JP2010133389A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2010133389A
JP2010133389A JP2008312457A JP2008312457A JP2010133389A JP 2010133389 A JP2010133389 A JP 2010133389A JP 2008312457 A JP2008312457 A JP 2008312457A JP 2008312457 A JP2008312457 A JP 2008312457A JP 2010133389 A JP2010133389 A JP 2010133389A
Authority
JP
Japan
Prior art keywords
fuel
injection valve
collision
fuel injection
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312457A
Other languages
Japanese (ja)
Other versions
JP5174644B2 (en
Inventor
Fumiya Chazono
史也 茶園
Takashi Yonezawa
崇 米澤
Kazuhiko Kawajiri
和彦 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008312457A priority Critical patent/JP5174644B2/en
Publication of JP2010133389A publication Critical patent/JP2010133389A/en
Application granted granted Critical
Publication of JP5174644B2 publication Critical patent/JP5174644B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve creating a fuel liquid film which can be easily atomized. <P>SOLUTION: A fuel impingement surface on which injected fuel from an injection hole impinges and the fuel liquid film is created is inclined to an axis of the injection hole, is a curved surface convex to a side on which the injected fuel impinges, and includes a flashing edge part at a downstream side of fuel. The fuel impingement surface is an outer circumference surface of a roughly cylindrical shape fuel impingement member having a diameter larger than the injection hole or an inner circumference surface of an opening surrounding the injection hole of a plate member, and is a developable surface such as a column surface, a cone surface, and a tangent surface. The fuel liquid film which can be easily atomized is stably created. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は燃料噴射弁に関し、特に燃料の微粒子化を促進できて自動車のエンジンなどの内燃機関用に特に適した燃料噴射弁に関するものである。   The present invention relates to a fuel injection valve, and more particularly to a fuel injection valve that can promote the atomization of fuel and is particularly suitable for an internal combustion engine such as an automobile engine.

内燃機関用の燃料噴射弁においては、噴射燃料粒子径が小さいほど燃料の蒸発が促進されるとともに、エンジン内壁への燃料付着量が減少し、未燃焼の燃料排出量が低減され、燃費が向上し、有害排出ガス量が低減する。   In a fuel injection valve for an internal combustion engine, the smaller the injected fuel particle size, the more the fuel evaporation is promoted, the amount of fuel adhering to the engine inner wall is reduced, the amount of unburned fuel is reduced, and the fuel efficiency is improved. This reduces the amount of harmful emissions.

噴射燃料の微粒子化手段としては噴孔下流に設置された燃料衝突部材に燃料を衝突させ、噴霧を拡散させて微粒子化を図るもの、また、衝突後に薄い液膜を形成することにより微粒子化を図るものが提案されている。   As a means for atomizing the injected fuel, the fuel is collided with a fuel collision member installed downstream of the nozzle hole, and the spray is diffused to atomize the fuel. Further, after the collision, the atomization is performed by forming a thin liquid film. Something that has been proposed has been proposed.

例えば、参考文献1に記載の従来技術では、噴孔部下流に断面形状を先端が曲面のくさび形とした燃料衝突部材を備えた燃料噴射弁が提案されている。この従来技術では、噴射燃料を燃料衝突部材に衝突させることで微粒子化された燃料を任意の2つの方向に噴射している。   For example, in the prior art described in Reference 1, a fuel injection valve including a fuel collision member having a wedge-shaped cross section at the downstream end of the nozzle hole is proposed. In this prior art, the fuel atomized by colliding the injected fuel with the fuel collision member is injected in two arbitrary directions.

参考文献2に記載の従来技術では、噴孔部下流に設置された燃料衝突部材の衝突面をW型に形成することによって、液膜が厚くなりやすい中央部の燃料を液膜が薄くなりやすい領域に誘導させ、形成される液膜厚さを均一にして微粒化を促進し、さらに噴霧の拡がりを抑制している。   In the prior art described in Reference 2, the liquid film tends to be thinned in the central portion where the liquid film tends to be thick by forming the collision surface of the fuel collision member installed downstream of the nozzle hole portion in a W shape. It induces to the area, makes the formed liquid film thickness uniform, promotes atomization, and further suppresses the spread of spray.

また、参考文献3に記載の従来技術では、噴孔部の下流に噴孔径よりも小さい幅の燃料衝突部材を設け燃料の一部分のみに衝突させることで噴射燃料を適切に液膜化し、噴射燃料の微粒子化を促進させている。   Further, in the prior art described in Reference 3, a fuel collision member having a width smaller than the diameter of the nozzle hole is provided downstream of the nozzle hole portion, and the injected fuel is appropriately formed into a liquid film by colliding with only a part of the fuel. Promotes the formation of fine particles.

特開平2−245470号公報JP-A-2-245470 特許3838089号公報Japanese Patent No. 3838089 特開2008−31914号公報(第1頁)JP 2008-31914 A (first page)

特許文献1の燃料噴射装置においては、断面がくさび形の燃料衝突部材に噴射燃料を衝突させることより燃料噴霧を任意の2方向に噴射させている。通常、概平面上の衝突部剤に燃料を衝突させた後に形成される液膜は中央付近が厚くなることが知られている。燃料衝突後に形成される液膜厚さに不均一が生じている場合、噴射後に空気との剪断等によりその不均一さはさらに発達し、最終的に形成される粒径は大きくなる。よって、噴霧燃料の微粒子化のためには薄く均一な液膜を形成する必要がある。この従来技術においては燃料衝突部材の軸方向に液膜厚さの不均一を解消する手段を有しておらず、液膜厚さの不均一によって粒子径の微粒子化が阻害されるという課題があった。   In the fuel injection device of Patent Document 1, fuel spray is injected in two arbitrary directions by causing the injected fuel to collide with a wedge-shaped fuel collision member. In general, it is known that the liquid film formed after the fuel collides with the collision agent on the substantially flat surface is thicker in the vicinity of the center. If the film thickness formed after the fuel collision is non-uniform, the non-uniformity further develops due to shearing with air after injection, and the particle size finally formed becomes large. Therefore, it is necessary to form a thin and uniform liquid film for atomizing the fuel spray. In this prior art, there is no means for eliminating the non-uniformity of the liquid film thickness in the axial direction of the fuel collision member, and there is a problem that the particle size is prevented from becoming fine due to the non-uniform liquid film thickness. there were.

また、特許文献2の燃料噴射装置においては、衝突面がW型に形成されており、液膜両端部が流れ込む領域が、構造上燃料が溜まりやすい凹形状となっている。液膜両端部は元々液膜厚さが厚く、速度が遅いため微粒子化には不利であることが知られているが、当該従来技術では、凹部の影響で液膜両端部の液膜厚さがさらに厚くなり、結果、噴霧両端部の微粒子化が阻害されるという課題があった。   Further, in the fuel injection device of Patent Document 2, the collision surface is formed in a W shape, and the region into which the liquid film both ends flows has a concave shape in which fuel is likely to accumulate due to its structure. It is known that both ends of the liquid film are disadvantageous for micronization because the liquid film thickness is originally thick and the speed is slow. However, in the related art, the liquid film thickness at both ends of the liquid film is affected by the recess. As a result, there is a problem in that the atomization at both ends of the spray is hindered.

また、特許文献3の燃料噴射弁においては、噴射燃料の一部のみを燃料衝突部材に衝突させている。燃料の噴射開始直後や雰囲気圧変化時などは、噴射された燃料の挙動が変化するが、その際には燃料衝突部材に衝突する燃料が大きく変化するため、それにより微粒子化を促進するための十分な拡がりをもった燃料液膜を生成することができないという課題があった。   Moreover, in the fuel injection valve of patent document 3, only a part of injected fuel is made to collide with a fuel collision member. Immediately after the start of fuel injection or when the atmospheric pressure changes, the behavior of the injected fuel changes. At that time, the fuel that collides with the fuel collision member changes greatly, thereby promoting the atomization. There has been a problem that a fuel liquid film having a sufficient spread cannot be generated.

本発明の目的は、噴射燃料の微粒子化を促進する燃料液膜を生成できる燃料噴射弁を得ることである。   An object of the present invention is to obtain a fuel injection valve capable of generating a fuel liquid film that promotes atomization of injected fuel.

本発明に係わる燃料噴射弁は、噴孔に対向して配置されて、噴射された燃料に衝突して燃料液膜を生成する燃料衝突面を備えた燃料噴射弁であって、燃料衝突面が噴孔の軸線に対して傾斜していて、噴射された燃料に衝突する側に凸の曲面であることを特徴とする燃料噴射弁である。   A fuel injection valve according to the present invention is a fuel injection valve that is disposed opposite to an injection hole and has a fuel collision surface that collides with injected fuel and generates a fuel liquid film. A fuel injection valve that is inclined with respect to the axis of the injection hole and has a convex curved surface on the side that collides with the injected fuel.

この発明の燃料噴射弁によれば、燃料衝突面が噴孔の軸線に対して傾斜していて、噴射された燃料に衝突する側に凸の曲面であるため、液膜厚さが均一で広がりが安定した燃料液膜を生成できる。   According to the fuel injection valve of the present invention, the fuel collision surface is inclined with respect to the axis of the injection hole, and is a curved surface convex toward the side that collides with the injected fuel. Can produce a stable fuel liquid film.

実施の形態1.
図1は本発明の実施の形態1による燃料噴射弁の燃料拡散室の動作軸に垂直な断面図である。燃料噴射弁1は、樹脂製ハウジング2の内部に電磁コイル3、固定鉄心4および磁気通路を構成する金属板5が配置され一体成形されている。電磁コイル3は、樹脂製のボビン3aとその外周に巻線されているコイル3bおよび外部との接続のために設けられたターミナル6により構成され、樹脂製ハウジング2に一体成形されている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view perpendicular to the operating axis of the fuel diffusion chamber of the fuel injection valve according to Embodiment 1 of the present invention. In the fuel injection valve 1, an electromagnetic coil 3, a fixed iron core 4, and a metal plate 5 constituting a magnetic passage are disposed in a resin housing 2 and are integrally formed. The electromagnetic coil 3 includes a resin bobbin 3 a, a coil 3 b wound around the outer periphery of the resin bobbin 3, and a terminal 6 provided for connection to the outside, and is integrally formed with the resin housing 2.

固定鉄心4の内部には圧縮バネ7の荷重を調整するアジャスタ8が固定されている。磁気通路を構成する金属板5は、一端が固定鉄心4に溶接で固定され、他端が磁気通路を構成する磁気パイプ9に溶接されている。固定鉄心4と磁気パイプ9との間には、磁気パイプ9の内部に配置された可動鉄心10が上下に可動なように非磁性パイプ11が配置され、この非磁性パイプ11は、固定鉄心4と磁気パイプ9とに固定されている。   An adjuster 8 for adjusting the load of the compression spring 7 is fixed inside the fixed iron core 4. One end of the metal plate 5 constituting the magnetic passage is fixed to the fixed iron core 4 by welding, and the other end is welded to the magnetic pipe 9 constituting the magnetic passage. A nonmagnetic pipe 11 is arranged between the fixed iron core 4 and the magnetic pipe 9 so that the movable iron core 10 arranged inside the magnetic pipe 9 can move up and down. And the magnetic pipe 9.

可動鉄心10の一端には、ニードルパイプ12が溶接固定されている。ニードルパイプ12の可動鉄心10側の一端は圧縮ばね7に当接しており、他端は弁部材としてボール13が溶接固定されている。   A needle pipe 12 is fixed to one end of the movable iron core 10 by welding. One end of the needle pipe 12 on the side of the movable iron core 10 is in contact with the compression spring 7, and the other end is fixed with a ball 13 as a valve member by welding.

図2は図1の円Aで囲んだ部分の拡大図、図3は、本実施の形態における、図2に示す燃料噴射弁1の先端部分をさらに拡大して噴射された燃料液膜と共に示す概略斜視図である。図2において、ボール13は、磁気パイプ9の内部に配置されたバルブシート14にガイドされ、バルブシート14のシート部14aに着座および離座できるように配置されている。ボール13の外周部は、五角形に加工され、この外周部とバルブシートのガイド部14bおよびシート部14aとの隙間でバルブシート開口部14cを形成している。噴孔18と燃料拡散室19とが形成された噴孔プレート17がバルブシート14に取り付けられている。噴孔18の軸線Bは、燃料噴射弁1の軸線Cに対して角度θ1だけ傾斜している。   FIG. 2 is an enlarged view of a portion surrounded by a circle A in FIG. 1, and FIG. 3 shows a front end portion of the fuel injection valve 1 shown in FIG. It is a schematic perspective view. In FIG. 2, the ball 13 is guided by a valve seat 14 disposed inside the magnetic pipe 9, and is disposed so as to be seated and separated from the seat portion 14 a of the valve seat 14. The outer peripheral portion of the ball 13 is processed into a pentagon, and a valve seat opening 14c is formed by a gap between the outer peripheral portion and the guide portion 14b and the seat portion 14a of the valve seat. An injection hole plate 17 in which an injection hole 18 and a fuel diffusion chamber 19 are formed is attached to the valve seat 14. The axis B of the nozzle hole 18 is inclined by an angle θ1 with respect to the axis C of the fuel injection valve 1.

図2および図3に示す例においては、燃料噴射弁1は、噴孔プレート17に設けられた噴孔18に対向して配置されて、図3に示すようなほぼ円筒形に噴射された噴射燃料20に衝突して、噴射燃料20の方向を変えるとともに拡散させて、燃料液膜21を生成する燃料衝突面22を備えている。燃料衝突面22は、噴孔プレート17に取り付けられて噴孔18よりも大きい直径を持つ円筒形の燃料衝突部材23上に設けられた円筒面である。   In the example shown in FIGS. 2 and 3, the fuel injection valve 1 is disposed so as to face the injection hole 18 provided in the injection hole plate 17, and is injected into a substantially cylindrical shape as shown in FIG. A fuel collision surface 22 that collides with the fuel 20 and changes the direction of the injected fuel 20 and diffuses to generate a fuel liquid film 21 is provided. The fuel collision surface 22 is a cylindrical surface provided on a cylindrical fuel collision member 23 attached to the nozzle hole plate 17 and having a diameter larger than that of the nozzle hole 18.

円筒形の燃料衝突部材23の軸線Dは、燃料噴射弁1の軸線Cに対して噴孔18の軸線Bよりも大きな角度θ2で傾斜していて、噴孔18の軸線Bと角度θ3をもって交差している。図示の例では、軸線B、CおよびDが同一の平面内にあり、従って噴射燃料20はこの平面と燃料衝突部材23の円筒面とが交差する位置にある稜線E上で角度θ3をもって燃料衝突部材23の燃料衝突面22に衝突する。円筒形の燃料衝突部材23の先端である燃料の流れの方向で下流側の端面は、軸線Dに垂直な平面25であり、円筒面である燃料衝突面22との間に水切り作用を持つ縁部24が形成されている。   The axis D of the cylindrical fuel collision member 23 is inclined with respect to the axis C of the fuel injection valve 1 at an angle θ2 larger than the axis B of the injection hole 18 and intersects with the axis B of the injection hole 18 at an angle θ3. is doing. In the illustrated example, the axes B, C, and D are in the same plane, so that the injected fuel 20 collides with the angle E3 on the ridgeline E at the position where the plane and the cylindrical surface of the fuel collision member 23 intersect. It collides with the fuel collision surface 22 of the member 23. The end face on the downstream side in the fuel flow direction, which is the tip of the cylindrical fuel collision member 23, is a plane 25 perpendicular to the axis D, and has a draining action with the fuel collision surface 22, which is a cylindrical surface. A portion 24 is formed.

燃料衝突面22は、図示の例では円筒面であるが、そのほかの可展面あるいは線織面(例えば柱面、錘面、接線曲面など)などの凸の曲面でもよく、噴孔18から円柱状に噴射された噴射燃料20が角度(例えばθ3)をもって衝突し、偏向されて燃料衝突面22に沿って流れ、縁部24で燃料衝突面22から離れて薄い燃料液膜21が形成されることが重要である。このように、燃料衝突面22の曲面は噴孔18の軸線Bに対して傾斜(例えばθ3)していて、噴射燃料20に衝突する側に凸の曲面であると言える。   The fuel collision surface 22 is a cylindrical surface in the illustrated example, but may be a convex curved surface such as another developable surface or a woven surface (for example, a column surface, a weight surface, a tangential curved surface, etc.). The injected fuel 20 injected in a columnar shape collides with an angle (for example, θ3), is deflected and flows along the fuel collision surface 22, and a thin fuel liquid film 21 is formed away from the fuel collision surface 22 at the edge 24. This is very important. Thus, it can be said that the curved surface of the fuel collision surface 22 is inclined (for example, θ3) with respect to the axis B of the injection hole 18 and is a convex curved surface on the side that collides with the injected fuel 20.

噴孔18からの噴射燃料20が燃料衝突面22に衝突する角度、すなわち噴孔18の軸線Bと燃料衝突面22の稜線Eとの間の角度θ3は、衝突後の燃料がそこでは燃料衝突面22から離れずに流れの方向を変えられて燃料衝突面22に沿って流れ、水切り作用を持つ縁部24で燃料衝突面22から離れるような角度である。そのような角度は、燃料衝突面22の湾曲の大きさなどの形状および燃料の噴射速度などの様々な条件によっても変えることが望ましい。   The angle at which the injected fuel 20 from the nozzle hole 18 collides with the fuel collision surface 22, that is, the angle θ 3 between the axis B of the nozzle hole 18 and the ridge line E of the fuel collision surface 22 indicates that the fuel after the collision is a fuel collision. The angle is such that the flow direction is changed without leaving the surface 22, the flow flows along the fuel collision surface 22, and the edge 24 having a draining action leaves the fuel collision surface 22. Such an angle is desirably changed according to various conditions such as the shape of the fuel collision surface 22 such as a curve and the fuel injection speed.

次に、本実施の形態における、燃料噴射弁1の動作について説明する。図2において、外部よりターミナル6を介して電磁コイル3に通電すると、固定鉄心4、金属板5、磁気パイプ9および可動鉄心10で構成される磁気通路に磁束が発生し、可動鉄心10が固定鉄心4に磁気吸引力により引きつけられ、可動鉄心10と接合され一体となっているニードルパイプ12およびこのニードルパイプ12に溶接固定されているボール13が動作し、バルブシート14のシート部14aとボール13の間にバルブシート開口部14cが開口する。燃料は、デリバティブパイプを(図示せず)介して図1の上部より燃料噴射弁1の本体に流れ込みフィルタ16を通過し、固定鉄心4内に配置されているアジャスタ8および圧縮ばね7、可動鉄心10、ニードルパイプ12の内部を通り、更にバルブシートのガイド部14bとボール13の外周との隙間を通ってバルブシート開口部14cから燃料拡散室19へ供給され、噴孔プレート17に形成された噴孔18より外部に噴射燃料20として噴射される。   Next, the operation of the fuel injection valve 1 in the present embodiment will be described. In FIG. 2, when the electromagnetic coil 3 is energized from the outside via the terminal 6, magnetic flux is generated in a magnetic path constituted by the fixed iron core 4, the metal plate 5, the magnetic pipe 9 and the movable iron core 10, and the movable iron core 10 is fixed. A needle pipe 12 that is attracted to the iron core 4 by a magnetic attractive force and is joined to and integrated with the movable iron core 10 and a ball 13 that is welded and fixed to the needle pipe 12 operate, and the seat portion 14a of the valve seat 14 and the ball 13 opens the valve seat opening 14c. Fuel flows into the main body of the fuel injection valve 1 from the upper part of FIG. 1 through a derivative pipe (not shown), passes through the filter 16, and the adjuster 8 and the compression spring 7 arranged in the fixed iron core 4, the movable iron core. 10, passes through the inside of the needle pipe 12, passes through the gap between the guide portion 14 b of the valve seat and the outer periphery of the ball 13, and is supplied from the valve seat opening 14 c to the fuel diffusion chamber 19, and is formed in the injection hole plate 17. The fuel is injected as injected fuel 20 from the nozzle hole 18.

図3において、燃料衝突部材23は円筒形状であり、噴孔18の軸線Bを横切る方向に端部が突出する位置に配置される。噴孔18からの噴射燃料20は燃料衝突部材23の端部付近で燃料衝突面22に衝突後、円筒の曲面に沿って流れた後、円筒端部である縁部24から飛散する。燃料衝突面22が凸型に湾曲しているため、噴射燃料20の燃料も中央部に集中して残ることなく、燃料衝突面22の曲面に沿って横方向にほぼ一様な厚さの液膜となって分散し、燃料衝突面22から離れた燃料膜は、図3に示すように流れの方向に向かって径が次第に大きくなる半管状あるいは半割した漏斗状の厚さが均一な薄い燃料液膜21となり、良好な微粒化特性を得ることができる。   In FIG. 3, the fuel collision member 23 has a cylindrical shape, and is disposed at a position where an end projects in a direction crossing the axis B of the injection hole 18. The injected fuel 20 from the nozzle hole 18 collides with the fuel collision surface 22 in the vicinity of the end of the fuel collision member 23, flows along the curved surface of the cylinder, and then scatters from the edge 24 which is the end of the cylinder. Since the fuel collision surface 22 is curved in a convex shape, the fuel of the injected fuel 20 does not remain concentrated in the central portion, and the liquid has a substantially uniform thickness in the lateral direction along the curved surface of the fuel collision surface 22. As shown in FIG. 3, the fuel film dispersed as a film and separated from the fuel collision surface 22 has a uniform thin thickness of a semi-tubular shape or a half funnel shape whose diameter gradually increases in the flow direction. The fuel liquid film 21 is obtained, and good atomization characteristics can be obtained.

また、燃料衝突面22の幅は噴孔よりも大きく、噴射される燃料の挙動が変化して噴射燃料20の衝突位置が移動しても、衝突する燃料の割合が大きく変化することはないため、雰囲気圧などの条件によらず微粒化を促進するための十分な拡がりをもった燃料液膜21を生成することができる。
実施の形態2.
図4はこの発明の実施の形態2に係わる燃料噴射弁の燃料衝突部材23を燃料液膜21と共に示す概略斜視図である。この燃料衝突部材23は、先端部が衝突部側を残して斜めに切断された円筒形状である。すなわち、燃料衝突部材23の先端部が、噴孔18が設けられた噴孔プレート17(図2および3参照)の主面にほぼ平行な平面に沿って切断されて形成され、軸線Dに対して角度90°−θ2だけ傾斜した楕円形の端面26を持っている。その他の構成は先に説明した燃料噴射弁と同様である。
Further, the width of the fuel collision surface 22 is larger than that of the injection hole, and even if the behavior of the injected fuel changes and the collision position of the injected fuel 20 moves, the ratio of the collision fuel does not change greatly. Thus, the fuel liquid film 21 having a sufficient spread for promoting atomization can be generated regardless of conditions such as atmospheric pressure.
Embodiment 2. FIG.
4 is a schematic perspective view showing a fuel collision member 23 of a fuel injection valve according to Embodiment 2 of the present invention together with a fuel liquid film 21. In FIG. The fuel collision member 23 has a cylindrical shape whose tip is cut obliquely leaving the collision part side. That is, the front end portion of the fuel collision member 23 is formed by cutting along a plane substantially parallel to the main surface of the nozzle hole plate 17 (see FIGS. 2 and 3) provided with the nozzle holes 18. And has an elliptical end face 26 inclined at an angle of 90 ° -θ2. Other configurations are the same as those of the fuel injection valve described above.

この構成によれば、図1〜3に示す実施の形態1の燃料噴射弁の燃料衝突部材23に比べて、燃料衝突面22で偏向されて広げられた液膜が燃料衝突面22から離れる縁部24の位置が、液膜の幅方向端部において、より上流側に在る。そのため縁部24に到達した時の燃料の速度ベクトルはより広い角度を持ち、燃料が広い角度を持って飛散されることとなる。これにより、燃料液膜21の拡がりが大きく厚さが薄くなり、より良好な微粒化特性が得られる。
実施の形態3.
図5は、この発明の実施の形態3に係わる燃料噴射弁の燃料衝突部材23を燃料液膜21と共に示す概略斜視図である。この燃料衝突部材23は、外周面に燃料衝突面22を持つように湾曲した板状部材である。また、湾曲した板状部材の両側縁部27の互いの開き角度θ4が、0°以上で180°より小さい。図示の例では円形断面の管を軸心に沿ってほぼ2つ割にした樋状の部材である。その他の構成は先に説明した燃料噴射弁と同様である。
According to this configuration, as compared with the fuel collision member 23 of the fuel injection valve of the first embodiment shown in FIGS. 1 to 3, the liquid film deflected and widened by the fuel collision surface 22 is separated from the fuel collision surface 22. The position of the portion 24 is on the more upstream side at the end in the width direction of the liquid film. Therefore, the velocity vector of the fuel when it reaches the edge 24 has a wider angle, and the fuel is scattered with a wider angle. Thereby, the spread of the fuel liquid film 21 is large and the thickness is thin, and better atomization characteristics are obtained.
Embodiment 3 FIG.
FIG. 5 is a schematic perspective view showing the fuel collision member 23 of the fuel injection valve according to the third embodiment of the present invention together with the fuel liquid film 21. The fuel collision member 23 is a plate-like member curved so as to have the fuel collision surface 22 on the outer peripheral surface. Further, the opening angle θ4 between the side edge portions 27 of the curved plate-shaped member is 0 ° or more and smaller than 180 °. In the example shown in the figure, it is a bowl-shaped member in which a tube having a circular cross section is divided roughly into two along the axis. Other configurations are the same as those of the fuel injection valve described above.

この構成においては、燃料衝突部材23が板状部材であるので、板状部材を曲げるなどして燃料衝突面22の形状を容易に変更あるいは調整でき、上述の開き角度θ4も容易に設定できる。このため、例えば噴射燃料20の燃料衝突面22との衝突位置を燃料衝突部材23の先端から根本部分に向かって移動させるなどすることにより、燃料衝突面22上で広げられた燃料の液膜は、燃料衝突部材23の先端の端面との間に形成された縁部24から離れるだけでなく、樋状の燃料衝突部材23の両側縁部27からも離れるようにして、燃料液膜21の広がりを大きくすることができる。湾曲した板状部材の両側縁部27の互いの開き角度θ4を0°以上180°未満とすれば、形成される燃料液膜21も0°以上の開き角を有することになり、下流で燃料液膜21同士が衝突、結合して微粒子化を阻害することもない。開き角度が180°以上になると燃料衝突面22は凸の曲面ではなくなり、燃料衝突面22の衝突、偏向、展開作用が損なわれて、厚さの薄い燃料液膜21の生成ができなくなる。
実施の形態4.
図6はこの発明の実施の形態4に係わる燃料噴射弁の燃料衝突部材33を燃料液膜21と共に示す概略斜視図であり、図7は図6の軸線Bおよび燃料衝突面22の稜線Eを含む平面に沿った断面図である。この燃料噴射弁においては、燃料衝突面22が、噴孔18が設けられた噴孔プレート17上に配置された板部材である燃料衝突部材33に設けられていて、噴孔18を囲む穴部あるいは開口34の縁部上に設けられた円筒面である。
In this configuration, since the fuel collision member 23 is a plate-like member, the shape of the fuel collision surface 22 can be easily changed or adjusted by bending the plate-like member, and the above-described opening angle θ4 can be easily set. For this reason, for example, by moving the collision position of the injected fuel 20 with the fuel collision surface 22 from the tip of the fuel collision member 23 toward the root portion, the fuel liquid film spread on the fuel collision surface 22 is The fuel liquid film 21 spreads not only away from the edge 24 formed between the front end face of the fuel collision member 23 but also away from both side edges 27 of the bowl-like fuel collision member 23. Can be increased. If the opening angle θ4 between the side edges 27 of the curved plate-shaped member is 0 ° or more and less than 180 °, the formed fuel liquid film 21 also has an opening angle of 0 ° or more, and the downstream fuel The liquid films 21 do not collide with each other and bind to each other to prevent the formation of fine particles. When the opening angle is 180 ° or more, the fuel collision surface 22 is not a convex curved surface, and the collision, deflection, and deployment of the fuel collision surface 22 are impaired, and the thin fuel liquid film 21 cannot be generated.
Embodiment 4 FIG.
FIG. 6 is a schematic perspective view showing the fuel collision member 33 of the fuel injection valve according to the fourth embodiment of the present invention together with the fuel liquid film 21, and FIG. 7 shows the axis B and the ridge line E of the fuel collision surface 22 in FIG. It is sectional drawing along the plane containing. In this fuel injection valve, the fuel collision surface 22 is provided in the fuel collision member 33 which is a plate member disposed on the nozzle hole plate 17 in which the nozzle hole 18 is provided, and a hole portion surrounding the nozzle hole 18. Alternatively, it is a cylindrical surface provided on the edge of the opening 34.

開口34は平面形がほぼC字型あるいは丸括弧型であって、燃料衝突部材33に設けられ、断面形が長さ方向(燃料衝突部材33の厚さ方向)に同じ傾斜した穴であり、稜線Eおよび縁部35を持つ凸の円筒面である燃料衝突面22を持っている。開口34はまた、燃料衝突面22に対向し、外周縁部36を持つ凹の円筒面を持っている。燃料衝突面22の稜線Eと噴孔18の軸線Bとは角度θ3で交差している。従って噴孔18からの噴射燃料20は、燃料衝突面22と稜線E上で衝突し、偏向され、縁部35で燃料衝突面22から離れる。その他の構成は先に説明したものと同様である。   The opening 34 has a substantially C-shaped or round bracket shape in plan view, is provided in the fuel collision member 33, and has a cross-sectional shape that is the same inclined in the length direction (thickness direction of the fuel collision member 33). It has a fuel collision surface 22 which is a convex cylindrical surface having a ridge line E and an edge 35. The opening 34 also has a concave cylindrical surface facing the fuel collision surface 22 and having an outer peripheral edge 36. The ridgeline E of the fuel collision surface 22 and the axis B of the nozzle hole 18 intersect at an angle θ3. Accordingly, the injected fuel 20 from the nozzle hole 18 collides with the fuel collision surface 22 on the ridge line E, is deflected, and leaves the fuel collision surface 22 at the edge 35. Other configurations are the same as those described above.

この構成によれば、燃料衝突面22を持つ燃料衝突部材33は、噴孔プレート17上に設けられた開口34を持つ1枚の板部材であるので、製作も組み付けも容易で、生産性を大幅に向上することができる。なお、開口34の形は燃料衝突面22が設けられている限り任意であり、例えば開口34の平面形を変えたり、断面形を長さ方向に変えたりすることもできる。
実施の形態5.
図8は、この発明の実施の形態5に係る燃料噴射弁の燃料衝突部材37の概略断面図であり、図9は図8の燃料衝突部材37の概略斜視図である。この燃料衝突部材37は、開口38を持つ一枚の板部材であり、燃料衝突面22が、開口38の内周面上に、噴孔18に対応して設けられている。図示の例では噴孔プレート17の噴孔18が4個であり、1つの開口38の内周面に4つの燃料衝突面22が形成されていて、各噴孔18の軸線Bと燃料衝突面22の稜線Eとが交差するように配置されている。その他の構成は先に説明したものと同様である。
According to this configuration, since the fuel collision member 33 having the fuel collision surface 22 is a single plate member having the opening 34 provided on the nozzle hole plate 17, it is easy to manufacture and assemble, and productivity is improved. It can be greatly improved. The shape of the opening 34 is arbitrary as long as the fuel collision surface 22 is provided. For example, the planar shape of the opening 34 can be changed, or the cross-sectional shape can be changed in the length direction.
Embodiment 5 FIG.
8 is a schematic cross-sectional view of a fuel collision member 37 of a fuel injection valve according to Embodiment 5 of the present invention, and FIG. 9 is a schematic perspective view of the fuel collision member 37 of FIG. The fuel collision member 37 is a single plate member having an opening 38, and the fuel collision surface 22 is provided on the inner peripheral surface of the opening 38 corresponding to the injection hole 18. In the illustrated example, there are four nozzle holes 18 of the nozzle hole plate 17, four fuel collision surfaces 22 are formed on the inner peripheral surface of one opening 38, and the axis B and the fuel collision surface of each nozzle hole 18. It arrange | positions so that 22 ridgelines E may cross | intersect. Other configurations are the same as those described above.

このような燃料衝突部材37は、1個の開口38を持つ1枚の板部材であるので、製作も組み付けも容易で、生産性を大幅に向上することができる。   Since the fuel collision member 37 is a single plate member having one opening 38, it can be easily manufactured and assembled, and the productivity can be greatly improved.

以上に図示して説明した燃料噴射弁は単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。例えば、燃料衝突面22は、燃料衝突部材23、33あるいは37に設けられた円筒面であるが、そのほかの可展面あるいは線織面(例えば柱面、錘面、接線曲面など)などの凸の曲面でもよい。また、複数の噴孔18の間に外周面に燃料衝突面22を持つ板部材を燃料衝突部材として配置することもできる。   The fuel injection valve illustrated and described above is merely an example, and various modifications can be made, and the features of each specific example can be used altogether or selectively combined. For example, the fuel collision surface 22 is a cylindrical surface provided on the fuel collision member 23, 33 or 37, but other convex surfaces such as a developable surface or a weave surface (for example, a column surface, a weight surface, a tangential curved surface, etc.). It may be a curved surface. Further, a plate member having a fuel collision surface 22 on the outer peripheral surface between the plurality of nozzle holes 18 may be disposed as the fuel collision member.

この発明の実施の形態1に係る燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve which concerns on Embodiment 1 of this invention. 図1の円Aで囲んだ部分の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion surrounded by a circle A in FIG. 1. この発明の実施の形態1に係わる燃料噴射弁の燃料衝突部材を燃料液膜と共に示す概略斜視図である。It is a schematic perspective view which shows the fuel collision member of the fuel injection valve concerning Embodiment 1 of this invention with a fuel liquid film. この発明の実施の形態2に係わる燃料噴射弁の燃料衝突部材を燃料液膜と共に示す概略斜視図である。It is a schematic perspective view which shows the fuel collision member of the fuel injection valve concerning Embodiment 2 of this invention with a fuel liquid film. この発明の実施の形態3に係わる燃料噴射弁の燃料衝突部材を燃料液膜と共に示す概略斜視図である。It is a schematic perspective view which shows the fuel collision member of the fuel injection valve concerning Embodiment 3 of this invention with a fuel liquid film. この発明の実施の形態4に係わる燃料噴射弁の燃料衝突部材を燃料液膜と共に示す概略斜視図である。It is a schematic perspective view which shows the fuel collision member of the fuel injection valve concerning Embodiment 4 of this invention with a fuel liquid film. 図6の軸線Bおよび稜線Eを含む平面に沿った断面図である。It is sectional drawing along the plane containing the axis line B and the ridgeline E of FIG. この発明の実施の形態5に係る燃料噴射弁の燃料衝突部材の概略断面図である。It is a schematic sectional drawing of the fuel collision member of the fuel injection valve which concerns on Embodiment 5 of this invention. 図8の燃料衝突部材の概略斜視図である。It is a schematic perspective view of the fuel collision member of FIG.

符号の説明Explanation of symbols

1 燃料噴射弁、17 噴孔プレート、18 噴孔、20 噴射燃料、21 燃料液膜、22 燃料衝突面、23、33、37 燃料衝突部材、24 縁部、26 端面、27 両側縁部、34、38 開口、B 軸線、θ4 開き角度。   DESCRIPTION OF SYMBOLS 1 Fuel injection valve, 17 Injection hole plate, 18 Injection hole, 20 Injection fuel, 21 Fuel liquid film, 22 Fuel collision surface, 23, 33, 37 Fuel collision member, 24 Edge part, 26 End surface, 27 Both side edge part, 34 , 38 opening, B axis, θ4 opening angle.

Claims (8)

噴孔に対向して配置されて、噴射された噴射燃料に衝突して燃料液膜を生成する燃料衝突面を備えた燃料噴射弁であって、
上記燃料衝突面が上記噴孔の軸線に対して傾斜していて、上記噴射燃料に衝突する側に凸の曲面であることを特徴とする燃料噴射弁。
A fuel injection valve provided with a fuel collision surface disposed opposite to the injection hole and generating a fuel liquid film by colliding with the injected injected fuel,
The fuel injection valve characterized in that the fuel collision surface is inclined with respect to the axis of the nozzle hole and is a curved surface convex toward the side that collides with the injected fuel.
上記燃料衝突面が、上記噴射燃料の下流側に水切り縁部を備えていることを特徴とする請求項1に記載の燃料噴射弁。   The fuel injection valve according to claim 1, wherein the fuel collision surface includes a draining edge on the downstream side of the injected fuel. 上記燃料衝突面が、上記噴孔よりも大きい直径を持つほぼ円筒形の燃料衝突部材上に設けられた可展面であることを特徴とする請求項1あるいは2に記載の燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the fuel collision surface is a developable surface provided on a substantially cylindrical fuel collision member having a diameter larger than that of the nozzle hole. 上記燃料衝突部材が、上記噴孔が設けられた噴孔プレートにほぼ平行な平面に沿って切断された端面を持っていることを特徴とする請求項3に記載の燃料噴射弁。   4. The fuel injection valve according to claim 3, wherein the fuel collision member has an end face cut along a plane substantially parallel to the nozzle hole plate provided with the nozzle holes. 上記燃料衝突部材が、外周面に上記燃料衝突面を持つように湾曲した板状部材であることを特徴とする請求項1あるいは2に記載の燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the fuel collision member is a plate-like member curved so as to have the fuel collision surface on an outer peripheral surface. 上記湾曲した板状部材の両側縁部の互いの開き角度が、0°以上180°未満であることを特徴とする請求項5に記載の燃料噴射弁。   6. The fuel injection valve according to claim 5, wherein an opening angle between both side edges of the curved plate-shaped member is 0 ° or more and less than 180 °. 上記燃料衝突面が、上記噴孔が設けられた噴孔プレート上に配置された板部材である燃料衝突部材に設けられて、上記噴孔を囲む開口の内周面に設けられた可展面であることを特徴とする請求項1あるいは2に記載の燃料噴射弁。   The fuel collision surface is provided on a fuel collision member which is a plate member disposed on the nozzle hole plate provided with the nozzle hole, and is a developable surface provided on an inner peripheral surface of an opening surrounding the nozzle hole. The fuel injection valve according to claim 1, wherein the fuel injection valve is a fuel injection valve. 上記燃料衝突面が、上記開口の内周面上に、複数の上記噴孔にそれぞれ対応して設けられていることを特徴とする請求項7に記載の燃料噴射弁。   The fuel injection valve according to claim 7, wherein the fuel collision surface is provided on the inner peripheral surface of the opening so as to correspond to the plurality of injection holes.
JP2008312457A 2008-12-08 2008-12-08 Fuel injection valve Expired - Fee Related JP5174644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312457A JP5174644B2 (en) 2008-12-08 2008-12-08 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312457A JP5174644B2 (en) 2008-12-08 2008-12-08 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2010133389A true JP2010133389A (en) 2010-06-17
JP5174644B2 JP5174644B2 (en) 2013-04-03

Family

ID=42344892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312457A Expired - Fee Related JP5174644B2 (en) 2008-12-08 2008-12-08 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP5174644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283338A1 (en) * 2017-04-04 2018-10-04 Robert Bosch Gmbh Injector for introducing a fluid with improved jet preparation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125667U (en) * 1991-05-08 1992-11-16 株式会社ゼクセル fuel injection nozzle
JPH0530461U (en) * 1991-09-30 1993-04-23 いすゞ自動車株式会社 Fuel injection nozzle for internal combustion engine
JPH06336932A (en) * 1993-03-31 1994-12-06 Shin A C Ii:Kk Direct-injection type diesel engine
JPH08232815A (en) * 1995-01-31 1996-09-10 Robert Bosch Gmbh Fuel injection valve for internal combustion engine
JP2003184707A (en) * 2001-12-17 2003-07-03 Toyota Motor Corp Fuel injection valve for internal combustion engine
JP2004169572A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Fuel injection valve
JP2004169571A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Fuel injection valve
JP2008031914A (en) * 2006-07-28 2008-02-14 Aisan Ind Co Ltd Fuel injection valve for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125667U (en) * 1991-05-08 1992-11-16 株式会社ゼクセル fuel injection nozzle
JPH0530461U (en) * 1991-09-30 1993-04-23 いすゞ自動車株式会社 Fuel injection nozzle for internal combustion engine
JPH06336932A (en) * 1993-03-31 1994-12-06 Shin A C Ii:Kk Direct-injection type diesel engine
JPH08232815A (en) * 1995-01-31 1996-09-10 Robert Bosch Gmbh Fuel injection valve for internal combustion engine
JP2003184707A (en) * 2001-12-17 2003-07-03 Toyota Motor Corp Fuel injection valve for internal combustion engine
JP2004169572A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Fuel injection valve
JP2004169571A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Fuel injection valve
JP2008031914A (en) * 2006-07-28 2008-02-14 Aisan Ind Co Ltd Fuel injection valve for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283338A1 (en) * 2017-04-04 2018-10-04 Robert Bosch Gmbh Injector for introducing a fluid with improved jet preparation

Also Published As

Publication number Publication date
JP5174644B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5933720B2 (en) Fuel injection valve
JP5295311B2 (en) Fuel injection valve
JP4134966B2 (en) Injection hole member, fuel injection valve, and method for manufacturing injection hole member
JP5855270B2 (en) Fuel injection valve
JP4592793B2 (en) Fuel injection valve
JP2008280981A (en) Fuel injection device and internal combustion engine mounting the same
JP2009197682A (en) Fuel injection valve
JP6186130B2 (en) Fuel injection valve and fuel injection valve manufacturing method
JP4215004B2 (en) Fuel injection valve
JP2011190801A (en) Fuel injection valve
JP5134063B2 (en) Fuel injection valve
JP5976065B2 (en) Fuel injection valve
JPH11200998A (en) Fluid injection nozzle
JP2009250122A (en) Fuel injection valve
JP2015025406A (en) Fuel injection valve
JP5774108B2 (en) Fuel injection valve
JP5174644B2 (en) Fuel injection valve
JP2015078603A (en) Fuel injection valve
JP4542072B2 (en) Fuel injection valve
JP4618262B2 (en) Fuel injection valve
JP2005155547A (en) Fuel injection valve
JP4294020B2 (en) Fuel injection valve
JP2010261424A (en) Fuel injection valve
JP5748796B2 (en) Fuel injection valve
KR100419183B1 (en) Fluid injection nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees