JP2010133975A - Method of screening compound having antimicrobial activity on pathogenic microorganism infecting organism having acquired immune mechanism by using larva of insect having only natural immune mechanism, and method of evaluating antimicrobial activity by using larva of insect having only natural immune mechanism - Google Patents

Method of screening compound having antimicrobial activity on pathogenic microorganism infecting organism having acquired immune mechanism by using larva of insect having only natural immune mechanism, and method of evaluating antimicrobial activity by using larva of insect having only natural immune mechanism Download PDF

Info

Publication number
JP2010133975A
JP2010133975A JP2010037402A JP2010037402A JP2010133975A JP 2010133975 A JP2010133975 A JP 2010133975A JP 2010037402 A JP2010037402 A JP 2010037402A JP 2010037402 A JP2010037402 A JP 2010037402A JP 2010133975 A JP2010133975 A JP 2010133975A
Authority
JP
Japan
Prior art keywords
immune mechanism
organism
larva
pathogenic microorganism
insect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037402A
Other languages
Japanese (ja)
Other versions
JP5103491B2 (en
Inventor
Kazuhisa Sekimizu
和久 関水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genome Pharmaceuticals Institute Co Ltd
Original Assignee
Genome Pharmaceuticals Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genome Pharmaceuticals Institute Co Ltd filed Critical Genome Pharmaceuticals Institute Co Ltd
Priority to JP2010037402A priority Critical patent/JP5103491B2/en
Publication of JP2010133975A publication Critical patent/JP2010133975A/en
Application granted granted Critical
Publication of JP5103491B2 publication Critical patent/JP5103491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5085Supracellular entities, e.g. tissue, organisms of invertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/21Assays involving biological materials from specific organisms or of a specific nature from bacteria from Pseudomonadaceae (F)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/305Assays involving biological materials from specific organisms or of a specific nature from bacteria from Micrococcaceae (F)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/43504Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates
    • G01N2333/43552Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from insects
    • G01N2333/43578Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from insects from silkworm

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective model for developing antimicrobial agent for microbe infection in an organism having acquired immune mechanism, wherein the model of microbe infection using the organism having only natural immune mechanism. <P>SOLUTION: Whether the larva of a silkworm is useful or not as an antimicrobial agent evaluation system is investigated. It is found out that the larva of the silkworm is died by infection on the injection of Staphylococcus aureus or Pseudomonas aeruginosa to the larva of the silkworm. The effect of the antimicrobial agent for the larva of the silkworm is surprisingly agrees with the clinical efficacy of these agent on human i.e. an organism having acquired immune mechanism. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、獲得免疫機構を有する生物に感染する病原微生物に対し抗菌活性を有する化合物を自然免疫機構のみを有する昆虫類の幼虫を利用してスクリーニングする方法および獲得免疫機構を有する生物に感染する病原微生物に対する抗菌活性を自然免疫機構のみを有する昆虫類の幼虫を利用して評価する方法に関する。   The present invention relates to a method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having an acquired immune mechanism using insect larvae having only the innate immune mechanism, and to infect an organism having the acquired immune mechanism. The present invention relates to a method for evaluating antibacterial activity against pathogenic microorganisms using insect larvae having only an innate immune mechanism.

微生物感染症に対する新薬開発においては、カビ、放射菌、海洋生物などを含む各種生物資源から抽出精製された化合物、有機化学的方法により合成された化学物質、あるいは遺伝子工学的手法に基づいて得られた蛋白質(リコンビナントドラッグ)について、それらの薬品としての抗菌効果や安全性を動物実験により確認することが必要不可欠である。従来、実験用の動物としては、主にマウス、希にサルやブタなどの哺乳動物が利用されてきた。   In the development of new drugs for microbial infections, compounds extracted and purified from various biological resources including molds, radioactive bacteria, marine organisms, etc., chemical substances synthesized by organic chemical methods, or obtained from genetic engineering techniques It is indispensable to confirm the antibacterial effect and safety of these proteins (recombinant drugs) by animal experiments. Conventionally, mammals such as mice and rarely monkeys and pigs have been used as experimental animals.

しかしながら、これら実験用の哺乳動物の飼育に当っては、SPF(specific pathogen−free;特定病原体除去)と呼ばれる定められた細菌及びウイルスの感染がない条件を満たす必要がある。それに加えて、SPF動物による病原微生物の感染実験を行なうには、施設や運用に多大の経費を要する。さらに、医薬品開発に多数の哺乳動物を用いることは、倫理的に問題があるとの指摘もなされている。
そこで、微生物感染症に対する新薬開発において、これら哺乳動物に代替しうる実験動物の探索の必要性がある。
However, in breeding these experimental mammals, it is necessary to satisfy a condition in which there is no infection with a defined bacterium and virus called SPF (specific pathogen-free). In addition, in order to conduct infection experiments of pathogenic microorganisms with SPF animals, a large amount of money is required for facilities and operations. Furthermore, it has been pointed out that the use of a large number of mammals for drug development is ethically problematic.
Therefore, in the development of new drugs against microbial infections, there is a need to search for experimental animals that can replace these mammals.

ところで、生物の長い進化の歴史の中で、病原体による侵入と宿主との間の攻防は、様々な免疫機構を導いてきた。ヒトを含む脊椎動物は抗体という、侵入者を特異的に認識する分子による「獲得免疫機構」を確立した。しかしながら、脊椎動物が現れる前に既に無脊椎動物は、抗体によらない「自然免疫機構」を持っていた。無脊椎動物である昆虫は、この地球上で最も繁栄していると考えられる生物の一つであるが、「自然免疫機構」により外来者の侵入を防いでいる。   By the way, in the long evolutionary history of living organisms, invasion by pathogens and defense between hosts have led to various immune mechanisms. Vertebrates, including humans, have established an “acquired immune mechanism” by molecules called antibodies that specifically recognize invaders. However, before the emergence of vertebrates, invertebrates already had an “innate immune mechanism” that does not depend on antibodies. Invertebrate insects are one of the most prosperous organisms on the planet, but they prevent invaders from entering by the “natural immunity mechanism”.

近年の研究により、その分子レベルでの機構は、ヒトのそれと共通していることが明らかになりつつある。例えば、細菌感染に対する応答において、哺乳動物と昆虫は、防御遺伝子を発現させるための共通に保存されたシグナル経路を持っている。すなわち、哺乳動物においては、病原体の体内への侵入により、免疫細胞においてTOLL like receptorを介して、NF−κBの発現誘導が引き起こされる(非特許文献1)。一方、Drosophira melanogasterの成虫においても、TOLL like receptorであるdTollと18−wheelerを介してNF−κBのホモログであるDifとRelishが誘導され、抗菌応答系が活性化される(非特許文献2、非特許文献3)。   Recent research is revealing that its molecular mechanism is in common with that of humans. For example, in response to bacterial infection, mammals and insects have a commonly conserved signal pathway for expressing defense genes. That is, in mammals, the invasion of a pathogen into the body causes NF-κB expression induction in immune cells via TOLL like receptor (Non-patent Document 1). On the other hand, even in Drosophila melanogaster adults, Dif and Relish which are homologs of NF-κB are induced through dToll and 18-wheeler which are TOLL like receptors, and the antibacterial response system is activated (Non-patent Document 2, Non-patent document 3).

また、最近になり、哺乳動物以外の動物を利用した病原微生物の感染モデルにつき、いくつかの報告がなされた。例えば、Caenorhabditis elegans(非特許文献4、非特許文献5、非特許文献6)、Arabidopsis thaliana(非特許文献7)を用いた緑膿菌感染の解析、Dictyostelium discoideumを用いたLegionella pheumophila感染の解析(非特許文献8)、Caenorhabditis elegans(非特許文献9)、yeast(非特許文献10)を用いたSalmonella typhimurium感染の研究例が報告されている。   Recently, several reports have been made on infection models of pathogenic microorganisms using animals other than mammals. For example, analysis of Pseudomonas aeruginosa infection using Caenorhabditis elegans (Non-patent document 4, Non-patent document 5, Non-patent document 6), Arabidopsis thaliana (Non-patent document 7), Analysis of Legionella pheumophila infection using Dictyostelium discoideum Non-patent document 8), Caenorhabditis elegans (non-patent document 9), and Yeast (non-patent document 10) have been reported as research examples of Salmonella typhimurium infection.

しかしながら、これら自然免疫機構のみを有する生物を利用した感染モデルが、獲得免疫機構を有する生物の微生物感染のモデルとなり得るかは全く不明であった。従って、また、獲得免疫機構を有する生物の微生物感染症の治療のための抗菌剤のスクリーニングにおいて、これら自然免疫機構のみを有する生物を利用した感染モデルを利用できるか否かも不明であった。
特に、グラム陽性の病原性細菌に関しては、これまで哺乳動物以外の動物個体を用いた感染モデルの報告例すらないのが現状である。グラム陽性細菌の中でも黄色ブドウ球菌は、ヒトに日和見感染症の原因菌であり、近年、多剤耐性能を持つMRSAが出現し、臨床上問題となっている(非特許文献11)。このため、黄色ブドウ球菌に対する抗菌剤の開発が強く望まれている。
However, it was completely unknown whether an infection model using organisms having only these innate immune mechanisms could be a model for microbial infection of organisms having acquired immune mechanisms. Therefore, it was also unclear whether or not an infection model using organisms having only the innate immune mechanism can be used in screening antibacterial agents for the treatment of microbial infections of organisms having acquired immune mechanisms.
In particular, with regard to Gram-positive pathogenic bacteria, there are currently no reported examples of infection models using animal individuals other than mammals. Among Gram-positive bacteria, Staphylococcus aureus is a causative bacterium of opportunistic infections in humans, and in recent years, MRSA having multidrug resistance has emerged and has become a clinical problem (Non-patent Document 11). For this reason, development of an antibacterial agent against Staphylococcus aureus is strongly desired.

Medzhitov,R.et al.1997.Nature 388:394-397.Medzhitov, R. et al. 1997. Nature 388: 394-397. Lemaitre,B.et al.1996.Cell 86:973-983.Lemaitre, B. et al. 1996. Cell 86: 973-983. Bernal,A.,and D.A.Kimbell.2000.Proc.Natl.Acad.Sci.USA 97:6019-6024.Bernal, A., and D.A. Kimbell. 2000. Proc. Natl. Acad. Sci. USA 97: 6019-6024. Tan,M.W.et al.1999.Proc.Natl.Acad.Sci.USA.96:715-20.、Tan, M.W.et al.1999.Proc.Natl.Acad.Sci.USA.96: 715-20., Tan,M,W.,et al.1999.Proc.Natl.Acad.Sci.USA 96:2408-13.Tan, M, W., et al. 1999. Proc. Natl. Acad. Sci. USA 96: 2408-13. Mahajan-Miklos,S.et al.,1999.Cell 96:47-56.)(Mahjan-Miklos, S. et al., 1999.Cell 96: 47-56.) Reuber,T.L.et al.1998.Plant J.16:473-85.Reuber, T.L. et al. 1998.Plant J. 16: 473-85. Solomon,J.M.et al.2000.Infect Immun 68:2939-47.Solomon, J.M.et al. 2000.Infect Immun 68: 2939-47. Aballay,A.et al.2000.Curr Biol 10:1539-42.Aballay, A. et al. 2000. Curr Biol 10: 1539-42. Scherer,C.A.et al.2000.Mol Microbiol.37:1133-45.Scherer, C.A. et al. 2000. Mol Microbiol. 37: 1133-45. Speller,DC et al.,Lancet 350:323-325.Speller, DC et al., Lancet 350: 323-325.

本発明は、このような状況に鑑みてなされたものであり、その目的は、自然免疫機構のみを有する生物を利用した微生物感染のモデルであって、獲得免疫機構を有する生物における微生物感染症の抗菌剤開発に有用なモデルを提供することにある。本発明は、これら感染モデルを利用して、獲得免疫機構を有する生物に感染する病原微生物に対し抗菌活性を有する化合物をスクリーニングする方法および該抗菌活性の評価方法を提供することをも目的とする。本発明の好ましい態様において、該感染モデルとして、昆虫類に属する生物を利用する。また、本発明の他の好ましい態様において、該感染モデルとしてグラム陽性の病原微生物に感染され得る生物を利用する。本発明は、また、抗菌剤のスクリーニングおよび抗菌活性の評価において、実験経費や実験スペースを節減することをも目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is a model of microbial infection using an organism having only an innate immunity mechanism, which is a microbial infection disease in an organism having an acquired immunity mechanism. It is to provide a useful model for the development of antibacterial agents. Another object of the present invention is to provide a method for screening a compound having antibacterial activity against a pathogenic microorganism that infects an organism having an acquired immune mechanism and a method for evaluating the antibacterial activity using these infection models. . In a preferred embodiment of the present invention, an organism belonging to insects is used as the infection model. In another preferred embodiment of the present invention, an organism that can be infected with a Gram-positive pathogenic microorganism is used as the infection model. Another object of the present invention is to reduce experimental costs and experimental space in screening of antibacterial agents and evaluation of antibacterial activity.

本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、世代交代が早く、研究室で容易に飼育でき、遺伝学的解析が進んでいるカイコ(節足動物門、大顎亜門、有翅昆虫類、チョウ目に属する)に着目した。カイコは幼虫が大型であるため、C.elegans(線形動物門、双腺網、桿線虫亜門、カンセンチュウ目に属する)などの小型の生物と比較して病原体や薬物の注射が極めて容易である(Okada,E.et al.1997.J.Seric.Sci.Jpn.66:116−122.)。このため、病原体に対する抗菌薬の評価に極めて適していると考えられる。また、カイコ幼虫を使用することは、廉価であり、倫理上の問題もなく、哺乳動物と比較して有用性が高い。   As a result of diligent studies to solve the above-mentioned problems, the present inventors have found that silkworms (arthropods, submaxillary subsidiary) that are quick to change generations, can be easily reared in the laboratory, and have been genetically analyzed. It was focused on the gates, insects and butterflies. Since silkworms have large larvae, C.I. Injection of pathogens and drugs is extremely easy compared to small organisms such as elegans (belonging to the linear phylum, dinosaurs, nematodes, and nematodes) (Okada, E. et al. 1997). J. Seric. Sci. Jpn. 66: 116-122.). For this reason, it is thought that it is very suitable for evaluation of the antibacterial agent with respect to a pathogen. In addition, the use of silkworm larvae is inexpensive, has no ethical problems, and is more useful than mammals.

そこで、本発明者らは、カイコ幼虫を利用した病原微生物の感染モデルの開発を試みた。まず、本発明者らは、個体における抗菌剤評価系として、カイコ幼虫が有用であるかについて検討した。その結果、カイコ幼虫の血液中へ黄色ブドウ球菌あるいは緑膿菌の生菌を注射すると、短期間で大部分のカイコ幼虫が死亡した。一方、オートクレーブ処理した黄色ブドウ球菌を注射した場合には、カイコ幼虫の死亡は認められなかった。大腸菌を注射した場合では、注射後5日目においても大部分のカイコ幼虫が生存した。黄色ブドウ球菌を注射した後、経時的にカイコ幼虫の血液及び組織を採取した結果、黄色ブドウ球菌が増殖していることが確認された。抗S.aureus抗体を用いた免疫染色により、中腸上皮において黄色ブドウ球菌が増殖していることが示唆された。これらの結果は、カイコ幼虫への黄色ブドウ球菌あるいは緑膿菌の注射により、カイコ幼虫が感染死することを示している。   Therefore, the present inventors tried to develop an infection model of pathogenic microorganisms using silkworm larvae. First, the present inventors examined whether a silkworm larva was useful as an antibacterial agent evaluation system in an individual. As a result, when silk staphylococcus or Pseudomonas aeruginosa live bacteria were injected into the blood of silkworm larvae, most silkworm larvae died in a short period of time. On the other hand, when autoclaved S. aureus was injected, no silkworm larvae were found dead. When E. coli was injected, most silkworm larvae survived even 5 days after the injection. After injection of Staphylococcus aureus, blood and tissues of silkworm larvae were collected over time, and it was confirmed that Staphylococcus aureus was growing. Anti-S. Immunostaining with an aureus antibody suggested that Staphylococcus aureus was growing in the midgut epithelium. These results indicate that silkworm larvae are killed by infection by injection of S. aureus or Pseudomonas aeruginosa into silkworm larvae.

さらに、メチシリン感受性黄色ブドウ球菌(MSSA)によるカイコ幼虫の感染死は、アンピシリン、オキサシリン、バンコマイシンで抑えられるのに対し、メチシリン耐性黄色ブドウ球菌(MRSA)によるカイコ幼虫の感染死は、アンピシリン、オキサシリンでは抑えられず、バンコマイシンで抑えられた。また、MSSAによるカイコ幼虫の感染死は、消毒剤であるEtOH、塩化ベンザルコニウム、ポビドンヨードでは抑えることができなかった。驚くべきことに、この結果は、ヒトの臨床におけるこれら薬剤の有効性と一致している。従って、カイコ幼虫を用いた系は動物個体に対する感染モデルとして新規抗菌剤のスクリーニングや評価に極めて有効であると考えられる。本発明は、自然免疫機構のみを有する生物における病原微生物感染に対する抗菌剤の有効性と、獲得免疫機構を有する生物における病原微生物感染に対する抗菌剤の有効性の一致が示された世界で初めての例である。従って、また、本発明は、自然免疫機構のみを有する生物を利用して、獲得免疫機構を有する生物に感染する病原微生物に対する抗菌活性の評価系を開発することに成功した世界で初めての例でもある。   Furthermore, infection death of silkworm larvae caused by methicillin-susceptible Staphylococcus aureus (MSSA) is suppressed by ampicillin, oxacillin and vancomycin, whereas death death of silkworm larvae caused by methicillin-resistant Staphylococcus aureus (MRSA) is caused by ampicillin and oxacillin. It was not suppressed and was suppressed with vancomycin. Moreover, the death of silkworm larvae caused by MSSA could not be suppressed by the disinfectants EtOH, benzalkonium chloride and povidone iodine. Surprisingly, this result is consistent with the effectiveness of these drugs in human clinical practice. Therefore, a system using silkworm larvae is considered to be extremely effective for screening and evaluation of new antibacterial agents as an infection model for animal individuals. The present invention is the first example in the world in which the effectiveness of an antibacterial agent against pathogenic microorganism infection in an organism having only the innate immune mechanism and the effectiveness of the antibacterial agent against pathogenic microorganism infection in an organism having an acquired immune mechanism have been shown to coincide. It is. Therefore, the present invention is also the first example in the world that has succeeded in developing a system for evaluating antibacterial activity against pathogenic microorganisms infecting organisms having acquired immune mechanisms, using organisms having only innate immune mechanisms. is there.

即ち、本発明は、自然免疫機構のみを有する昆虫類の幼虫を利用した、獲得免疫機構を有する生物に感染する病原微生物に対し抗菌活性を有する化合物のスクリーニングおよび該抗菌活性の評価に関し、より詳しくは、以下の方法を提供するものである。
(1) 獲得免疫機構を有する生物に感染する病原微生物に対し抗菌活性を有する化合物をスクリーニングする方法であって、
(a)自然免疫機構のみを有する昆虫類の幼虫に該病原微生物および被検試料を投与する工程、
(b)該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を検出する工程、および
(c)被検試料を投与しない場合(対照)と比較して、該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を向上させる化合物を選択する工程、を含む方法。
(2) 獲得免疫機構を有する生物に感染する病原微生物に対する、被検試料の抗菌活性を評価する方法であって、
(a)自然免疫機構のみを有する昆虫類の幼虫に病原微生物および被検試料を投与する工程、
(b)該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を検出する工程、および
(c)被検試料を投与しない場合(対照)と比較して、該被検試料が、該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を向上させるか否かを判定する工程、を含む方法。
(3) 獲得免疫機構を有する生物が哺乳動物である、(1)または(2)に記載の方法。
(4) 哺乳動物がヒトである、(3)に記載の方法。
(5) 幼虫が大型である、(1)から(4)のいずれかに記載の方法。
(6) 昆虫類に属する生物がカイコである、(1)から(5)のいずれかに記載の方法。
(7) 自然免疫機構のみを有する昆虫類の幼虫がグラム陽性の病原微生物により感染されるものである、(1)から(6)のいずれかに記載の方法。
(8) 獲得免疫機構を有する生物に感染する病原微生物がグラム陽性の病原微生物である、(1)から(7)のいずれかに記載の方法。
(9) 獲得免疫機構を有する生物に感染する病原微生物が日和見感染症の原因菌である、(1)から(8)のいずれかに記載の方法。
(10) 獲得免疫機構を有する生物に感染する病原微生物が黄色ブドウ球菌、緑濃菌、コレラ菌および病原性大腸菌からなる群より選択される病原微生物である、(1)から(9)のいずれかに記載の方法。
That is, the present invention relates to screening for compounds having antibacterial activity against pathogenic microorganisms that infect organisms having acquired immune mechanisms and evaluation of the antibacterial activity, using insect larvae having only the innate immune mechanism. Provides the following method.
(1) A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having an acquired immune mechanism,
(A) a step of administering the pathogenic microorganism and the test sample to an insect larva having only an innate immune mechanism;
(B) a step of detecting the degree of survival of larvae of insects having only the innate immunity mechanism, and (c) an insect having only the innate immunity mechanism as compared with the case where the test sample is not administered (control) Selecting a compound that improves the degree of survival of a class of larvae.
(2) A method for evaluating the antibacterial activity of a test sample against a pathogenic microorganism that infects an organism having an acquired immune mechanism,
(A) administering a pathogenic microorganism and a test sample to an insect larva having only an innate immune mechanism;
(B) detecting the degree of survival of larvae of insects having only the innate immune mechanism, and (c) comparing the test sample with no natural sample (control) Determining whether to improve the degree of survival of insect larvae having only an immune mechanism.
(3) The method according to (1) or (2), wherein the organism having an acquired immune mechanism is a mammal.
(4) The method according to (3), wherein the mammal is a human.
(5) The method according to any one of (1) to (4), wherein the larva is large.
(6) The method according to any one of (1) to (5), wherein the organism belonging to insects is a silkworm.
(7) The method according to any one of (1) to (6), wherein an insect larva having only an innate immune mechanism is infected with a Gram-positive pathogenic microorganism.
(8) The method according to any one of (1) to (7), wherein the pathogenic microorganism that infects an organism having an acquired immune mechanism is a Gram-positive pathogenic microorganism.
(9) The method according to any one of (1) to (8), wherein the pathogenic microorganism that infects an organism having an acquired immune mechanism is a causative bacterium of an opportunistic infection.
(10) Any of (1) to (9), wherein the pathogenic microorganism infecting an organism having an acquired immune mechanism is a pathogenic microorganism selected from the group consisting of Staphylococcus aureus, green bacterium, Vibrio cholerae and pathogenic Escherichia coli The method of crab.

本発明は、獲得免疫機構を有する生物に感染する病原微生物に対し抗菌活性を有する化合物を自然免疫を有する生物を利用してスクリーニングする方法および該抗菌活性を自然免疫を有する生物を利用して評価する方法を提供する。   The present invention is a method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having an acquired immune mechanism using an organism having innate immunity, and evaluating the antibacterial activity using an organism having innate immunity. Provide a way to do it.

本発明の方法においては、まず、自然免疫機構のみを有する生物に病原微生物および被検試料を投与する(工程(a))。本発明において「自然免疫機構」とは、獲得免疫(後天性免疫)機構によらない免疫的生体防御機構(先天性免疫機構)を意味する。脊椎動物は、病原体の侵入に対し抗体などの侵入者を特異的に認識する分子を利用して生体を防御する獲得免疫機構を有するが、無脊椎動物や植物はこのような獲得免疫機構を有しない。   In the method of the present invention, first, a pathogenic microorganism and a test sample are administered to an organism having only an innate immune mechanism (step (a)). In the present invention, the “innate immunity mechanism” means an immune defense mechanism (innate immunity mechanism) that does not depend on an acquired immunity (acquired immunity) mechanism. Vertebrates have an acquired immune mechanism that protects the living body using molecules that specifically recognize invaders such as antibodies against the invasion of pathogens.Invertebrates and plants have such an acquired immune mechanism. do not do.

本発明において病原微生物を投与する生物としては、昆虫類に属する生物である。本発明において「昆虫類」とは、節足動物門大顎亜門の一網であって、カマアシムシ類、トビムシ類、無翅昆虫類および有翅昆虫類の4亜綱からなる綱を意味する。本発明に用いる昆虫類に属する生物としては、特に制限はない。取り扱いの便宜性から幼虫である。幼虫としては、例えば、鱗翅目(ガやチョウを含む)及び甲虫目(カブトムシを含む)の幼虫が挙げられるが、これらに制限されない。病原微生物や被検試料の投与のしやすさの観点から、幼虫は大型のものであることが好ましい。本発明において「大型の幼虫」とは、体長が1cm以上である幼虫を指す。   In the present invention, the organism to which the pathogenic microorganism is administered is an organism belonging to insects. In the present invention, the term “insects” refers to a class of arthropods of the Greater Submaxillary, which is composed of four subclasses of caterpillars, fly insects, wormless insects, and rodent insects. . There is no restriction | limiting in particular as an organism which belongs to the insects used for this invention. It is a larva for convenience of handling. Examples of the larva include, but are not limited to, Lepidoptera (including moths and butterflies) and Coleoptera (including beetles). From the viewpoint of easy administration of pathogenic microorganisms and test samples, the larvae are preferably large. In the present invention, the term “large larva” refers to a larva having a body length of 1 cm or more.

自然免疫機構のみを有する生物には、グラム陰性細菌により感染されるもの、グラム陽性細菌により感染されるもの、およびそれら双方により感染されるものが含まれる。現在、黄色ブドウ球菌などのグラム陽性菌によるヒトの感染症に対する治療薬の開発が望まれているが、このような治療薬の開発においては、グラム陽性細菌により感染されるものが利用される。本実施例において用いたカイコ幼虫は、グラム陰性細菌のみならず、グラム陽性細菌である黄色ブドウ球菌により感染されるため、これら抗菌剤の開発に好適に用いることができる。   Organisms that have only the innate immune mechanism include those that are infected by Gram negative bacteria, those that are infected by Gram positive bacteria, and those that are infected by both. Currently, development of therapeutic agents for human infections caused by Gram-positive bacteria such as Staphylococcus aureus is desired. In the development of such therapeutic agents, those infected by Gram-positive bacteria are used. The silkworm larvae used in this example are infected not only by gram-negative bacteria but also by staphylococcus aureus, which is a gram-positive bacterium, and thus can be suitably used for the development of these antibacterial agents.

本発明において「病原微生物」とは、宿主に感染して病気を引き起こす能力を有する微生物を意味する。本発明においては、獲得免疫機構を有する生物の少なくとも1種に感染する病原微生物を用いる。ヒトにおける微生物感染症に対する抗菌剤の開発の点からは、病原微生物としては、ヒトに感染するものを用いることが好ましい。病原微生物には、グラム陰性細菌およびグラム陽性細菌の双方が含まれる。本発明に適用可能なグラム陰性細菌としては、例えば、緑膿菌、コレラ菌、病原性大腸菌(O−157)を、グラム陽性細菌としては、例えば、黄色ブドウ球菌を挙げることができるが、これらに制限されるものではない。   In the present invention, “pathogenic microorganism” means a microorganism having an ability to infect a host and cause a disease. In the present invention, a pathogenic microorganism that infects at least one organism having an acquired immune mechanism is used. From the viewpoint of developing antibacterial agents against microbial infections in humans, it is preferable to use those that infect humans as pathogenic microorganisms. Pathogenic microorganisms include both gram negative and gram positive bacteria. Examples of gram-negative bacteria applicable to the present invention include Pseudomonas aeruginosa, Vibrio cholerae, and pathogenic E. coli (O-157), and examples of gram-positive bacteria include Staphylococcus aureus. It is not limited to.

宿主生物に投与される被検試料としては特に制限はなく、抗菌活性の評価を行ないたい所望の試料が用いられる。被検試料としては、例えば、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、精製若しくは粗精製蛋白質、ペプチド、非ペプチド性化合物、合成低分子化合物、天然化合物などが挙げられるが、これらに制限されるものではない。   The test sample to be administered to the host organism is not particularly limited, and a desired sample to be evaluated for antibacterial activity is used. Examples of test samples include cell extracts, cell culture supernatants, fermented microorganism products, marine organism extracts, plant extracts, purified or crude proteins, peptides, non-peptidic compounds, synthetic low molecular compounds, natural Examples thereof include, but are not limited to, compounds.

病原微生物および被検試料の宿主への投与は、例えば、腹腔内投与、血液中への注射、飼料(エサ)への添加、腸内への注入などの方法で行なうことができる。   Administration of the pathogenic microorganism and the test sample to the host can be performed by, for example, intraperitoneal administration, injection into blood, addition to feed (food), injection into the intestine, and the like.

病原微生物や被検試料の宿主への投与量は、病原微生物、宿主及び被検試料の種類などにより変動する。一般的には、病原微生物は、培養可能な最高密度の菌液からその10000分の1くらいまで稀釈液を投与する。昆虫類に属する生物の幼虫を宿主に用いる場合には、例えば、菌液0.05ml程度を脚部から血液中に注射すればよい。被検試料は、用いる宿主を殺傷する最小量を求め、それ以下の量を投与する。当業者であれば、病原微生物、宿主及び被検試料の種類などに応じて、適切な投与量を選択することが可能であろう。   The dose of the pathogenic microorganism or the test sample to the host varies depending on the pathogenic microorganism, the host, the type of the test sample, and the like. In general, pathogenic microorganisms are administered in a diluted solution from the highest density cultivatable bacterial solution to about 1 / 10,000. When using a larva of an organism belonging to insects as a host, for example, about 0.05 ml of a bacterial solution may be injected into the blood from the leg. For the test sample, the minimum amount that kills the host to be used is determined, and the lower amount is administered. A person skilled in the art will be able to select an appropriate dose according to the pathogenic microorganism, the host, the type of test sample, and the like.

本発明においては、次いで、病原微生物および被検試料が投与された自然免疫機構を有する生物の感染症状または生存の程度を検出する(工程(b))。
検出する感染症状としては、例えば、[1]宿主個体内における病原微生物の数の増力、[2]宿主の体重の減少あるいは宿主の体重の増加の阻害、[3]宿主の血液中の抗菌物質量の低下、[4]宿主の免疫機能の不全、[5]宿主の体液及び体内臓器中の種々の酵素活性の低下などが挙げられる。宿主が昆虫の幼虫であれば、例えば、高齢幼虫へと脱皮しない、あるいは蛹や成虫とならないことなどを検出してもよい。本発明においては、また、上記感染症状以外に、宿主の生存の程度を検出してもよい。生存の程度としては、例えば、生存率や生存期間が挙げられる。
In the present invention, the infectious symptoms or the degree of survival of the organism having the innate immune mechanism to which the pathogenic microorganism and the test sample are administered is then detected (step (b)).
Infectious symptoms to be detected include, for example, [1] increase in the number of pathogenic microorganisms in the host individual, [2] decrease in host weight or inhibition of increase in host weight, [3] antibacterial substances in host blood Examples include reduction of the amount, [4] failure of the host immune function, and [5] reduction of various enzyme activities in the body fluid and body organ of the host. If the host is an insect larva, for example, it may be detected that it does not molt into an old larva or become a pupa or adult. In the present invention, the degree of survival of the host may be detected in addition to the above infection symptoms. Examples of the degree of survival include survival rate and survival period.

本発明の抗菌活性を有する化合物のスクリーニングにおいては、次いで、被検試料を投与しない場合(対照)と比較して、該自然免疫機構を有する生物の感染症状を改善する、または生存の程度を向上させる化合物を選択する(工程(c))。一方、本発明の抗菌活性の評価方法においては、次いで、被検試料を投与しない場合(対照)と比較して、該被検試料が、該自然免疫機構を有する生物の感染症状を改善するか否か、または生存の程度を向上させるか否かを判定する(工程(c))。   In the screening of the compound having antibacterial activity of the present invention, the infectious symptoms of the organism having the innate immune mechanism are improved or the degree of survival is improved as compared with the case where the test sample is not administered (control). The compound to be selected is selected (step (c)). On the other hand, in the method for evaluating antibacterial activity of the present invention, whether the test sample improves the infectious symptoms of the organism having the innate immune mechanism as compared with the case where the test sample is not administered (control). It is determined whether or not the degree of survival is improved (step (c)).

投与した被検試料が、対照と比較して、宿主生物の感染症状を改善する、または生存の程度を向上させる場合には、該被検試料は、宿主生物に投与した病原微生物に対し抗菌活性を有すると判定することができ、一方、投与した被検試料が、対照と比較して、宿主生物の感染症状を改善しない、または生存の程度を向上させない場合には、該被検試料は、宿主生物に投与した病原微生物に対し抗菌活性を有しないと判定することができる。抗菌活性を有すると判定された試料は、宿主生物に投与した病原微生物に対する抗菌剤の有力な候補となる。   If the administered test sample improves the infection symptoms of the host organism or improves the degree of survival compared to the control, the test sample has antibacterial activity against pathogenic microorganisms administered to the host organism. On the other hand, if the administered test sample does not improve the infectious symptoms of the host organism or improve the degree of survival compared to the control, the test sample is It can be determined that it has no antibacterial activity against pathogenic microorganisms administered to the host organism. Samples determined to have antibacterial activity are potential candidates for antibacterial agents against pathogenic microorganisms administered to the host organism.

以下、本発明を実施例により、さらに詳細に説明するが、本発明は以下の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited to a following example.

なお、本実施例において用いた黄色ブドウ球菌RN4220は順天堂大学平松博士より分与された。黄色ブドウ球菌MSSA、MRSAは九州大学付属病院における臨床分離株を用いた(Akimitsu,N.,et al.1999.Antimicrob Agents Chemother 43:3042−3043.)。黄色ブドウ球菌Smith株、大腸菌NIHJ株は微生物化学研究所浜田博士より分与された。緑膿菌(S24)、大腸菌W3110株及びK12−3株は研究室保存株を用いた。黄色ブドウ球菌はマンニット食塩培地(栄研化学株式会社)、緑膿菌はNAC培地(栄研化学株式会社)、大腸菌はDOC培地(栄研化学株式会社)の寒天培地上で確認培養した。これらの菌のシングルコロニーをLB液体培地中で一晩培養して使用した。   The Staphylococcus aureus RN4220 used in this example was distributed by Dr. Juntendo Hiramatsu. Staphylococcus aureus MSSA and MRSA used clinical isolates at Kyushu University Hospital (Akimitsu, N., et al. 1999. Antimicrob Agents Chemother 43: 3042-3043.). The Staphylococcus aureus Smith strain and the Escherichia coli NIHJ strain were provided by Dr. Hamada from the Institute for Microbial Chemistry. Laboratory-preserved strains were used for Pseudomonas aeruginosa (S24), Escherichia coli W3110 strain and K12-3 strain. Staphylococcus aureus was cultured on an agar medium in Mannit salt medium (Eiken Chemical Co., Ltd.), Pseudomonas aeruginosa on NAC medium (Eiken Chemical Co., Ltd.), and DOC medium (Eiken Chemical Co., Ltd.). Single colonies of these bacteria were cultured overnight in LB liquid medium and used.

また、カイコ幼虫の受精卵を目本養蚕工業株式会社より購入し、室温で人工飼料(シルクメイト:日本養蚕工業株式会社)を与えて飼育した。   In addition, fertilized eggs of silkworm larvae were purchased from Memoto Sericulture Industry Co., Ltd. and fed with artificial feed (Silk Mate: Nippon Sericulture Industry Co., Ltd.) at room temperature.

[実施例1]
黄色ブドウ球菌及び緑膿菌によるカイコ幼虫の感染死
黄色ブドウ球菌及び緑膿菌はヒトの日和見感染症の原因菌である。本発明者らは、これらの細菌がカイコ幼虫を感染死させるか否かを検討した。
5齢カイコ幼虫の第一腹脚部にStaphylococcus aureus及びPseudomonas aeruginosaの菌液または抗菌物質溶液を0.05ml注射し、指圧により10秒間止血した。注射針は27G x 3/4(テルモ株式会社)、注射筒は1ml(テルモ株式会社)を使用した。注射後の経時的な生存個体数を調べた(図1)。
[Example 1]
Infection and death of silkworm larvae caused by Staphylococcus aureus and Pseudomonas aeruginosa Staphylococcus aureus and Pseudomonas aeruginosa are causative organisms for human opportunistic infections. The present inventors examined whether or not these bacteria killed silkworm larvae.
0.05 ml of a bacterial solution or antibacterial solution of Staphylococcus aureus and Pseudomonas aeruginosa was injected into the first abdominal leg of a 5-year-old silkworm larva, and hemostasis was carried out for 10 seconds by finger pressure. The injection needle used was 27G x 3/4 (Terumo Corporation), and the syringe used 1 ml (Terumo Corporation). The number of surviving individuals over time after injection was examined (FIG. 1).

菌を含まない培地の希釈液を注射した場合は、全ての個体が5日以上生存していた。これに対し、3x10個のStaphylococcus aureusを注射した場合、4つの株(RN4220、Smith、MSSA、MRSA)のいずれにおいても注射後2日以内にカイコ幼虫の90%以上が死亡した(図1)。黄色ブドウ球菌を注射したカイコ幼虫は、注射後、次第に餌を食べなくなり、動きが緩慢になり、2日目に表皮が薄い褐色を呈し、死亡した。一方、オートクレーブ処理を行った黄色ブドウ球菌(3x10cells)を注射した場合のカイコ幼虫の生存率は、注射5日後においても、80%以上であった(データは示さず)。20系統の臨床分離MRSA(Akimitsu,N.,et al.1999.Antimicrob Agents Chemother 43:3042−3043.)について調べた結果では、MSSAに比べ特に毒性の高い株は見出されなかったが、MRSA間で感染死を引き起こす必要な細胞数には違いが見られた(データは示さず)。さらに、注射する黄色ブドウ球菌(MSSA)の菌数を、3x10cellsとした場合には、注射5日後に全ての個体が死亡したが、3x10cellsでは、注射5日後の生存率は50%であった(データは示さず)。一方、3x10個のPseudomonas aeruginosa(S24)を注射した場合、1日後に全ての個体が死亡した(図1)。緑膿菌を注射したカイコ幼虫も、注射後、餌を食べなくなり、表皮が黒色を呈して死亡した。一方、3×10個のEscherichia coliを注射した場合、検討した3つの株(NIHJ、K12−3、W3110)いずれにおいても注射5日後の生存率は90%以上であり、カイコ幼虫に対して病原性を示さなかった。 When a dilution of medium without bacteria was injected, all individuals survived for more than 5 days. In contrast, when 3 × 10 7 Staphylococcus aureus were injected, 90% or more of silkworm larvae died within 2 days after injection in any of the four strains (RN4220, Smith, MSSA, MRSA) (FIG. 1). . The silkworm larvae injected with Staphylococcus aureus gradually ceased to eat after the injection, moved slowly, and died on the second day with a light brown epidermis. On the other hand, the survival rate of silkworm larvae when injected with autoclaved S. aureus (3 × 10 8 cells) was 80% or more even after 5 days from injection (data not shown). The results of investigating 20 lines of clinically isolated MRSA (Akimitsu, N., et al. 1999. Antimicrob Agents Chemother 43: 3042-3043.) Showed no particularly toxic strain compared to MSSA. There was a difference in the number of cells required to cause infection death (data not shown). Furthermore, when the number of S. aureus (MSSA) to be injected was 3 × 10 6 cells, all individuals died 5 days after the injection, but in 3 × 10 5 cells, the survival rate after 5 days from the injection was 50%. (Data not shown). On the other hand, when 3 × 10 7 Pseudomonas aeruginosa (S24) were injected, all individuals died one day later (FIG. 1). Silkworm larvae injected with Pseudomonas aeruginosa also ceased to eat food after the injection and died with a black epidermis. On the other hand, when 3 × 10 7 Escherichia coli were injected, the survival rate after 5 days of injection in any of the three strains examined (NIHJ, K12-3, W3110) was 90% or more, It did not show pathogenicity.

次に、注射した黄色ブドウ球菌がカイコ幼虫体内で増殖しているか否かを検討した。カイコ幼虫体内の菌数の測定を以下のように行なった。
菌を注射したカイコ幼虫の尾脚を切断し、体液を採取後、0.6% NaClで希釈し、マンニット培地(栄研化学株式会社)上に塗布して、37℃にて一晩培養後、現れたコロニー数をカウントし、カイコ体液中の菌数を計算した。組織中の菌については、カイコ幼虫をペーパータオル上で開腹し、体液を除去後、0.9% NaClに懸濁した後、マンニット培地上に塗布し、現れたコロニー数をカウントし、組職中の菌数を計算した。カイコ幼虫の体液及び、組織の容積をそれぞれ1.5ml及び1mlとして計算した。
Next, it was examined whether the injected S. aureus was growing in the silkworm larvae. The number of bacteria in the silkworm larvae was measured as follows.
Cut the tail leg of silkworm larvae injected with fungus, collect body fluid, dilute with 0.6% NaCl, apply on Mannit medium (Eiken Chemical Co., Ltd.), and culture at 37 ° C overnight Thereafter, the number of colonies that appeared was counted, and the number of bacteria in the silkworm body fluid was calculated. For fungi in the tissue, silkworm larvae were opened on a paper towel, and after removing body fluids, suspended in 0.9% NaCl, applied onto mannitol medium, and the number of colonies that appeared was counted. The number of bacteria in was calculated. The body fluid and tissue volume of silkworm larvae were calculated as 1.5 ml and 1 ml, respectively.

その結果、カイコ幼虫組織、体液のどちらにおいても、注射後菌数の顕著な増加が認められ(図2)、注射後2日目にはカイコ体内の総菌数は1x10個に到達した。 As a result, a significant increase in the number of bacteria after injection was observed in both silkworm larva tissues and body fluids (FIG. 2), and the total number of bacteria in silkworms reached 1 × 10 8 on the second day after injection.

次に、カイコ幼虫体内組織における、黄色ブドウ球菌の増殖部位をパラフィン組織切片に対する蛍光抗体法を用いて調べた。カイコ幼虫をカルノア液(EtOH:chloroform:CHCOOH=6:3:1)で室温にて10時間固定した。その後、パラフィンに包埋し、10μmの厚さで切片を作成した。脱パラフィンを行った組織切片に対し、1%BSA(Sigma社)でブロッキング操作を施した後、黄色ブドウ球菌モノクローナル抗体(15702 QED Bioscience Inc.)を反応させた。その後、サンプルをPBSで3回洗い、蛍光標識された2次抗体(FluoroLinkTMCyTM2 labelled goat anti−mouse IgG(H+L),Amersham社)を反応させた。さらにサンプルをPBSで3回洗い、蛍光顕微鏡(オリンパスBH2)で観察した。 Next, the growth site of Staphylococcus aureus in the silkworm larvae tissue was examined using a fluorescent antibody method against a paraffin tissue section. Silkworm larvae were fixed with Carnoy's solution (EtOH: chloroform: CH 3 COOH = 6: 3: 1) at room temperature for 10 hours. Thereafter, it was embedded in paraffin and sliced with a thickness of 10 μm. After the deparaffinized tissue section was subjected to a blocking operation with 1% BSA (Sigma), S. aureus monoclonal antibody (15702 QED Bioscience Inc.) was reacted. Thereafter, the sample was washed three times with PBS and reacted with a fluorescently labeled secondary antibody (FluoroLink Cy 2 labeled goat anti-mouse IgG (H + L), Amersham). Further, the sample was washed 3 times with PBS and observed with a fluorescence microscope (Olympus BH2).

図3は、黄色ブドウ球菌を注射後40時間後のカイコ幼虫の中腸を体軸に対して垂直に切断した組織像である。黄色ブドウ球菌を注射したカイコ幼虫では中腸上皮に明瞭な蛍光が観察された。この蛍光は黄色ブドウ球菌を注射しなかったカイコ幼虫(図3A)、あるいは1次抗体を用いなかった場合(データは示さず)は認められなかった。以上の結果は、カイコ幼虫の黄色ブドウ球菌による死が、黄色ブドウ球菌のカイコ幼虫体液中での増殖、及び中腸組織への侵入と増殖による感染死であることを示唆する。   FIG. 3 is a histological image obtained by cutting the midgut of the silkworm larvae 40 hours after injection with Staphylococcus aureus perpendicularly to the body axis. In the silkworm larvae injected with S. aureus, clear fluorescence was observed in the midgut epithelium. This fluorescence was not observed in silkworm larvae that were not injected with S. aureus (FIG. 3A) or when no primary antibody was used (data not shown). The above results suggest that the death of silkworm larvae due to Staphylococcus aureus is the growth of Staphylococcus aureus in silkworm larvae body fluid and the death of infection due to invasion and proliferation of midgut tissue.

[実施例2]
黄色ブドウ球菌によるカイコ幼虫の感染死に対する抗生物質及び消毒剤の効果
さらに本発明者らは、カイコ幼虫の黄色ブドウ球菌による感染死が抗生物質で抑えられるか否かを調べた。黄色ブドウ球菌臨床分離株をカイコ幼虫に注射した後、アンピシリン、オキサシリン、バンコマイシンを注射し、経時的にカイコ幼虫の生存個体数をカウントした。
[Example 2]
Effects of Antibiotics and Disinfectants on Infection Death of Silkworm Larvae Caused by Staphylococcus aureus Furthermore, the present inventors investigated whether or not infection death of silkworm larvae caused by Staphylococcus aureus can be suppressed by antibiotics. The clinical isolates of S. aureus were injected into silkworm larvae, then ampicillin, oxacillin and vancomycin were injected, and the number of surviving silkworm larvae was counted over time.

MSSAを単独注射した場合、2日後にはすべてのカイコ幼虫が死亡した。この時、アンピシリン(200μg/body)、オキサシリン(200μg/body)、バンコマイシン(200μg/body)を注射した場合、注射4日目においても生存率は90%以上であった(図4A)。すなわち、これら3種の抗生物質はいずれもMSSAによるカイコ幼虫の感染死を抑えた。   When injected with MSSA alone, all silkworm larvae died after 2 days. At this time, when ampicillin (200 μg / body), oxacillin (200 μg / body), and vancomycin (200 μg / body) were injected, the survival rate was 90% or more even on the fourth day of injection (FIG. 4A). That is, all three antibiotics suppressed the death of silkworm larvae caused by MSSA.

MRSA単独を注射した場合、1日後には90%のカイコ幼虫が死亡した。この時、アンピシリン(200μg/body)、オキサシリン(200μg/body)を注射した場合でも、注射2日目にすべてのカイコ幼虫が死亡した。これに対してバンコマイシン(200μg/body)を注射した場合には、注射4日目においても生存率は80%以上であった(図4B)。よって、MRSAによるカイコ幼虫の感染死はアンピシリン、オキサシリンにより抑えられないが、バンコマイシンにより抑えられることが判明した。   When MRSA alone was injected, 90% silkworm larvae died after 1 day. At this time, even when ampicillin (200 μg / body) and oxacillin (200 μg / body) were injected, all silkworm larvae died on the second day of injection. In contrast, when vancomycin (200 μg / body) was injected, the survival rate was 80% or more even on the fourth day of injection (FIG. 4B). Therefore, it was found that the death of silkworm larvae caused by MRSA cannot be suppressed by ampicillin or oxacillin but can be suppressed by vancomycin.

さらに、種々の消毒剤によってMSSA、MRSAによるカイコ幼虫の死が抑えられるか否かを検討した。まず最初に、各種消毒剤の寒天培地における黄色ブドウ球菌に対するMIC値とカイコ幼虫に対するLD50値を比較した(表1)。 Furthermore, it was investigated whether the death of silkworm larvae caused by MSSA and MRSA can be suppressed by various disinfectants. First, the MIC values for S. aureus and LD 50 values for silkworm larvae in agar media of various disinfectants were compared (Table 1).

その結果、EtOH及びポビドンヨードはMICよりもLD50の値が低く治療効果は期待できないことが判明した。一方、塩化ベンザルコニウムのMIC値はLD50値よりも小さい値を示したが、LD50に近い量の塩化ベンザルコニウムによってもMSSAによるカイコ幼虫の死は抑えられなかった。すなわち、黄色ブドウ球菌によるカイコ幼虫の感染死に対して、消毒剤による治療は有効でないことが判明した。 As a result, it was found that EtOH and povidone iodine had lower LD 50 values than MIC and could not be expected to have a therapeutic effect. On the other hand, the MIC value of benzalkonium chloride was smaller than the LD 50 value, but the death of silkworm larvae caused by MSSA was not suppressed even by an amount of benzalkonium chloride close to LD 50 . That is, it has been found that treatment with a disinfectant is not effective for the death of silkworm larvae caused by Staphylococcus aureus.

なお、この実験に用いたアンピシリン(萬有製薬株式会社)、オキサシリン(Sigma)、バンコマイシン(塩野義製薬株式会社)、塩化ベンザルコニウム(吉田製薬株式会社)、ポビドンヨード(明治製菓株式会社)はすべて、0.6%NaClで希釈して用いた。それぞれの抗菌物質の黄色ブドウ球菌に対するMICは、種々の濃度の抗菌物質を含むLB10寒天培地上に菌の一晩培養液(1x10cells/ml)を10分の1に希釈して、その1μlをエーゼで広げ、37℃で72時間培養して求めた(Akimitsu,N.,et al.1999.Antimicrob Agents Chemother.43:3042−3043.)。感染したカイコ幼虫に対するIC50を求める場合には、5x10個の黄色ブドウ球菌をカイコ幼虫血液中に注射後、さらに種々の濃度の抗菌物質溶液を0.05ml注射した。注射4日後に生存個体数が半数となる抗菌物質の濃度を求めた。カイコ幼虫の体液を1.5mlとしてIC50値を計算した。カイコ幼虫に対するLD50は種々の濃度の抗菌物質の溶液0.05mlを5匹の幼虫に注射し、注射後1日目に半数の幼虫が死亡する濃度とした。 In addition, ampicillin (Ashiyu Pharmaceutical Co., Ltd.), oxacillin (Sigma), vancomycin (Shionogi Pharmaceutical Co., Ltd.), benzalkonium chloride (Yoshida Pharmaceutical Co., Ltd.), and povidone iodine (Meiji Seika Co., Ltd.) used in this experiment And diluted with 0.6% NaCl. The MIC against Staphylococcus aureus for each of the antimicrobial substance, diluted overnight culture of bacteria on LB10 agar medium containing antimicrobial agent of various concentrations (1x10 3 cells / ml) in 1 of 10 3 minutes, the 1 μl was spread with ase and cultured at 37 ° C. for 72 hours (Akimitsu, N., et al. 1999. Antimicrob Agents Chemother. 43: 3042-3043.). In the case of obtaining the IC 50 for the infected silkworm larvae, 5 × 10 6 S. aureus were injected into the silkworm larvae blood and then 0.05 ml of an antibacterial substance solution having various concentrations was injected. The concentration of the antibacterial substance was calculated so that the number of surviving individuals became half after 4 days from the injection. The IC 50 value was calculated by setting the body fluid of silkworm larvae to 1.5 ml. The LD 50 for silkworm larvae was injected at a concentration at which half of the larvae were killed on the first day after injection by injecting 0.05 ml of an antibacterial solution of various concentrations into 5 larvae.

本発明により、自然免疫機構のみを有する生物を利用した、獲得免疫機構を有する生物に対する病原微生物感染のモデルが提供された。本発明の感染モデルを利用した抗菌剤の効果は、獲得免疫機構を有する生物におけるこれらの薬剤の有効性に対応することが期待される。従って、本発明の感染モデルは、ヒトを含む獲得免疫機構を有する生物に対する様々な病原体の感染モデルとなり得、これら病原体による感染症の抗菌剤のスクリーニングに有用である。本発明の感染モデルは、哺乳動物を用いた病原微生物の感染実験の前段階として用いることにより、ヒトの臨床応用に可能な抗菌剤の開発の効率化に寄与することが期待できる。特にカイコの感染モデルは、グラム陽性の病原性細菌により感染されることから、例えば、黄色ブドウ球菌による日和見感染症に対する抗菌剤の開発に有効である。   According to the present invention, a model of pathogenic microorganism infection for an organism having an acquired immune mechanism using an organism having only an innate immune mechanism is provided. The effect of antibacterial agents using the infection model of the present invention is expected to correspond to the effectiveness of these agents in organisms with acquired immune mechanisms. Therefore, the infection model of the present invention can be an infection model of various pathogens against organisms having acquired immune mechanisms including humans, and is useful for screening antibacterial agents for infections caused by these pathogens. By using the infection model of the present invention as a pre-stage of infection experiments of pathogenic microorganisms using mammals, it can be expected to contribute to the efficiency of the development of antibacterial agents that can be applied to human clinical applications. In particular, the silkworm infection model is effective in developing antibacterial agents against opportunistic infections caused by Staphylococcus aureus, for example, because it is infected by Gram-positive pathogenic bacteria.

また、本発明の感染モデルを利用すれば、薬剤のスクリーニングにおいて、従来の哺乳動物を利用する場合と異なり、一個体当りの入手費用、飼育費用、および実験スペースを大幅に節減することが可能となる。例えば、マウス1000匹をSPF環境([1]空気をフィルターで濾過すること、および[2]温度及び湿度を一定に保つこと、が必要)で飼育するのに必要なスペースは、およそ25mであり、これに加えてケージ洗浄室、オートクレーブ室などのバックアップ設備が必要となる。一方、カイコの幼虫では、1mにインキュベーターを設置すれば、1000〜10000匹(齢数により異なる)の飼育が可能であり、温度を一定(例えば、30℃)に保つこと以外に、ケージ洗浄室、オートクレーブ室などの特別なバックアップ設備は不要である(匹数、必要な面積数などは目安の概数で諸条件により変化する)。 In addition, when the infection model of the present invention is used, in the screening of drugs, unlike the case of using conventional mammals, it is possible to greatly reduce the acquisition cost, breeding cost, and experimental space per individual. . For example, the space required to raise 1000 mice in an SPF environment ([1] filter air and [2] keep temperature and humidity constant) is approximately 25 m 2 In addition to this, backup facilities such as a cage cleaning room and an autoclave room are required. On the other hand, with silkworm larvae, if an incubator is installed at 1 m 2 , 1000-10000 animals (depending on the age) can be raised, and in addition to keeping the temperature constant (eg, 30 ° C.), cage washing No special backup equipment such as a room or autoclave room is required (the number of animals, the required number of areas, etc. is an approximate number and varies depending on various conditions).

また、本発明のカイコ感染モデルは、C.elegansなどの小型の生物と比較して病原体や薬物の注射が極めて容易であり、病原体に対する抗菌薬の評価に適していると言える。
カイコを含めた無脊椎動物や植物には、抗体を介した獲得免疫機構は存在しないが、ヒトと共通した自然免疫機構が存在する。本発明の感染モデルは、病原体の感染に対する自然免疫機構を遺伝学的手法を用いて分子レベルで解明するためにも有効である。
The silkworm infection model of the present invention is C.I. Compared with small organisms such as elegans, it is extremely easy to inject pathogens and drugs, and can be said to be suitable for evaluation of antibacterial agents against pathogens.
Invertebrates and plants including silkworms do not have antibody-mediated immune immunity, but have innate immune immunity in common with humans. The infection model of the present invention is also effective for elucidating the innate immune mechanism against pathogen infection at the molecular level using genetic techniques.

黄色ブドウ球菌、緑膿菌、大腸菌を注射したカイコ幼虫の生存率を示す図である。Staphylococcus aureus(RN4220,Smith,MSSA,MRSA)、Pseudomonas aeruginosa(S24)、Escherichia coli(K12−3,W3110,NIHJ)の一晩培養液を0.6%NaClで10倍に希釈して、その0.05ml(3x10cells)を10匹のカイコ5齢幼虫血液中に注射した。生存個体数を経時的にカウントした。It is a figure which shows the survival rate of the silkworm larva injected with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. An overnight culture of Staphylococcus aureus (RN4220, Smith, MSSA, MRSA), Pseudomonas aeruginosa (S24), Escherichia coli (K12-3, W3110, NIHJ) was diluted 10-fold with 0.6% NaCl. .05 ml (3 × 10 7 cells) was injected into the blood of 10 silkworm 5th instar larvae. Surviving individuals were counted over time. カイコ幼虫体内での黄色ブドウ球菌の増殖を示す図である。Staphylococcus aureus(MSSA)の一晩培養液を0.6%NaClで10倍に希釈して、その0.05ml(3x10cells)をカイコ幼虫に注射し、経時的にカイコ幼虫の体液(A)、及び、組織(B)を回収し、0.6%NaCl中に懸濁し、マンニット培地に塗布し、37℃で一晩培養後、現れたコロニー数をカウントした。It is a figure which shows the proliferation of Staphylococcus aureus in the silkworm larva body. An overnight culture of Staphylococcus aureus (MSSA) was diluted 10-fold with 0.6% NaCl, 0.05 ml (3 × 10 7 cells) was injected into silkworm larvae, and body fluid of silkworm larvae over time (A) The tissue (B) was collected, suspended in 0.6% NaCl, applied to a mannitol medium, cultured at 37 ° C. overnight, and the number of colonies that appeared was counted. カイコ幼虫の中腸におけるStaphylococcus aureusの局在を示す顕微鏡写真である。0.9%NaCl(A)あるいは、黄色ブドウ球菌(MSSA)(3x10cells)(B)をカイコ幼虫に注射し、40時間後に中腸のパラフィン包埋組織切片を作成し、黄色ブドウ球菌抗体による間接蛍光抗体法を行った。図の左側が体表側、右側が腸の内部側である。It is a microscope picture which shows the localization of Staphylococcus aureus in the midgut of a silkworm larva. 0.9% NaCl (A) or Staphylococcus aureus (MSSA) (3 × 10 7 cells) (B) was injected into silkworm larvae, and after 40 hours, paraffin-embedded tissue sections of the midgut were prepared, and S. aureus antibodies Indirect fluorescent antibody method was performed. The left side of the figure is the body surface side, and the right side is the inside of the intestine. Staphylococcus aureusによるカイコ幼虫の感染死に対する種々の抗生物質の効果を示す図である。Staphylococcus aureus(3x10cells/0.05ml)をカイコ幼虫10匹に注射し、さらに抗生物質(0.2mg/0.05ml)を注射し、その後経時的に生存個体数をカウントした。抗生物質としてアンピシリン、オキサシリン、バンコマイシンを用いた。A、MSSA B、MRSA。It is a figure which shows the effect of various antibiotics with respect to the infection death of the silkworm larva by Staphylococcus aureus. Staphylococcus aureus (3 × 10 7 cells / 0.05 ml) was injected into 10 silkworm larvae, followed by antibiotics (0.2 mg / 0.05 ml), and the number of surviving individuals was counted over time. Ampicillin, oxacillin and vancomycin were used as antibiotics. A, MSSA B, MRSA.

Claims (10)

獲得免疫機構を有する生物に感染する病原微生物に対し抗菌活性を有する化合物をスクリーニングする方法であって、
(a)自然免疫機構のみを有する昆虫類の幼虫に該病原微生物および被検試料を投与する工程、
(b)該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を検出する工程、および
(c)被検試料を投与しない場合(対照)と比較して、該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を向上させる化合物を選択する工程、を含む方法。
A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having an acquired immune mechanism,
(A) a step of administering the pathogenic microorganism and the test sample to an insect larva having only an innate immune mechanism;
(B) a step of detecting the degree of survival of larvae of insects having only the innate immunity mechanism, and (c) an insect having only the innate immunity mechanism as compared with the case where the test sample is not administered (control) Selecting a compound that improves the degree of survival of a class of larvae.
獲得免疫機構を有する生物に感染する病原微生物に対する、被検試料の抗菌活性を評価する方法であって、
(a)自然免疫機構のみを有する昆虫類の幼虫に病原微生物および被検試料を投与する工程、
(b)該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を検出する工程、および
(c)被検試料を投与しない場合(対照)と比較して、該被検試料が、該自然免疫機構のみを有する昆虫類の幼虫の生存の程度を向上させるか否かを判定する工程、を含む方法。
A method for evaluating the antibacterial activity of a test sample against a pathogenic microorganism infecting an organism having an acquired immune mechanism,
(A) administering a pathogenic microorganism and a test sample to an insect larva having only an innate immune mechanism;
(B) detecting the degree of survival of larvae of insects having only the innate immune mechanism, and (c) comparing the test sample with no natural sample (control) Determining whether to improve the degree of survival of insect larvae having only an immune mechanism.
獲得免疫機構を有する生物が哺乳動物である、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the organism having an acquired immune mechanism is a mammal. 哺乳動物がヒトである、請求項3に記載の方法。   4. The method according to claim 3, wherein the mammal is a human. 幼虫が大型である、請求項1から4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the larva is large. 昆虫類に属する生物がカイコである、請求項1から5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, wherein the organism belonging to insects is a silkworm. 自然免疫機構のみを有する昆虫類の幼虫がグラム陽性の病原微生物により感染されるものである、請求項1から6のいずれかに記載の方法。   The method according to any one of claims 1 to 6, wherein an insect larva having only an innate immune mechanism is infected by a Gram-positive pathogenic microorganism. 獲得免疫機構を有する生物に感染する病原微生物がグラム陽性の病原微生物である、請求項1から7のいずれかに記載の方法。   The method according to claim 1, wherein the pathogenic microorganism that infects an organism having an acquired immune mechanism is a Gram-positive pathogenic microorganism. 獲得免疫機構を有する生物に感染する病原微生物が日和見感染症の原因菌である、請求項1から8のいずれかに記載の方法。   The method according to any one of claims 1 to 8, wherein the pathogenic microorganism that infects an organism having an acquired immune mechanism is a causative bacterium of an opportunistic infection. 獲得免疫機構を有する生物に感染する病原微生物が黄色ブドウ球菌、緑濃菌、コレラ菌および病原性大腸菌からなる群より選択される病原微生物である、請求項1から9のいずれかに記載の方法。   The method according to any one of claims 1 to 9, wherein the pathogenic microorganism infecting an organism having an acquired immune mechanism is a pathogenic microorganism selected from the group consisting of Staphylococcus aureus, green bacterium, Vibrio cholerae and pathogenic Escherichia coli. .
JP2010037402A 2000-05-11 2010-02-23 A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having acquired immune mechanism using a silkworm larva having only the innate immune mechanism, and a silkworm larva having only the innate immune mechanism for the antibacterial activity To evaluate Expired - Lifetime JP5103491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037402A JP5103491B2 (en) 2000-05-11 2010-02-23 A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having acquired immune mechanism using a silkworm larva having only the innate immune mechanism, and a silkworm larva having only the innate immune mechanism for the antibacterial activity To evaluate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000177565 2000-05-11
JP2000177565 2000-05-11
JP2001081971 2001-03-22
JP2001081971 2001-03-22
JP2010037402A JP5103491B2 (en) 2000-05-11 2010-02-23 A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having acquired immune mechanism using a silkworm larva having only the innate immune mechanism, and a silkworm larva having only the innate immune mechanism for the antibacterial activity To evaluate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007185802A Division JP4733080B2 (en) 2000-05-11 2007-07-17 Method for screening compound having antibacterial activity against pathogenic microorganism infecting organism having acquired immune mechanism using organism having only innate immunity mechanism, and using organism having only innate immunity mechanism for antibacterial activity How to evaluate

Publications (2)

Publication Number Publication Date
JP2010133975A true JP2010133975A (en) 2010-06-17
JP5103491B2 JP5103491B2 (en) 2012-12-19

Family

ID=26593876

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001583180A Withdrawn JPWO2001086287A1 (en) 2000-05-11 2001-05-11 A method for screening a compound having an antibacterial activity against a pathogenic microorganism that infects an organism having an adaptive immunity mechanism using an organism having only the innate immunity mechanism, and a method for screening the antibacterial activity using an organism having only the innate immunity mechanism How to evaluate
JP2010037402A Expired - Lifetime JP5103491B2 (en) 2000-05-11 2010-02-23 A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having acquired immune mechanism using a silkworm larva having only the innate immune mechanism, and a silkworm larva having only the innate immune mechanism for the antibacterial activity To evaluate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2001583180A Withdrawn JPWO2001086287A1 (en) 2000-05-11 2001-05-11 A method for screening a compound having an antibacterial activity against a pathogenic microorganism that infects an organism having an adaptive immunity mechanism using an organism having only the innate immunity mechanism, and a method for screening the antibacterial activity using an organism having only the innate immunity mechanism How to evaluate

Country Status (3)

Country Link
JP (2) JPWO2001086287A1 (en)
AU (1) AU2001256708A1 (en)
WO (1) WO2001086287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053419A1 (en) * 2013-10-08 2015-04-16 그린테코 주식회사 Silkworm composition and device for injecting injection solution into larvae
CN107179364A (en) * 2017-05-26 2017-09-19 桂林理工大学 A kind of method that utilization efficient liquid phase determines zeolite molecular sieve antibacterial antiplaque agent mechanism

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668900B2 (en) * 2004-05-26 2011-04-13 株式会社ゲノム創薬研究所 A method for screening a sample having an antiviral activity against a virus infecting an organism having an acquired immune mechanism using an individual organism having only the innate immunity mechanism or cultured cells thereof, and the antiviral activity using only the innate immunity mechanism Method of evaluating using living organism individual or cultured cells thereof
JP5219013B2 (en) * 2006-08-01 2013-06-26 株式会社ゲノム創薬研究所 Evaluation method and screening method for substances having activity to alleviate side effects of drugs, and side effect mitigating agents containing substances identified by these methods as active ingredients
JP2008128819A (en) * 2006-11-21 2008-06-05 Genome Soyaku Kenkyusho:Kk Evaluation and screening method of substance having preventing or treating action with respect to pollinosis, medicine for preventing or treating pollinosis, and its manufacturing method
JP5394233B2 (en) * 2007-04-10 2014-01-22 株式会社ゲノム創薬研究所 Evaluation method and screening method for substances having action to activate / inhibit innate immune mechanism, drug for activating / inhibiting innate immune mechanism, food, and production method thereof
JP5303209B2 (en) * 2007-08-06 2013-10-02 株式会社ゲノム創薬研究所 Evaluation method, screening method, and production method of substance that lowers blood glucose level
JP5529389B2 (en) * 2008-03-13 2014-06-25 株式会社ゲノム創薬研究所 A method for evaluating the degree of contamination of a test object by pathogenic microorganisms
JP5878303B2 (en) * 2010-05-25 2016-03-08 株式会社ゲノム創薬研究所 Antibiotic-containing fraction, its antibiotic and method for producing the antibiotic
JP5823733B2 (en) * 2010-05-25 2015-11-25 株式会社ゲノム創薬研究所 Antibiotic-producing microorganism and antibiotic produced by the same
JP5863648B2 (en) * 2010-05-25 2016-02-16 株式会社ゲノム創薬研究所 NOVEL CYCLIC PEPTIDE COMPOUND, PROCESS FOR PRODUCING THE SAME AND INFECTIVE TREATMENT DRUG, ANTIBIOTIC-CONTAINING FRACTS, ANTIBIOTIC AND ANTIBIOTIC MANUFACTURING METHOD, AND ANTIBIOTIC PRODUCING MICROORGANISM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306238A (en) * 1992-04-24 1993-11-19 Taiyo Kagaku Co Ltd Specific antibody and composition for controlling infectious disease of silkworm
JPH06228120A (en) * 1993-02-01 1994-08-16 Tsujimoto Kagaku Kogyo Kk Anti-resistant staphylococcus aureus compound
JPH08103292A (en) * 1994-10-04 1996-04-23 Pola Chem Ind Inc Evaluation of antifungal agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306238A (en) * 1992-04-24 1993-11-19 Taiyo Kagaku Co Ltd Specific antibody and composition for controlling infectious disease of silkworm
JPH06228120A (en) * 1993-02-01 1994-08-16 Tsujimoto Kagaku Kogyo Kk Anti-resistant staphylococcus aureus compound
JPH08103292A (en) * 1994-10-04 1996-04-23 Pola Chem Ind Inc Evaluation of antifungal agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN5002028987; LEE A. BULLA JR.: ANNU. REV. MICROBIOL. V29, 1975, P163-190 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053419A1 (en) * 2013-10-08 2015-04-16 그린테코 주식회사 Silkworm composition and device for injecting injection solution into larvae
CN107179364A (en) * 2017-05-26 2017-09-19 桂林理工大学 A kind of method that utilization efficient liquid phase determines zeolite molecular sieve antibacterial antiplaque agent mechanism
CN107179364B (en) * 2017-05-26 2019-08-13 桂林理工大学 A method of zeolite molecular sieve antibacterial antiplaque agent mechanism is measured using efficient liquid phase

Also Published As

Publication number Publication date
WO2001086287A1 (en) 2001-11-15
JPWO2001086287A1 (en) 2004-01-08
JP5103491B2 (en) 2012-12-19
AU2001256708A1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP5103491B2 (en) A method for screening a compound having antibacterial activity against a pathogenic microorganism infecting an organism having acquired immune mechanism using a silkworm larva having only the innate immune mechanism, and a silkworm larva having only the innate immune mechanism for the antibacterial activity To evaluate
Kaito et al. Silkworm larvae as an animal model of bacterial infection pathogenic to humans
Brooke Advances in the microbiology of Stenotrophomonas maltophilia
Glavis-Bloom et al. Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research
Troll et al. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal‐bacterial symbiosis
Chambers et al. How the fly balances its ability to combat different pathogens
JP4733080B2 (en) Method for screening compound having antibacterial activity against pathogenic microorganism infecting organism having acquired immune mechanism using organism having only innate immunity mechanism, and using organism having only innate immunity mechanism for antibacterial activity How to evaluate
Serrano et al. The virtuous Galleria mellonella model for scientific experimentation
Chamilos et al. Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds
Pietri et al. Virulence of entomopathogenic bacteria in the bed bug, Cimex lectularius
Chen et al. A disease model of muscle necrosis caused by Aeromonas dhakensis infection in Caenorhabditis elegans
US6461854B1 (en) Methods of screening compounds useful for prevention of infection or pathogenicity
Subkrasae et al. Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus
Ochoa et al. Virulence assessment of enterohepatic Helicobacter species carried by dogs using the wax moth larvae Galleria mellonella as infection model
Darsouei et al. Differential change patterns of main antimicrobial peptide genes during infection of entomopathogenic nematodes and their symbiotic bacteria
Veeruraj et al. Antibacterial activity of crab haemolymph on clinical pathogens
Prakash et al. Duox and Jak/Stat signalling influence disease tolerance in Drosophila during Pseudomonas entomophila infection
JP2002508749A (en) Screening methods for compounds useful for preventing infection or pathogenicity
Park et al. Pharmacodynamics of amoxicillin against field isolates of Streptococcus parauberis from olive flounder (Paralichthys olivaceus)
Stenberg et al. Risk assessment of the biocontrol product Nemaslug 2.0 with the active organisms Phasmarhabditis californica (strain P19D) and Moraxella osloensis. Scientific Opinion of the Panel on Plant Health of the Norwegian Scientific Committee for Food and Environment
Panayidou et al. Pseudomonas aeruginosa
JP4668900B2 (en) A method for screening a sample having an antiviral activity against a virus infecting an organism having an acquired immune mechanism using an individual organism having only the innate immunity mechanism or cultured cells thereof, and the antiviral activity using only the innate immunity mechanism Method of evaluating using living organism individual or cultured cells thereof
Carneiro et al. Effects of entomopathogenic bacterium Photorhabdus temperata infection on the intestinal microbiota of the sugarcane stalk borer Diatraea saccharalis (Lepidoptera: Crambidae)
Hsueh et al. Nematode Communication
You et al. Implant-associated biofilm infection established in an experimental Galleria mellonella model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5103491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term