JP2010133910A - Material evaluator using elastic wave - Google Patents

Material evaluator using elastic wave Download PDF

Info

Publication number
JP2010133910A
JP2010133910A JP2008335916A JP2008335916A JP2010133910A JP 2010133910 A JP2010133910 A JP 2010133910A JP 2008335916 A JP2008335916 A JP 2008335916A JP 2008335916 A JP2008335916 A JP 2008335916A JP 2010133910 A JP2010133910 A JP 2010133910A
Authority
JP
Japan
Prior art keywords
ultrasonic transducer
vibrator
transducer
ultrasonic
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008335916A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamanouchi
和彦 山之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008335916A priority Critical patent/JP2010133910A/en
Publication of JP2010133910A publication Critical patent/JP2010133910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly sensitively measure the intensity of material, the state of fatigue, and vibration phenomena. <P>SOLUTION: Subharmonics, nonlinear waves, etc. arising from elastic vibration, are very faint vibration and necessitate measuring instruments of high sensitivity. This high performance material evaluator is obtained by forming an instrument for highly sensitively measuring a frequency-modulated ultrasonic nonlinear signal by using a correlator and a lock-in amplifier. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、材料中、或いは材料表面の線形・非線形振動を高感度に検出する装置に関するものである。  The present invention relates to an apparatus for detecting linear / nonlinear vibration in a material or on the surface of a material with high sensitivity.

従来の弾性振動の線形・非線形振動を検出する方法は、線形・非線形振動に感度のある超音波振動子を用いて検出し、その信号を増幅して表示する方法が用いられている。この方法では、微弱な信号である非線形信号を検出できず、大振幅励振を用いる必要がある。
本特許は、これらの欠陥を取り除くために考案されたものである。
長、「非線形誘電率顕微鏡における最近の進展」、日本学術振興会弾性波素子技術第150委員会第71回研究会資料(平成13年1月)
As a conventional method for detecting linear / non-linear vibration of elastic vibration, a method of detecting using an ultrasonic transducer sensitive to linear / non-linear vibration and amplifying and displaying the signal is used. This method cannot detect a non-linear signal which is a weak signal and needs to use large amplitude excitation.
This patent was devised to eliminate these deficiencies.
Director, "Recent Developments in Nonlinear Dielectric Constant Microscope", Materials of the 71st meeting of the Japan Society for the Promotion of Science, Elastic Wave Element Technology 150th Committee (January 2001)

発明が解決しようとする課題Problems to be solved by the invention

コンデンサーに加えられた印加電界ωpによる容量の変化を高感度に検出する方法として、容量を含む回路を周波数ωsで発振させ、コンデンサーの容量がωpで変化することによる周波数変調されるた信号を周波数復調器を用いてωpの信号を検出し、このωpと印加電界ωpとの相関をとり、ロックイン増幅器により高感度に信号を検出する方法が文献(長、「非線形誘電率顕微鏡における最近の進展」、日本学術振興会弾性波素子技術第150委員会第71回研究会資料(平成13年1月))に示されている。この方法はコンデンサー内部及び表面の非線形容量のみを検出する方法である。
本特許は振動子、超音波変換器を用いて、材料内部の弾性の非線形性で発生するサブハーモニックス、ωp、nωpの振動を超高感度に検出する装置を得ることを目的としている。
As a method for detecting a change in capacitance due to an applied electric field ωp applied to a capacitor with high sensitivity, a circuit including the capacitance is oscillated at a frequency ωs, and a frequency-modulated signal due to a change in the capacitance of the capacitor at ωp is a frequency. A method for detecting a signal of ωp using a demodulator, correlating this ωp with the applied electric field ωp, and detecting the signal with high sensitivity using a lock-in amplifier is described in the literature (“Recent Progress in Nonlinear Dielectric Constant Microscopes”). ”, The 71st meeting of the Japan Society for the Promotion of Science, Elastic Wave Element Technology 150th Committee Material (January 2001)). This method is to detect only the non-linear capacitance inside and on the surface of the capacitor.
The purpose of this patent is to obtain an apparatus for detecting subharmonic, ωp, and nωp vibrations generated by elastic nonlinearity inside a material with ultrahigh sensitivity using a vibrator and an ultrasonic transducer.

発明が解決するための手段Means for Solving the Invention

本特許は、超音波変換器或いは間隙の変化を用いて、材料中を伝搬する弾性波から発生する非線形、サブハーモニックス振動、或いは材料表面の間隙の変化による振動を、周波数変調発振器、信号発生器、ロックイン増幅器を用いて、超高感度に検出する方法に関するものである。  This patent uses an ultrasonic transducer or a change in the gap to generate a non-linear, sub-harmonic vibration generated from an elastic wave propagating in the material, or a vibration caused by a change in the gap on the surface of the material. The present invention relates to a method for detecting with extremely high sensitivity using a lock-in amplifier.

実施例の1は、図1のように、振動子、或いは超音波変換器6からなる超音波変換器5を含む回路で帰還増幅発振器3を周波数ωsで発振させ、更に振動子、超音波変換器に周波数ωpの電界4を印加し、線形、非線形、サブハーモニックス振動で発生した(1/n)ωp、ωp、2ωp、3ωp、・・、nωp(n=1、2、3、4、…)で変調された周波数変調信号を受信し、参照信号、(1/n)ωp、ωp、nωpと周波数変調復調器1からの周波数変調信号の相関をロックインアンプ2を通して、(1/n)ωp、ωp、2ωp、3ωp、・・、nωpの信号を検出することにより、振動子、超音波変換器、及び材料7中を伝搬する超音波の線形波動、非線形波動、サブハーモニック波動を検出する材料評価装置が実施例の1である。In the first embodiment, as shown in FIG. 1, a feedback amplification oscillator 3 is oscillated at a frequency ωs by a circuit including an ultrasonic transducer 5 including a transducer or an ultrasonic transducer 6. An electric field 4 having a frequency ωp is applied to the device, and (1 / n) ωp, ωp, 2ωp, 3ωp,..., Nωp (n = 1, 2, 3, 4, ..) Is received, and the correlation between the reference signal (1 / n) ωp, ωp, nωp and the frequency modulation signal from the frequency modulation demodulator 1 is passed through the lock-in amplifier 2 (1 / n). ) By detecting the signals of ωp, ωp, 2ωp, 3ωp,. The material evaluation apparatus to perform is 1 of an Example.

実施例の2は、請求項1において、振動子として、図2のように、先端の鋭い針状の振動子9を用い、その振動子の上に超音波変換器6を設けた振動子、或いは図3のように、平面構造の超音波変換器、或いは図4のように、一点収束型の超音波変換器、或いは直線収束型の超音波変換器、或いは図5のように、走査型超音波収超音波変換器であり、超音波変換器5は、(1/n)ωp、ωp、nωpの信号を受信する構造の超音波変換器からなる材料評価装置が実施例の2である。Example 2 is a vibrator in which a needle-like vibrator 9 having a sharp tip as shown in FIG. 2 is provided as the vibrator and an ultrasonic transducer 6 is provided on the vibrator. Alternatively, an ultrasonic transducer having a planar structure as shown in FIG. 3, a single-point-converging ultrasonic transducer or a linear-converging ultrasonic transducer as shown in FIG. 4, or a scanning type as shown in FIG. The ultrasonic transducer 5 is an ultrasonic transducer 5, and the material evaluation apparatus according to the second embodiment is an ultrasonic transducer 5 including an ultrasonic transducer having a structure for receiving (1 / n) ωp, ωp, and nωp signals. .

実施例の3は、請求項1において、振動子及び超音波変換器5として送受の振動子をもつ構造であり、図6のように、平面構造の超音波変換器6、12を送受に設けた超音波変換器5からなる構造、或いは図7のように、一点収束型の送受の超音波変換器、或いは送受の直線収束型の超音波変換器、或いは送受の走査型超音波収超音波変換器を用いた構造であり、受信超音波変換器は周波数(1/n)ωp、ωp、2ωp、・・nωpのいずれかの振動、或いは複数の周波数の振動を受信する超音波変換器からなる構造で、送受の超音波変換器を含む回路で発振する帰還発増幅発振器3からなる構造の材料評価装置が実施例の3である。A third embodiment of the present invention has a structure having a transmission / reception transducer as the transducer and the ultrasonic transducer 5 according to claim 1, and the ultrasonic transducers 6 and 12 having a planar structure are provided for transmission / reception as shown in FIG. 6. The structure comprising the ultrasonic transducer 5, or as shown in FIG. 7, the single point convergence type ultrasonic transducer for transmission / reception, the linear transducer type ultrasonic transducer for transmission / reception, or the scanning ultrasonic collection ultrasonic wave for transmission / reception. It is a structure using a transducer, and a reception ultrasonic transducer is an ultrasonic transducer that receives vibrations of frequencies (1 / n) ωp, ωp, 2ωp,... Nωp, or vibrations of a plurality of frequencies. The material evaluation apparatus according to the third embodiment includes a feedback oscillation amplifier 3 that oscillates in a circuit including a transmission / reception ultrasonic transducer.

実施例の4は、請求項1及び請求項3において、送受信の超音波変換器6、12を用いた構造において、送信超音波変換器は回路に含まれず、受信超音波変換器のみが回路に含まれた帰還増幅発振器3からなる構造の周波数ωsで発振する周波数変調発振器からなる材料評価装置が実施例の4である。In the fourth embodiment, in the structure using the transmission / reception ultrasonic transducers 6 and 12 in claims 1 and 3, the transmission ultrasonic transducer is not included in the circuit, and only the reception ultrasonic transducer is included in the circuit. A material evaluation apparatus including a frequency modulation oscillator that oscillates at a frequency ωs of a structure including the feedback amplification oscillator 3 included is the fourth embodiment.

実施例の5は、請求項1において、振動子として、先端の鋭い針状の振動子、或いは平面或いは曲面状の振動子からなり、この振動子をωpで振動させることによる容量変化を変換器とした、周波数変調発振器からなる構造の材料評価装置が実施例の5である。A fifth embodiment of the present invention is the transducer according to claim 1, wherein the vibrator is a needle-like vibrator having a sharp tip, or a planar or curved vibrator, and a change in capacitance caused by vibrating the vibrator at ωp is a converter. Example 5 is a material evaluation apparatus having a structure including a frequency modulation oscillator.

発明の効果The invention's effect

本特許は、材料の非線形定数の測定、材料の破壊強度の評価、破壊現象の解明、MEMSの振動振幅、非線形振動現象などを解明することを可能にするものである。ωpの信号源として、関数発生器(ファンクションシセサイザー)を用いる方法も本特許に含まれる。This patent makes it possible to measure the nonlinear constant of a material, evaluate the fracture strength of the material, elucidate the fracture phenomenon, elucidate the vibration amplitude of the MEMS, the nonlinear vibration phenomenon, and the like. A method using a function generator (function synthesizer) as a signal source of ωp is also included in this patent.

材料評価装置のシステムダイアグラムSystem diagram of material evaluation equipment 針状振動子と超音波変換器からなる検出器Detector consisting of a needle-like vibrator and an ultrasonic transducer 超音波変換器と試料Ultrasonic transducer and sample 収束型超音波変換器と試料Convergent ultrasonic transducer and sample 走査型超音波変換器と試料Scanning ultrasonic transducer and sample 送受変換器と試料Transceiver and sample 収束型送受変換器と試料Convergent transducer and sample

符号の説明Explanation of symbols

1−周波数変調復調器、2−ロックインアンプ、3―帰還増幅器(発振器)、4−印加交番電界(関数発生器)、5−振動子、超音波変換器及び試料、6−超音波変換器、7−試料、8−超音波、9−針状プローブ、10−超音波レンズ、11−走査型型超音波変換器、12−受信超音波変換器、13−短冊状超音波変換器、14−参照信号((1/n)ωp、ωp、nωp)、15−周波数変調信号1-frequency modulation demodulator, 2-lock-in amplifier, 3-feedback amplifier (oscillator), 4-applied alternating electric field (function generator), 5-vibrator, ultrasonic transducer and sample, 6-ultrasonic transducer , 7-sample, 8-ultrasonic wave, 9-needle probe, 10-ultrasonic lens, 11-scanning ultrasonic transducer, 12-receiving ultrasonic transducer, 13-strip ultrasonic transducer, 14 Reference signal ((1 / n) ωp, ωp, nωp), 15-frequency modulation signal

Claims (5)

図1のように、振動子、或いは超音波変換器6からなる超音波変換器5を含む回路で帰還増幅発振器3を周波数ωsで発振させ、更に振動子、超音波変換器に周波数ωpの電界4を印加し、線形、非線形、サブハーモニックス振動で発生した(1/n)ωp、ωp、2ωp、3ωp、・・、nωp(n=1、2、3、4、…)で変調された周波数変調信号を受信し、参照信号、(1/n)ωp、ωp、nωpと周波数変調復調器1からの周波数変調信号の相関をロックインアンプ2を通して、(1/n)ωp、ωp、2ωp、3ωp、・・、nωpの信号を検出することにより、振動子、超音波変換器、及び材料7中を伝搬する超音波の線形波動、非線形波動、サブハーモニック波動を検出する材料評価装置。As shown in FIG. 1, a feedback amplification oscillator 3 is oscillated at a frequency ωs by a circuit including an ultrasonic transducer 5 including a transducer or an ultrasonic transducer 6, and an electric field having a frequency ωp is further applied to the transducer and the ultrasonic transducer. 4 was applied and modulated by (1 / n) ωp, ωp, 2ωp, 3ωp,..., Nωp (n = 1, 2, 3, 4,...) Generated by linear, non-linear, and subharmonic oscillations. The frequency modulation signal is received, and the correlation between the reference signal (1 / n) ωp, ωp, nωp and the frequency modulation signal from the frequency modulation demodulator 1 is passed through the lock-in amplifier 2 to (1 / n) ωp, ωp, 2ωp. 3. A material evaluation apparatus that detects a linear wave, a nonlinear wave, and a subharmonic wave of an ultrasonic wave propagating through a vibrator, an ultrasonic transducer, and a material 7 by detecting signals of 3ωp,. 請求項1において、振動子として、図2のように、先端の鋭い針状の振動子9を用い、その振動子の上に超音波変換器6を設けた振動子、或いは図3のように、平面構造の超音波変換器、或いは図4のように、一点収束型の超音波変換器、或いは直線収束型の超音波変換器、或いは図5のように、走査型超音波収超音波変換器であり、超音波変換器5は、(1/n)ωp、ωp、nωpの信号を受信する構造の材料評価装置。In Claim 1, as a vibrator, a needle-like vibrator 9 having a sharp tip as shown in FIG. 2, and an ultrasonic transducer 6 provided on the vibrator, or as shown in FIG. An ultrasonic transducer having a planar structure, or a single-point-converging ultrasonic transducer, or a linear-converging ultrasonic transducer, as shown in FIG. 4, or a scanning ultrasonic collection ultrasonic transducer, as shown in FIG. The ultrasonic transducer 5 is a material evaluation apparatus having a structure that receives signals of (1 / n) ωp, ωp, and nωp. 請求項1において、振動子及び超音波変換器5として送受の振動子をもつ構造であり、図6のように、平面構造の超音波変換器6、12を送受に設けた超音波変換器5からなる構造、或いは図7のように、一点収束型の送受の超音波変換器、或いは送受の直線収束型の超音波変換器、或いは送受の走査型超音波収超音波変換器を用いた構造であり、受信超音波変換器は周波数(1/n)ωp、ωp、2ωp、・・nωpのいずれかの振動、或いは複数の周波数の振動を受信する超音波変換器からなる構造で、送受の超音波変換器を含む回路で発振する帰還発増幅発振器3からなる構造の材料評価装置。6. The ultrasonic transducer 5 according to claim 1, wherein the transducer and the ultrasonic transducer 5 have a transmission / reception transducer, and the ultrasonic transducers 6 and 12 having a planar structure are provided for transmission / reception as shown in FIG. Or a structure using a single-point convergence type ultrasonic transducer for transmission / reception, a linear convergence type ultrasonic transducer for transmission / reception, or a scanning ultrasonic transducer for ultrasonic transmission / reception as shown in FIG. The receiving ultrasonic transducer has a structure composed of an ultrasonic transducer that receives vibrations of frequencies (1 / n) ωp, ωp, 2ωp, ..nωp, or vibrations of a plurality of frequencies. A material evaluation apparatus having a structure comprising a feedback amplification oscillator 3 that oscillates in a circuit including an ultrasonic transducer. 請求項1及び請求項3において、送受信の超音波変換器6、12を用いた構造において、送信超音波変換器は回路に含まれず、受信超音波変換器のみが回路に含まれた帰還増幅発振器3からなる構造の周波数ωsで発振する周波数変調発振器からなる材料評価装置。4. The feedback amplification oscillator according to claim 1, wherein in the structure using the transmission / reception ultrasonic transducers 6 and 12, the transmission ultrasonic transducer is not included in the circuit and only the reception ultrasonic transducer is included in the circuit. 3. A material evaluation apparatus comprising a frequency modulation oscillator that oscillates at a frequency ωs having a structure of 3. 請求項1において、振動子として、先端の鋭い針状の振動子、或いは平面或いは曲面状の振動子からなり、この振動子をωpで振動させることによる容量変化を変換器とした、周波数変調発振器からなる構造の材料評価装置。2. The frequency modulation oscillator according to claim 1, wherein the vibrator is a needle-like vibrator having a sharp tip, or a planar or curved vibrator, and a change in capacitance caused by vibrating the vibrator at ωp is used as a converter. A material evaluation apparatus having a structure comprising:
JP2008335916A 2008-12-04 2008-12-04 Material evaluator using elastic wave Pending JP2010133910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335916A JP2010133910A (en) 2008-12-04 2008-12-04 Material evaluator using elastic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335916A JP2010133910A (en) 2008-12-04 2008-12-04 Material evaluator using elastic wave

Publications (1)

Publication Number Publication Date
JP2010133910A true JP2010133910A (en) 2010-06-17

Family

ID=42345336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335916A Pending JP2010133910A (en) 2008-12-04 2008-12-04 Material evaluator using elastic wave

Country Status (1)

Country Link
JP (1) JP2010133910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010963A (en) * 2013-06-28 2015-01-19 国立大学法人 東京大学 Measurement device
JP2017207426A (en) * 2016-05-20 2017-11-24 国立研究開発法人産業技術総合研究所 Acoustic wave propagation length measurement method, and acoustic wave propagation length measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010963A (en) * 2013-06-28 2015-01-19 国立大学法人 東京大学 Measurement device
JP2017207426A (en) * 2016-05-20 2017-11-24 国立研究開発法人産業技術総合研究所 Acoustic wave propagation length measurement method, and acoustic wave propagation length measurement device

Similar Documents

Publication Publication Date Title
Liu et al. Measuring acoustic nonlinearity parameter using collinear wave mixing
Solodov et al. Nonlinear self-modulation and subharmonic acoustic spectroscopyfor damage detection and location
Ling et al. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators
Solodov et al. A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation
Jin Lim et al. Binding conditions for nonlinear ultrasonic generation unifying wave propagation and vibration
Solodov et al. Resonance ultrasonic thermography: Highly efficient contact and air-coupled remote modes
WO2000073781A1 (en) Apparatus and method for remote, noninvasive characterization of structures and fluids inside containers
Ulrich et al. The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds
Deng et al. Experimental verification of cumulative growth effect of second harmonics of Lamb wave propagation in an elastic plate
Grünsteidl et al. Experimental and numerical study of the excitability of zero group velocity Lamb waves by laser-ultrasound
JPH10253339A (en) Method and apparatus for measurement by utilizing sound wave
Okino et al. Electrical potentials in bone induced by ultrasound irradiation in the megahertz range
Jenderka et al. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation
Dixon et al. The electro-mechanical behaviour of flexural ultrasonic transducers
Vander Meulen et al. Evaluation of B∕ A nonlinear parameter using an acoustic self-calibrated pulse-echo method
JP7179478B2 (en) Gas sensor and gas detection method
JP2010133910A (en) Material evaluator using elastic wave
Huber et al. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry
Thimmavajjula Narasimha et al. Simplified experimental technique to extract the acoustic radiation induced static strain in solids
Hayashi Energy trapping of circumferential resonant modes at a thin-walled groove in a hollow cylinder
JP4893170B2 (en) Density sensor
Bruno et al. Non-destructive testing of composite plates by holographic vibrometry
Boales et al. Micromechanical microphone using sideband modulation of nonlinear resonators
JP3814573B2 (en) Ultrasonic thickness measurement method and apparatus
He et al. Out-of-resonance vibration modulation of ultrasound with a nonlinear oscillator for microcrack detection in a cantilever beam