JP2010133807A - Method of grinding tablet and method of analyzing tablet constituent using the same - Google Patents

Method of grinding tablet and method of analyzing tablet constituent using the same Download PDF

Info

Publication number
JP2010133807A
JP2010133807A JP2008309154A JP2008309154A JP2010133807A JP 2010133807 A JP2010133807 A JP 2010133807A JP 2008309154 A JP2008309154 A JP 2008309154A JP 2008309154 A JP2008309154 A JP 2008309154A JP 2010133807 A JP2010133807 A JP 2010133807A
Authority
JP
Japan
Prior art keywords
tablet
beads
shaking
container
tablets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008309154A
Other languages
Japanese (ja)
Inventor
Taku Okada
卓 岡田
Wakako Tashiro
和歌子 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Pharma Co Ltd
Original Assignee
Sumitomo Dainippon Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Dainippon Pharma Co Ltd filed Critical Sumitomo Dainippon Pharma Co Ltd
Priority to JP2008309154A priority Critical patent/JP2010133807A/en
Publication of JP2010133807A publication Critical patent/JP2010133807A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding method for uniformly dissolving or dispersing each kind of constituent that is not dissolved or dispersed easily to a solvent by a normal method and is included in a tablet of which a test precision tends to deteriorate in a quality evaluation test, or the like of a medical product. <P>SOLUTION: The method of grinding a tablet is provided by applying a physical impact to a vessel containing tablets, solvents, and beads by a method, such as shaking, and bringing the tablets into physical contact with the beads. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、錠剤に含まれる各種成分を溶媒中に均一に溶解または分散させるための粉砕方法に関する。具体的には、例えば医薬品製剤の品質評価試験等において、通常の方法では溶媒に溶解あるいは分散しにくく、試験の精度が低下しやすい錠剤(例えば超高圧下で成型した素錠やフィルムコート錠等の錠剤)において、ビーズを作用させることによって効率的に錠剤を崩壊させ、錠剤中の成分を変質させることなく、かつ均一に溶解または分散することができる方法に関する。   The present invention relates to a grinding method for uniformly dissolving or dispersing various components contained in a tablet in a solvent. Specifically, for example, in quality evaluation tests for pharmaceutical preparations, tablets that are difficult to dissolve or disperse in a solvent by ordinary methods and whose test accuracy is likely to deteriorate (for example, uncoated tablets or film-coated tablets formed under ultrahigh pressure) The tablet is efficiently disintegrated by the action of beads and can be dissolved or dispersed uniformly without altering the components in the tablet.

医薬品や健康食品などにおいては、経口的な服用を容易にするため、少量の主成分を賦形剤など複数の成分を用いて超高圧下で成型した素錠のほか、主成分の味のマスキングや、安定性を向上させることなどを目的に、素錠表面を糖類で被覆した糖衣錠や、ポリマーなどにより被覆コーティングしたフィルムコート錠等の各種錠剤が広く使われている。
このような錠剤(例えば、素錠、糖衣錠、フィルムコート錠等)の品質評価試験においては、錠剤中に含まれる主成分の含有量や主成分が変化して生成した類縁物質及び錠剤中の水分等の測定を実施することが一般的であり、それらの測定に際しては、通常、溶媒等に錠剤を溶解あるいは分散させた液(以下、一律して「試料溶液」と称す)を調製する。その際、試料溶液が不均一であったり、変質した場合には、測定結果に悪影響を及ぼすことから、各種測定において適切な試料溶液の調製方法を設定する必要がある。
試料溶液の調製方法には、一般的に、以下に示す湿式法と乾式法のいずれかが採用されている。「湿式法」とは、測定前に容器に錠剤をとり、溶媒を加えた後、均一な試料溶液を調製する方法である。錠剤が容易に崩壊せず、均一な試料溶液を調製できない場合、溶媒を加えた後に超音波を照射するかもしくはタッチミキサーや振とう器などにより振動を与えて錠剤を崩壊させ、溶解又は分散させ、試料溶液を調製する。
一方、湿式法での調製が困難な場合、乾式法を採用する。「乾式法」とは、溶媒を加える前に錠剤をあらかじめ乳鉢などで磨りつぶす方法や、試料粉砕機を用い、容器に錠剤と粉砕用のハンマーを入れて振動させて粉砕させ、その粉砕物を溶媒に溶解又は分散させて試料溶液を調製する方法である。
In pharmaceuticals and health foods, in order to facilitate oral use, in addition to uncoated tablets formed from a small amount of the main component using multiple components such as excipients, masking the taste of the main component For the purpose of improving stability and the like, various tablets such as sugar-coated tablets in which the surface of an uncoated tablet is coated with a saccharide and film-coated tablets coated with a polymer or the like are widely used.
In quality evaluation tests of such tablets (for example, plain tablets, sugar-coated tablets, film-coated tablets, etc.), the content of the main component contained in the tablet and the related substances produced by changing the main component and the moisture in the tablet In general, a liquid in which a tablet is dissolved or dispersed in a solvent or the like (hereinafter, collectively referred to as “sample solution”) is prepared. At that time, if the sample solution is non-uniform or deteriorated, the measurement result is adversely affected. Therefore, it is necessary to set an appropriate method for preparing the sample solution in various measurements.
In general, one of the following wet methods and dry methods is employed as a method for preparing the sample solution. The “wet method” is a method of preparing a uniform sample solution after taking a tablet in a container and adding a solvent before measurement. If the tablet does not disintegrate easily and a uniform sample solution cannot be prepared, the tablet is disintegrated by irradiating with ultrasonic waves after adding a solvent or by shaking with a touch mixer or shaker, and dissolved or dispersed. Prepare a sample solution.
On the other hand, when preparation by a wet method is difficult, a dry method is adopted. The “dry method” is a method in which a tablet is ground in a mortar before adding a solvent, or a sample crusher is used to put a tablet and a hammer for crushing into a container and vibrate to grind the pulverized product. In this method, a sample solution is prepared by dissolving or dispersing in a solvent.

ところで、錠剤以外の粉砕技術において、微生物を破砕して核酸などの成分を抽出するための細胞破砕処理法として、特許文献1において、界面活性剤及びフェノール/クロロホルム混液中でジルコニウム、ジルコニア等の0.2〜5mm径ビーズを用い、毎分数千回転で約1分間回転させることで物理的に細胞を破壊する方法が開示されている。また、薬剤物質の連続粉砕方法として、特許文献2において、薬品及びポリマー樹脂製の硬質ビーズ(平均粒子径1000μm以下)を粉砕室に連続的に導入し、粉砕室中の回転体を高速で回転(毎分数千回転)させながら約1時間循環させることで、試料を粉砕する方法が開示されている。
特開2006−141292公報 特開平7−530317公報
By the way, as a cell crushing treatment method for crushing microorganisms and extracting components such as nucleic acids by crushing techniques other than tablets, in Patent Document 1, 0, such as zirconium, zirconia, etc. in a surfactant / phenol / chloroform mixed solution. A method is disclosed in which cells are physically disrupted by using beads having a diameter of 2 to 5 mm and rotating at several thousand revolutions per minute for about 1 minute. Also, as a continuous pulverization method for drug substances, in Patent Document 2, hard beads made of chemicals and polymer resin (average particle diameter of 1000 μm or less) are continuously introduced into the pulverization chamber, and the rotating body in the pulverization chamber is rotated at high speed. A method is disclosed in which a sample is pulverized by circulating for about 1 hour while rotating (several thousand revolutions per minute).
JP 2006-141292 A JP-A-7-530317

錠剤のような医薬品等を分析評価するには、錠剤の成分や物性、表面皮膜の有無などによらず、錠剤中の成分を熱、圧力等の物理的な要因や化学的な要因で変質させることなく、かつ均一な試料溶液を調製できる手法が要求される。しかしながら、前述した一般的に錠剤で用いられる湿式法では、錠剤が溶液中で完全に崩壊せず、均一にならないこともある。そのような場合、錠剤中の測定対象の成分を完全に溶媒に抽出することができず、正確に測定することができない。また、長時間処理して(数時間を要することもある)溶液中で崩壊したとしても、非効率である以外に、長時間の処理により、試料または溶媒そのものが変質する可能性がある。一方、乾式法では、錠剤中に吸湿する成分が含まれる場合、水分等が正確に測定できない問題がある他、吸湿等により試料が変質する可能性がある。さらに、乾式法では、一般的に粉砕機や乳鉢を使用するが、残存した別の試料が混入する可能性がある他、粉砕時の圧力や熱によって、試料が変質(化合物物性の変化、結晶多型の生成、類縁物質の増加等)する可能性がある。
このように、従来の湿式法及び乾式法では、種々の問題が起こり得ることがあるため、錠剤の成分や物性、表面皮膜の有無などによらず、錠剤中の成分を熱、圧力等の物理的な要因や化学的な要因で変質させることなく、かつ均一な試料溶液を簡便に調製できる手法が要求されている。
In order to analyze and evaluate pharmaceuticals such as tablets, the components in the tablets are altered by physical and chemical factors such as heat and pressure, regardless of the components and physical properties of the tablets and the presence or absence of a surface coating. There is a need for a technique that can prepare a uniform sample solution without any problems. However, in the wet method generally used for tablets, the tablets may not be completely disintegrated in the solution and may not be uniform. In such a case, the component to be measured in the tablet cannot be completely extracted into the solvent and cannot be measured accurately. Moreover, even if it disintegrates in a solution after being treated for a long time (which may take several hours), in addition to inefficiency, the sample or the solvent itself may be altered by the treatment for a long time. On the other hand, in the dry method, when a component that absorbs moisture is contained in the tablet, there is a problem that moisture or the like cannot be measured accurately, and the sample may be altered due to moisture absorption or the like. Furthermore, in the dry method, a pulverizer or mortar is generally used, but there is a possibility that another remaining sample may be mixed in, and the sample may be altered (change in compound physical properties, crystals, etc.) by pressure and heat during pulverization. Polymorphism, increase of related substances, etc.).
As described above, since various problems may occur in the conventional wet method and the dry method, the components in the tablet are physically and heat-pressure-related regardless of the components and physical properties of the tablet and the presence or absence of a surface film. Therefore, there is a demand for a technique that can easily prepare a uniform sample solution without deteriorating due to general factors or chemical factors.

本発明者は、これまで、細胞や薬物原末等の非常に微細な試料に対して粉砕化のために用いられていたビーズに着目した。従来、これらビーズはビーズに比して非常に微細なもの、あるいは比較的やわらかい試料の粉砕に用いられていたが、錠剤のようにビーズより大きく且つ比較的硬いものに用いるという着想は従来知られていなかった。本発明者は、ビーズに比して大きく、また試料として硬い錠剤に直接溶媒(水を含む)と市販のジルコニアビーズを容器内に加え、振とう器を用いて攪拌することによって、意外にも上記の課題を解決することが可能となることを見出し、発明を完成させるに至った。   The present inventor has focused on beads that have been used for pulverization of very fine samples such as cells and bulk drug substances. Conventionally, these beads have been used to pulverize samples that are very fine or relatively soft compared to beads, but the idea of using them for beads that are larger and relatively harder than beads is conventionally known. It wasn't. The present inventor surprisingly adds a solvent (including water) and commercially available zirconia beads directly to a hard tablet as a sample and stirs using a shaker. The inventors have found that the above problems can be solved, and have completed the invention.

項1:錠剤、溶媒及びビーズを含む容器に物理的衝撃を加え、錠剤とビーズを物理的に接触させることによる錠剤の粉砕方法。
項2:該ビーズの径が、錠剤の長径に対して、0.05〜1の割合である項1に記載の錠剤粉砕方法。
項3:錠剤1重量部に対して、ビーズが2〜200重量部の割合で配合される項1または2に記載の錠剤粉砕方法。
項4:錠剤1重量部に対して、溶媒が10〜500容量部の割合で配合される項1〜3のいずれかに記載の錠剤粉砕方法。
項5:容器の全容量に対して、溶媒が1/10〜1/2容量の割合で配合される項1〜4のいずれかに記載の錠剤粉砕方法。
項6:物理的衝撃が、容器を振とうさせる方法または容器を超音波処理する方法である項1〜5のいずれかに記載の錠剤粉砕方法。
項7:物理的衝撃が、振とう方向の容器の長さ(L)に対して0.2〜4程度の割合の振とう距離(D)で毎分80回以上振とうさせる方法である項6に記載の錠剤粉砕方法。
項8:振とう方向が、設置面に対し、垂直、水平又は傾斜のある方向で直線状若しくは曲線状である項7に記載の錠剤粉砕方法。
項9:項1〜8のいずれかの方法を用いる錠剤に含まれる成分の分析方法。
Item 1: A method of pulverizing a tablet by applying a physical impact to a container containing a tablet, a solvent and beads and bringing the tablet and beads into physical contact.
Item 2: The tablet pulverization method according to Item 1, wherein the beads have a diameter of 0.05 to 1 with respect to the major axis of the tablet.
Item 3: The tablet crushing method according to Item 1 or 2, wherein the beads are blended at a ratio of 2 to 200 parts by weight with respect to 1 part by weight of the tablet.
Item 4: The tablet crushing method according to any one of Items 1 to 3, wherein the solvent is blended at a ratio of 10 to 500 parts by volume with respect to 1 part by weight of the tablet.
Item 5: The tablet crushing method according to any one of Items 1 to 4, wherein the solvent is blended at a ratio of 1/10 to 1/2 volume with respect to the total volume of the container.
Item 6: The tablet crushing method according to any one of Items 1 to 5, wherein the physical impact is a method of shaking the container or a method of ultrasonicating the container.
Item 7: The method in which the physical impact is a method of shaking 80 times or more at a shaking distance (D) of about 0.2 to 4 with respect to the length (L) of the container in the shaking direction. The tablet crushing method as described.
Item 8: The tablet crushing method according to Item 7, wherein the shaking direction is a straight line or a curved line in a direction perpendicular to, horizontal to, or inclined with respect to the installation surface.
Item 9: A method for analyzing a component contained in a tablet using the method according to any one of Items 1 to 8.

本発明によれば、錠剤のような医薬品等を分析評価する際、被検物質となる錠剤の成分や物性、表面皮膜の有無などによらず、均一な試料溶液を簡便に調製できる。さらに、物理的衝撃方法として、振とう方法を採用すれば、ビーズ及び試料振とう時の摩擦による圧力や熱が発生しにくく、試料中の成分や溶媒を変質させにくいという大きな利点を有する。   According to the present invention, when a pharmaceutical product such as a tablet is analyzed and evaluated, a uniform sample solution can be easily prepared regardless of the components and physical properties of the tablet as the test substance, the presence or absence of a surface film, and the like. Further, if a shaking method is employed as a physical impact method, there is a great advantage that pressure and heat due to friction when beads and a sample are shaken are hardly generated, and it is difficult to alter components and solvents in the sample.

以下、本発明についてさらに詳細に説明する。
本発明における「錠剤」とは、特に限定されず、例えば、素錠、糖衣錠、フィルムコーティング錠、口腔内崩壊錠等が例示できる。さらに、その錠剤の大きさも円形であれば、通常の大きさ、例えば、直径(長径)5〜11mm程度、さらに楕円形であれば、長径22mm程度までのものであれば特に限定されない。また、錠剤の形状としても、特に限定されず、円形錠、平錠、丸錠、R錠、楕円錠、割線入り錠剤など例示される。本発明における「錠剤の長径」とは、錠剤の投影像に接する長方形の最も長くなる辺を意味するものとする。
Hereinafter, the present invention will be described in more detail.
The “tablet” in the present invention is not particularly limited, and examples thereof include an uncoated tablet, a sugar-coated tablet, a film-coated tablet, and an orally disintegrating tablet. Furthermore, if the size of the tablet is also circular, it is not particularly limited as long as it has a normal size, for example, a diameter (major axis) of about 5 to 11 mm, and if it is elliptical, it has a major axis of up to about 22 mm. Also, the shape of the tablet is not particularly limited, and examples thereof include a round tablet, a flat tablet, a round tablet, an R tablet, an elliptical tablet, and a scored tablet. The “longer diameter of the tablet” in the present invention means the longest side of the rectangle in contact with the projected image of the tablet.

本発明で使用する「ビーズ」とは、その材質も特に限定されず、溶媒に対する耐性があり、錠剤を粉砕するのに必要な硬さを有していれば、いずれのビーズも使用することができる。例えば、その材質としては、ガラス、ジルコニア、ステンレス、プラスチック、砂、ケイ酸塩等のものを使用することができるが、好ましくは、ガラス、ジルコニア、ステンレスである。また、その形状は特に限定されず、球状、オブロング状、突起の付いた球状、錐体上、直方体状等あげられるが、粉砕効率の点で球状もしくは球状に近い塊状のものがよい。   The “bead” used in the present invention is not particularly limited in its material, and any bead may be used as long as it has resistance to a solvent and has a hardness necessary for pulverizing a tablet. it can. For example, glass, zirconia, stainless steel, plastic, sand, silicate, etc. can be used as the material, but glass, zirconia, and stainless steel are preferred. The shape is not particularly limited, and examples thereof include a spherical shape, an oblong shape, a spherical shape with protrusions, a cone shape, a rectangular parallelepiped shape, and the like.

ビーズの硬度においても、錠剤を粉砕するのに必要な硬さを有していればよいが、具体的には、500kg/mm程度以上のものが好ましい。混合する容器がガラス製である場合、安全性を考慮し、硬度が500〜1200kg/mm程度であるガラスもしくはジルコニアビーズを用いることが好ましい。さらに、ビーズの密度が2g/cm程度以上であるものが好ましく、ガラスに比べ密度の大きいジルコニアを用いる方が、振とう操作での粉砕力が大きく、効率的に粉砕することが可能である。 As for the hardness of the bead, it is sufficient that it has a hardness necessary for pulverizing the tablet. Specifically, a hardness of about 500 kg / mm 2 or more is preferable. When the container to be mixed is made of glass, it is preferable to use glass or zirconia beads having a hardness of about 500 to 1200 kg / mm 2 in consideration of safety. Furthermore, it is preferable that the density of the beads is about 2 g / cm 3 or more, and the use of zirconia, which has a higher density than glass, has a larger crushing force in a shaking operation and can be efficiently crushed. .

ビーズの径に関しては特に限定されないが、錠剤の長径に対して、0.05〜1程度の径、好ましくは、0.08〜1程度の径を有するビーズを用いることが好ましい。ここにおいて、「ビーズの径」とは、投影像に接する長方形の最も長くなる辺を意味し、その形状は特に限定されず、球状、オブロング状、突起の付いた球状、錐体上、直方体状等あげられるが、球状もしくは球状に近い塊状のものがよい。
ビーズの配合量としては、錠剤1重量部に対して、ビーズを2〜200重量部、好ましくは、2〜25重量部程度がよい。
Although it does not specifically limit regarding the diameter of a bead, It is preferable to use the bead which has a diameter of about 0.05-1 with respect to the long diameter of a tablet, Preferably, it is a diameter of about 0.08-1. Here, the “bead diameter” means the longest side of the rectangle in contact with the projected image, and the shape is not particularly limited, and is spherical, oblong, spherical with protrusions, on a cone, on a cuboid However, it is preferable to use a spherical shape or a nearly spherical shape.
The blending amount of the beads is 2 to 200 parts by weight, preferably about 2 to 25 parts by weight with respect to 1 part by weight of the tablet.

本発明で使用する「容器」は、材質に制約を受けるものではなく、ビーズ等の衝撃及び使用する溶媒に耐えうるものであればよく、用途に応じてガラスの他、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリプロピレン共重合体、ポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)、フッ化エチレンプロピレン、エチレンテトラフルオロエチレン、ポリサルフォン、ポリカーボネートといった樹脂でも可能である。また、容器の形状としては、丸底、平底、スピッチ(先端が細くなった形状)等が使用でき、好ましくは丸底がよい。   The “container” used in the present invention is not limited by the material, and may be any material that can withstand impacts such as beads and the solvent to be used, and other than glass, for example, polyethylene (PE), A resin such as polypropylene (PP), polypropylene copolymer, polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), fluorinated ethylene propylene, ethylene tetrafluoroethylene, polysulfone, or polycarbonate is also possible. Moreover, as a shape of a container, a round bottom, a flat bottom, a pitch (a shape with a thin tip), and the like can be used, and a round bottom is preferable.

本発明で使用する「溶媒」は、錠剤中の試料及び容器に悪影響を及ぼさないものであれば特に限定されず、例えば、水、有機溶媒(メタノール、アセトニトリル、クロロホルムなど)を用いることが可能であり、錠剤中の成分や分析の目的に応じて適宜選択することができる。これら溶媒を1種または2種以上混合して用いてもよい。例えば、水溶性の添加剤を多く含む錠剤で、有機溶媒で崩壊しにくい場合、水と有機溶媒との混合溶媒を用いてもよい。錠剤に対する溶媒の使用割合は、通常、錠剤1重量部に対して溶媒10〜500容量部程度使用する。または、溶媒の量としては、容器の全容量に対して、溶媒が1/10〜1/2容量の割合で配合してもよい。   The “solvent” used in the present invention is not particularly limited as long as it does not adversely affect the sample and container in the tablet. For example, water, organic solvents (methanol, acetonitrile, chloroform, etc.) can be used. Yes, it can be appropriately selected according to the components in the tablet and the purpose of analysis. These solvents may be used alone or in combination. For example, when the tablet contains a large amount of water-soluble additives and is difficult to disintegrate with an organic solvent, a mixed solvent of water and an organic solvent may be used. About the use ratio of the solvent with respect to a tablet, about 10-500 volume parts of solvent is normally used with respect to 1 weight part of tablets. Or as a quantity of a solvent, you may mix | blend a solvent in the ratio of 1/10-1/2 volume with respect to the whole capacity | capacitance of a container.

錠剤を粉砕する方法としては、例えば、まず、容器に、錠剤、溶媒、ビーズを加える。加える順序は特に限定されず、例えば、錠剤を入れた容器に、ビーズおよび溶媒を添加後、混合する。   As a method for pulverizing a tablet, for example, first, a tablet, a solvent, and beads are added to a container. The order of addition is not particularly limited. For example, beads and a solvent are added to a container containing tablets and mixed.

その後、該容器に物理的衝撃を加える。錠剤とビーズを物理的に接触させる該方法としては、容器を振とうさせる方法、容器を超音波処理する方法等挙げられるが、本発明の方法によれば、容器を振とうさせる方法で、簡便に錠剤を粉砕することができる。   Thereafter, physical impact is applied to the container. Examples of the method of physically bringing the tablet and the beads into contact include a method of shaking the container, a method of ultrasonically treating the container, and the like. According to the method of the present invention, the method of shaking the container is convenient. Tablets can be crushed.

該振とう方法としては、振とう器を用いる方法が例示でき、振とう器としては例えば、栓付のガラス等の容器を固定して振とうできる装置をあげることができる。その振とう条件は例えば、振とう方向の容器の長さに対して0.2〜4程度の振とう距離を、振とう方向としては、設置面に対して垂直、水平又は傾斜のある方向で直線状あるいは曲線状に、毎分80回以上振とうさせる。好ましくは、振とう方向の容器の長さに対して0.3〜0.4程度の振とう距離を、垂直方向で直線状に毎分250回以上振とうする。ここにおいて、振とう方向の容器の長さ(L)と振とう距離(D)と振とう方向との関係は図1に示すとおりである。左から、設置面に対して、垂直、水平、傾斜方向に振とうさせる図を示す。曲線状に容器を振とうする場合には、容器の長さ(L)はその動きによって、ビーズ等が容器内を移動する方向における長さとし、(D)は、その曲線の移動距離を示す(図1の最右図)。また、振とう回数は、往復で2回と定義する。また、振とう時間は特に限定されないが、本発明の方法によれば、崩壊時間の短縮化をはかることができる。例えば、ビーズを使用しなければ完全に崩壊させるのに60分以上かかる錠剤に対し、5〜30分程度で実施することが可能である。   Examples of the shaking method include a method using a shaker, and examples of the shaker include an apparatus that can shake with a container such as a glass with a stopper fixed. The shaking condition is, for example, a shaking distance of about 0.2 to 4 with respect to the length of the container in the shaking direction, and the shaking direction is linear in a direction perpendicular to the installation surface, horizontal or inclined. Alternatively, shake in a curved line at least 80 times per minute. Preferably, the shaking distance of about 0.3 to 0.4 with respect to the length of the container in the shaking direction is shaken 250 times or more linearly in the vertical direction. Here, the relationship between the length (L) of the container in the shaking direction, the shaking distance (D), and the shaking direction is as shown in FIG. From the left, the figure which shakes in the vertical, horizontal and inclined directions with respect to the installation surface is shown. When the container is shaken in a curved shape, the length (L) of the container is the length in the direction in which the beads move in the container by the movement, and (D) indicates the moving distance of the curve ( (The rightmost figure in FIG. 1). The number of shaking is defined as two round trips. Further, the shaking time is not particularly limited, but according to the method of the present invention, the decay time can be shortened. For example, it can be performed in about 5 to 30 minutes for a tablet that takes 60 minutes or more to completely disintegrate without using beads.

上記方法を実施することによって、容器内にて、錠剤が粉砕され、また錠剤中の試料が均等に溶解または分散することができる。得られた試料溶液を用いて錠剤中の成分を分析することができる。例えば、主薬、添加剤、水分、類縁物質、残留溶媒、重金属、微生物、異物等の分析を行うことができる。   By carrying out the above method, the tablet is pulverized in the container, and the sample in the tablet can be dissolved or dispersed evenly. The components in the tablet can be analyzed using the obtained sample solution. For example, it is possible to analyze main agents, additives, moisture, related substances, residual solvents, heavy metals, microorganisms, foreign substances, and the like.

以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されない。
比較例1 従来の錠剤粉砕方法
主薬を5mg含有するフィルムコーティング錠(コーティング成分としてヒプロメロース、酸化チタン、マクロゴール、カルナウバロウを含む、直径が5.5mm、重量が62mgの円形錠、(以下、錠剤Aという))を用いて乾式法による錠剤粉砕を行った後、粉砕による吸湿性について測定した。乾式法による錠剤粉砕は、メノウ製乳鉢に、錠剤Aを5個入れ、メノウ製の乳棒で粉砕処理を約30秒間おこなった。
その後、錠剤A 1錠分の未粉砕品及び上記粉砕品を用い、温度25℃/60%RH中で0〜30分保存した場合の重量の変化を測定した。その結果を図2に示す。錠剤Aの場合、粉砕品の重量増加傾向は、未粉砕品に比して高く、最大で1%程度増加した。このような吸湿による重量の変化は、検体の採取精度や検体中の水分の測定精度を悪くする原因となる。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
Comparative Example 1 Conventional tablet crushing method Film-coated tablet containing 5 mg of the active ingredient (including hypromellose, titanium oxide, macrogol, carnauba wax as coating components, a round tablet having a diameter of 5.5 mm and a weight of 62 mg) (hereinafter referred to as tablet A) )), And the tablet was pulverized by a dry method, and then the hygroscopicity by pulverization was measured. Tablets were pulverized by a dry method by putting 5 tablets A in an agate mortar and pulverizing with an agate pestle for about 30 seconds.
Then, the change of the weight at the time of storing for 0 to 30 minutes in 25 degreeC / 60% RH was measured using the unmilled product for 1 tablet A, and the said ground product. The result is shown in FIG. In the case of tablet A, the tendency of increasing the weight of the pulverized product was higher than that of the unground product, and increased by about 1% at maximum. Such a change in weight due to moisture absorption causes a decrease in sample collection accuracy and measurement accuracy of moisture in the sample.

実施例1及び2並びに比較例2及び3 本発明及び従来の錠剤粉砕方法
錠剤Aについて、本発明の方法及び従来の方法を用いて錠剤を粉砕した。使用したビーズは以下の三種類である。
・球状ジルコニアビーズ 粒径2mm(外径許容範囲±0.2mm)(硬度 約1200kg/mm、密度 約6.0g/cm
・球状ジルコニアビーズ 粒径3mm(外径許容範囲±0.3mm)(硬度 約1200kg/mm、密度 約6.0g/cm
・球状ジルコニアビーズ 粒径5mm(外径許容範囲±0.5mm)(硬度 約1200kg/mm、密度 約6.0g/cm
具体的には、50mL容の共栓付ガラス管(容器の振とう方向の長さ約12cm)に、錠剤A 約500mg(8錠)、及び各ビーズを4、8または12g添加し、次にメタノール20mLを加え、密閉後、振とう器(TAITEC社製型番SR−2W)を用いて、振とう距離40mmで振とう速度300回/分(実施例1)及び250回/分(実施例2)の条件で垂直方向に振とうし、錠剤が完全に崩壊するまでの振とう時間について評価した。なお、比較例としてビーズなしの状態でも評価した(比較例2及び3)。
結果を表1及び表2に示す。ビーズを加えない場合、錠剤は60分振とうしても完全に崩壊しなかったのに対し、ジルコニアビーズを用いることで、錠剤を完全に崩壊させることができ、また、振とう時間を短縮できることができた。
なお、粒径2mmのジルコニアビーズでは30分で完全に崩壊したが、粒径3mm及び5mmのジルコニアビーズでは10〜30分で完全に崩壊したことから、ビーズの粒径が大きいほど、効果が向上する傾向にあった。また、振とう速度が大きいほど効果が向上する傾向があった。さらに、振とう速度が300回/分の場合、粒径3mm及び5mmのジルコニアビーズについては4gに比べ8、12gのとき振とう時間が短縮したことから、使用量がある一定以上存在すると、効果が向上する傾向にあった。
Examples 1 and 2 and Comparative Examples 2 and 3 The tablet of the present invention and the conventional tablet crushing method Tablet A was pulverized using the method of the present invention and the conventional method. The following three types of beads were used.
・ Spherical zirconia beads particle size 2mm (outer diameter tolerance ± 0.2mm) (hardness approximately 1200kg / mm 2 , density approximately 6.0g / cm 3 )
・ Spherical zirconia beads particle size 3mm (outer diameter tolerance ± 0.3mm) (hardness approximately 1200kg / mm 2 , density approximately 6.0g / cm 3 )
・ Spherical zirconia beads particle size 5mm (outer diameter tolerance ± 0.5mm) (hardness approx. 1200kg / mm 2 , density approx. 6.0g / cm 3 )
Specifically, about 500 mg (8 tablets) of tablet A and 4, 8 or 12 g of each bead were added to a 50 mL glass tube with a stopper (about 12 cm in length in the shaking direction of the container), and then After adding 20 mL of methanol and sealing, using a shaker (model number SR-2W manufactured by TAITEC), shaking speed of 40 mm and shaking speed of 300 times / minute (Example 1) and 250 times / minute (Example 2) ) In the vertical direction, and the shaking time until the tablet completely disintegrated was evaluated. In addition, it evaluated also in the state without beads as a comparative example (comparative examples 2 and 3).
The results are shown in Tables 1 and 2. When no beads were added, the tablets did not disintegrate completely even after shaking for 60 minutes, but by using zirconia beads, the tablets could be completely disintegrated and the shaking time could be shortened. I was able to.
In addition, the zirconia beads having a particle diameter of 2 mm completely disintegrated in 30 minutes, but the zirconia beads having a particle diameter of 3 mm and 5 mm completely disintegrated in 10 to 30 minutes. Therefore, the larger the particle diameter of the beads, the better the effect. Tended to be. Moreover, the effect tended to improve as the shaking speed increased. Furthermore, when the shaking speed is 300 times / minute, the zirconia beads having a particle size of 3 mm and 5 mm have a shaking time reduced to 8 and 12 g compared to 4 g. Tended to improve.

Figure 2010133807
Figure 2010133807

Figure 2010133807
Figure 2010133807

実施例3及び比較例4 本発明及び従来法による粉砕処理後の試料中の水分値の対比
従来の乾式法及び本発明の方法を用いて、錠剤Aを粉砕し、得られたそれぞれ試料溶液中水分値を比較した。
乾式法においては、錠剤A 約300mg(5錠)を比較例1に記載と同様にして乳鉢により粉砕し、その約0.2gを精密に量りとり、カールフィッシャー法(容量滴定)により水分の測定を実施した。また、本発明の方法として50mL容の共栓付ガラス管(容器の振とう方向の長さ約12cm)に錠剤A 約500mg(8錠)、及び実施例1に記載の粒径2mmのジルコニアビーズ4gを加え、メタノール20mLを加えた後、密閉後、振とう器(TAITEC社製型番SR−2W)を用いて振とうした。振とう条件は、振とう距離40mm、速度300回/分で垂直方向に40分間とし、水分の定量は、カールフィッシャー法(電量滴定)により実施した。その結果、本発明の錠剤粉砕法での水分値は5.3%であり、従来の乾式法で粉砕した場合の値は5.6%と、本発明の方法で粉砕し、分析した結果のほうが低くかったことから、調製時の吸湿の影響が改善されたものと考えられる。
Example 3 and Comparative Example 4 Comparison of moisture value in sample after pulverization treatment according to the present invention and the conventional method Tablet A was pulverized using the conventional dry method and the method of the present invention, and each of the obtained sample solutions The moisture values were compared.
In the dry method, about 300 mg (5 tablets) of tablet A was pulverized in a mortar in the same manner as described in Comparative Example 1, and about 0.2 g was accurately weighed, and the water content was measured by the Karl Fischer method (volumetric titration). Carried out. Further, as a method of the present invention, about 500 mg (8 tablets) of tablet A in a 50 mL glass tube with a stopper (about 12 cm in length in the shaking direction of the container), and zirconia beads having a particle diameter of 2 mm described in Example 1 4 g was added, 20 mL of methanol was added, and after sealing, the mixture was shaken using a shaker (model number SR-2W manufactured by TAITEC). The shaking conditions were a shaking distance of 40 mm and a speed of 300 times / minute for 40 minutes in the vertical direction, and moisture was quantified by the Karl Fischer method (coulometric titration). As a result, the moisture value in the tablet crushing method of the present invention was 5.3%, and the value in the case of crushing by the conventional dry method was 5.6%. It was considered that the effect of moisture absorption during preparation was improved.

実施例4及び比較例5
主薬を40mg含有するフィルムコーティング錠(コーティング成分としてヒプロメロース、酸化チタン、マクロゴール、カルナウバロウを含む、直径が9mm、重量が約245mgの円形錠(以下、錠剤Bという)及びガラスビーズを用い、実施例1と同様の方法に従って、錠剤を粉砕した。使用したビーズは、以下の二種類である。
・球状ガラスビーズ 粒径1mm(外径許容範囲±0.2mm)(硬度 約690kg/mm、密度 約2.4g/cm
・球状ガラスビーズ 粒径2mm(外径許容範囲±0.2mm)(硬度 約690kg/mm、密度 約2.4g/cm
具体的には、50mL容の共栓付ガラス管(容器の振とう方向の長さ約12cm)に、錠剤B 約500mg(2錠)及び各ビーズ1、2または4gを添加し、メタノール20mLを加えた後、密閉し、振とう器(TAITEC社製型番SR−2W)を用いて、振とう距離40mmで振とう速度300回/分の条件で垂直方向に振とうし、錠剤が完全に崩壊するまでの振とう時間について評価した。なお、比較例としてビーズなしの状態でも評価した(比較例5)。
結果を表3に示す。ビーズを加えない場合、錠剤は60分振とうしても完全に崩壊しなかったのに対し、ガラスビーズを用いることで錠剤を完全に崩壊することができ、また、振とう時間を短縮できることができた。なお、粒径2mmのガラスビーズについては4gのとき崩壊時間が短縮したことから、実施例1でのジルコニアビーズと同様に、ビーズの粒径が大きく、使用量が多いほど効果が向上する傾向にあった。
Example 4 and Comparative Example 5
Film-coated tablets containing 40 mg of the active ingredient (including hypromellose, titanium oxide, macrogol, carnauba wax as coating components, round tablets (hereinafter referred to as tablets B) having a diameter of 9 mm and a weight of about 245 mg) and glass beads The tablets were pulverized in the same manner as in 1. The following two types of beads were used.
・ Spherical glass beads particle size 1mm (outer diameter tolerance ± 0.2mm) (hardness approx. 690kg / mm 2 , density approx. 2.4g / cm 3 )
・ Spherical glass beads particle size 2mm (outer diameter tolerance ± 0.2mm) (hardness of about 690kg / mm 2 , density of about 2.4g / cm 3 )
Specifically, about 50 mg of a stoppered glass tube (about 12 cm in length in the shaking direction of the container), about 500 mg (2 tablets) of tablet B and each bead 1, 2 or 4 g are added, and 20 mL of methanol is added. After the addition, it is sealed and shaken vertically using a shaker (model number SR-2W, manufactured by TAITEC) at a shaking distance of 40 mm at a shaking speed of 300 times / minute, and the tablet completely disintegrates. The shaking time until the evaluation was evaluated. In addition, it evaluated also in the state without beads as a comparative example (comparative example 5).
The results are shown in Table 3. When no beads were added, the tablets did not completely disintegrate even when shaken for 60 minutes. On the other hand, by using glass beads, the tablets could be completely disintegrated, and the shaking time could be shortened. did it. In addition, since the disintegration time was shortened when the glass beads having a particle diameter of 2 mm were 4 g, like the zirconia beads in Example 1, the effect was improved as the particle diameter of the beads was larger and the amount used was larger. there were.

Figure 2010133807
Figure 2010133807

実施例5〜7及び比較例6〜8
主薬を200mg含有する口腔内崩壊錠(マンニトール、トウモロコシデンプン、アルファー化デンプン、アスパルテーム、ステアリン酸マグネシウムを含む、直径が10mm、重量が400mgの円形錠、(以下、口腔内崩壊錠Cという))及び主薬を100mg含有する口腔内崩壊錠(マンニトール、トウモロコシデンプン、アルファー化デンプン、アスパルテーム、ステアリン酸マグネシウムを含む、直径が8mm、重量が200mgの円形錠、(以下、口腔内崩壊錠Dという))を用いて、下記のような実験を行った。即ち、該2種類の錠剤は、メタノール中で容易に崩壊するが、高温多湿条件下(例えば温度50℃/湿度85%で1箇月以上など)で保存することで、メタノール中で容易に崩壊しない傾向が認められた。
具体的には、温度50℃/湿度85%で2箇月間保存した口腔内崩壊錠C及びD各1錠に、球状ジルコニアビーズ粒径5mm(外径許容範囲±0.5mm、硬度 約1200kg/mm、密度 約6.0g/cm)1又は10gを、15mL容の共栓付ガラス管(容器の振とう方向の長さ約12cm)に量りいれ、メタノール5mLを加えた後、密閉し、振とう距離40mmで振とう速度280又は300回/分の条件で垂直方向に振とうし、錠剤が完全に崩壊するまでの振とう時間を測定した。なお、比較例としてビーズなしの状態でも評価した(比較例6)。
結果を表4及び5に示す。口腔内崩壊錠Cについては振とう速度280回/分において、ビーズを加えない場合には錠剤は完全に崩壊しなかったのに対し、粒径5mmのジルコニアビーズを用いることで効果が認められた。また、大きさの異なる口腔内崩壊錠Dに対しても、300回/分でビーズを加えることでいずれも効果が認められた。
Examples 5-7 and Comparative Examples 6-8
Orally disintegrating tablets containing 200 mg of the active ingredient (including mannitol, corn starch, pregelatinized starch, aspartame, magnesium stearate, 10 mm in diameter and 400 mg in weight (hereinafter referred to as orally disintegrating tablet C)) and An orally disintegrating tablet containing 100 mg of the active ingredient (including mannitol, corn starch, pregelatinized starch, aspartame, magnesium stearate, a round tablet having a diameter of 8 mm and a weight of 200 mg (hereinafter referred to as orally disintegrating tablet D)) Then, the following experiment was conducted. That is, the two types of tablets disintegrate easily in methanol, but do not disintegrate easily in methanol by storing them under high-temperature and high-humidity conditions (for example, temperature 50 ° C./humidity 85% for 1 month or more). A trend was observed.
Specifically, one tablet each of orally disintegrating tablets C and D stored for 2 months at a temperature of 50 ° C./humidity of 85% has a spherical zirconia bead particle size of 5 mm (acceptable outer diameter ± 0.5 mm, hardness of about 1200 kg / mm 2 , density about 6.0 g / cm 3 ) 1 or 10 g is weighed into a 15 mL glass tube with a stopper (about 12 cm in length in the shaking direction of the container), and after adding 5 mL of methanol, it is sealed, The sample was shaken in the vertical direction at a shaking distance of 40 mm at a shaking speed of 280 or 300 times / minute, and the shaking time until the tablet completely disintegrated was measured. In addition, it evaluated also in the state without beads as a comparative example (comparative example 6).
The results are shown in Tables 4 and 5. For the orally disintegrating tablet C, at a shaking speed of 280 times / minute, the tablet did not disintegrate completely when no beads were added, whereas the effect was confirmed by using zirconia beads having a particle diameter of 5 mm. . In addition, for the orally disintegrating tablets D having different sizes, the effect was recognized by adding beads at 300 times / min.

Figure 2010133807
Figure 2010133807

Figure 2010133807
Figure 2010133807

本発明の方法を用いることにより、溶解・分散し難い試料(例えば錠剤やフィルムコーティング剤及び保存などで変質してしまったサンプル等)でも、試料を吸湿・変質させることなくかつ簡便に試料内の成分を均一に溶解・分散させることができることから、各種試験の前処理法として応用が可能である。また、成型したタブレットであれば、本発明は医薬品だけでなく、製菓、健康食品といった分野にも応用できる。   By using the method of the present invention, even a sample that is difficult to dissolve / disperse (for example, a tablet, a film coating agent, a sample that has been altered by storage, etc.) Since the components can be uniformly dissolved and dispersed, it can be applied as a pretreatment method for various tests. Moreover, if it is a molded tablet, the present invention can be applied not only to pharmaceuticals but also to fields such as confectionery and health food.

本発明における物理的衝撃において、振とう方向の容器の長さと振とう距離との関係の例を示す図である。It is a figure which shows the example of the relationship between the length of the container of a shaking direction, and the shaking distance in the physical impact in this invention. 錠剤A 1錠分の未粉砕品及び粉砕品を用い、温度25℃/60%RH中で0〜30分保存した場合の重量の変化を示す図である。It is a figure which shows the change of the weight at the time of 0-30 minutes preservation | save in the temperature 25 degreeC / 60% RH using the unmilled goods and pulverized goods for 1 tablet A.

Claims (9)

錠剤、溶媒及びビーズを含む容器に物理的衝撃を加え、錠剤とビーズを物理的に接触させることによる錠剤の粉砕方法。   A method for pulverizing a tablet by applying a physical impact to a container containing a tablet, a solvent and beads and bringing the tablet and beads into physical contact. 該ビーズの径が、錠剤の長径に対して、0.05〜1の割合である請求項1に記載の錠剤粉砕方法。   The tablet grinding method according to claim 1, wherein the diameter of the beads is 0.05 to 1 with respect to the major axis of the tablet. 錠剤1重量部に対して、ビーズが2〜200重量部の割合で配合される請求項1または2に記載の錠剤粉砕方法。   The tablet pulverization method according to claim 1 or 2, wherein beads are blended at a ratio of 2 to 200 parts by weight per 1 part by weight of the tablet. 錠剤1重量部に対して、溶媒が10〜500容量部の割合で配合される請求項1〜3のいずれかに記載の錠剤粉砕方法。   The tablet grinding method according to any one of claims 1 to 3, wherein the solvent is blended at a ratio of 10 to 500 parts by volume with respect to 1 part by weight of the tablet. 容器の全容量に対して、溶媒が1/10〜1/2容量の割合で配合される請求項1〜4のいずれかに記載の錠剤粉砕方法。   The tablet grinding method according to any one of claims 1 to 4, wherein the solvent is blended at a ratio of 1/10 to 1/2 volume with respect to the total volume of the container. 物理的衝撃が、容器を振とうさせる方法または容器を超音波処理する方法である請求項1〜5のいずれかに記載の錠剤粉砕方法。   The tablet crushing method according to any one of claims 1 to 5, wherein the physical impact is a method of shaking the container or a method of ultrasonicating the container. 物理的衝撃が、振とう方向の容器の長さ(L)に対して0.2〜4程度の割合の振とう距離(D)で毎分80回以上振とうさせる方法である請求項6に記載の錠剤粉砕方法。   The physical impact is a method of shaking 80 times or more at a shaking distance (D) of a ratio of about 0.2 to 4 with respect to the length (L) of the container in the shaking direction. Tablet crushing method. 振とう方向が、垂直、水平又は傾斜のある方向で直線状若しくは曲線状である請求項7に記載の錠剤粉砕方法。   The tablet crushing method according to claim 7, wherein the shaking direction is a straight line or a curved line in a vertical, horizontal or inclined direction. 請求項1〜8のいずれかの方法を用いる錠剤に含まれる成分の分析方法。   The analysis method of the component contained in the tablet using the method in any one of Claims 1-8.
JP2008309154A 2008-12-03 2008-12-03 Method of grinding tablet and method of analyzing tablet constituent using the same Pending JP2010133807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309154A JP2010133807A (en) 2008-12-03 2008-12-03 Method of grinding tablet and method of analyzing tablet constituent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309154A JP2010133807A (en) 2008-12-03 2008-12-03 Method of grinding tablet and method of analyzing tablet constituent using the same

Publications (1)

Publication Number Publication Date
JP2010133807A true JP2010133807A (en) 2010-06-17

Family

ID=42345242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309154A Pending JP2010133807A (en) 2008-12-03 2008-12-03 Method of grinding tablet and method of analyzing tablet constituent using the same

Country Status (1)

Country Link
JP (1) JP2010133807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523364A (en) * 2013-06-17 2016-08-08 ラプター ファーマシューティカルズ インコーポレイテッド Method for analyzing cysteamine composition
JP2018031779A (en) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 Sample preparation method and sample analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523364A (en) * 2013-06-17 2016-08-08 ラプター ファーマシューティカルズ インコーポレイテッド Method for analyzing cysteamine composition
JP2018031779A (en) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 Sample preparation method and sample analysis method

Similar Documents

Publication Publication Date Title
EP1401401B1 (en) Method for high through put screening using a small scale mill or microfluidics
Tabbakhian et al. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent-antisolvent technique
Javadzadeh et al. Effect of some commercial grades of microcrystalline cellulose on flowability, compressibility, and dissolution profile of piroxicam liquisolid compacts
Ye et al. Development and optimization of solid dispersion containing pellets of itraconazole prepared by high shear pelletization
JP2010133807A (en) Method of grinding tablet and method of analyzing tablet constituent using the same
Pandit et al. In vitro-in vivo evaluation of fast-dissolving tablets containing solid dispersion of pioglitazone hydrochloride
Dixit et al. In vitro and in vivo advantage of celecoxib surface solid dispersion and dosage form development
EP2855296B1 (en) Device for the collection, pre-analytic treatment, transport and grinding of solid samples
Muppalaneni et al. Crush resistance and insufflation potential of poly (ethylene oxide)-based abuse deterrent formulations
Aschkenasy et al. On-demand release by ultrasound from osmotically swollen hydrophobic matrices
Krishnamoorthy et al. Physicochemical characterization and in vitro dissolution behavior of olanzapine-mannitol solid dispersions
Render et al. Bio-based calcium carbonate (CaCO3) nanoparticles for drug delivery applications
Trisopon et al. Development of a direct compression excipient from epichlorohydrin‐crosslinked carboxymethyl rice starch with sodium silicate using a coprocessing technique
Cunha-Filho et al. Development and physical evaluation of Maytenus ilicifolia effervescent granules using factorial design
Jørgensen et al. In vitro-in vivo relationship for amorphous solid dispersions using a double membrane dissolution-permeation setup
Beretta et al. Insights into the impact of nanostructural properties on powder tribocharging: the case of milled salbutamol sulfate
Fukunaka et al. Dissolution characteristics of cylindrical particles and tablets
CN105434381A (en) Chloramphenicol tablet preparation method, chloramphenicol tablet, and applications thereof
Gohel et al. Resolving issues of content uniformity and low permeability using eutectic blend of camphor and menthol
Aiache et al. Powders as dosage forms
Basavaraj et al. Vigna mungo mucilage—A natural polymer in the design of matrix based SR tablet of aceclofenac
Cavinato Oral Suspensions
POTTI et al. Orodispersible tablets of telmisartan through cyclodextrin-surfactant complexation: A quality by design approach.
Nickerson et al. Agitation and Particle Size Reduction Techniques
Sharma et al. Formulation, evaluation and optimization of mouth dissolving tablets of losartan potassium: effect of coprocessed superdisintegrants