JP2010133271A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2010133271A
JP2010133271A JP2008307645A JP2008307645A JP2010133271A JP 2010133271 A JP2010133271 A JP 2010133271A JP 2008307645 A JP2008307645 A JP 2008307645A JP 2008307645 A JP2008307645 A JP 2008307645A JP 2010133271 A JP2010133271 A JP 2010133271A
Authority
JP
Japan
Prior art keywords
intake
valve
passage
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008307645A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshikawa
智 吉川
Hideki Kanai
英輝 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008307645A priority Critical patent/JP2010133271A/en
Publication of JP2010133271A publication Critical patent/JP2010133271A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine for preventing deterioration of fuel consumption due to an air intake flow passage mechanism, when a closing timing of an air intake valve is retarded. <P>SOLUTION: In an internal combustion engine with variable valve mechanism, a reverse flow adjusting mechanism is provided for causing gas on the downstream side to circulate to the upstream side of the air intake flow passage mechanism, when a pressure on the downstream side of an air intake flow passage mechanism provided in an air intake passage rises. Thereby pumping loss of a piston is avoided from occurring, thus deterioration of fuel consumption can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料室内の筒内流動を制御可能な内燃機関に関する。   The present invention relates to an internal combustion engine capable of controlling in-cylinder flow in a fuel chamber.

吸気弁や排気弁の開閉時期を、運転状態などに応じて変更させる内燃機関が知られている。例えば吸気弁の閉鎖時期を遅くさせると、ピストンによるポンピングロスを減少させ、内燃機関の燃費が向上されることが知られている。一方、吸気弁を長く開いていると、実圧縮比が低下したり、筒内での噴霧燃料や吸入空気の流動性が低下し、筒内での燃焼悪化をもたらすことがある。   2. Description of the Related Art An internal combustion engine that changes the opening / closing timing of an intake valve and an exhaust valve according to an operating state or the like is known. For example, it is known that when the closing timing of the intake valve is delayed, the pumping loss due to the piston is reduced and the fuel consumption of the internal combustion engine is improved. On the other hand, if the intake valve is opened for a long time, the actual compression ratio may be reduced, or the fluidity of the sprayed fuel or intake air in the cylinder may be reduced, leading to deterioration in combustion in the cylinder.

そこで吸気通路内に吸気通路の開口断面積を狭める流路制限弁を設け、流速が遅いときなどに流路制限弁で吸気通路を狭めることで空気流の流速を速め、筒内に流入する空気流の速度を速めたり、筒内での空気流(混合気を含む。)の撹拌を活発にさせて、燃焼を改善させることが考えられている。(特許文献1参照。)
特開平2001−3755号公報
Therefore, a flow restriction valve that narrows the opening cross-sectional area of the intake passage is provided in the intake passage, and when the flow velocity is slow, the intake passage is narrowed by the flow restriction valve to increase the air flow velocity, and the air flowing into the cylinder It is considered to improve the combustion by increasing the flow velocity or by actively stirring the air flow (including the air-fuel mixture) in the cylinder. (See Patent Document 1.)
JP-A-2001-3755

しかしながら吸気弁の閉鎖時期を遅くし、ピストンがシリンダ内を上昇するまで開いていると、筒内の圧力が上昇に転じ、開かれた吸気弁を通って燃焼室から流出した空気流が吸気通路内を逆流する。そしてその際流路制限弁が吸気通路の開口断面積を狭めていると、吸気通路内を逆流してきた空気が流路制限弁によって遮られる。すると、流路制限弁の下流側、つまりシリンダ内部の圧力上昇を引き起こし、ポンピングロスが増大して、燃費が悪化することとなっていた。   However, if the closing timing of the intake valve is delayed and the piston is open until it rises in the cylinder, the pressure in the cylinder starts to rise, and the air flow that flows out of the combustion chamber through the opened intake valve Back flow inside. At this time, if the flow path restriction valve narrows the opening cross-sectional area of the intake passage, the air flowing backward in the intake passage is blocked by the flow restriction valve. As a result, the pressure on the downstream side of the flow path restriction valve, that is, the pressure inside the cylinder is increased, the pumping loss is increased, and the fuel consumption is deteriorated.

本発明は上記課題を解決し、吸気弁の少なくとも閉鎖時期がクランク角に対して変更可能で、かつ吸気通路内に吸気流路調整機構を備えた内燃機関において、吸気弁の閉鎖時期を遅らせた場合でも、吸気流路調整機構によるポンピングロスの発生を防止し、これによる燃費の悪化を生じさせることのない可変動弁機構付き内燃機関を提供することを目的とする。   The present invention solves the above problems, and in an internal combustion engine in which at least the closing timing of the intake valve can be changed with respect to the crank angle and the intake passage adjustment mechanism is provided in the intake passage, the closing timing of the intake valve is delayed. Even in such a case, it is an object to provide an internal combustion engine with a variable valve mechanism that prevents the occurrence of a pumping loss due to an intake flow path adjustment mechanism and does not cause a deterioration in fuel consumption.

内燃機関は、燃焼室に連通された吸気通路に、吸気通路の開口断面積を減少させる吸気流路調整機構を備えている。更に内燃機関は、吸気流路調整機構の下流側から上流側に、吸気流路調整機構の下流側の気体を流通させる逆流調整手段を備えている。逆流調整手段としては、例えば逆止弁を有する副通路である。   The internal combustion engine includes an intake passage adjustment mechanism that reduces an opening cross-sectional area of the intake passage in an intake passage communicated with the combustion chamber. Further, the internal combustion engine includes reverse flow adjusting means for circulating the gas on the downstream side of the intake flow path adjusting mechanism from the downstream side to the upstream side of the intake flow path adjusting mechanism. As the backflow adjusting means, for example, a sub-passage having a check valve is used.

更に内燃機関は、吸気通路を開閉させる吸気弁の少なくとも開弁時期を、圧縮行程中期以降まで可能とした可変動弁機構を有している。そして、吸気流路調整機構で吸気通路の開口断面積を減少させた状態で、吸気弁の開弁時期を、圧縮行程中期以降まで設定可能となっている。   Furthermore, the internal combustion engine has a variable valve mechanism that enables at least the opening timing of the intake valve that opens and closes the intake passage until the middle of the compression stroke. Then, the opening timing of the intake valve can be set until the middle of the compression stroke after the opening cross-sectional area of the intake passage is reduced by the intake passage adjustment mechanism.

本発明にかかる可変動弁機構付き内燃機関は、次の効果を有している。   The internal combustion engine with a variable valve mechanism according to the present invention has the following effects.

内燃機関の運転状態により吸気流路調整機構の下流から上流に気体の逆流が生じたとしても、その逆流を吸気流路調整機構が阻害することを抑制でき、ポンピングロスによる燃費の悪化や吸気流路調整機構の破損等を抑制できる。   Even if a backflow of gas occurs from the downstream side to the upstream side of the intake flow path adjustment mechanism due to the operating state of the internal combustion engine, the reverse flow can be prevented from being inhibited by the intake flow path adjustment mechanism. Damage to the path adjustment mechanism can be suppressed.

本発明にかかる可変動弁機構付き内燃機関の一実施形態について、図を参照して説明する。図1に、エンジン10の燃焼室部分を示す。エンジン10は、吸気弁に動弁機構を具えた可変動弁機構付き内燃機関である。エンジン10は、ガソリンを主な燃料とし、吸気流路調整機構と、燃料を噴射する燃料噴射装置とを吸気通路内に具えている。尚エンジン10は、自然吸気式エンジンであるが、ターボチャージャーや他の過給器を備えた過給式エンジンであってもよい。またエンジン10は、筒内直接燃料噴射装置を備えた形式でもよい。   An embodiment of an internal combustion engine with a variable valve mechanism according to the present invention will be described with reference to the drawings. FIG. 1 shows a combustion chamber portion of the engine 10. The engine 10 is an internal combustion engine with a variable valve mechanism that includes a valve mechanism on an intake valve. The engine 10 uses gasoline as a main fuel, and includes an intake passage adjustment mechanism and a fuel injection device that injects fuel in the intake passage. The engine 10 is a naturally aspirated engine, but may be a supercharged engine equipped with a turbocharger or other supercharger. The engine 10 may be of a type provided with a direct fuel injection device in a cylinder.

エンジン10の燃焼室部分は、図1に示すようにシリンダヘッド12、ピストン14、シリンダブロック16などから構成されている。   The combustion chamber portion of the engine 10 includes a cylinder head 12, a piston 14, a cylinder block 16 and the like as shown in FIG.

シリンダブロック16は、内側にシリンダ18を有している。シリンダブロック16に形成されたシリンダ18の数は、特に問わない。シリンダ18の内部には、ピストン14が往復動自在に設けられている。シリンダブロック16の上面には、シリンダヘッド12がボルト(図示せず。)により固定されている。   The cylinder block 16 has a cylinder 18 inside. The number of cylinders 18 formed in the cylinder block 16 is not particularly limited. A piston 14 is provided in the cylinder 18 so as to be reciprocally movable. A cylinder head 12 is fixed to the upper surface of the cylinder block 16 with bolts (not shown).

シリンダヘッド12は、下面に燃焼室用の凹み20を具えている。凹み20は、断面が三角形状で、凹み20と、ピストン14の頂面22と、シリンダ18の内面で区画された空間でエンジン10の燃焼室26を形成している。   The cylinder head 12 has a recess 20 for a combustion chamber on the lower surface. The recess 20 has a triangular cross section, and forms a combustion chamber 26 of the engine 10 in a space defined by the recess 20, the top surface 22 of the piston 14, and the inner surface of the cylinder 18.

シリンダヘッド12には、吸気通路28及び排気通路30が設けられている。吸気通路28は、上流側にエアクリーナ(図示せず。)が連結され、燃焼室26に臨ませた開口部(図示せず。)に吸気弁32が設けられている。また吸気通路28内には、燃料噴射装置40、および吸気流路調整機構42が設けられている。   The cylinder head 12 is provided with an intake passage 28 and an exhaust passage 30. The intake passage 28 is connected to an air cleaner (not shown) on the upstream side, and an intake valve 32 is provided at an opening (not shown) facing the combustion chamber 26. In the intake passage 28, a fuel injection device 40 and an intake flow path adjustment mechanism 42 are provided.

排気通路30は、排気弁34を介して燃焼室26に連通し、排気通路30の下流側には、排気浄化手段として、例えば酸化触媒44とディーゼル・パティキュレート・フィルタ(DPF)46が連結されている。尚、排気浄化手段としては、対象とする有害物質に応じた触媒やフィルタを適宜備えればよく、酸化触媒とディーゼル・パティキュレート・フィルタ(DPF)に限定されるものではない。   The exhaust passage 30 communicates with the combustion chamber 26 via an exhaust valve 34, and an oxidation catalyst 44 and a diesel particulate filter (DPF) 46, for example, are connected to the downstream side of the exhaust passage 30 as exhaust purification means. ing. The exhaust purification means may be appropriately provided with a catalyst or filter corresponding to the target harmful substance, and is not limited to an oxidation catalyst and a diesel particulate filter (DPF).

吸気弁32および排気弁34は、それぞれシリンダヘッド12に摺動自在に取り付けられ、吸気弁32には吸気側動弁機構36が、排気弁34には排気側動弁機構38が設けられている。吸気側動弁機構36および排気側動弁機構38は、それぞれクランク軸(図示せず。)の回転に連動して作動し、吸気弁32と排気弁34を軸方向に駆動させる。これにより、吸気通路28および排気通路30は、エンジン10の駆動に伴い燃焼室26に対して所定の時期に開閉される。   The intake valve 32 and the exhaust valve 34 are slidably attached to the cylinder head 12. The intake valve 32 is provided with an intake side valve mechanism 36, and the exhaust valve 34 is provided with an exhaust side valve mechanism 38. . The intake side valve mechanism 36 and the exhaust side valve mechanism 38 operate in conjunction with the rotation of a crankshaft (not shown), respectively, to drive the intake valve 32 and the exhaust valve 34 in the axial direction. Thus, the intake passage 28 and the exhaust passage 30 are opened and closed at a predetermined time with respect to the combustion chamber 26 as the engine 10 is driven.

更に吸気側動弁機構36は、可変動弁機構を具えている。これにより、吸気側動弁機構36は、エンジン10の運転内容に応じて、シリンダ18内のピストン14の位置、つまりクランク軸のクランク角に対して吸気弁32の開閉時期を変更させることが可能となっている。吸気弁32の開閉時期を変更させる可変動弁機構としては、電動モータを用いたものでも、油圧を用いたものでもよく、その機構は限定しない。また吸気弁32に直接電動アクチュエータ等を取り付け、これにより、吸気弁32を任意の時期に直接開閉駆動させるように構成してもよい。尚、吸気側動弁機構36は、少なくとも吸気弁32の閉鎖時期が変更可能に構成されているが、これに限るものではない。また排気側動弁機構38も、排気弁34に対して、吸気側動弁機構36と同様、排気弁34の開閉時期を変更可能としてもよい。   Further, the intake side valve mechanism 36 includes a variable valve mechanism. Thereby, the intake side valve mechanism 36 can change the opening / closing timing of the intake valve 32 with respect to the position of the piston 14 in the cylinder 18, that is, the crank angle of the crankshaft, according to the operation content of the engine 10. It has become. The variable valve mechanism for changing the opening / closing timing of the intake valve 32 may be one using an electric motor or one using hydraulic pressure, and the mechanism is not limited. Further, an electric actuator or the like may be directly attached to the intake valve 32 so that the intake valve 32 is directly opened and closed at an arbitrary timing. The intake side valve mechanism 36 is configured so that at least the closing timing of the intake valve 32 can be changed, but is not limited thereto. Further, the exhaust side valve mechanism 38 may change the opening / closing timing of the exhaust valve 34 with respect to the exhaust valve 34 in the same manner as the intake side valve mechanism 36.

燃料噴射装置40は、吸気通路内燃料噴射装置で、先端に噴射孔を具え、内部に弁機構(いずれも図示せず。)を有している。燃料噴射装置40には、燃料タンク52からの燃料パイプ56と制御手段58からの信号線60が接続されている。燃料タンク52は、燃料ポンプ62を具え、燃料ポンプ62を介して燃料タンク52内の燃料を燃料パイプ56内に所定の圧力で圧送する。燃料噴射装置40は、噴射孔を吸気通路28内に臨ませて取り付けられており、信号線60を介して送られてくる信号に従い弁機構が作動すると燃料タンク52から送られてきた燃料を吸気通路28内に所定の圧力で噴射する。尚、燃料噴射装置40で燃料を加圧し、吸気通路28内に燃料を噴射するようにしてもよい。噴射とは、基本的に燃料を霧状に放射させることを指すものとするが、液柱状で噴射してもよい。また、燃料噴射装置40の噴射位置は、特に限定しない。   The fuel injection device 40 is a fuel injection device in the intake passage, which has an injection hole at the tip and has a valve mechanism (both not shown) inside. A fuel pipe 56 from the fuel tank 52 and a signal line 60 from the control means 58 are connected to the fuel injection device 40. The fuel tank 52 includes a fuel pump 62, and the fuel in the fuel tank 52 is pumped into the fuel pipe 56 at a predetermined pressure via the fuel pump 62. The fuel injection device 40 is attached with the injection hole facing the intake passage 28, and when the valve mechanism is operated in accordance with a signal sent via the signal line 60, the fuel sent from the fuel tank 52 is taken in. The fuel is injected into the passage 28 at a predetermined pressure. Note that the fuel may be pressurized by the fuel injection device 40 and injected into the intake passage 28. The term “injection” basically refers to radiating fuel in the form of a mist, but it may be injected in the form of a liquid column. Moreover, the injection position of the fuel injection device 40 is not particularly limited.

吸気流路調整機構42は、吸気通路28内に設けられた可動弁板43と、可動弁板43を回動させる駆動機構(図示せず。)などから構成されている。可動弁板43は、吸気通路28のほぼ中央に、燃料噴射装置40に近接させて回転自在に設けられている。可動弁板43は、回転軸45に一体に取り付けてあり、回転軸45が駆動機構により回動されると吸気通路28内で回動される。   The intake flow path adjustment mechanism 42 includes a movable valve plate 43 provided in the intake passage 28, a drive mechanism (not shown) that rotates the movable valve plate 43, and the like. The movable valve plate 43 is rotatably provided in the vicinity of the fuel injection device 40 in the approximate center of the intake passage 28. The movable valve plate 43 is integrally attached to the rotation shaft 45, and is rotated in the intake passage 28 when the rotation shaft 45 is rotated by a drive mechanism.

可動弁板43は、開状態、すなわち吸気通路28の流通方向と平行な状態から、閉状態、すなわち吸気通路28の流通方向とほぼ垂直な状態まで任意な角度に回動駆動する。そして可動弁板43は、閉状態に設定されると、燃料噴射装置40の噴射孔の近傍に開放部分を残して、吸気通路28の開口断面をほぼ閉鎖させる。   The movable valve plate 43 is driven to rotate at an arbitrary angle from an open state, that is, a state parallel to the flow direction of the intake passage 28, to a closed state, that is, a state substantially perpendicular to the flow direction of the intake passage 28. When the movable valve plate 43 is set in the closed state, the open section of the intake passage 28 is substantially closed, leaving an open portion in the vicinity of the injection hole of the fuel injection device 40.

更にシリンダヘッド12には、逆流調整手段としての吸気副通路11が設けられている。吸気副通路11は、吸気流路調整機構42を跨いで、吸気通路28と並列して形成された連通路である。吸気副通路11の一方端は、吸気流路調整機構42の上流側、つまり燃焼室26と反対側の吸気通路28の側壁に開口しており、吸気副通路11の他方端は、吸気流路調整機構42の下流側の吸気通路28の側壁にそれぞれ開口している。   Further, the cylinder head 12 is provided with an intake sub-passage 11 as a backflow adjusting means. The intake sub-passage 11 is a communication passage formed in parallel with the intake passage 28 across the intake passage adjustment mechanism 42. One end of the intake sub-passage 11 opens to the upstream side of the intake flow passage adjustment mechanism 42, that is, the side wall of the intake passage 28 opposite to the combustion chamber 26, and the other end of the intake sub-passage 11 is the intake flow passage Openings are respectively made in the side walls of the intake passage 28 on the downstream side of the adjustment mechanism 42.

吸気副通路11の内部には、流路制限手段としての一方向弁13が設けられている。一方向弁13は、上流側から下流側(吸気通路28の上流、下流と同じ。)には弁機能が閉鎖し、その逆方向には上流からの圧力により弁機能が開放される逆止弁である。尚、吸気副通路11はシリンダヘッド12に形成するのではなく、別途パイプなどを用いてシリンダヘッド12の外部等に構成してもよい。   A one-way valve 13 as a flow path restricting unit is provided inside the intake sub-passage 11. The one-way valve 13 has a check valve whose valve function is closed from the upstream side to the downstream side (same as upstream and downstream of the intake passage 28), and in the opposite direction, the valve function is opened by pressure from the upstream side. It is. The intake sub-passage 11 may not be formed in the cylinder head 12 but may be configured outside the cylinder head 12 by using a separate pipe or the like.

又シリンダヘッド12には、点火プラグ48が取り付けられている。点火プラグ48は、先端に電極部分を具え、燃焼室26の上部の略中心に、電極部分を燃焼室26に臨ませてシリンダヘッド12に取り付けられている。点火プラグ48は、点火機構50に接続されており、点火機構50の作用により適宜の点火時期に放電を行わせる。尚、点火プラグ48は、燃焼室26の中央でなく、他の位置に取り付けられていてもよい。   A spark plug 48 is attached to the cylinder head 12. The spark plug 48 has an electrode portion at the tip, and is attached to the cylinder head 12 at the substantially upper center of the combustion chamber 26 with the electrode portion facing the combustion chamber 26. The spark plug 48 is connected to the ignition mechanism 50, and discharges at an appropriate ignition timing by the action of the ignition mechanism 50. Note that the spark plug 48 may be attached to another position instead of the center of the combustion chamber 26.

次に、エンジン10の作用、効果について説明する。   Next, the operation and effect of the engine 10 will be described.

エンジン10は、クランク軸が回転すると、ピストン14がシリンダ18内で往復動する。ピストン14の往復動に伴い、吸気側動弁機構36が吸気弁32を作動させ、排気側動弁機構38が排気弁34を作動させ、燃料噴射装置40が燃料を吸気通路28内に噴射する。そして燃焼室26内に導入された混合気が、点火プラグ48による火花により着火し、燃焼する。   In the engine 10, when the crankshaft rotates, the piston 14 reciprocates in the cylinder 18. As the piston 14 reciprocates, the intake side valve mechanism 36 operates the intake valve 32, the exhaust side valve mechanism 38 operates the exhaust valve 34, and the fuel injection device 40 injects fuel into the intake passage 28. . The air-fuel mixture introduced into the combustion chamber 26 is ignited by a spark from the spark plug 48 and burned.

例えば、エンジン10のクランク回転数が低く、吸気の流速が遅い場合などでは、吸気流路調整機構42が作動し、可動弁板43により吸気通路28の開口断面積を減少させる。すると図2に示すように、可動弁板43で閉鎖されていない開放部分を空気流が通り、速度が上昇して、速い空気流(混合気)で燃焼室26に流入される。またこの開放部分は燃料噴射装置40の噴射孔の近傍であるため、燃料噴射装置40から噴射された燃料と空気とが良好に混合される。   For example, when the crank speed of the engine 10 is low and the flow rate of intake air is low, the intake flow path adjustment mechanism 42 operates and the movable valve plate 43 reduces the opening cross-sectional area of the intake passage 28. Then, as shown in FIG. 2, the air flow passes through the open portion that is not closed by the movable valve plate 43, the speed increases, and the air flows into the combustion chamber 26 with a fast air flow (air mixture). Moreover, since this open part is the vicinity of the injection hole of the fuel injection device 40, the fuel injected from the fuel injection device 40 and air are mixed well.

また燃費を向上させるため、吸気側動弁機構36が作動し、吸気弁32の閉鎖時期が圧縮行程中期以降となるように閉鎖時期を遅くする。図4に、そのときの吸気弁32と排気弁34の開閉時期を示す。図4は、横軸がクランク軸の回転角、縦軸が弁開度であり、曲線Aは吸気弁32の開度、曲線Bは排気弁34の開度を示す。すなわち吸気弁32は、曲線Aで示すように、クランク軸が360度から開き始め、720度手前で閉じるようになっている。   In order to improve fuel efficiency, the intake side valve mechanism 36 operates to delay the closing timing so that the closing timing of the intake valve 32 is after the middle of the compression stroke. FIG. 4 shows the opening / closing timing of the intake valve 32 and the exhaust valve 34 at that time. In FIG. 4, the horizontal axis represents the rotation angle of the crankshaft, the vertical axis represents the valve opening, the curve A represents the opening of the intake valve 32, and the curve B represents the opening of the exhaust valve 34. That is, as shown by the curve A, the intake valve 32 starts to open from 360 degrees and closes before 720 degrees.

このようにクランク軸が540度から720度までの、本来ピストン14がシリンダ18内を上昇して圧縮行程となる領域で、吸気弁32が開いている。これにより、燃焼室26内の気体はピストン14により押され、開いた吸気弁32を通って燃焼室26から吸気通路28を上流側に逆流しようとする。またこのとき吸気流路調整機構42は、上述したように作動しており、吸気通路28がほぼ閉じられた状態となっている。   In this way, the intake valve 32 is open in the region where the crankshaft is in the range of 540 degrees to 720 degrees and the piston 14 originally moves up in the cylinder 18 and enters the compression stroke. As a result, the gas in the combustion chamber 26 is pushed by the piston 14 and attempts to flow backward from the combustion chamber 26 through the intake valve 32 to the upstream side through the intake valve 32. At this time, the intake flow path adjustment mechanism 42 operates as described above, and the intake passage 28 is almost closed.

すると、吸気流路調整機構42の下流側は圧力が上昇することになるが、図3に示すように空気流(混合気)は、吸気副通路11に流入し、吸気流路調整機構42の下流側の圧力により一方向弁13が開放され、吸気副通路11を通過して、吸気流路調整機構42の上流側の吸気通路28に流出する。これにより、ピストン14で押圧された空気は、吸気流路調整機構42が閉じた状態であっても燃焼室26内から円滑に流出され、ピストン14によるポンピングロスを生じさせない。なお、流路制限手段としては、吸気流路調整機構42の下流側の圧力の実測値や、吸気流路調整機構42や可変動弁機構の作動状態、ピストン位置等の情報に基づいて電気的に開閉させる弁でもよい。しかしながら、実際の圧力を受けることにより開閉する逆止弁を用いることにより、安価でかつ正確な制御が可能となる。   Then, the pressure on the downstream side of the intake flow path adjustment mechanism 42 increases, but as shown in FIG. 3, the air flow (air mixture) flows into the intake sub-passage 11, and the intake flow path adjustment mechanism 42 The one-way valve 13 is opened by the pressure on the downstream side, passes through the intake sub-passage 11, and flows out to the intake passage 28 on the upstream side of the intake flow path adjustment mechanism 42. As a result, the air pressed by the piston 14 flows out smoothly from the combustion chamber 26 even when the intake flow path adjustment mechanism 42 is closed, and pumping loss due to the piston 14 does not occur. The flow path restricting means is based on the measured pressure value downstream of the intake flow path adjusting mechanism 42, information on the operating state of the intake flow path adjusting mechanism 42 and the variable valve mechanism, piston position, and the like. It may be a valve that opens and closes. However, by using a check valve that opens and closes by receiving actual pressure, inexpensive and accurate control can be performed.

図5に、吸気流路調整機構42を作動させた状態での筒内圧力の変化を示す。図5は、横軸が筒内(シリンダ18内)容積で、縦軸が筒内圧力であり、横軸の右端にピストン14の下死点が位置し、0の近傍に上死点が位置している。図5の実線Cは、吸気副通路11を設けた場合、点線Dは、吸気副通路11を設けない場合を示す。これにより、下死点からピストン14が上昇するとき、実線Cより点線Dのほうが圧力が高くなっている。これにより、実線Cで示す吸気副通路11を設けた場合の方がポンピングロスが少ないことがわかる。したがって、ポンピングロスによる燃費悪化を防止できる。   FIG. 5 shows a change in the in-cylinder pressure in a state where the intake flow path adjustment mechanism 42 is operated. In FIG. 5, the horizontal axis is the in-cylinder (cylinder 18) volume, the vertical axis is the in-cylinder pressure, the bottom dead center of the piston 14 is located at the right end of the horizontal axis, and the top dead center is located near zero. is doing. A solid line C in FIG. 5 indicates a case where the intake sub-passage 11 is provided, and a dotted line D indicates a case where the intake sub-passage 11 is not provided. Thereby, when the piston 14 rises from the bottom dead center, the pressure in the dotted line D is higher than that in the solid line C. Thus, it can be seen that the pumping loss is smaller when the intake sub-passage 11 indicated by the solid line C is provided. Therefore, fuel consumption deterioration due to pumping loss can be prevented.

次に、逆流調整手段の他の例について説明する。   Next, another example of the backflow adjusting means will be described.

図6は、吸気副通路11の内部に、上記一方向弁13に代えて回動弁15を設けた例である。回動弁15は、吸気流路調整機構42と同様駆動機構(図示せず。)を有し、可動弁板を吸気副通路11内で回動させて、吸気副通路11を所定の時期、つまり下流側が上流側より圧力が上昇した場合等に開放させる。このようにして逆流調整手段を構成してもよい。   FIG. 6 shows an example in which a rotary valve 15 is provided in the intake sub-passage 11 instead of the one-way valve 13. The rotary valve 15 has a drive mechanism (not shown) similar to the intake flow path adjustment mechanism 42, and rotates the movable valve plate in the intake sub-path 11 to cause the intake sub-path 11 to move at a predetermined time. In other words, the downstream side is opened when the pressure rises from the upstream side. In this way, the backflow adjusting means may be configured.

更に逆流調整手段の他の例を、図7に示す。これは、吸気流路調整機構42に逆流調整手段を設けた例である。吸気流路調整機構42の可動弁板47を、支持軸49に回動自在に取り付け、吸気通路28内で駆動機構により回動自在に設ける。駆動機構で可動弁板47を回動させることにより吸気通路28の開口断面積を減少できる。また可動弁板47は、支持軸49の少し上方に設けられた回動軸51で上流側に屈曲自在に形成されており、更に屈曲部分は回動軸51を中心にして、バネ部材等(図示せず。)により適度なバネ力で下流側に付勢されている。   Furthermore, another example of the backflow adjusting means is shown in FIG. This is an example in which a reverse flow adjusting means is provided in the intake flow path adjusting mechanism 42. A movable valve plate 47 of the intake flow path adjusting mechanism 42 is rotatably attached to the support shaft 49 and is provided to be rotatable in the intake passage 28 by a drive mechanism. The opening cross-sectional area of the intake passage 28 can be reduced by rotating the movable valve plate 47 by the drive mechanism. The movable valve plate 47 is formed to be bent upstream by a rotating shaft 51 provided slightly above the support shaft 49, and the bent portion is a spring member or the like centering on the rotating shaft 51 ( It is urged to the downstream side with an appropriate spring force.

この例によると、可動弁板47を回動すると、上述したと同様吸気通路28内の開口断面積が減少し、実線の矢印で示すように、燃料噴射装置40の噴射孔の近傍に、流速の速い空気流が形成される。そして、吸気通路28の上流側より下流側の圧力が上昇したときは、可動弁板47が二点鎖線で示すように上流側にバネ力に抗して屈曲し、吸気通路28の流路が拡大され、上流側への空気流を許容する。これにより、上述したと同様にポンピングロスを発生させず、燃費悪化を防止することができる。尚、図7の可動弁板47を屈曲自在とせず、支持軸49を中心として、駆動機構で、適宜吸気通路28を開放させるようにしてもよい。   According to this example, when the movable valve plate 47 is rotated, the opening cross-sectional area in the intake passage 28 is reduced in the same manner as described above, and as indicated by the solid line arrow, the flow velocity is increased in the vicinity of the injection hole of the fuel injection device 40. A fast air flow is formed. When the pressure on the downstream side from the upstream side of the intake passage 28 increases, the movable valve plate 47 bends against the spring force on the upstream side as indicated by a two-dot chain line, and the flow path of the intake passage 28 Enlarged to allow upstream air flow. Thereby, the pumping loss is not generated as described above, and the deterioration of fuel consumption can be prevented. Note that the movable valve plate 47 of FIG. 7 may not be bendable, but the intake passage 28 may be appropriately opened by a drive mechanism around the support shaft 49.

本発明にかかる可変動弁機構付き内燃機関の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the internal combustion engine with a variable valve mechanism concerning this invention. 内燃機関の吸気通路を示す断面図である。It is sectional drawing which shows the intake passage of an internal combustion engine. 内燃機関の吸気通路を示す断面図である。It is sectional drawing which shows the intake passage of an internal combustion engine. 吸排気弁の弁開度とクランク角の関係を示す図である。It is a figure which shows the relationship between the valve opening degree of an intake / exhaust valve, and a crank angle. 内燃機関の筒内圧力と筒内容積の関係を示す図である。It is a figure which shows the relationship between the cylinder pressure of an internal combustion engine, and cylinder volume. 他の逆流調整手段を具えた吸気通路を示す断面図である。It is sectional drawing which shows the intake passage provided with the other backflow adjustment means. 他の逆流調整手段を具えた吸気通路を示す断面図である。It is sectional drawing which shows the intake passage provided with the other backflow adjustment means.

符号の説明Explanation of symbols

10…エンジン
11…吸気副通路
12…シリンダヘッド
13…一方向弁
14…ピストン
15…回動弁
18…シリンダ
26…燃焼室
28…吸気通路
32…吸気弁
36…吸気側動弁機構
40…燃料噴射装置
42…吸気流路調整機構
43…可動弁板
45…回転軸
49…支持軸
DESCRIPTION OF SYMBOLS 10 ... Engine 11 ... Intake sub-passage 12 ... Cylinder head 13 ... One-way valve 14 ... Piston 15 ... Turning valve 18 ... Cylinder 26 ... Combustion chamber 28 ... Intake passage 32 ... Intake valve 36 ... Intake side valve mechanism 40 ... Fuel Injecting device 42 ... Intake flow path adjusting mechanism 43 ... Movable valve plate 45 ... Rotating shaft 49 ... Support shaft

Claims (5)

シリンダと、
シリンダ内に往復動自在に設けられたピストンと、
前記シリンダとピストンにより形成された燃焼室と、
前記燃焼室に連通された吸気通路と、
前記吸気通路の開口断面積を減少させる吸気流路調整機構と、
を備えた内燃機関において、
前記吸気流路調整機構の下流側から上流側に、該吸気流路調整機構の下流側の気体を流通させる逆流調整手段を備えたことを特徴とする内燃機関。
A cylinder,
A piston that is reciprocally movable in the cylinder;
A combustion chamber formed by the cylinder and the piston;
An intake passage communicating with the combustion chamber;
An intake passage adjustment mechanism for reducing an opening cross-sectional area of the intake passage;
In an internal combustion engine with
An internal combustion engine comprising reverse flow adjusting means for circulating gas downstream of the intake flow path adjustment mechanism from the downstream side to the upstream side of the intake flow path adjustment mechanism.
前記逆流調整手段は、前記吸気通路に設けられた、前記吸気流路調整機構を跨いで該吸気流路調整機構の上流側と下流側とを連通させた吸気副通路と、
前記吸気副通路に設けられた、該吸気副通路の下流から上流方向への流通のみを許可する流路制限手段とから形成したことを特徴とする請求項1に記載の内燃機関。
The reverse flow adjusting means is provided in the intake passage, and an intake sub-passage that communicates the upstream side and the downstream side of the intake flow passage adjustment mechanism across the intake flow passage adjustment mechanism,
2. The internal combustion engine according to claim 1, wherein the internal combustion engine is formed by a flow path restriction unit that is provided in the intake sub-passage and permits only the flow from the downstream to the upstream of the intake sub-passage.
前記燃焼室に臨ませた前記吸気通路の開口部に、該開口部を開閉させる吸気弁を有し、かつ少なくとも該吸気弁を圧縮行程中期以降まで開弁可能な、該吸気弁の開弁時期を変更可能とした可変動弁機構を備え、
前記流路制限手段は、前記吸気流路調整機構にて前記吸気通路の開口断面積を減少させ、前記可変動弁機構にて前記吸気弁を圧縮行程中期以降まで開弁させるとき、前記吸気流路調整機構の下流側から上流側の流通を許可することを特徴とする請求項2記載の内燃機関。
The opening timing of the intake valve having an intake valve that opens and closes the opening at the opening of the intake passage facing the combustion chamber, and at least the intake valve can be opened until the middle of the compression stroke Equipped with a variable valve mechanism that can be changed,
When the intake valve adjusting mechanism reduces the opening cross-sectional area of the intake passage and the variable valve mechanism opens the intake valve until the middle of the compression stroke, the intake flow adjustment means 3. The internal combustion engine according to claim 2, wherein flow from the downstream side to the upstream side of the path adjustment mechanism is permitted.
前記流路制限手段は、前記吸気流路調整機構の下流側の圧力が、上流側の圧力より上昇したとき、開弁する逆止弁であることを特徴とする請求項2または3に記載の可変動弁機構付き内燃機関。   4. The check valve according to claim 2, wherein the flow path restriction unit is a check valve that opens when the pressure on the downstream side of the intake flow path adjustment mechanism is higher than the pressure on the upstream side. 5. Internal combustion engine with variable valve mechanism. 前記吸気流路調整機構は、前記吸気通路内に設けられ、該吸気通路の開口断面を閉鎖可能に作動する可動弁板からなり、
前記逆流調整手段は、前記可動弁板の一部が、前記吸気流路調整機構を挟んで前記燃焼室側の圧力が、該吸気流路調整機構の上流側の圧力より上昇したとき、前記吸気通路の下流から上流方向へ屈曲し、前記可動弁板の一部が開放されるように形成したことを特徴とする請求項1に記載の可変動弁機構付き内燃機関。
The intake flow path adjustment mechanism is provided in the intake passage, and includes a movable valve plate that operates so as to be able to close the opening cross section of the intake passage.
When the pressure on the combustion chamber side rises above the pressure on the upstream side of the intake flow path adjustment mechanism when a part of the movable valve plate sandwiches the intake flow path adjustment mechanism, the reverse flow adjustment means 2. The internal combustion engine with a variable valve mechanism according to claim 1, wherein the internal combustion engine is bent from the downstream side to the upstream side so as to open a part of the movable valve plate.
JP2008307645A 2008-12-02 2008-12-02 Internal combustion engine Withdrawn JP2010133271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307645A JP2010133271A (en) 2008-12-02 2008-12-02 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307645A JP2010133271A (en) 2008-12-02 2008-12-02 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010133271A true JP2010133271A (en) 2010-06-17

Family

ID=42344786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307645A Withdrawn JP2010133271A (en) 2008-12-02 2008-12-02 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010133271A (en)

Similar Documents

Publication Publication Date Title
JP5925878B2 (en) Intake device for internal combustion engine
JP2007291929A (en) Intake device for internal combustion engine
JP2007500297A5 (en)
JP2010037964A (en) Cylinder fuel injection spark ignition internal combustion engine
CN107304740B (en) Fuel injection unit for an internal combustion engine
JP2010133271A (en) Internal combustion engine
JP2008303744A (en) Control device of internal combustion engine
JP6323909B2 (en) engine
JP2007315357A (en) Multiple-fuel internal combustion engine
CN110529232B (en) Intake device for internal combustion engine
JP2010031685A (en) Spark ignition internal combustion engine
JP5911297B2 (en) Internal combustion engine
JP2006329016A (en) Intake device for internal combustion engine
JP2007016657A (en) Intake device for internal combustion engine
JP2010019143A (en) Internal combustion engine
JP5765535B2 (en) Fuel injection engine in the intake passage
JP5049226B2 (en) Intake control device for internal combustion engine
RU2493394C2 (en) Internal combustion engine with compression ignition and method of its operation
JP5766042B2 (en) Internal combustion engine
JP6253335B2 (en) Control device for internal combustion engine
JP2008223543A (en) Multifuel internal combustion engine
JP5916358B2 (en) Reed valve structure
JP2010031684A (en) Spark ignition internal combustion engine
WO2018020720A1 (en) Control device for engine
JP2009097339A (en) Spark ignition internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207