JP2010133747A - Partial discharge discrimination method - Google Patents

Partial discharge discrimination method Download PDF

Info

Publication number
JP2010133747A
JP2010133747A JP2008307989A JP2008307989A JP2010133747A JP 2010133747 A JP2010133747 A JP 2010133747A JP 2008307989 A JP2008307989 A JP 2008307989A JP 2008307989 A JP2008307989 A JP 2008307989A JP 2010133747 A JP2010133747 A JP 2010133747A
Authority
JP
Japan
Prior art keywords
signal
partial discharge
data
signals
distribution pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008307989A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagai
美徳 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008307989A priority Critical patent/JP2010133747A/en
Publication of JP2010133747A publication Critical patent/JP2010133747A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily discriminate a signal arising from partial discharge from an electric device to be measured from a continuous noise signal. <P>SOLUTION: A sensor 11 for detecting a signal including a partial discharge signal disposed at the electric device to be measured is provided. The signal detection by the sensor 11 is amplified by an amplifier 12, and distributed into a plurality of k pieces by a distributor 13. The distributed signals are inputted to band-pass filters 14<SB>1</SB>to 14<SB>k</SB>, and signals F<SB>1</SB>to F<SB>k</SB>are sent to the outputs of the band-pass filters 14<SB>1</SB>to 14<SB>k</SB>. The output signals F<SB>1</SB>to F<SB>k</SB>are inputted to pulse converters 15<SB>1</SB>to 15<SB>k</SB>, and pulse signals P<SB>1</SB>to P<SB>k</SB>are outputted to the output. Next, each output signal of the pulse converters 15<SB>1</SB>to 15<SB>k</SB>is sent to a signal extraction part 16 for first time analysis, then supplied to a signal processing part 17 for second time analysis, and sent to a determination part 18 for third time analysis. The signal sent to the determination part 18 is compared with data stored in advance in a diagnosis database 19 to determine whether the signal is the partial discharge signal. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、運転中の電気機器から発生する部分放電信号とノイズ信号とを良好に判別することができる部分放電判別方法に関するものである。   The present invention relates to a partial discharge discriminating method that can satisfactorily discriminate between a partial discharge signal and a noise signal generated from an electric device in operation.

運転中の電気機器から発生する部分放電信号とノイズ信号との判別方法としては、カットオフ周波数を変更しながら最適な周波数を選定して部分放電信号を計測する手段がある(特許文献1参照。)。   As a method for discriminating between a partial discharge signal and a noise signal generated from an electric device in operation, there is means for measuring a partial discharge signal by selecting an optimum frequency while changing a cutoff frequency (see Patent Document 1). ).

また、部分放電信号の平均化データを作製し減算することにより、同一タイミングで同一強度のノイズ信号が消去されるが、ランダムノイズ信号等は消去されないため、検出精度は良いとは言えない(特許文献2参照。)。
特開2004−101418号公報 特開平07−260868号公報
Also, by creating and subtracting averaged data of partial discharge signals, noise signals with the same intensity are erased at the same timing, but random noise signals etc. are not erased, so it cannot be said that the detection accuracy is good (patent) Reference 2).
JP 2004-101418 A JP 07-260868 A

被計測電気機器から発生する部分放電信号を計測して、その信号が部分放電信号であるかノイズ信号であるかを判断する方法は、ノイズ信号と部分放電信号との判別が一番の問題となっている。   Measuring the partial discharge signal generated from the electrical equipment to be measured, and determining whether the signal is a partial discharge signal or a noise signal, distinguishing the noise signal from the partial discharge signal is the biggest problem. It has become.

上記文献1の方法では、バックグランドノイズ信号は、判別できてもパルス状のノイズ信号は判別できない問題がある。また、計測を数回実施する必要があり、計測に時間がかかる問題もある。さらに、強いパルス状のノイズ信号があると、それを計測して部分放電であると誤判断してしまうおそれもある。   The method of Document 1 has a problem that a background noise signal can be discriminated but a pulsed noise signal cannot be discriminated. Moreover, it is necessary to carry out the measurement several times, and there is a problem that the measurement takes time. Furthermore, if there is a strong pulse noise signal, it may be erroneously determined to be partial discharge by measuring it.

例えば、被計測電気機器が設置されてある現地での測定では、部分放電による信号の他に様々なノイズ信号が計測され、このノイズ信号との判別がかなり難しい。特に、部分放電とよく似たパルス状の信号が周辺機器からのノイズ信号として計測される時があり、この場合はノイズ信号なのか、部分放電信号なのかの判断が特定できない問題がある。   For example, in the measurement at the site where the electric device to be measured is installed, various noise signals are measured in addition to the signal due to the partial discharge, and it is quite difficult to distinguish from the noise signal. In particular, a pulse-like signal that is similar to partial discharge is sometimes measured as a noise signal from a peripheral device. In this case, there is a problem that it is not possible to specify whether the signal is a noise signal or a partial discharge signal.

本発明の目的は、上記の事情に鑑みてなされたもので、被計測電気機器からの部分放電による信号と、連続的ノイズとが容易に判別できるようにするとともに、部分放電とよく似たパルス状のノイズとの判別もできるようにした部分放電判別方法を提供することにある。   The object of the present invention has been made in view of the above circumstances, and makes it possible to easily discriminate between a signal due to partial discharge from a measured electrical device and continuous noise, and a pulse similar to that of partial discharge. It is another object of the present invention to provide a partial discharge discrimination method that can also discriminate between noises.

上記の課題を達成するために、請求項1に係る発明は、部分放電信号を含んだ信号を検出するセンサを被計測電気機器に配置し、このセンサで部分放電信号を含んだ信号を検出した後、検出した信号を複数に分配し、分配された信号を一定の周波数帯域毎にフィルタ処理してからそれぞれパルス信号に変換し、変換されたパルス信号からパルス数ごとに分類して信号を第1時間解析によりデータとして抽出し、抽出されたデータの信号発生時間を印加電圧の1/2周期またはn周期ごとに区切って第2時間解析によりデータを信号処理した後、その信号処理により得たデータ分布パターンと、予め部分放電発生時のデータ分布パターンやノイズ信号分布パターンが格納された診断データベースの分布パターンと照合し、その照合結果から前記被計測電気機器から発生した部分放電信号有無を第3時間解析により判定することを特徴とする。   In order to achieve the above object, in the invention according to claim 1, a sensor for detecting a signal including a partial discharge signal is disposed in an electric device to be measured, and the signal including the partial discharge signal is detected by the sensor. After that, the detected signal is distributed into a plurality of signals, the distributed signal is filtered for each fixed frequency band, converted into pulse signals, and the converted pulse signals are classified according to the number of pulses. The data was extracted by 1 hour analysis, and the signal generation time of the extracted data was divided into ½ period or n period of the applied voltage and the data was processed by the second time analysis, and then obtained by the signal processing. The data distribution pattern is collated with the distribution pattern of the diagnostic database in which the data distribution pattern and noise signal distribution pattern at the time of partial discharge are stored in advance, And judging a partial discharge signal presence generated from measured electrical equipment by third time analysis.

また、請求項2に係る発明は、請求項1において、第2時間解析によりデータを信号処理した後、その信号処理により得たデータ分布パターンは、データの信号発生時間に対する信号発生回数を棒グラフ表示させることを特徴とする。   According to a second aspect of the present invention, in the first aspect, after the data is signal-processed by the second time analysis, the data distribution pattern obtained by the signal processing is a bar graph display of the number of signal generations with respect to the signal generation time of the data. It is characterized by making it.

本発明によれば、センサで検出した信号を増幅した後、検出した信号を複数に分配して周波数帯域毎にフィルタ処理を行ってからパルス信号に変換し、変換した信号から目的の信号を抽出し、その後、診断データベースに格納されている部分放電発生時のデータ分布パターンやノイズ信号分布パターンと照合し判定するようにしたことにより、被計測電気機器からの部分放電による信号と、一定時間継続している連続的ノイズ(ベースノイズ等)信号とを、容易に判別することができるとともに、部分放電信号とよく似たパルス状のノイズ信号をも判別することができる利点がある。   According to the present invention, after amplifying the signal detected by the sensor, the detected signal is distributed to a plurality of signals, filtered for each frequency band, converted to a pulse signal, and a target signal is extracted from the converted signal. After that, by comparing with the data distribution pattern and noise signal distribution pattern at the time of partial discharge occurrence stored in the diagnostic database, the signal from the partial discharge from the electric device to be measured and continued for a certain period of time Thus, there is an advantage that a continuous noise (base noise or the like) signal can be easily discriminated and a pulsed noise signal similar to the partial discharge signal can be discriminated.

また、信号処理により得たデータ分布パターンは、棒グラフ表示するようにしたので、部分放電信号分布とノイズ信号分布との判定が明確になる。構成の簡略化が図れるので、分析時間の短縮、コンパクトで軽量しかも経済的に有利となる利点もある。   Further, since the data distribution pattern obtained by the signal processing is displayed as a bar graph, the determination of the partial discharge signal distribution and the noise signal distribution becomes clear. Since the configuration can be simplified, there are also advantages that the analysis time is shortened, and that it is compact, lightweight and economically advantageous.

以下本発明の実施の形態を図面に基づいて説明する。図1は本発明の実施の形態を示すブロック構成図で、図1において、11は、図示しない被計測電気機器に配置された部分放電信号を含んだ信号検出用のセンサ11である。このセンサ11は、被計測電気機器からの部分放電に伴って発生するパルス電流を計測するためのもので、例えば、被計測電気機器の接地線に取り付けた高周波CTや被計測電気機器の接地線近傍に配置された磁界プローブ等から構成される。なお、このセンサ11は、被計測電気機器の近傍に配置され、前記部分放電に伴って発生する電磁波等を検出するアンテナであってもよい。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a signal detection sensor 11 including a partial discharge signal arranged in an electric device to be measured (not shown). The sensor 11 is for measuring a pulse current generated with a partial discharge from the electric device to be measured. For example, a high-frequency CT attached to the ground wire of the electric device to be measured or a ground wire of the electric device to be measured It consists of a magnetic field probe or the like arranged in the vicinity. The sensor 11 may be an antenna that is disposed in the vicinity of the electric device to be measured and detects an electromagnetic wave or the like generated with the partial discharge.

センサ11が検出した信号は、増幅器12で一定レベルまで増幅した後、分配器13に入力されて出力が複数k個に分配される。分配された信号は、複数k個から構成される帯域フィルタ141〜14kに入力され、その帯域フィルタ141〜14kの出力には、信号F1,F2・・・Fkが送出される。ここでは、k=3として分配器13で3分割し帯域フィルタ141,142、143の測定周波数点f1、f2、f3を50MHz、100MHz、150MHzとした。 The signal detected by the sensor 11 is amplified to a certain level by the amplifier 12 and then input to the distributor 13 and the output is distributed into a plurality of k pieces. Distributed signal is input from a plurality of k to the band filter 14 1 to 14 k configured, the output of the bandpass filter 14 1 to 14 k, signal F 1, F 2 ··· F k is sent Is done. Here, we bandpass filter 14 1 to 3 divided by the distributor 13 as k = 3, 14 2, 14 3 of the measurement frequency points f 1, f 2, f 3 50MHz, 100MHz, and 150 MHz.

帯域フィルタ141,142、143の出力に送出された信号F1,F2,F3(図2(a)に例を示す)の内、信号F1,F2は、時間t1、t2、t3に出力され、信号F3は時間t1、t3に出力される。 Of the signals F 1 , F 2 , and F 3 (examples shown in FIG. 2 (a)) sent to the outputs of the band-pass filters 14 1 , 14 2 , and 14 3 , the signals F 1 and F 2 have a time t 1. is output to t 2, t 3, the signal F 3 is output to the time t 1, t 3.

帯域フィルタ141,142、143から出力された信号F1,F2,F3は、パルス変換器151,152,153に入力される。パルス変換器151,152,153は、入力された信号の値が、一定値以上ある時間に図2(b)に示すパルス信号P1,P2,P3を出力するものである。このパルス信号変換により高周波成分がカットされ、データが簡素化されて取り扱いが容易になる。なお、パルス変換器は、上記の説明では3個の場合について述べたが、このパルス変換器は、帯域フィルタ141〜14kと同数の複数k個設けられる。 Bandpass filter 14 1, 14 2, 14 3 signal F 1 outputted from, F 2, F 3 are inputted to the pulse converter 15 1, 15 2, 15 3. The pulse converters 15 1 , 15 2 , and 15 3 output the pulse signals P 1 , P 2 , and P 3 shown in FIG. . By this pulse signal conversion, high frequency components are cut, data is simplified and handling becomes easy. Note that the pulse converter, in the above description has dealt with the case of three, the pulse converter is provided a plurality of k equal to the band-pass filter 14 1 to 14 k.

次に、パルス変換器151〜15kの各出力信号は、信号抽出部16に入力された後、後述する第1時間解析が実施されて、信号抽出部16から信号が出力されて、信号処理部17に入力される。この信号処理部17では、後述する第2時間解析が実施された後、判定部18に供給されて診断データベース(診断DB)19に格納されている分布パターンと照合されて後述する第3時間解析が実施される。 Next, after each output signal of the pulse converters 15 1 to 15 k is input to the signal extraction unit 16, a first time analysis described later is performed, and a signal is output from the signal extraction unit 16, Input to the processing unit 17. In the signal processing unit 17, after a second time analysis described later is performed, a third time analysis described later is performed by collating with a distribution pattern supplied to the determination unit 18 and stored in the diagnosis database (diagnosis DB) 19. Is implemented.

なお、上記実施の形態において、分配器13、帯域フィルタ141〜14k、パルス変換器151〜15kで簡易的な時間−周波数分析部20が構成される。 In the above embodiment, the simple time-frequency analysis unit 20 is configured by the distributor 13, the band-pass filters 14 1 to 14 k , and the pulse converters 15 1 to 15 k .

次に、センサ11に、例えば高周波CTを適用して被計測電気機器からの部分放電信号を含んだ信号によるパルス電流を測定し、この測定したパルス電流を分析処理する方法を以下に述べる。   Next, a method for measuring the pulse current based on a signal including a partial discharge signal from the electric device to be measured by applying, for example, high frequency CT to the sensor 11 and analyzing the measured pulse current will be described below.

図3及び図4は、実際のフィールドA,Bにおける被計測電気機器の接地線に高周波CTを取り付けて測定したデータを時間−周波数分析した結果の特性図で、両図において、x軸が周波数、y軸が時間、z軸が信号出力である。   3 and 4 are characteristic diagrams of the results of time-frequency analysis of data measured by attaching a high-frequency CT to the ground line of the electrical equipment to be measured in actual fields A and B. In both figures, the x-axis represents the frequency. , Y-axis is time, and z-axis is signal output.

図3及び図4において、A1,B1は時間に関係なく常に発生しているベースノイズ信号、A2,A3はパルス状の信号であって、信号A2は周波数幅が狭く、信号A3は周波数幅が広い信号であり、また、B2,B3はパルス状の信号であって、信号B2は周波数幅が広い信号,信号B3は周波数幅が狭い信号である。この信号が分配器13、帯域フィルタ141,142、143、パルス変換器151,152,153に順次入力される。 3 and 4, A1 and B1 are base noise signals that are always generated regardless of time, A2 and A3 are pulse signals, the signal A2 has a narrow frequency width, and the signal A3 has a frequency width. B2 and B3 are pulse signals, the signal B2 is a signal with a wide frequency width, and the signal B3 is a signal with a narrow frequency width. This signal is sequentially input to the distributor 13, the bandpass filters 14 1 , 14 2 , 14 3 , and the pulse converters 15 1 , 15 2 , 15 3 .

まず、第1時間解析の信号抽出部16での処理について信号が3つの場合を例にとって述べる。パルス変換器151、152、153からのパルス出力信号P1,P2,P3が信号抽出部16に送られる。この信号抽出部16では、3つのパルス出力信号の内、いずれか1つのみの信号の場合はw1、2つの信号の場合はw2、3つの信号の場合はw3、としてパルス数ごと(w1,w2,w3)に分類して信号をデータとして抽出する。周波数幅ごとに分類して抽出したのと同様な効果が得られる。(この抽出結果から図3、図4に示すA1,B1のノイズ信号がカットされる。)図2(b)では、時間t1とt3がw3、時間t2がw2と分類される。 First, the processing in the signal extraction unit 16 in the first time analysis will be described by taking an example in which there are three signals. Pulse output signals P 1 , P 2 , P 3 from the pulse converters 15 1 , 15 2 , 15 3 are sent to the signal extraction unit 16. In this signal extraction unit 16, w3 in the case of only one of the three pulse output signals, w2 in the case of two signals, and w3 in the case of three signals, for each number of pulses (w1, The signals are classified as w2 and w3) and extracted as data. The same effect as that obtained by classifying and extracting for each frequency width can be obtained. (The noise signals A1 and B1 shown in FIGS. 3 and 4 are cut from the extraction result.) In FIG. 2B, the times t 1 and t 3 are classified as w3 and the time t 2 is classified as w2.

次に、第2時間解析の信号処理部17の処理について述べる。前記信号抽出部16で抽出されたデータの信号発生時間に着目し、印加電圧の1/2周期またはn周期ごと(n:1以上の整数)に区切って、第2時間解析によりデータを信号処理して図5、図6に示すようにデータを順次上方に並べて表示する。図5、図6では、印加電圧の1周期分(50Hzなので20ms)とした。   Next, the processing of the signal processing unit 17 in the second time analysis will be described. Paying attention to the signal generation time of the data extracted by the signal extraction unit 16, the data is processed by the second time analysis by dividing the applied voltage every 1/2 cycle or every n cycles (n: integer of 1 or more). Then, as shown in FIG. 5 and FIG. In FIG. 5 and FIG. 6, it was set as 1 period (20 ms since it is 50 Hz) of the applied voltage.

図5、図6のデータ表示方法は、グラフの原点を「0ms(スタート)」とし、第1時間解析の信号抽出部15で抽出したデータの発生時間を次のように表示した。   In the data display method of FIGS. 5 and 6, the origin of the graph was set to “0 ms (start)”, and the generation time of the data extracted by the signal extraction unit 15 of the first time analysis was displayed as follows.

「0〜20msをx軸方向にx=0、y=0からx=20ms、y=0に表示
20〜40msをx軸方向にx=0、y=1からx=20ms、y=1に表示
40〜60msをx軸方向にx=0、y=2からx=20ms、y=2に表示」
以上を順次繰り返して図5、図6のようにデータを表示する。
“Displays 0 to 20 ms in the x-axis direction at x = 0, y = 0 to x = 20 ms, y = 0. 20 to 40 ms in the x-axis direction from x = 0, y = 1 to x = 20 ms, y = 1 Display 40-60 ms in the x-axis direction from x = 0, y = 2 to x = 20 ms, y = 2 ”
The above is sequentially repeated to display data as shown in FIGS.

次に、第3時間解析の判定部18の処理について述べる。第2時間解析の信号処理部17より送られてきたデータ分布パターンと診断データベース19に格納されている分布パターンとを照合し、最終的にノイズ信号をカットして部分放電による信号を抽出し、被計測電気機器からの部分放電信号であるかの有無を第3時間解析により判定する。   Next, the process of the determination unit 18 in the third time analysis will be described. The data distribution pattern sent from the signal processing unit 17 of the second time analysis is compared with the distribution pattern stored in the diagnostic database 19, and finally the noise signal is cut to extract a signal due to partial discharge, The third time analysis determines whether or not the signal is a partial discharge signal from the electrical device to be measured.

例えば、図5の場合は、w1は印加電圧に関係なく分布していることから、ノイズ信号と判定でき(ノイズ信号A2がカットされる)、w2は数が少ないことから単発的なノイズと判定し、w3は1相から部分放電が発生した場合の典型的な分布パターンであると判定し、これらの判定から、w3の分布が部分放電信号と判定される。   For example, in the case of FIG. 5, since w1 is distributed regardless of the applied voltage, it can be determined as a noise signal (noise signal A2 is cut), and w2 is determined as a single noise because of its small number. Then, w3 is determined to be a typical distribution pattern when partial discharge occurs from one phase, and from these determinations, the distribution of w3 is determined to be a partial discharge signal.

また、図6の場合は、w1は数が少ないことから単発的なノイズと判定し、w2は1相から部分放電が発生した場合の典型的な分布パターンであると判定し、w3は一定の時間に周期的に分布していることから周期的なノイズ信号と(ノイズ信号B2がカットされる)と判定し、これらの判定からw2の分布が部分放電信号と判定される。   In the case of FIG. 6, since w1 is small, it is determined that it is a single noise, w2 is determined to be a typical distribution pattern when partial discharge occurs from one phase, and w3 is constant. Since it is periodically distributed over time, it is determined that it is a periodic noise signal (noise signal B2 is cut), and from these determinations, the distribution of w2 is determined as a partial discharge signal.

以上のように、パルス状の信号をパルス数ごと、すなわち周波数幅ごとに分類した信号発生時間での分布パターンからノイズ信号分布パターンとの判別が可能となる。なお、図3に示すフィールドAでは、部分放電信号A3がノイズ信号A2よりも周波数幅が広い信号であったが、図4に示すフィールドBでは、ノイズ信号B2が部分放電信号B3よりも周波数幅が広い信号であった。この結果、後者のフィールドBのようにノイズ信号より周波数幅が狭い部分放電信号でも抽出が可能である。   As described above, it is possible to discriminate the noise signal distribution pattern from the distribution pattern at the signal generation time obtained by classifying the pulse-like signal for each number of pulses, that is, for each frequency width. In the field A shown in FIG. 3, the partial discharge signal A3 has a wider frequency width than the noise signal A2, but in the field B shown in FIG. 4, the noise signal B2 has a frequency width larger than that of the partial discharge signal B3. There was a wide signal. As a result, it is possible to extract even a partial discharge signal whose frequency width is narrower than the noise signal as in the latter field B.

また、ベースノイズ等の連続発生ノイズ信号、部分放電信号とよく似たパルス状の周辺機器からのノイズ信号、印加電圧に依存しないランダムなノイズ信号等とを区別し、部分放電による信号を漏れなく計測することにより精度の良い測定が可能である。   In addition, it distinguishes continuously generated noise signals such as base noise, noise signals from pulse-like peripheral devices that are similar to partial discharge signals, random noise signals that do not depend on applied voltage, etc. Accurate measurement is possible by measuring.

図7及び図8は、図5及び図6に示すx軸をm分割し(m:2以上の整数)時間帯ごとの発生回数をカウントし、分布表示させた結果を示す棒グラフである。このように棒グラフ表示することにより、部分放電信号とノイズ信号との判定が明確にできるようになる。図7及び図8は20msを20分割して表示した例である。   FIG. 7 and FIG. 8 are bar graphs showing the results of distribution distribution display by counting the number of occurrences for each time zone by dividing the x-axis shown in FIG. 5 and FIG. 6 into m (m: integer of 2 or more). By displaying the bar graph in this way, it becomes possible to clearly determine the partial discharge signal and the noise signal. 7 and 8 show examples in which 20 ms is divided into 20 parts.

図1は本発明の実施の形態を示すブロック構成図。FIG. 1 is a block diagram showing an embodiment of the present invention. (a)は帯域フィルタの出力信号を、(b)はパルス変換器の出力信号を示す説明図。(A) is an explanatory diagram showing the output signal of the bandpass filter, (b) is an explanatory diagram showing the output signal of the pulse converter. フィールドAにおける電気機器の接地線に高周波CTを取り付けて測定したデータを時間−周波数分析した結果の特性図。The characteristic view of the result of having performed the time-frequency analysis of the data measured by attaching high frequency CT to the ground line of the electric equipment in the field A. フィールドBにおける電気機器の接地線に高周波CTを取り付けて測定したデータを時間−周波数分析した結果の特性図。The characteristic view of the result of having performed the time-frequency analysis of the data measured by attaching high frequency CT to the ground line of the electric equipment in the field B. フィールドAにおける信号発生時間に対する時間グラフ。The time graph with respect to the signal generation time in the field A. フィールドBにおける信号発生時間に対する時間グラフ。The time graph with respect to the signal generation time in the field B. フィールドAにおける信号発生時間帯の棒グラフ。The bar graph of the signal generation time zone in the field A. フィールドBにおける信号発生時間帯の棒グラフ。The bar graph of the signal generation time zone in the field B.

符号の説明Explanation of symbols

11…センサ
12…増幅器
13…分配器
141〜14k…帯域フィルタ
151〜15k…パルス変換器
16…信号抽出部
17…信号処理部
18…判定部
19…診断データベース
20…時間−周波数分析部
11 ... sensor 12 ... amplifier 13 ... distributor 14 1 to 14 k ... bandpass filter 15 1 to 15 k ... pulse converter 16 ... signal extracting section 17 ... signal processor 18 ... judging unit 19 ... diagnostic database 20 ... Time - Frequency Analysis department

Claims (2)

部分放電信号を含んだ信号を検出するセンサを被計測電気機器に配置し、このセンサで部分放電信号を含んだ信号を検出した後、検出した信号を複数に分配し、分配された信号を一定の周波数帯域毎にフィルタ処理してからそれぞれパルス信号に変換し、変換されたパルス信号からパルス数ごとに分類して信号を第1時間解析によりデータとして抽出し、抽出されたデータの信号発生時間を印加電圧の1/2周期またはn周期ごとに区切って第2時間解析によりデータを信号処理した後、その信号処理により得たデータ分布パターンと、予め部分放電発生時のデータ分布パターンやノイズ信号分布パターンが格納された診断データベースの分布パターンと照合し、その照合結果から前記被計測電気機器から発生した部分放電信号の有無を第3時間解析により判定することを特徴とする部分放電判別方法。   A sensor that detects a signal that includes a partial discharge signal is placed in the electrical device to be measured. After detecting a signal that includes a partial discharge signal with this sensor, the detected signal is distributed to multiple units, and the distributed signal is constant. Are converted into pulse signals after being filtered for each frequency band, and the signals are classified as the number of pulses from the converted pulse signals and extracted as data by the first time analysis, and the signal generation time of the extracted data Is divided every 1/2 period or n period of the applied voltage, and the data processing is performed by the second time analysis, and then the data distribution pattern obtained by the signal processing and the data distribution pattern or noise signal at the time of occurrence of partial discharge in advance The distribution pattern is collated with the distribution pattern of the diagnostic database in which the distribution pattern is stored, and from the result of the collation, the presence or absence of the partial discharge signal generated from the electric device to be measured is third. Partial discharge determination method characterized by determining by between analysis. 前記第2時間解析によりデータを信号処理した後、その信号処理により得たデータ分布パターンは、データの信号発生時間に対する信号発生回数を棒グラフ表示させることを特徴とする請求項1記載の部分放電判別方法   2. The partial discharge determination according to claim 1, wherein after data processing is performed by the second time analysis, the data distribution pattern obtained by the signal processing displays a bar graph display of the number of signal generations with respect to the signal generation time of the data. Method
JP2008307989A 2008-12-02 2008-12-02 Partial discharge discrimination method Pending JP2010133747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307989A JP2010133747A (en) 2008-12-02 2008-12-02 Partial discharge discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307989A JP2010133747A (en) 2008-12-02 2008-12-02 Partial discharge discrimination method

Publications (1)

Publication Number Publication Date
JP2010133747A true JP2010133747A (en) 2010-06-17

Family

ID=42345189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307989A Pending JP2010133747A (en) 2008-12-02 2008-12-02 Partial discharge discrimination method

Country Status (1)

Country Link
JP (1) JP2010133747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020161967A1 (en) * 2019-02-04 2021-02-18 住友電気工業株式会社 Partial discharge detector
CN116973702A (en) * 2023-07-31 2023-10-31 上海莫克电子技术有限公司 Signal identification method and system applied to GIS partial discharge test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221880A (en) * 1990-01-27 1991-09-30 Hitachi Ltd Detector of insulation deterioration for electric apparatus
JP2001133506A (en) * 1999-11-01 2001-05-18 Hitachi Ltd Method and device for diagnosing compressed gas insulation equipment
JP2004328810A (en) * 2003-04-21 2004-11-18 Hitachi Ltd Method and device for partial discharge diagnosis of gas insulated switch
JP2005283523A (en) * 2004-03-31 2005-10-13 Tempearl Ind Co Ltd Device for detecting occurrence of partial discharge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221880A (en) * 1990-01-27 1991-09-30 Hitachi Ltd Detector of insulation deterioration for electric apparatus
JP2001133506A (en) * 1999-11-01 2001-05-18 Hitachi Ltd Method and device for diagnosing compressed gas insulation equipment
JP2004328810A (en) * 2003-04-21 2004-11-18 Hitachi Ltd Method and device for partial discharge diagnosis of gas insulated switch
JP2005283523A (en) * 2004-03-31 2005-10-13 Tempearl Ind Co Ltd Device for detecting occurrence of partial discharge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020161967A1 (en) * 2019-02-04 2021-02-18 住友電気工業株式会社 Partial discharge detector
CN116973702A (en) * 2023-07-31 2023-10-31 上海莫克电子技术有限公司 Signal identification method and system applied to GIS partial discharge test
CN116973702B (en) * 2023-07-31 2024-04-05 上海莫克电子技术有限公司 Signal identification method and system applied to GIS partial discharge test

Similar Documents

Publication Publication Date Title
US20130289897A1 (en) Electromagnetic flowmeter and self-diagnosing method of exciting circuit unit thereof
JP5228558B2 (en) Partial discharge detection device by electromagnetic wave detection and detection method thereof
JP2010133746A (en) Partial discharge discrimination method
JP2010085386A (en) Apparatus for measuring superhigh frequency partial discharge and partial discharge position for high-voltage power apparatus
KR20160058723A (en) Partial discharge measurement apparatus, partial discharge measurement method, and program
JPH09274095A (en) Reactor output monitor
JP2010133747A (en) Partial discharge discrimination method
JP6483972B2 (en) Signal processing method and signal processing apparatus
WO2022054482A1 (en) Partial discharge monitoring device and partial discharge monitoring method
JP2006220629A (en) Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery
JP2010266327A (en) Facility diagnosis device and facility diagnosis method
JP5120133B2 (en) Partial discharge detection method by magnetic field measurement
JP2005147890A (en) Insulation abnormality diagnostic device
JP2007292700A (en) Partial discharge position specifying method of stationary induction apparatus
JP2006275831A (en) Voltage application type circuit failure probe system
JP2019039845A (en) Partial discharge diagnosis device and partial discharge diagnosis method
JP4998706B2 (en) Transformer internal abnormality diagnosis method
JP6037670B2 (en) Radiation measurement equipment
JP5900296B2 (en) Vibration analysis apparatus, vibration analysis method, and vibration analysis program
US8436625B2 (en) Identification of power system primary arcs based on pulse density
JP7373274B2 (en) Partial discharge detection device and partial discharge detection method
JP2007114050A (en) Method and device of diagnosing abnormality of insulation
JP7373277B2 (en) Partial discharge detection device and partial discharge detection method
JP3177313B2 (en) Diagnosis method for insulation deterioration of power equipment
RU51238U1 (en) MANUAL METAL DETECTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318