer characteristic in the adaptive control unit. In a transfer characteristic setting method in an adaptive signal processing system for determining a coefficient of the adaptive filter,
Find the transfer characteristics from each speaker to each microphone,
Transfer gain is obtained from each transfer characteristic in two or more addition terms of the coefficient update formula, and compared,
When the gain difference is less than or equal to the set value, the addition term with the smaller transfer gain is regarded as 0, and the transfer characteristic in the larger addition term is set in the adaptive control unit.
A transfer characteristic setting method characterized by the above.
前記適応制御部に入力される参照信号と誤差信号を周波数領域の信号に変換し、該適応制御部が周波数成分毎に係数更新式を用いて適応フィルタ係数を決定し、周波数毎に各適応フィルタから出力される信号を時間領域の信号に変換してスピーカに入力する場合、
周波数成分毎に、各スピーカから各マイクまでの伝達特性を求め、
周波数成分毎に、係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較し、
ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項の伝達特性を適応制御部に設定する、
ことを特徴とする請求項1記載の伝達特性設定方法。
The reference signal and the error signal input to the adaptive control unit are converted into a frequency domain signal, and the adaptive control unit determines an adaptive filter coefficient for each frequency component using a coefficient update formula, and each adaptive filter for each frequency. When the signal output from is converted to a time domain signal and input to the speaker,
For each frequency component, find the transfer characteristics from each speaker to each microphone,
For each frequency component, a transfer gain is obtained from each transfer characteristic in two or more addition terms of the coefficient update formula, and compared,
When the gain difference is less than or equal to the set value, the addition term with the smaller transfer gain is regarded as 0, and the transfer characteristic of the larger addition term is set in the adaptive control unit.
The transfer characteristic setting method according to claim 1.
参照信号と誤差信号を入力されて適応信号処理する適応制御部と、該適応制御部の適応フィルタから出力される信号が入力される1以上のスピーカと、各スピーカから出力される音響信号を検出する2以上のマイクとを備え、各スピーカから各マイクまでの伝達特性を適応制御部に設定し、適応制御部において該伝達特性を含む係数更新式を用いて誤差信号電力が最小となるように前記適応フィルタの係数を決定する適応信号処理システムにおいて、
各スピーカから各マイクまでの伝達特性を算出する伝達特性算出部、
前記係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較する比較部、
ゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項における伝達特性を前記適応制御部に設定する伝達特性設定部、
を備えたことを特徴とする適応信号処理システム。
An adaptive control unit that receives a reference signal and an error signal and performs adaptive signal processing, one or more speakers that receive signals output from the adaptive filter of the adaptive control unit, and an acoustic signal that is output from each speaker Two or more microphones, and the transfer characteristic from each speaker to each microphone is set in the adaptive control unit so that the error signal power can be minimized by using a coefficient updating formula including the transfer characteristic in the adaptive control unit. In an adaptive signal processing system for determining coefficients of the adaptive filter,
A transfer characteristic calculator for calculating transfer characteristics from each speaker to each microphone;
A comparison unit that obtains a transfer gain from each transfer characteristic in the two or more addition terms of the coefficient update formula and compares them;
When the gain difference is equal to or smaller than the set value, the transfer term having a smaller transfer gain is regarded as 0, and the transfer characteristic in the larger addition term is set in the adaptive control unit.
An adaptive signal processing system comprising:
請求項3記載の適応信号処理システムにおいて、更に、
前記参照信号を周波数領域の信号に変換するFFT部、
前記誤差信号を周波数領域の信号に変換するFFT部、
周波数成分毎に適応フィルタから出力される信号を時間領域の信号に変換して前記スピーカに入力するIFFT部を備え、
前記伝達特性算出部は周波数成分毎に各スピーカから各マイクまでの伝達特性を算出し、前記比較部は周波数毎に係数更新式の2以上の加算項における各伝達特性より伝達ゲインを求めて比較し、伝達特性設定部はゲイン差が設定値以下の場合、伝達ゲインが小さい方の加算項を0とみなし、大きい方の加算項における伝達特性を前記適応制御部に設定する、
ことを特徴とする適応信号処理システム。
The adaptive signal processing system of claim 3, further comprising:
FFT section for converting the reference signal into a frequency domain signal,
FFT section for converting the error signal into a frequency domain signal,
An IFFT unit that converts the signal output from the adaptive filter for each frequency component into a signal in the time domain and inputs the signal to the speaker,
The transfer characteristic calculation unit calculates a transfer characteristic from each speaker to each microphone for each frequency component, and the comparison unit obtains a transfer gain from each transfer characteristic in two or more addition terms of the coefficient update formula for each frequency and compares them. When the gain difference is equal to or smaller than the set value, the transfer characteristic setting unit regards the addition term with the smaller transfer gain as 0 and sets the transfer characteristic in the larger addition term to the adaptive control unit.
And an adaptive signal processing system.
JP2008312147A 2008-12-08 2008-12-08 Adaptive signal processing system and transfer characteristic setting method for the same Pending JP2010134344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312147A JP2010134344A (en) 2008-12-08 2008-12-08 Adaptive signal processing system and transfer characteristic setting method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312147A JP2010134344A (en) 2008-12-08 2008-12-08 Adaptive signal processing system and transfer characteristic setting method for the same

Publications (1)

Publication Number Publication Date
JP2010134344A true JP2010134344A (en) 2010-06-17

Family

ID=42345673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312147A Pending JP2010134344A (en) 2008-12-08 2008-12-08 Adaptive signal processing system and transfer characteristic setting method for the same

Country Status (1)

Country Link
JP (1) JP2010134344A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248797A (en) * 1988-03-30 1989-10-04 Toshiba Corp Silencer
JPH03204354A (en) * 1989-12-29 1991-09-05 Nissan Motor Co Ltd Active type noise control device
JPH11133981A (en) * 1997-10-24 1999-05-21 Matsushita Electric Ind Co Ltd Muffling device
JP2002366161A (en) * 2001-06-04 2002-12-20 Denso Corp Noise controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248797A (en) * 1988-03-30 1989-10-04 Toshiba Corp Silencer
JPH03204354A (en) * 1989-12-29 1991-09-05 Nissan Motor Co Ltd Active type noise control device
JPH11133981A (en) * 1997-10-24 1999-05-21 Matsushita Electric Ind Co Ltd Muffling device
JP2002366161A (en) * 2001-06-04 2002-12-20 Denso Corp Noise controller

Similar Documents

Publication Publication Date Title
JP5255087B2 (en) Adaptive noise control
JP2010120633A (en) System for active noise control using audio signal compensation
JP6870078B2 (en) Noise estimation for dynamic sound adjustment
JP2008020897A (en) Method for compensating audio signal components in vehicle communication system, and system therefor
CN111128210A (en) Audio signal processing with acoustic echo cancellation
JP7149336B2 (en) Active noise control with feedback compensation
JP2023090971A (en) Feedforward active noise control
KR20190016953A (en) Sound processing apparatus, sound processing method and computer program
JP4977551B2 (en) Active noise control device
JP7259092B2 (en) Modular echo cancellation unit
JP2008048324A (en) Automatic panning adjusting apparatus and method
JP3579508B2 (en) Audio equipment
JP2010134344A (en) Adaptive signal processing system and transfer characteristic setting method for the same
JP5474712B2 (en) Active vibration noise control device
JP5265412B2 (en) Sound field control device
JPH10198386A (en) Sound regenerating device
JP2007331557A (en) Acoustic system
JP3957939B2 (en) Equalization system
JP5430220B2 (en) Multipoint adaptive equalization control method and multipoint adaptive equalization control system
JPH0766647A (en) Acoustic characteristic controller
JPH09198054A (en) Noise cancel device
JPH1132396A (en) Car navigation acoustic reproduction device
JP3423849B2 (en) Audio equipment
JP4578426B2 (en) Audio sound cancellation system
JP2596317Y2 (en) Music player

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106