JP2010131586A - Honeycomb filter and method for manufacturing the same - Google Patents

Honeycomb filter and method for manufacturing the same Download PDF

Info

Publication number
JP2010131586A
JP2010131586A JP2009219620A JP2009219620A JP2010131586A JP 2010131586 A JP2010131586 A JP 2010131586A JP 2009219620 A JP2009219620 A JP 2009219620A JP 2009219620 A JP2009219620 A JP 2009219620A JP 2010131586 A JP2010131586 A JP 2010131586A
Authority
JP
Japan
Prior art keywords
cell
collection
honeycomb filter
discharge cell
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009219620A
Other languages
Japanese (ja)
Other versions
JP4947113B2 (en
Inventor
Mitsunori Ota
光紀 太田
Tetsushi Haseda
哲志 長谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009219620A priority Critical patent/JP4947113B2/en
Priority to DE200910046441 priority patent/DE102009046441A1/en
Publication of JP2010131586A publication Critical patent/JP2010131586A/en
Application granted granted Critical
Publication of JP4947113B2 publication Critical patent/JP4947113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb filter for collecting and removing a substance to be collected in a fluid to be treated which has an increased limit of the amount of the substance to be collected, such as PM, while suppressing an increase in pressure loss, and has excellent heat resistance and durability, and to provide a method for manufacturing the same. <P>SOLUTION: The honeycomb filter has partition walls W<SB>IO</SB>for separating collection cells CL<SB>IN</SB>and discharge cells CL<SB>OUT</SB>from each other, wherein one (SRF<SB>IN</SB>/SRF<SB>OUT</SB>) of the collection cell CL<SB>IN</SB>and the discharge cell CL<SB>OUT</SB>is formed to have a flat surface and the other (SRF<SB>OUT</SB>/SRF<SB>IN</SB>) is formed to have a concave curved surface. The partition wall W<SB>IO</SB>is partially provided with a thick-walled portion W<SB>TK</SB>, satisfying the relationship: N<SB>A</SB>>N<SB>B</SB>, wherein the number of the collection cells CL<SB>IN</SB>per unit cross-sectional area is defined as N<SB>A</SB>(cells/inch<SP>2</SP>) and the number of the discharge cells CL<SB>OUT</SB>per unit cross-sectional area is defined as N<SB>B</SB>(cells/inch<SP>2</SP>). Therefore, the honeycomb filter maintains a desired equivalent hydraulic diameter to simultaneously improve the thermal capacity and isostatic strength thereof, while suppressing an increase in pressure loss. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被処理流体中の被捕集物質を除去するハニカムフィルタ及びその製造方法に
関し、特に、ディーゼルエンジン等の内燃機関の燃焼排気に含まれる粒子状物質(以下P
Mと称す。)等を捕集するためのディーゼルパティキュレートフィルタ(以下DPFと称
す。)に好適なものである。
The present invention relates to a honeycomb filter for removing a trapped substance in a fluid to be treated and a method for manufacturing the same, and in particular, particulate matter (hereinafter referred to as P) contained in combustion exhaust of an internal combustion engine such as a diesel engine.
Called M. ) And the like are suitable for a diesel particulate filter (hereinafter referred to as DPF).

近年、環境対策として、ディーゼルエンジン等の内燃機関から排出される燃焼排気内に
存在するススや、未燃燃料を含むPMの低減が、大きな課題となっている。そのため、従
来、燃焼は域内のPMを捕集するDPFを備えた排ガス浄化装置を燃焼排気の排出経路に
設置することが行われている。
In recent years, as an environmental measure, reduction of soot existing in combustion exhaust discharged from an internal combustion engine such as a diesel engine and PM including unburned fuel has become a major issue. For this reason, conventionally, in the combustion, an exhaust gas purifying apparatus including a DPF that collects PM in the region is installed in the exhaust gas exhaust path.

DPFは、一般に、耐熱性に優れ、かつ、無数の細孔を有する多孔質セラミックスを素
材としたハニカム構造体を形成し、所定のセルの入り口と出口とのいずれか一方の端面を
目封止して、PMを含む燃焼排気を該ハニカム構造体の隔壁を透過させることによって、
多孔質の隔壁に存在する細孔中にPMを捕捉している。
PMが堆積して上記隔壁の細孔に目詰まりを起こして圧力損失が高くなると、バーナや
ヒータ等で加熱したり、機関の燃焼爆発後に少量の燃料を噴射するポスト噴射等によりD
PF内に高温の燃焼排気を導入したりして、DPFを加熱し、DPF内に捕集されたPM
を燃焼除去して再生できる構成としている。
DPF is generally excellent in heat resistance and forms a honeycomb structure made of porous ceramics with innumerable pores, and plugs the end face of either the inlet or outlet of a predetermined cell. Then, by allowing combustion exhaust gas containing PM to pass through the partition walls of the honeycomb structure,
PM is trapped in the pores present in the porous partition walls.
If PM accumulates and clogs the pores of the partition wall and the pressure loss increases, it is heated by a burner or heater, or by post injection that injects a small amount of fuel after the combustion explosion of the engine.
PM collected in the DPF by introducing high-temperature combustion exhaust into the PF and heating the DPF
It is configured to be able to regenerate by burning off.

このようなDPF等に用いられるハニカムフィルタのセル形状並びに目封止パターンに
関して種々と提案されている。
例えば、特許文献1には、長手方向に並設された複数の貫通孔と、上記複数の貫通孔を
隔てるとともに外周面を構成する壁部とからなる柱状のハニカム構造体であって、上記多
数の貫通孔は、長手方向に垂直な断面の面積の総和が相対的に大きくなるように、一方の
端部が封止されてなる大容積貫通孔群と、上記断面積の総和が相対的に小さくなるように
、他方の端部が封止されてなる小容積貫通孔群とからなり、上記柱状のハニカム構造体の
上記外周面は、面取りが施された角部を有していることを特徴とするハニカム構造体が開
示されている。
Various proposals have been made regarding the cell shape and plugging pattern of a honeycomb filter used in such a DPF.
For example, Patent Document 1 discloses a columnar honeycomb structure including a plurality of through-holes arranged in parallel in the longitudinal direction and a wall portion that separates the plurality of through-holes and constitutes an outer peripheral surface, The through-holes of the large-capacity through-hole group in which one end is sealed so that the sum of the cross-sectional areas perpendicular to the longitudinal direction is relatively large, and the sum of the cross-sectional areas is relatively It is composed of a small volume through hole group in which the other end is sealed so as to be smaller, and the outer peripheral surface of the columnar honeycomb structure has a chamfered corner. A featured honeycomb structure is disclosed.

また、特許文献2には、多孔質の隔壁によって複数のセルが形成され、一方の端部が目
封じされた所定のセルと、他方の端部が目封じされた残余のセルとが、両端部がそれぞれ
市松模様を形成するように交互に配設されたハニカムフィルタであって、その断面におい
て、所定のセルと残余のセルとの断面積が異なり、断面積の小さいセルに対する断面積の
大きいセルの流路水力直径の比が1.2以上であり、少なくとも断面積の大きいセルの断
面形状が、少なくとも一つの角部に相当する部分が円弧状の四角形であり、隔壁の厚さに
対する、隔壁が交差する部分(交点部)の最小厚さの比の値が、0.7以上1.3未満で
あるハニカムセラミックフィルタが開示されている。
In Patent Document 2, a plurality of cells are formed by a porous partition wall, a predetermined cell in which one end is sealed, and a remaining cell in which the other end is plugged are both ends. The honeycomb filters are alternately arranged so that each part forms a checkered pattern, and the cross-sectional areas of the predetermined cells and the remaining cells are different in the cross section, and the cross-sectional area is large for the cells having a small cross-sectional area The ratio of the flow channel hydraulic diameter of the cell is 1.2 or more, the cross-sectional shape of the cell having at least a large cross-sectional area is a circular arc-shaped portion corresponding to at least one corner, and the thickness of the partition wall, A honeycomb ceramic filter is disclosed in which the value of the ratio of the minimum thicknesses of the portions (intersection points) where the partition walls intersect is 0.7 or more and less than 1.3.

一般に、筒状流路の断面積をAとし、筒状流路断面の内周長をLとしたとき、筒状流路
の等価水力直径Dhは、断面積Aの4倍を内周長Lで差し引いた値、即ち、Dh=4A/
Lで表され、筒状流路内を通過する流体に作用する流路内摩擦抵抗は筒状流路の等価水力
直径Dhに比例することが知られている。
また、内燃機関の燃焼排気流路にPMを除去すべくDPFを設けた場合、DPFを通過
する際の圧力損失が機関の燃焼に影響し、圧力損失の上昇によって、機関の燃焼性能が低
下することが知られている(特許文献1、2等)。
したがって、セル内を被処理流体が通過する際の圧力損失を小さくすべく、セル内を通
過する流体に作用する管内摩擦抵抗を小さくするためには、セルの等価水力直径をできる
限り大きくするのが望ましい。
In general, when the cross-sectional area of the cylindrical flow path is A and the inner peripheral length of the cross-section of the cylindrical flow path is L, the equivalent hydraulic diameter Dh of the cylindrical flow path is four times the cross-sectional area A as the inner peripheral length L. Minus the value, that is, Dh = 4 A /
It is known that the in-channel frictional resistance represented by L and acting on the fluid passing through the cylindrical channel is proportional to the equivalent hydraulic diameter Dh of the cylindrical channel.
In addition, when a DPF is provided to remove PM in the combustion exhaust flow path of the internal combustion engine, the pressure loss when passing through the DPF affects the combustion of the engine, and the combustion performance of the engine decreases due to the increase of the pressure loss. It is known (Patent Documents 1, 2, etc.).
Therefore, in order to reduce the frictional resistance in the pipe acting on the fluid passing through the cell in order to reduce the pressure loss when the fluid to be processed passes through the cell, the equivalent hydraulic diameter of the cell is increased as much as possible. Is desirable.

ところが、従来のDPFでは、ハニカム構造体を構成するセルを区画する隔壁は、その
交差部に設けられているR形状や面取り形状等によって、僅かに厚肉となっているものも
あるが、概ね一定肉厚の平板状に形成されている。このような構造のDPFにおいて圧力
損失を低減すべく、セルの等価水力直径を拡大しようとすると、単位断面積当たりのセル
数即ちセル密度を低減させるか、セル隔壁の厚さを低減させるかのいずれか選択せざるを
得ない。
However, in the conventional DPF, the partition walls that define the cells constituting the honeycomb structure may be slightly thick due to the R shape or chamfered shape provided at the intersection, It is formed in a flat plate shape with a constant thickness. In the DPF having such a structure, if the equivalent hydraulic diameter of the cell is increased in order to reduce the pressure loss, the number of cells per unit cross-sectional area, that is, the cell density is reduced or the thickness of the cell partition wall is reduced. I have to choose one.

しかし、セル密度を低減させるとPM捕集量の低下を招く虞があり、セル隔壁の厚さを
低減させるとハニカム構造体の実体重量が減少し、熱容量の低下を招く虞がある。熱容量
の低下は、DPF再生時のPM燃焼による過昇温を招き、ハニカム構造体が熱損傷され易
くなる虞がある。加えて、隔壁の薄肉化によるアイソスタティック強度の低下を招く虞も
ある。
However, if the cell density is reduced, the PM collection amount may be reduced, and if the cell partition wall thickness is reduced, the actual weight of the honeycomb structure may be reduced and the heat capacity may be reduced. The decrease in the heat capacity leads to an excessive temperature rise due to PM combustion during DPF regeneration, and the honeycomb structure may be easily damaged by heat. In addition, the isostatic strength may be reduced due to the thinning of the partition walls.

そこで、かかる実情に鑑み、本発明は、ハニカムフィルタの各セルについて所望の等価
水力直径を確保して圧力損失の増加を抑制すると共に、所望の熱容量を確保して、PM等
の被捕集物質の限界捕集量が大きく、かつ、耐熱性、耐久性に優れたハニカムフィルタの
提供を目的とする。
Accordingly, in view of such circumstances, the present invention secures a desired equivalent hydraulic diameter for each cell of the honeycomb filter to suppress an increase in pressure loss, and also secures a desired heat capacity to collect a trapped substance such as PM. An object of the present invention is to provide a honeycomb filter having a large limit collection amount and excellent heat resistance and durability.

上記課題を解決するために、第1の発明では、多孔質セラミックスからなる隔壁によっ
て被処理流体の流路となる略筒状に区画したセルを多数設けてハニカム状となし、上記セ
ルの一方の端部を被処理流体の導入される入り口側に開口せしめ他方の端部を閉塞せしめ
た捕集セルとし、上記セルの一方の端部を閉塞せしめ他方の端部を被処理流体の排出され
る出口側に開口せしめた排出セルとし、該捕集セルと該排出セルとを所定の位置に配設せ
しめて、被処理流体を上記捕集セルと上記排出セルとの間を区画する隔壁を透過させて、
被処理流体中の被捕集物を該隔壁に捕集せしめるハニカムフィルタにおいて、
上記捕集セルと上記排出セルとの間を区画する隔壁は、上記捕集セル又は上記排出セル
のいずれか一方に対向する側を平面とし、他方に対向する側を凹面状に湾曲せしめた曲面
として、当該隔壁の一部に厚肉部を設けるとともに、上記略筒状のセルの長手方向に対す
る垂直断面における上記捕集セルの単位断面積あたりの個数をN(個/inch)、
略筒状のセルの長手方向に対する垂直断面における上記排出セルの単位断面積あたりの個
数をN(個/inch)とした場合に、N>Nの関係を満足せしめる(請求項1
)。
In order to solve the above-described problem, in the first invention, a plurality of cells partitioned into a substantially cylindrical shape serving as a flow path of a fluid to be treated are provided by partition walls made of porous ceramics to form a honeycomb shape. A collection cell having an end opened on the inlet side into which the fluid to be treated is introduced and the other end closed is used, and one end of the cell is closed and the other end is discharged. The discharge cell is opened on the outlet side, the collection cell and the discharge cell are arranged at predetermined positions, and the fluid to be treated passes through the partition wall that partitions the collection cell and the discharge cell. Let me
In the honeycomb filter for collecting the collected matter in the treated fluid in the partition wall,
The partition partitioning between the collection cell and the discharge cell is a curved surface in which the side facing either the collection cell or the discharge cell is a flat surface and the side facing the other is curved concavely. as, provided with a thick portion in a part of the partition wall, the number per unit cross-sectional area of the collecting cell in section orthogonal to the longitudinal direction of the substantially cylindrical cells N a (number / inch 2),
When the number per unit cross-sectional area of the discharge cells in the vertical cross section with respect to the longitudinal direction of the substantially cylindrical cell is N B (pieces / inch 2 ), the relationship of N A > N B is satisfied.
).

第1の発明によれば、上記厚肉部によって上記隔壁の熱容量が高くなり、さらに、ハニ
カム構造体のアイソスタティック強度も上昇する。加えて上記排出セルを湾曲せしめるこ
とによって設けた上記肉厚部により、上記捕集セルと上記捕集セルに囲まれたセル壁内を
透過して上記排出セルより排出される排ガスの流体抵抗を増加できるので、上記セル壁に
捕集されるPMの堆積量が抑制され、単位濾過壁あたりのPM燃焼量を軽減することで熱
損傷の発生を抑制する効果が期待できる。したがって、耐熱性、耐久性に優れたハニカム
フィルタが実現できる。
また、上記捕集セルの単位断面積当たりの数Nを上記排出セルの単位断面積当たりの
数Nよりも多く設定することにより、捕集セル同士が隣接するので、セル壁の両側にP
Mを堆積させることが可能となり、濾過面積を効率的に確保したことによるPM堆積圧損
の低減効果を得ることができる。
さらに、このような構成とすることによって、上記排出セル側の圧力損失を上記捕集セ
ル側の圧力損失よりも相対的に小さくすることができ、上記捕集セルと上記排出セルとの
圧力損失差を大きくすることができる。
したがって、上記捕集セルと上記排出セルとの間を区画する隔壁を通過する燃焼排気の
流速(透過流速)を大きくすることが可能となり、ハニカムフィルタの使用中における圧
力損失が小さくなり、内燃機関の燃焼に対する影響を抑制することができる。
According to 1st invention, the heat capacity of the said partition becomes high with the said thick part, Furthermore, the isostatic strength of a honeycomb structure also rises. In addition, the thick part provided by curving the discharge cell reduces the fluid resistance of the exhaust gas that permeates through the collection cell and the cell wall surrounded by the collection cell and is discharged from the discharge cell. Since it can increase, the accumulation amount of PM collected by the said cell wall is suppressed, and the effect which suppresses generation | occurrence | production of a thermal damage can be anticipated by reducing the PM combustion amount per unit filtration wall. Therefore, a honeycomb filter having excellent heat resistance and durability can be realized.
Also, the number N A per unit sectional area of the collecting cells by setting more than the number N B per unit cross-sectional area of the discharge cell, since the collecting cell are adjacent to each other on both sides of the cell walls P
M can be deposited, and the effect of reducing the PM deposition pressure loss due to the efficient securing of the filtration area can be obtained.
Furthermore, by setting it as such a structure, the pressure loss by the side of the said discharge cell can be made relatively smaller than the pressure loss by the side of the said collection cell, and the pressure loss of the said collection cell and the said discharge cell The difference can be increased.
Therefore, it becomes possible to increase the flow rate (permeation flow rate) of the combustion exhaust gas that passes through the partition wall that partitions between the collection cell and the discharge cell, and the pressure loss during use of the honeycomb filter is reduced, and the internal combustion engine The influence on the combustion of can be suppressed.

第2の発明では、上記捕集セルと上記排出セルとの流路長手方向に垂直な断面の形状は
、いずれか一方を多角形に形成し、他方を円形に形成する(請求項2)。
In the second invention, one of the shape of the cross section perpendicular to the flow channel longitudinal direction of the collection cell and the discharge cell is formed in a polygon and the other is formed in a circle (Claim 2).

第2の発明によれば、上記捕集セルと上記排出セルとの等価水力直径を維持したまま、
上記捕集セルと上記排出セルとの間を区画する隔壁の一部に厚肉部を形成することが可能
となり、圧力損失を増加させることなく上記捕集セルと上記排出セルとの間を区画する隔
壁の熱容量を向上させ、ハニカム構造体のアイソスタティック強度も上昇させることがで
きる。したがって、耐熱性、耐久性に優れたハニカムフィルタが実現できる。
加えて、本発明によらず上記捕集セルと上記排出セルとの両方を円形に形成した場合に
は、厚肉部が過剰に肉厚となり、被処理流体が上記捕集セルと上記排出セルとの間を区画
する隔壁を透過する際の拡散抵抗が大きくなり圧力損失が増加する虞がある。
本発明のように、上記捕集セルと上記排出セルとを異なった形状に形成することによっ
て、圧力損失の低減と熱容量の向上とを両立するハニカムフィルタの実現が可能となる。
According to the second invention, while maintaining the equivalent hydraulic diameter of the collection cell and the discharge cell,
It is possible to form a thick part in a part of the partition wall that partitions between the collection cell and the discharge cell, and partitions between the collection cell and the discharge cell without increasing the pressure loss. It is possible to improve the heat capacity of the partition walls and increase the isostatic strength of the honeycomb structure. Therefore, a honeycomb filter having excellent heat resistance and durability can be realized.
In addition, when both the collection cell and the discharge cell are formed in a circular shape regardless of the present invention, the thick portion becomes excessively thick, and the fluid to be treated is the collection cell and the discharge cell. There is a possibility that the diffusion resistance at the time of permeation through the partition wall partitioning between the two and the pressure increases and the pressure loss increases.
By forming the collection cell and the discharge cell in different shapes as in the present invention, it is possible to realize a honeycomb filter that achieves both a reduction in pressure loss and an improvement in heat capacity.

第3の発明では、上記捕集セルと上記排出セルとに触媒を担持せしめたハニカムフィル
タにおいて、上記セル壁の平面側に担持せしめた単位表面積あたりの触媒担持質量の最小
値をt(mg/mm)、上記セル壁の曲面側に担持せしめた単位表面積あたりの触媒
担持質量の平均値をt(mg/mm)、上記セル壁の平面側に担持せしめた単位表面
積あたりの触媒担持質量の最大値をt(mg/mm)とした場合に、t≦t≦t
の関係を満足せしめる(請求項3)。
In the third invention, in the honeycomb filter in which the catalyst is supported on the collection cell and the discharge cell, the minimum value of the catalyst support mass per unit surface area supported on the plane side of the cell wall is set to t C (mg / Mm 2 ), the average value of the catalyst carrying mass per unit surface area supported on the curved surface side of the cell wall t D (mg / mm 2 ), the catalyst per unit surface area supported on the plane side of the cell wall T C ≦ t D ≦ t, where t E (mg / mm 2 ) is the maximum supported mass
The relationship of E is satisfied (claim 3).

第3の発明によれば、触媒によりPMの堆積を抑制して、圧力損失の低減を図るハニカ
ムフィルタにおいても、上記捕集セルの水力直径と上記排出セルの水力直径とを減少させ
ることなくPMの堆積を抑制するのに必要な触媒担持量を確保できるので、さらに圧力損
失の少ないハニカムフィルタの実現が可能となる。
According to the third invention, even in a honeycomb filter that suppresses the accumulation of PM by the catalyst and reduces the pressure loss, the PM without reducing the hydraulic diameter of the collection cell and the hydraulic diameter of the discharge cell. As a result, it is possible to secure a sufficient amount of catalyst to suppress the accumulation of the catalyst, so that a honeycomb filter with less pressure loss can be realized.

より具体的には、触媒を担持した後の上記捕集セルの上記捕集セルと上記排出セルとを
内包する多角形からなる仮想単位格子の等価水力直径を仮想水力直径(Dh)とし、上
記捕集セルと上記排出セルとの間を区画する隔壁の肉厚の最小値を最小厚(t)としたと
き、上記捕集セルの等価水力直径(Dh)と上記排出セルの等価水力直径(Dh)と
のいずれか一方を上記仮想水力直径(Dh)と等しく設け、他方の等価水力直径を上記
仮想水力直径(Dh)から上記最小肉厚(t)の2倍を差し引いた値(Dh−2t)
に形成するのが望ましい。
More specifically, an equivalent hydraulic diameter of a virtual unit cell made of a polygon that encloses the collection cell and the discharge cell of the collection cell after supporting the catalyst is a virtual hydraulic diameter (Dh 0 ), When the minimum thickness of the partition wall partitioning between the collection cell and the discharge cell is the minimum thickness (t), the equivalent hydraulic diameter (Dh 1 ) of the collection cell and the equivalent hydraulic force of the discharge cell One of the diameters (Dh 2 ) is set equal to the virtual hydraulic diameter (Dh 0 ), and the other equivalent hydraulic diameter is subtracted from the virtual hydraulic diameter (Dh 0 ) by twice the minimum wall thickness (t). Value (Dh 0 -2t)
It is desirable to form.

また、上記捕集セルと上記排出セルとを内包する多角形からなる仮想単位格子の等価水
力直径を仮想水力直径(Dh)とし、上記捕集セルと上記排出セルとの間を区画する隔
壁の肉厚の最小値を最小厚(t)としたとき、上記捕集セルの等価水力直径(Dh)と
上記排出セルの等価水力直径(Dh)とは、上記仮想水力直径(Dh)から上記最小
肉厚(t)を差し引いた値(Dh―t)に形成しても良い。
Further, an equivalent hydraulic diameter of the virtual unit cell consisting of a polygon which encloses the said collection cell and the discharge cell as a virtual hydraulic diameter (Dh 0), defining between said collection cell and the discharge cell partition wall when the minimum value of the wall thickness and the minimum thickness (t), and the equivalent hydraulic diameter of the collecting cells (Dh 1) equivalent hydraulic diameter of the discharge cells (Dh 2), the virtual hydraulic diameter (Dh 0 ) from may be formed on the value (Dh 0 -t) which is obtained by subtracting the above-mentioned minimum wall thickness (t).

第1の発明から第3の発明として記載したハニカムフィルタの製造方法において、第4
の発明では、各辺が直線のみからなる多角形状のブロックと曲線からなる円形状のブロッ
クとによって形成されたスリット溝を設けた金型からセラミック坏土を押し出してセラミ
ックハニカム構造体を形成するセラミックハニカム構造体成形工程を備える(請求項4)
In the method for manufacturing a honeycomb filter described as the first to third inventions,
In this invention, the ceramic is formed by extruding a ceramic clay from a mold provided with slit grooves formed by polygonal blocks each having only a straight line and circular blocks each having a curved line. A honeycomb structure forming step is provided (claim 4).
.

第4の発明によれば、上記捕集セルと上記排出セルとの間を一方の面が平面であり他方
の面が曲面であって、一部に肉厚部を有した隔壁によって区画して上記捕集セルと上記排
出セルとの等価水力直径及びセル密度を低減することなく上記捕集セルと上記排出セルと
の間を区画する隔壁の熱容量を高めつつ機械的強度を増強せしめ、被捕集物質の捕集量の
高いハニカムフィルタの製造が実現可能となる。
According to a fourth aspect of the present invention, the surface between the collection cell and the discharge cell is partitioned by a partition wall having a flat surface on the other side and a curved surface on the other surface and having a thick portion in part. Without increasing the equivalent hydraulic diameter and cell density of the collection cell and the discharge cell, the mechanical strength is increased while increasing the heat capacity of the partition wall partitioning the collection cell and the discharge cell, and Manufacturing of a honeycomb filter having a high amount of collected material can be realized.

本発明の第1の実施の形態におけるハニカムフィルタの概要を示し、(a)は、ハニカムフィルタ全体構成を表す斜視図、(b)は、流路方向に沿った縦断面図。The outline | summary of the honey-comb filter in the 1st Embodiment of this invention is shown, (a) is a perspective view showing the whole honey-comb filter structure, (b) is a longitudinal cross-sectional view along a flow-path direction. 本発明の第1の実施形態におけるハニカムフィルタの特徴的な部分を示し、(a)は、流路方向に垂直な要部断面図、(b)は捕集セルと排出セルとを区画する隔壁の要部断面図。The characteristic part of the honey-comb filter in the 1st Embodiment of this invention is shown, (a) is principal part sectional drawing perpendicular | vertical to a flow-path direction, (b) is the partition which divides a collection cell and a discharge cell FIG. 本発明の第1の実施形態におけるハニカムフィルタの変形例における特徴的な部分を示し、(a)は、流路方向に垂直な要部断面図、(b)は捕集セルと排出セルとを区画する隔壁の要部断面図。The characteristic part in the modification of the honey-comb filter in the 1st Embodiment of this invention is shown, (a) is principal part sectional drawing perpendicular | vertical to a flow-path direction, (b) is a collection cell and a discharge cell. Sectional drawing of the principal part of the partition to divide. (a)、(b)は、本発明の第1の実施形態におけるハニカムフィルタの他の変形例を示す流路方向に垂直な要部断面図。(A), (b) is principal part sectional drawing perpendicular | vertical to the flow-path direction which shows the other modification of the honey-comb filter in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるハニカムフィルタの成形に用いられる金型の概要を示し、(a)は要部平面図、(b)は要部断面図。The outline | summary of the metal mold | die used for shaping | molding of the honey-comb filter in the 1st Embodiment of this invention is shown, (a) is a principal part top view, (b) is principal part sectional drawing. 本発明の第1の実施形態におけるハニカムフィルタをDPFとして用いた燃焼排気浄化システムの例を示す構成図。The block diagram which shows the example of the combustion exhaust gas purification system which used the honey-comb filter in the 1st Embodiment of this invention as DPF.

本発明の第1の実施形態におけるハニカムフィルタ1は、ディーゼルエンジン等の内燃
機関の燃焼排気を被処理流体とし、多孔質セラミックスからなる隔壁によって被処理流体
の流路となる略筒状に区画したセルを多数設けてハニカム状となし、セルの一方の端部を
被処理流体の導入される入り口側に開口せしめ他方の端部STPOUTを閉塞せしめた捕
集セルCLINとし、セルの一方の端部STPINを閉塞せしめ他方の端部を被処理流体
の排出される出口側に開口せしめた排出セルCLOUTとし、捕集セルCLINと排出セ
ルCLOUTとを所定の位置に配設せしめたものであり、燃焼排気中に含まれる粒子状物
質PMを被捕集物質とし、被処理流体がハニカムフィルタ1の隔壁を透過することによっ
て被処理流体中の被捕集物質を除去することができるものである。
本発明のハニカムフィルタ1は、多孔質セラミックスからなる隔壁WIOの一方の面を
直平面状とし、他方の面を湾曲面状として、隔壁WIOの板厚を部分的に厚くした厚壁部
TKを設けて、所望のPM捕集量を維持しつつ、ハニカム構造体の熱容量を増加し耐久
性を向上せしめたことを最大の特徴とする。
The honeycomb filter 1 according to the first embodiment of the present invention uses a combustion exhaust gas from an internal combustion engine such as a diesel engine as a fluid to be processed, and is partitioned into a substantially cylindrical shape serving as a flow path of the fluid to be processed by a partition made of porous ceramics. honeycomb and without providing a large number of cells, one of the ends of the cells and collecting the cell CL iN that allowed closing the opening allowed other end STP OUT on the inlet side to be introduced in the fluid to be treated, one of the cell the other end brought close the end STP iN and the discharge cell CL OUT which allowed open on the outlet side to be discharged in the fluid to be treated, brought arranged a collecting cell CL iN and the discharge cell CL OUT in place The particulate matter PM contained in the combustion exhaust is used as the material to be collected, and the material to be collected in the fluid to be treated passes through the partition walls of the honeycomb filter 1 by the fluid to be treated. It is capable of removing.
The honeycomb filter 1 of the present invention, one surface of the partition wall W IO made of porous ceramics and straight planar, the other face as a curved surface shape, thick wall portion which is thicker plate thickness of the partition wall W IO partially WTK is provided to increase the heat capacity of the honeycomb structure and improve the durability while maintaining a desired amount of collected PM.

なお、本実施形態においては、多孔質セラミック材料として広く一般に用いられている
コーディエライトを用いた場合を例に説明するが、コーディエライト(2MgO・3Al
・5SiO2)に限らず、アルミナ(Al)、ムライト(3Al・2
SiO)、スピネル(MgO・Al)、ジルコニア(ZrO)、チタン酸アル
ミニウム(AlTiO)、リチウムアルミノシリケート(LiO・Al・S
iO)等の酸化物材料、炭化珪素(SiC)、炭化硼素(BN)、炭化チタン(Ti
C)等の炭化物材料、珪化チタン(TiSi)等の珪化物材料等を用いることができる
。また、PMを効率的に燃焼すべく触媒として、白金(Pt)、ルテニウム(Rh)、チ
タン(Ti)、タングステン(W)等の金属を多孔質セラミックスの表面に担持させた構
成としても良い。
In this embodiment, the case of using cordierite, which is widely used as a porous ceramic material, will be described as an example, but cordierite (2MgO.3Al
Not only 2 O 3 · 5SiO 2, but also alumina (Al 2 O 3 ), mullite (3Al 2 O 3 · 2)
SiO 2 ), spinel (MgO · Al 2 O 3 ), zirconia (ZrO 2 ), aluminum titanate (Al 2 TiO 5 ), lithium aluminosilicate (Li 2 O · Al 2 O 3 · S)
oxide materials such as iO 2 ), silicon carbide (SiC), boron carbide (B 4 N), titanium carbide (Ti
Carbide materials such as C) and silicide materials such as titanium silicide (TiSi 2 ) can be used. Further, as a catalyst for efficiently burning PM, a metal such as platinum (Pt), ruthenium (Rh), titanium (Ti), tungsten (W) or the like may be supported on the surface of the porous ceramic.

図1(a)、(b)に示すように、本実施形態においてハニカムフィルタ1は、筒状に
伸びる断面六角形の流路を持つ捕集セルCLINと筒状に伸びる断面円形の流路を持つ排
出セルCLOUTとが複数配設されたハニカム構造体を構成し、捕集セルCLINは、入
り口側端部が開口し出口側端部が出口側目封止栓STPOUTによって閉塞され、排出セ
ルは、入り口側端部が入り口側目封止栓STPINによって閉塞され、出口側端部が開口
している。
As shown in FIG. 1 (a), (b) , the honeycomb filter 1 in the present embodiment, a circular cross-section of the flow path extending collecting cell CL IN cylindrical having a hexagonal cross section of the flow path extending tubular and the honeycomb structured body in which a discharge cell CL OUT are more disposed with, collecting cell CL iN the outlet side end portion inlet end is open is closed by an outlet-side second sealing plug STP OUT The discharge cell has an inlet side end portion closed by an inlet side plugging plug STP IN and an outlet side end portion opened.

ハニカムフィルタ1の入り口側から捕集セルCLINに導入されたPMを含む燃焼排気
は、捕集セルCLINと排出セルCLOUTとの間を区画する隔壁WIOを透過し排出セ
ルCLOUTに移動する。
この時、燃焼排気内のPMは隔壁WIOに無数に存在する細孔内に捕集され、PMの除
去された燃焼排気のみが出口側に排出される。
Combustion exhaust gas containing PM introduced into the collection cell CL IN from the inlet side of the honeycomb filter 1 passes through the partition wall WIO partitioning between the collection cell CL IN and the discharge cell CL OUT, and enters the discharge cell CL OUT . Moving.
At this time, PM in the combustion exhaust gas is collected in countless pores in the partition wall WIO , and only the combustion exhaust gas from which PM has been removed is discharged to the outlet side.

図2を参照して、本実施形態におけるハニカムフィルタ1を構成する捕集セルCLIN
及び排出セルCLOUTの特徴についてさらに詳述する。
図2(a)に示すように、排出セルCLOUTの等価水力直径φDhは、六角形から
なる仮想単位格子LTCVRの仮想水力直径Dhと等しい値に形成されており、捕集セ
ルCLINと排出セルCLOUTとの間を区画する隔壁WIOの肉厚の最小値をtとした
とき、捕集セルCLINの等価水力直径Dhは仮想水力直径Dhから肉厚最小値tの
2倍を差し引いた値(Dh−2t)に形成されている。
また、略筒状のセルの長手方向に対する垂直断面における捕集セルCLINの単位断面
積あたりの個数をN(個/inch)、略筒状のセルの長手方向に対する垂直断面に
おける排出セルCLOUTの単位断面積あたりの個数をN(個/inch)とした場
合に、N>Nの関係を満たすように構成するのが望ましい。
具体的には、本実施形態においては、1個の排出セルCLOUTに対してその周囲に6
個の捕集セルCLINが並び、1個の捕集セルCLINに対してその周囲に3個の排出セ
ルが並び、2個の捕集セルCLIN同士が隣接するように配設されている。
With reference to FIG. 2, the collection cell CL IN constituting the honeycomb filter 1 in the present embodiment.
Further, the characteristics of the discharge cell CL OUT will be described in detail.
As shown in FIG. 2A, the equivalent hydraulic diameter φDh 2 of the discharge cell CL OUT is formed to have a value equal to the virtual hydraulic diameter Dh 0 of the virtual unit cell LTC VR made of a hexagon, and the collection cell CL When the minimum value of the wall thickness of the partition wall WIO partitioning between the IN and the discharge cell CL OUT is t, the equivalent hydraulic diameter Dh 1 of the collection cell CL IN is from the virtual hydraulic diameter Dh 0 to the minimum wall thickness t. It is formed to a value (Dh−2t) obtained by subtracting 2 times.
Further, N A (number / inch 2) the number per unit cross-sectional area of the collecting cells CL IN in section orthogonal to the longitudinal direction of the substantially cylindrical cells, the discharge cells in the section orthogonal to the longitudinal direction of the substantially cylindrical cells When the number of CL OUT per unit cross-sectional area is N B (pieces / inch 2 ), it is desirable that the configuration satisfy N A > N B.
Specifically, in the present embodiment, there are 6 discharge cells CL OUT around the discharge cell CL OUT .
Lined pieces of collecting cells CL IN, lined one three discharge cells on the periphery with respect to the collecting cell CL IN, 2 pieces of collecting cells CL IN each other are disposed so as to be adjacent Yes.

このような構成とすることによって、図2(b)に示すように、捕集セルCLINと排
出セルCLOUTとの間を隔てる隔壁WIOは、捕集セルCLIN側の表面SRFIN
直平面となり、これに対向する排出セルCLOUT側の表面SRFOUTが、凹面状に湾
曲した曲面となり、隔壁WIOの一部が肉厚となった厚肉部WTKを形成することができ
る。厚肉部WTKは、隔壁WIOの熱容量を増加するとともに、ハニカム構造体のアイソ
スタティック強度を向上させている。
捕集セルCLINは、断面多角形に形成されているので、捕集セルCLIN側の表面S
RFINの表面積が大きくなり、PM捕集量を多くすることができる。一方、排出セルC
OUTは、断面円形に形成されているので、圧力損失の増加を抑制できる。
加えて、隣接する複数の捕集セルCLIN同士を区画する隔壁WIIは、肉厚最小値t
の2倍の肉厚に形成されている。したがって、隔壁WIIの熱容量が大きく、隔壁WII
の両側に堆積したPMが燃焼した場合にも熱損傷を抑制することができる。
By adopting such a configuration, as shown in FIG. 2B, the partition wall W IO separating the collection cell CL IN and the discharge cell CL OUT has a surface SRF IN on the collection cell CL IN side. becomes a straight plane, the surface SRF OUT of the discharge cell CL OUT side opposed thereto becomes a curved surface curved in a concave shape, can be a part of the partition wall W IO forms a thick portion W TK became thick . Thick portion W TK is configured to increase the heat capacity of the partition walls W IO, thereby improving the isostatic strength of the honeycomb structure.
Since the collection cell CL IN is formed in a polygonal cross section, the surface S on the collection cell CL IN side.
The surface area of RF IN is increased, and the amount of PM collected can be increased. On the other hand, discharge cell C
Since L OUT has a circular cross section, an increase in pressure loss can be suppressed.
In addition, the partition wall W II that partitions adjacent collection cells CL IN has a minimum thickness t
It is formed to be twice as thick as. Therefore, large heat capacity of the partition walls W II is, partition walls W II
Thermal damage can also be suppressed when PM deposited on both sides of the gas burns.

さらに、本実施形態においては、捕集セルCLINの開口断面積SINと排出セルCL
OUTの開口断面積SOUTとの関係において、SIN<SOUTが成立し、ハニカムフ
ィルタ1全体について、捕集セルCLINの開口断面積SINと、その総和ΣSINと、
排出セルCLOUTの開口断面積SOUTと、その総和ΣSOUTとの関係において、Σ
IN>ΣSOUTが成立している。
このような構成とすることによって、排出セルCLOUT側の圧力損失を捕集セルCL
IN側の圧力損失よりも相対的に小さくすることができ、捕集セルCLINと排出セルC
OUTとの圧力損失差を大きくすることができる。
したがって、捕集セルCLINと排出セルCLOUTとの間を区画する隔壁WIOを通
過する燃焼排気の流速(透過流速)を大きくし、ハニカムフィルタの使用中における圧力
損失を小さくし、内燃機関の燃焼に対する影響を抑制することができる。
さらに、排出セルCLOUTを湾曲せしめることによって設けた肉厚部WTKにより、
捕集セルCLINと捕集セルCLINに囲まれたセル壁内を透過して排出セルCLOUT
より排出される排ガスの流体抵抗を増加できるので、上記セル壁に捕集されるPMの堆積
量が抑制され、単位濾過壁あたりのPM燃焼量を軽減することで熱損傷の発生を抑制する
効果が期待できる。
Further, in the present embodiment, the opening cross-sectional area of the collecting cell CL IN S IN and the discharge cell CL
In relation to the OUT opening cross-sectional area S OUT of, satisfied S IN <S OUT, the whole honeycomb filter 1, and the opening cross-sectional area S IN of trapping cell CL IN, and the sum [sigma] s IN,
And the opening sectional area S OUT of the discharge cell CL OUT, in relation to the sum [sigma] s OUT, sigma
S IN > ΣS OUT is established.
By adopting such a configuration, the pressure loss on the discharge cell CL OUT side is reduced to the collection cell CL.
It can be made relatively smaller than the pressure loss on the IN side, and the collection cell CL IN and the discharge cell C
The pressure loss difference with L OUT can be increased.
Therefore, the flow velocity (permeation flow velocity) of the combustion exhaust gas that passes through the partition wall WIO partitioning between the collection cell CL IN and the discharge cell CL OUT is increased, the pressure loss during use of the honeycomb filter is reduced, and the internal combustion engine The influence on the combustion of can be suppressed.
Further, the thick portion W TK provided by allowed to bend the discharge cell CL OUT,
The collection cell CL IN and the discharge cell CL OUT are transmitted through the cell wall surrounded by the collection cell CL IN.
Since the fluid resistance of the exhaust gas exhausted can be increased, the amount of PM accumulated on the cell wall is suppressed, and the effect of suppressing the occurrence of thermal damage by reducing the amount of PM combustion per unit filtration wall Can be expected.

なお、本実施形態において、捕集セルCLINと排出セルCLOUTとに触媒を担持せ
しめた場合、捕集セルCLINの壁面SRFINがセル壁WIOの平面側となり、排出セ
ルCLOUTの壁面SRFOUTがセル壁WIOの曲面側となる。
平面側に担持せしめた単位表面積あたりの触媒担持質量の最小値をt(mg/mm
)、曲面側に担持せしめた単位表面積あたりの触媒担持質量の平均値をt(mg/mm
)、平面側に担持せしめた単位表面積あたりの触媒担持質量の最大値をt(mg/m
)とした場合に、本実施形態においては、t≦t≦tの関係を満足している。
触媒の担持量をこの範囲に設定することにより、捕集セルCLINの水力直径を小さく
することなく、PM堆積抑制に必要な触媒担持量を確保できるので、さらに圧力損失を小
さくできる。
In the present embodiment, when allowed to carry the catalyst into the collecting cell CL IN and the discharge cell CL OUT, wall SRF IN of collecting cells CL IN becomes the planar side of the cell wall W IO, the discharge cell CL OUT wall SRF OUT becomes the curved surface side of the cell wall W IO.
The minimum value of the catalyst supporting mass per unit surface area supported on the flat surface side is expressed as t C (mg / mm 2
), The average value of the catalyst carrying mass per unit surface area carried on the curved surface side is t D (mg / mm
2 ) The maximum value of the catalyst carrying mass per unit surface area carried on the plane side is expressed as t E (mg / m
In the case of m 2 ), in the present embodiment, the relationship of t C ≦ t D ≦ t E is satisfied.
By setting the amount of catalyst supported in this range, without reducing the hydraulic diameter of the collecting cell CL IN, it is possible to ensure the catalyst loading required for PM deposit control, can further reduce the pressure loss.

図3を参照して、本発明の第1の実施形態におけるハニカムフィルタの変形例1aにつ
いて説明する。本図、(a)は、流路方向に垂直な要部断面図、(b)は捕集セルCL
と排出セルCLOUTとを区画する隔壁WIOの要部断面図である。
本実施形態において、捕集セルCLINは、六角形からなる仮想単位格子LTCVR
等価水力直径Dhから肉厚最小値tの2倍を差し引いたφ(Dh−2t)に等しい等
価水力直径φDhを有する断面円形に形成され、排出セルCLOUTは、仮想単位格子
LTCVRの等価水力直径Dhと等しい等価水力直径Dhを有する断面六角形に形成
されている。
また、本実施形態においても、筒状セルの流路長手方向に対する垂直断面における捕集
セルCLINの単位断面積あたりの個数N(個/inch)と排出セルCLOUT
位断面積あたりの個数N(個/inch)との間に、N>Nの関係が成立してい
る。
このような構成とすることによって、図3(b)に示すように、捕集セルCLINと排
出セルCLOUTとの間を隔てる隔壁WIOは、捕集セルCLIN側の表面SRFIN
凹面状に湾曲した曲面となり、排出セルCLOUT側の表面SRFOUTが、直平面とな
り、隔壁WIOの一部が肉厚となった厚肉部WTKを形成することができる。厚肉部W
は、隔壁WIOの熱容量を増加するとともに、ハニカム構造体のアイソスタティック強
度を向上している。
本発明の第1の実施形態においては、捕集セルCLIN側を断面六角形に形成し、排出
セルCLOUT側を断面円形に形成し、本実施形態においては、捕集セルCLIN側を断
面円形に形成し、排出CLOUT側を断面六角形に形成した点が相異するが、等価水力直
径は等しく、捕集セルCLINと排出セルCLOUTとの圧力損失が増加することはなく
、上記実施形態と同様の効果が期待できる。
加えて、単位濾過壁あたりの熱容量もしくは単位PM堆積量に対する熱容量が増加する
ので、圧損増加を抑制しつつ上記実施形態よりも高い耐熱性を期待できる。
With reference to FIG. 3, the modification 1a of the honey-comb filter in the 1st Embodiment of this invention is demonstrated. The figure, (a) shows the perpendicular cross sectional view in the flow path direction, (b) is collected cells CL I
And N and the discharge cell CL OUT is a fragmentary cross-sectional view of the partition wall W IO for partitioning.
In the present embodiment, the collection cell CL IN has an equivalent hydraulic power equal to φ (Dh 0 −2t) obtained by subtracting twice the minimum wall thickness t from the equivalent hydraulic diameter Dh 0 of the virtual unit cell LTC VR made of hexagon. are circular in cross section with a diameter FaiDh 1, the discharge cell CL OUT is formed in hexagonal cross section having an equivalent hydraulic diameter Dh 2 equal to the equivalent hydraulic diameter Dh 0 of the virtual unit cell LTC VR.
Also in the present embodiment, the number N A (units / inch 2 ) per unit cross-sectional area of the collection cell CL IN and the discharge cell CL OUT per unit cross-sectional area in a vertical cross section with respect to the longitudinal direction of the flow path of the cylindrical cell. A relationship of N A > N B is established between the number N B (pieces / inch 2 ).
With such a configuration, as shown in FIG. 3B, the partition wall W IO separating the collection cell CL IN and the discharge cell CL OUT has a surface SRF IN on the collection cell CL IN side. becomes a curved surface curved in a concave shape, the surface SRF OUT of the discharge cell CL OUT side becomes a straight plane, can be a part of the partition wall W IO forms a thick portion W TK became thick. Thick part W T
K increases the heat capacity of the partition wall WIO and improves the isostatic strength of the honeycomb structure.
In the first embodiment of the present invention, the collection cell CL IN side is formed in a hexagonal cross section, the discharge cell CL OUT side is formed in a circular cross section, and in this embodiment, the collection cell CL IN side is Although the cross section is circular and the discharge CL OUT side is formed in a hexagonal cross section, the equivalent hydraulic diameter is the same and the pressure loss between the collection cell CL IN and the discharge cell CL OUT does not increase. The same effect as the above embodiment can be expected.
In addition, since the heat capacity per unit filtration wall or the heat capacity with respect to the unit PM deposition amount is increased, higher heat resistance than that of the above embodiment can be expected while suppressing an increase in pressure loss.

さらに、本実施形態において、捕集セルCLINと排出セルCLOUTとに触媒を担持
せしめた場合、捕集セルCLINの壁面SRFINがセル壁WIOの曲面側となり、排出
セルCLOUTの壁面SRFOUTがセル壁WIOの平面側となる。
平面側に担持せしめた単位表面積あたりの触媒担持質量の最小値をt(mg/mm
)、曲面側に担持せしめた単位表面積あたりの触媒担持質量の平均値をt(mg/mm
)、平面側に担持せしめた単位表面積あたりの触媒担持質量の最大値をt(mg/m
)とした場合に、本実施形態においても、t≦t≦tの関係を満足している。
触媒の担持量をこの範囲に設定することにより、排出セルCLOUTの水力直径を小さ
くすることなく、PMの堆積抑制に必要な触媒担持量を確保できるので、圧力損失を小さ
くできる。
Further, in the present embodiment, when allowed to carry the catalyst into the collecting cell CL IN and the discharge cell CL OUT, wall SRF IN of collecting cells CL IN becomes the curved side of the cell wall W IO, the discharge cell CL OUT wall SRF OUT becomes the plane side of the cell wall W IO.
The minimum value of the catalyst supporting mass per unit surface area supported on the flat surface side is expressed as t C (mg / mm 2
), The average value of the catalyst carrying mass per unit surface area carried on the curved surface side is t D (mg / mm
2 ) The maximum value of the catalyst carrying mass per unit surface area carried on the plane side is expressed as t E (mg / m
In the case of m 2 ), the relationship of t C ≦ t D ≦ t E is also satisfied in this embodiment.
By setting the catalyst loading in this range, the catalyst loading required for suppressing PM deposition can be ensured without reducing the hydraulic diameter of the discharge cell CL OUT , so that the pressure loss can be reduced.

図4を参照して、本発明の第1の実施形態におけるハニカムフィルタの他の変形例1b
、1cについて説明する。
ハニカムフィルタ1bでは、図4(a)に示すように、六角形からなる仮想単位格子L
TCVRの等価水力直径Dh、セル隔壁肉厚最小値tに対して、捕集セルCLINの等
価水力直径Dhを(Dh−t)の断面六角形に形成し、排出セルCLOUTの等価水
力直径φDhをφ(Dh−t)の断面円形に形成してある。このような構成とするこ
とによって、捕集セルCLINと排出セルCLOUTとの間を区画する隔壁WIOの一部
に厚肉部WTKを設けて、圧力損失の増加を抑制しつつ、熱容量の増加とアイソスタティ
ック強度の増加とを同時に実現できる。本実施形態において、触媒を担持せしめた場合に
も、上記実施形態と同様の効果が期待できる。
また、ハニカムフィルタ1cでは、図4(b)に示すように、六角形からなる仮想単位
格子LTCVRの等価水力直径Dh、セル隔壁肉厚最小値tに対して、捕集セルCL
の等価水力直径φDhをφ(Dh−t)の断面円形に形成し、排出セルCLOUT
の等価水力直径Dhを(Dh−t)の断面六角形に形成してある。このような構成と
することによって、捕集セルCLINと排出セルCLOUTとの間を区画する隔壁WIO
の一部に厚肉部WTKを設けて、圧力損失の増加を抑制しつつ、熱容量の増加とアイソス
タティック強度の増加とを同時に実現できる。本実施形態において、触媒を担持せしめた
場合にも、上記実施形態と同様の効果が期待できる。
Referring to FIG. 4, another modification 1b of the honeycomb filter according to the first embodiment of the present invention.
1c will be described.
In the honeycomb filter 1b, as shown in FIG. 4A, a virtual unit cell L made of a hexagon is formed.
With respect to the equivalent hydraulic diameter Dh 0 of TC VR and the minimum cell partition wall thickness t, the equivalent hydraulic diameter Dh 1 of the collection cell CL IN is formed into a hexagonal cross section of (Dh 0 -t), and the discharge cell CL OUT The equivalent hydraulic diameter φDh 2 is formed into a circular section of φ (Dh 0 -t). With such a configuration, by providing the thick portion W TK in a part of the partition wall W IO for partitioning between the collecting cell CL IN and the discharge cell CL OUT, while suppressing an increase in pressure loss, An increase in heat capacity and an increase in isostatic strength can be realized simultaneously. In the present embodiment, even when a catalyst is supported, the same effect as in the above embodiment can be expected.
Moreover, in the honeycomb filter 1c, as shown in FIG. 4 (b), an equivalent hydraulic diameter Dh 0 of the virtual unit cell LTC VR consisting of hexagonal, the cell partition wall thickness minimum value t, collecting cell CL I
An equivalent hydraulic diameter φDh 1 of N is formed in a circular shape of a cross section of φ (Dh 0 −t), and the discharge cell CL OUT
It is formed to a hexagonal cross section of the equivalent hydraulic diameter Dh 2 (Dh 0 -t). With such a configuration, the partition wall W IO for partitioning between the collecting cell CL IN and the discharge cell CL OUT
Part provided thick portion W TK of, while suppressing an increase in pressure loss can be realized an increase in growth and isostatic strength of the heat capacity at the same time. In the present embodiment, even when a catalyst is supported, the same effect as in the above embodiment can be expected.

本発明の第1の実施形態におけるハニカムフィルタ1の製造方法の概要を示す。
先ず、焼成によりコーディエライト(2MgO・3Al・5SiO)組成とな
る原料、即ち、タルク(3MgO・4SiO・HO)、マグネシア(MgO)、シリ
カ(SiO)、カオリン(Al・2SiO・2HO)、アルミナ(Al
)、ベーマイト(AlOOH)、水酸化アルミニウム(Al(OH))等から適宜選
択されたセラミック原料粉末を所定の配合比で調合し、粉砕、混合、ミリング等により所
定の粒度分布を有する調合原料に調整する。
また、触媒を担持すべくイットリア(Y)、チタニア(TiO)や、タングス
テン(W)、白金(PT)等の遷移金属等を添加しても良い。
An outline of a method for manufacturing the honeycomb filter 1 according to the first embodiment of the present invention will be described.
First, the raw material which becomes a cordierite (2MgO · 3Al 2 O 3 · 5SiO 2 ) composition by firing, that is, talc (3MgO · 4SiO 2 · H 2 O), magnesia (MgO), silica (SiO 2 ), kaolin ( Al 2 O 3 · 2SiO 2 · 2H 2 O), alumina (Al 2 O
3 ), ceramic raw material powder appropriately selected from boehmite (AlOOH), aluminum hydroxide (Al (OH) 3 ), etc., is prepared at a predetermined mixing ratio, and has a predetermined particle size distribution by pulverization, mixing, milling, etc. Adjust to raw materials.
Further, a transition metal such as yttria (Y 2 O 3 ), titania (TiO 2 ), tungsten (W), or platinum (PT) may be added to support the catalyst.

次いで、結合剤、可塑剤、分散剤、潤滑剤、邂逅剤、界面活性剤、造孔剤等の助剤とし
て、メチルセルロース(MC)、カルボキシメチルセルロース(CMC)、ポリビニルア
ルコール(PVA)、デンプン糊、ポリアルキレン誘導体、グリセリン、ゼラチン、ワッ
クスエマルジョン、カーボン、おがくず等から適宜必要な材料を選択して、上記調合原料
と混練してセラミック坏土とし、さらに、セラミック坏土を所定の流動特性となるよう含
水率や粘度の調整を行う。 本実施形態においては、例えば、重量比でシリカ原料を19
%、タルク原料を36%、アルミナ原料を45%の割合で混合し、これを100として、
造孔剤21.6%、バインダ13.5%、水34%を加えたものを用いた。
Subsequently, as an auxiliary agent such as a binder, a plasticizer, a dispersant, a lubricant, a glaze, a surfactant, a pore-forming agent, methyl cellulose (MC), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), starch paste, Select appropriate materials from polyalkylene derivatives, glycerin, gelatin, wax emulsion, carbon, sawdust, etc., knead with the above raw materials to make ceramic clay, and further make the ceramic clay have predetermined flow characteristics Adjust the water content and viscosity. In the present embodiment, for example, the silica raw material is 19 by weight ratio.
%, Talc raw material 36%, alumina raw material 45%, and this is 100,
What added 21.6% of pore making agents, 13.5% of binder, and 34% of water was used.

本発明のセラミックハニカム構造体を形成するセラミックハニカム構造体成形工程では
、粘度調整されたセラミック坏土を、プランジャ式押出成形機やスクリュ式押出成形機を
用いて所定の格子溝を設けた金型から押出、所望の断面形状を持つ略筒状のセルが多数区
画されたセラミックハニカム構造体を形成する。
得られたセラミックハニカム構造体の入り口側と出口側との両端面において、所定のセ
ルに封止剤を充填し、入り口側が開口し出口側が閉鎖した捕集セルCLINと、入り口側
が開口し出口側が開口した排出セルCLOUTとを設ける。
本実施形態においては、図5(a)、(b)に示すような、各辺が直線のみからなる多
角形状のブロックBRK1と曲線からなる円形状のブロックBRK2とによって形成され
たスリット溝SLを設けた金型50を用いた。スリット溝SLの底部には、セラミック杯
土の通過する下孔UHが設けられている。下孔UHの数を多くしたり、下孔UHの内径を
大きくしたりすることによって、スリット溝SLをから押し出されるセラミック杯土の押
出速度を均一化することができる。
In the ceramic honeycomb structure forming step of forming the ceramic honeycomb structure of the present invention, a mold in which a ceramic clay whose viscosity has been adjusted is provided with predetermined lattice grooves using a plunger-type extruder or a screw-type extruder The ceramic honeycomb structure in which a large number of substantially cylindrical cells having a desired cross-sectional shape are partitioned is formed.
At both end faces of the obtained ceramic honeycomb structure on the inlet side and the outlet side, a predetermined cell is filled with a sealing agent, the collection cell CL IN is opened on the inlet side and closed on the outlet side, and the outlet side is opened and the outlet is opened. A discharge cell CL OUT having an open side is provided.
In the present embodiment, as shown in FIGS. 5A and 5B, slit grooves SL formed by polygonal blocks BRK1 each having only a straight line and circular blocks BRK2 having curved lines are provided. The provided mold 50 was used. At the bottom of the slit groove SL, a lower hole UH through which ceramic clay is passed is provided. By increasing the number of the lower holes UH or increasing the inner diameter of the lower hole UH, the extrusion speed of the ceramic gob extruded from the slit groove SL can be made uniform.

目封止方法としては、以下のような公知の方法を適宜用いることができる。即ち、ハニ
カム構造体の端面を樹脂フィルム等で覆い、封止剤を充填するセルを覆う部位の樹脂フィ
ルムを加熱等により除去し、所望の目封止形成パターンを有するマスキングを施す。
次いで、マスキングを施したハニカム構造体の端面をスラリー状に調整した充填剤中に
浸漬し、マスキングを除去したセル内に充填剤を充填し、乾燥する。
入り口側端面と出口側端面とのそれぞれに、所望のパターンで封止剤を充填し目封止栓
STPIN、STPOUTを形成した後、乾燥後、樹脂フィルムの除去と同時に焼成を行
う。この時、充填剤も同持に焼成される。コーディエライトの場合には、例えば、140
0℃で焼成される。
以上により、多角形の断面形状を有する捕集セルCLINと円形の断面形状を有する排
出セルCLOUTとで構成されたハニカムフィルタ1が形成できる。
なお、充填剤としては、ハニカム構造体を形成するセラミック原料と同質のものを主成
分とし、水等の分散媒によってスラリー状にしたものを用いるのが望ましい。また、封止
栓STPIN、STPOUTは燃焼排気の通過を阻止すべく、隔壁よりも緻密な微構造と
するのが望ましく、封止剤に造孔剤を添加する必要はない。
As the plugging method, the following known methods can be appropriately used. That is, the end face of the honeycomb structure is covered with a resin film or the like, and the resin film in a portion covering the cells filled with the sealing agent is removed by heating or the like, and masking having a desired plugging formation pattern is performed.
Next, the end face of the masked honeycomb structure is immersed in a filler adjusted to a slurry, and the filler is filled in the cell from which the masking has been removed and dried.
Each of the entrance-side end face and the exit-side end face is filled with a sealant in a desired pattern to form plugging plugs STP IN and STP OUT , and after drying, firing is performed simultaneously with removal of the resin film. At this time, the filler is also fired together. In the case of cordierite, for example, 140
Baking at 0 ° C.
As described above, the honeycomb filter 1 including the collection cells CL IN having a polygonal cross-sectional shape and the discharge cells CL OUT having a circular cross-sectional shape can be formed.
As the filler, it is desirable to use a material mainly composed of the same material as the ceramic raw material forming the honeycomb structure and made into a slurry by a dispersion medium such as water. Further, it is desirable that the sealing plugs STP IN and STP OUT have a finer structure than the partition wall in order to prevent passage of combustion exhaust gas, and it is not necessary to add a pore forming agent to the sealing agent.

図6に本発明のハニカムフィルタ1をDPFとして用いた燃焼排気浄化システムの例に
ついて説明する。
ハニカムフィルタ1は、例えばディーゼルエンジン等の内燃機関20の燃焼排気流路に
設けられ、燃焼排気中のPMを捕集する。
内燃機関20は、高圧ポンプPによって高圧に昇圧された高圧燃料を蓄圧する各気筒2
00に共通のコモンレールRと、該コモンレールRに連結されて各気筒200の燃焼室に
それぞれ燃料を噴射する複数の燃料噴射弁INJを有し、内燃機関20の吸気マニホール
ド210は、吸気管218に連結しており、連結部に設けられる吸気スロットル214に
よって、吸気流量が調整されるようになっている。
FIG. 6 illustrates an example of a combustion exhaust purification system using the honeycomb filter 1 of the present invention as a DPF.
The honeycomb filter 1 is provided in a combustion exhaust passage of an internal combustion engine 20 such as a diesel engine, for example, and collects PM in the combustion exhaust.
The internal combustion engine 20 includes each cylinder 2 that accumulates high-pressure fuel that has been boosted to a high pressure by a high-pressure pump P.
00 and a common rail R that is common to 00 and a plurality of fuel injection valves INJ that are connected to the common rail R and inject fuel into the combustion chamber of each cylinder 200. An intake manifold 210 of the internal combustion engine 20 is connected to an intake pipe 218. The intake flow rate is adjusted by an intake throttle 214 provided in the connection portion.

内燃機関20の排気マニホールド220は、排気管224に連結しており、排気管22
4の経路には、本発明のハニカムフィルタ1が設置されている。
内燃機関20からの排出ガスは、入り口側が開口している捕集セルCからDPF1内
に入り、多孔性の隔壁WIOを通過する際にPMが捕集される。
排気と接触するDPF1内の隔壁WIOの表面に、PMの酸化を促進するための触媒を
担持させることもできる。また、DPF1の上流側に酸化触媒110を設けた構成として
も良い。さらに、DPF1の下流側には、図略の尿素SCR装置を設けて、DPF1によ
ってPMを除去された排気中のNOxの除去処理を行う構成としても良い。
The exhaust manifold 220 of the internal combustion engine 20 is connected to the exhaust pipe 224 and the exhaust pipe 22.
The honeycomb filter 1 of the present invention is installed in the route 4.
Exhaust gas from the internal combustion engine 20, the inlet side enters the DPF1 from the absorption cell C 1 which is open, PM is trapped when passing through the porous partition wall W IO.
The partition wall W IO surfaces within DPF1 in contact with the exhaust, it is also possible to support a catalyst for promoting the oxidation of PM. Moreover, it is good also as a structure which provided the oxidation catalyst 110 in the upstream of DPF1. Further, a urea SCR device (not shown) may be provided on the downstream side of the DPF 1 to perform a process for removing NOx in the exhaust gas from which PM has been removed by the DPF 1.

排気管224のDPF1の上流側223には、遠心過給機のタービン221が設けられ
、吸気管218に設けられるコンプレッサ216とタービン軸222を介して連結されて
いる。これにより、排気の熱エネルギを利用してタービン221を駆動するとともに、タ
ービン軸222を介してコンプレッサ216を駆動し、吸気管218から吸気フィルタ2
17を介して導入された吸気をコンプレッサ216内で圧縮する。吸気スロットル214
の上流には、インタクーラ215が設けられ、コンプレッサ216で圧縮されて高温とな
った吸気が冷却される。
A turbine 221 of a centrifugal supercharger is provided on the upstream side 223 of the DPF 1 in the exhaust pipe 224 and is connected to the compressor 216 provided in the intake pipe 218 via a turbine shaft 222. As a result, the turbine 221 is driven using the heat energy of the exhaust, and the compressor 216 is driven via the turbine shaft 222, and the intake filter 2 is supplied from the intake pipe 218.
The intake air introduced through 17 is compressed in the compressor 216. Intake throttle 214
An intercooler 215 is provided upstream of the intake air to cool the intake air that has been compressed by the compressor 216 to a high temperature.

排気マニホールド220は、EGR通路212によって、吸気マニホールド210と連
結されており、排気の一部が、EGR通路212を経て吸気に戻されるようになっている
。EGR通路212の、吸気マニホールド210への出口部には、EGR弁211が設け
られ、その開度を調節することにより吸気へ還流される排気の量を調整できるようになっ
ている。EGR通路212の途中には、還流されるEGRガスを冷却するためのEGRク
ーラ213が設けられる。
The exhaust manifold 220 is connected to the intake manifold 210 by an EGR passage 212, and a part of the exhaust is returned to the intake air through the EGR passage 212. An EGR valve 211 is provided at the outlet of the EGR passage 212 to the intake manifold 210, and the amount of exhaust gas recirculated to the intake air can be adjusted by adjusting the opening thereof. In the middle of the EGR passage 212, an EGR cooler 213 for cooling the refluxed EGR gas is provided.

排気管223、224には、DPF1にて捕集されたPM捕集量を知るために、DPF
1の前後差圧を検出する差圧センサ100が設けられる。差圧センサ100の一端側はD
PF1上流の排気管223に、他端側はDPF1下流の排気管224にそれぞれ圧力導入
管を介して接続されており、DPF1の前後差圧に応じた信号を出力するようになってい
る。
また、DPF1の出口部には、DPF温度TEXを検出する排気温センサTSENと、
DPF1下流の酸素濃度λを検出する酸素濃度検出手段としての空燃比センサλSEN
設置されている。これらセンサからの信号は、いずれも制御手段であるECU30に入力
される。
In the exhaust pipes 223 and 224, in order to know the amount of PM collected by the DPF 1,
A differential pressure sensor 100 for detecting a differential pressure before and after 1 is provided. One end of the differential pressure sensor 100 is D
The other end side of the exhaust pipe 223 upstream of the PF1 is connected to the exhaust pipe 224 downstream of the DPF1 via a pressure introduction pipe, so that a signal corresponding to the differential pressure across the DPF1 is output.
Further, an exhaust temperature sensor T SEN for detecting the DPF temperature T EX is provided at the outlet of the DPF 1,
An air-fuel ratio sensor λ SEN is installed as an oxygen concentration detection means for detecting the oxygen concentration λ downstream of the DPF 1. Signals from these sensors are all input to the ECU 30 as control means.

ECU30には、さらに、吸気スロットル214の開度OPIN、EGR弁211の弁
開度OPEGR、エンジン回転数NE、車速SP、アクセル開度AC、冷却水温TW、ク
ランク位置CA、燃料圧PCYL等を検出する各種センサから信号が入力されて、内燃機
関20の運転状態を検出するようになっている。ECU20は、運転状態に応じた最適な
燃料噴射量、EGR量を算出して、吸気スロットル214、燃料噴射弁INJ、EGR弁
211等をフィードバック制御する。ECU30は、また、吸気管218に導入される吸
気量を検出する吸気量センサARSENと排気温センサTSENの検出値から算出される
排ガス流量(体積流量)と、差圧センサ100にて検出されるDPF1の前後差圧を基に
、PM捕集量を演算して、DPF1の再生を制御することもできる。一般に、ある排気流
量に対して、PM捕集量の増加に伴い差圧が増加することから、この関係を利用してPM
捕集量を算出することができる。そして、算出されたPM捕集量が所定値を越えたときに
、DPF1を昇温させて、PMを燃焼、除去する再生処理を行う。
The ECU 30 further includes an opening OP IN of the intake throttle 214, a valve opening OP EGR of the EGR valve 211, an engine speed NE, a vehicle speed SP, an accelerator opening AC, a coolant temperature TW, a crank position CA, and a fuel pressure P CYL. Signals are input from various sensors that detect the above, and the operation state of the internal combustion engine 20 is detected. The ECU 20 calculates the optimal fuel injection amount and EGR amount according to the operating state, and performs feedback control of the intake throttle 214, the fuel injection valve INJ, the EGR valve 211, and the like. The ECU 30 also detects the exhaust gas flow rate (volume flow rate) calculated from the detected values of the intake air amount sensor AR SEN and the exhaust gas temperature sensor T SEN that detect the intake air amount introduced into the intake pipe 218, and the differential pressure sensor 100. Based on the differential pressure across the DPF 1, the amount of PM trapped can be calculated to control the regeneration of the DPF 1. In general, the differential pressure increases as the amount of collected PM increases for a certain exhaust flow rate.
The amount collected can be calculated. Then, when the calculated amount of collected PM exceeds a predetermined value, the DPF 1 is heated to perform a regeneration process for burning and removing PM.

DPF1の再生手段として、具体的には、燃料噴射弁INJから燃焼室に燃料を噴射す
る際に、ポスト噴射や噴射時期の遅角を行う、あるいは、吸気スロットル214を通常よ
り閉じ側とする等により排気を昇温させる方法が採用できる。例えば、ポスト噴射や遅角
を行うと、着火時期の遅れ等により、エネルギの一部が動力に返還されずに排気の熱エネ
ルギになるために、通常噴射の場合の排気温度(150〜400)に対し、高温(300
〜700)の排気がDPF1内に導入される。吸気スロットル214を閉じ側とした場合
も同様で、吸気量が減少し、内燃機関20の燃焼室内に流入するガスの熱容量が減少する
ために、排気温度が上昇する。この高温の排気により、DPF1内に付着したPMを燃焼
させ、捕集能力を回復させることができる。運転状態に応じて、複数の再生手段を使い分
けたり、再生手段として、バーナやヒータといった加熱装置を用いたりすることもできる
As a regeneration means for the DPF 1, specifically, when fuel is injected from the fuel injection valve INJ into the combustion chamber, post injection or delay of the injection timing is performed, or the intake throttle 214 is closed from the normal side, etc. The method of raising the temperature of the exhaust can be adopted. For example, when post-injection or retarding is performed, due to a delay in the ignition timing, a part of the energy is not returned to the motive power, but becomes the heat energy of the exhaust, so the exhaust temperature in the normal injection (150 to 400) In contrast, high temperature (300
˜700) is introduced into the DPF 1. Similarly, when the intake throttle 214 is closed, the intake air amount is reduced, and the heat capacity of the gas flowing into the combustion chamber of the internal combustion engine 20 is reduced, so that the exhaust temperature rises. Due to this high-temperature exhaust, PM adhering in the DPF 1 can be burned and the collection ability can be recovered. Depending on the operating state, a plurality of regeneration means can be used properly, or a heating device such as a burner or a heater can be used as the regeneration means.

1 ハニカムフィルタ(DPF)
CLIN 捕集セル
CLOUT 排出セル
Dh 仮想単位格子等価水力直径
Dh 捕集セル水力直径
Dh 排出セル水力直径
IO 捕集セル排出セル間隔壁
II 捕集セル同士間隔壁
TK 厚肉部
SRFIN 入口側壁面
SRFOUT 出口側壁面
STPIN 入口側封止栓
STPOUT 出口側封止栓
捕集セルの単位断面積あたりの個数
排出セルの単位断面積あたりの個数
1 Honeycomb filter (DPF)
CL IN collection cell CL OUT discharge cell Dh 0 virtual unit cell equivalent hydraulic diameter Dh 1 collection cell hydraulic diameter Dh 2 discharge cell hydraulic diameter W IO collection cell discharge cell interval wall W II collection cell interval wall W TK thickness meat portions SRF iN inlet side wall SRF OUT outlet side wall STP iN inlet side sealing plug STP OUT outlet sealing plug N number per unit cross-sectional area of the number N B discharge cells per unit sectional area of the a collecting cells

国際公開2004/024295号パンフレットInternational Publication No. 2004/024295 Pamphlet 特開2005−270969号公報JP-A-2005-270969

Claims (4)

多孔質セラミックスからなる隔壁によって被処理流体の流路となる略筒状に区画したセ
ルを多数設けてハニカム状となし、上記セルの一方の端部を被処理流体の導入される入り
口側に開口せしめ他方の端部を閉塞せしめた捕集セルとし、上記セルの一方の端部を閉塞
せしめ他方の端部を被処理流体の排出される出口側に開口せしめた排出セルとし、該捕集
セルと該排出セルとを所定の位置に配設せしめて、被処理流体を上記捕集セルと上記排出
セルとの間を区画する隔壁を透過させて、被処理流体中の被捕集物を該隔壁に捕集せしめ
るハニカムフィルタにおいて、
上記捕集セルと上記排出セルとの間を区画する隔壁は、上記捕集セル又は上記排出セル
のいずれか一方に対向する側を平面とし、他方に対向する側を凹面状に湾曲せしめた曲面
として、当該隔壁の一部に厚肉部を設けるとともに、
上記略筒状のセルの長手方向に対する垂直断面における上記捕集セルの単位断面積あた
りの個数をN(個/inch)、略筒状のセルの長手方向に対する垂直断面における
上記排出セルの単位断面積あたりの個数をN(個/inch)とした場合に、N
の関係を満足せしめたことを特徴とするハニカムフィルタ。
A large number of cells partitioned into a substantially cylindrical shape that serves as a flow path for the fluid to be processed are provided by partition walls made of porous ceramics to form a honeycomb shape, and one end of the cell is opened to the inlet side where the fluid to be processed is introduced. A collecting cell with the other end of the caulking closed, and a discharge cell with one end of the cell closed and the other end opened on the outlet side from which the fluid to be treated is discharged. And the discharge cell are disposed at predetermined positions, and the fluid to be treated is allowed to pass through a partition wall that partitions the collection cell and the discharge cell, and the collected material in the fluid to be treated is In the honeycomb filter collected in the partition wall,
The partition partitioning between the collection cell and the discharge cell is a curved surface in which the side facing either the collection cell or the discharge cell is a flat surface and the side facing the other is curved concavely. As providing a thick part in a part of the partition,
The number per unit cross-sectional area of the collection cell in the vertical cross section with respect to the longitudinal direction of the substantially cylindrical cell is N A (pieces / inch 2 ), and the number of the discharge cells in the vertical cross section with respect to the longitudinal direction of the substantially cylindrical cell. When the number per unit cross-sectional area is N B (pieces / inch 2 ), N A >
The honeycomb filter being characterized in that allowed satisfy the relationship of N B.
上記捕集セルと上記排出セルとの流路長手方向に垂直な断面の形状は、いずれか一方を
多角形に形成し、他方を円形に形成することを特徴とする請求項1に記載のハニカムフィ
ルタ。
2. The honeycomb according to claim 1, wherein one of the shape of a cross section perpendicular to the flow channel longitudinal direction of the collection cell and the discharge cell is formed in a polygon and the other is formed in a circle. filter.
上記捕集セルと上記排出セルとに触媒を担持せしめたハニカムフィルタにおいて、上記
セル壁の平面側に担持せしめた単位表面積あたりの触媒担持質量の最小値をt(mg/
mm)、上記セル壁の曲面側に担持せしめた単位表面積あたりの触媒担持質量の平均値
をt(mg/mm)、上記セル壁の平面側に担持せしめた単位表面積あたりの触媒担
持質量の最大値をt(mg/mm)とした場合に、
≦t≦tの関係を満足せしめたことを特徴とする請求項1又は2に記載のハニ
カムフィルタ。
In the honeycomb filter in which the catalyst is supported on the collection cell and the discharge cell, the minimum value of the catalyst supported mass per unit surface area supported on the plane side of the cell wall is t C (mg / mg
mm 2 ), t D (mg / mm 2 ), the average value of the catalyst support mass per unit surface area supported on the curved surface side of the cell wall, and the catalyst support per unit surface area supported on the plane side of the cell wall When the maximum value of mass is t E (mg / mm 2 ),
The honeycomb filter according to claim 1 or 2, wherein a relationship of t C ≤ t D ≤ t E is satisfied.
請求項1ないし3のいずれか1項に記載のハニカムフィルタの製造方法において、各辺
が直線のみからなる多角形状のブロックと曲線からなる円形状のブロックとによって形成
されたスリット溝を設けた金型からセラミック坏土を押し出してセラミックハニカム構造
体を形成するセラミックハニカム構造体成形工程を備えたハニカムフィルタ製造方法。
The method for manufacturing a honeycomb filter according to any one of claims 1 to 3, wherein a gold is provided with slit grooves formed by polygonal blocks each having only a straight line and circular blocks each having a curved line. A honeycomb filter manufacturing method including a ceramic honeycomb structure forming step of forming a ceramic honeycomb structure by extruding a ceramic clay from a mold.
JP2009219620A 2008-11-06 2009-09-24 Honeycomb filter and manufacturing method thereof Expired - Fee Related JP4947113B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009219620A JP4947113B2 (en) 2008-11-06 2009-09-24 Honeycomb filter and manufacturing method thereof
DE200910046441 DE102009046441A1 (en) 2008-11-06 2009-11-05 Honeycomb filter for capturing particulate matters in exhaust gas of diesel engine of vehicle, has wall whose curved surface includes number of capture cells per unit sectional area larger than number of discharging cells per sectional area

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008285378 2008-11-06
JP2008285378 2008-11-06
JP2009219620A JP4947113B2 (en) 2008-11-06 2009-09-24 Honeycomb filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010131586A true JP2010131586A (en) 2010-06-17
JP4947113B2 JP4947113B2 (en) 2012-06-06

Family

ID=42096633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219620A Expired - Fee Related JP4947113B2 (en) 2008-11-06 2009-09-24 Honeycomb filter and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4947113B2 (en)
DE (1) DE102009046441A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133846A1 (en) * 2011-03-31 2012-10-04 日本碍子株式会社 Sealed honeycomb structure
WO2012133847A1 (en) * 2011-03-31 2012-10-04 日本碍子株式会社 Sealed honeycomb structure, and exhaust gas purification device
WO2012133848A1 (en) * 2011-03-31 2012-10-04 日本碍子株式会社 Sealed honeycomb structure
WO2012157420A1 (en) * 2011-05-17 2012-11-22 住友化学株式会社 Honeycomb filter
WO2013150974A1 (en) * 2012-04-05 2013-10-10 住友化学株式会社 Honeycomb structure
JP2013230461A (en) * 2012-04-05 2013-11-14 Sumitomo Chemical Co Ltd Honeycomb structure
WO2013187444A1 (en) * 2012-06-15 2013-12-19 イビデン株式会社 Honeycomb filter
JP2014050793A (en) * 2012-09-06 2014-03-20 Ngk Insulators Ltd Plugged honeycomb structure
WO2014054159A1 (en) * 2012-10-04 2014-04-10 イビデン株式会社 Honeycomb filter
JP2015029941A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029940A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029937A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029939A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029936A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JPWO2013187444A1 (en) * 2012-06-15 2016-02-04 イビデン株式会社 Honeycomb filter
JP2016537192A (en) * 2013-08-30 2016-12-01 デュール システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Geometric shape and arrangement of improved block flow path for thermal oxidation regenerator
WO2019187126A1 (en) * 2018-03-30 2019-10-03 日本碍子株式会社 Plugged honeycomb segment, and plugged honeycomb structure
JP2020049428A (en) * 2018-09-27 2020-04-02 日本碍子株式会社 Honeycomb filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649777B2 (en) * 2016-01-19 2020-02-19 日本碍子株式会社 Honeycomb structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196820A (en) * 1982-02-22 1983-11-16 コ−ニング・グラス・ワ−クス Honeycomb filter
JPH09313849A (en) * 1996-05-29 1997-12-09 Ibiden Co Ltd Ceramic filter
JP2001334114A (en) * 2000-05-29 2001-12-04 Ngk Insulators Ltd Filter element and its production process
JP2005125209A (en) * 2003-10-22 2005-05-19 Ibiden Co Ltd Honeycomb structure body
JP2008212787A (en) * 2007-03-01 2008-09-18 Denso Corp Exhaust gas purification filter
JP2009095827A (en) * 2007-09-26 2009-05-07 Denso Corp Exhaust gas cleaning filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196820A (en) * 1982-02-22 1983-11-16 コ−ニング・グラス・ワ−クス Honeycomb filter
JPH09313849A (en) * 1996-05-29 1997-12-09 Ibiden Co Ltd Ceramic filter
JP2001334114A (en) * 2000-05-29 2001-12-04 Ngk Insulators Ltd Filter element and its production process
JP2005125209A (en) * 2003-10-22 2005-05-19 Ibiden Co Ltd Honeycomb structure body
JP2008212787A (en) * 2007-03-01 2008-09-18 Denso Corp Exhaust gas purification filter
JP2009095827A (en) * 2007-09-26 2009-05-07 Denso Corp Exhaust gas cleaning filter

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458991B (en) * 2011-03-31 2016-10-12 现代自动车株式会社 Plugged honeycomb structure and waste gas purification apparatus
WO2012133846A1 (en) * 2011-03-31 2012-10-04 日本碍子株式会社 Sealed honeycomb structure
WO2012133848A1 (en) * 2011-03-31 2012-10-04 日本碍子株式会社 Sealed honeycomb structure
KR101588784B1 (en) 2011-03-31 2016-01-27 현대자동차 주식회사 Sealed honeycomb structure, and exhaust gas purification device
JP5916714B2 (en) * 2011-03-31 2016-05-11 日本碍子株式会社 Plugged honeycomb structure and exhaust gas purification device
JP5916713B2 (en) * 2011-03-31 2016-05-11 日本碍子株式会社 Plugged honeycomb structure
US9358487B2 (en) 2011-03-31 2016-06-07 Hyundai Motor Company Sealed honeycomb structure and device for cleaning exhaust
KR20130135930A (en) * 2011-03-31 2013-12-11 현대자동차주식회사 Sealed honeycomb structure
KR20130137673A (en) * 2011-03-31 2013-12-17 현대자동차주식회사 Sealed honeycomb structure, and exhaust gas purification device
CN103458991A (en) * 2011-03-31 2013-12-18 现代自动车株式会社 Sealed honeycomb structure, and exhaust gas purification device
CN103458990A (en) * 2011-03-31 2013-12-18 现代自动车株式会社 Sealed honeycomb structure
WO2012133847A1 (en) * 2011-03-31 2012-10-04 日本碍子株式会社 Sealed honeycomb structure, and exhaust gas purification device
US10300423B2 (en) 2011-03-31 2019-05-28 Hyundai Motor Company Sealed honeycomb structure
US10065142B2 (en) 2011-03-31 2018-09-04 Hyundai Motor Company Sealed honeycomb structure
US9623359B2 (en) 2011-03-31 2017-04-18 Hyundai Motor Company Sealed honeycomb structure
KR101588785B1 (en) 2011-03-31 2016-01-27 현대자동차 주식회사 Sealed honeycomb structure
JP5894577B2 (en) * 2011-03-31 2016-03-30 日本碍子株式会社 Plugged honeycomb structure
CN103458990B (en) * 2011-03-31 2016-08-17 现代自动车株式会社 Plugged honeycomb structure
WO2012157420A1 (en) * 2011-05-17 2012-11-22 住友化学株式会社 Honeycomb filter
JP2013230462A (en) * 2012-04-05 2013-11-14 Sumitomo Chemical Co Ltd Honeycomb structure
JP2013230461A (en) * 2012-04-05 2013-11-14 Sumitomo Chemical Co Ltd Honeycomb structure
WO2013150974A1 (en) * 2012-04-05 2013-10-10 住友化学株式会社 Honeycomb structure
WO2013187444A1 (en) * 2012-06-15 2013-12-19 イビデン株式会社 Honeycomb filter
WO2013186922A1 (en) * 2012-06-15 2013-12-19 イビデン株式会社 Honeycomb filter
JPWO2013187444A1 (en) * 2012-06-15 2016-02-04 イビデン株式会社 Honeycomb filter
US9861923B2 (en) 2012-06-15 2018-01-09 Ibiden Co., Ltd. Honeycomb filter
JP2014050793A (en) * 2012-09-06 2014-03-20 Ngk Insulators Ltd Plugged honeycomb structure
WO2014054159A1 (en) * 2012-10-04 2014-04-10 イビデン株式会社 Honeycomb filter
WO2014054706A1 (en) * 2012-10-04 2014-04-10 イビデン株式会社 Honeycomb filter
US9919255B2 (en) 2012-10-04 2018-03-20 Ibiden Co., Ltd. Honeycomb filter
JPWO2014054706A1 (en) * 2012-10-04 2016-08-25 イビデン株式会社 Honeycomb filter
JP2015029940A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029941A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029937A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2015029939A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
US10286358B2 (en) 2013-07-31 2019-05-14 Ibiden Co., Ltd. Honeycomb filter
JP2015029936A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
JP2016537192A (en) * 2013-08-30 2016-12-01 デュール システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Geometric shape and arrangement of improved block flow path for thermal oxidation regenerator
US11426716B2 (en) 2018-03-30 2022-08-30 Ngk Insulators, Ltd. Plugged honeycomb segment, and plugged honeycomb structure
WO2019187126A1 (en) * 2018-03-30 2019-10-03 日本碍子株式会社 Plugged honeycomb segment, and plugged honeycomb structure
JPWO2019187126A1 (en) * 2018-03-30 2021-01-14 日本碍子株式会社 Sealed honeycomb segment and sealed honeycomb structure
JP2020049428A (en) * 2018-09-27 2020-04-02 日本碍子株式会社 Honeycomb filter
JP7193963B2 (en) 2018-09-27 2022-12-21 日本碍子株式会社 honeycomb filter

Also Published As

Publication number Publication date
JP4947113B2 (en) 2012-06-06
DE102009046441A1 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP4947113B2 (en) Honeycomb filter and manufacturing method thereof
JP5045614B2 (en) Diesel particulate filter
US9080484B2 (en) Wall flow type exhaust gas purification filter
JP6200212B2 (en) Honeycomb catalyst body
JP4969103B2 (en) Honeycomb structure
JP4699451B2 (en) Diesel engine exhaust filter
JP3983117B2 (en) Honeycomb structure and manufacturing method thereof
JP5419505B2 (en) Method for manufacturing honeycomb structure and method for manufacturing honeycomb catalyst body
EP1457260B1 (en) Honeycomb structure with different porosities and pore diameters
JP4920752B2 (en) Honeycomb structure
US6800107B2 (en) Exhaust gas purifying filter
WO2012046484A1 (en) Exhaust gas purification device
EP1541215A1 (en) Honeycomb filter and method of manufacturing the same
JP5997026B2 (en) Honeycomb catalyst body
CN106499478B (en) Exhaust gas treatment device, method for raising temperature of catalyst, method for regenerating honeycomb structure, and method for removing ash
KR101480811B1 (en) Ceramic honeycomb filter
JP4640987B2 (en) Ceramic filter
CN109833693B (en) Honeycomb filter
JP4426381B2 (en) Honeycomb structure and manufacturing method thereof
JP2015183532A (en) honeycomb structure
US7842371B2 (en) Washcoat loaded porous ceramics with low backpressure
JP2008104944A (en) Honeycomb filter
JP6174517B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4947113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees