JP2010130870A - Winding field type motor, and control method thereof - Google Patents

Winding field type motor, and control method thereof Download PDF

Info

Publication number
JP2010130870A
JP2010130870A JP2008305964A JP2008305964A JP2010130870A JP 2010130870 A JP2010130870 A JP 2010130870A JP 2008305964 A JP2008305964 A JP 2008305964A JP 2008305964 A JP2008305964 A JP 2008305964A JP 2010130870 A JP2010130870 A JP 2010130870A
Authority
JP
Japan
Prior art keywords
field
current
field winding
type motor
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008305964A
Other languages
Japanese (ja)
Inventor
Tomoaki Momose
友昭 百瀬
Junichi Hirai
淳一 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008305964A priority Critical patent/JP2010130870A/en
Publication of JP2010130870A publication Critical patent/JP2010130870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress variations in motor torque caused by variations in field current. <P>SOLUTION: One side terminals of field windings 7, 8 are connected to slip rings 11a, 11b, respectively. The other side terminals of the field windings 7, 8 are connected to a slip ring 11c. Brushes 12a, 12b, 12c slide along the slip rings 11a, 11b, 11c, respectively. The brush 12c is connected to a positive electrode of a DC power supply 22 whose negative electrode is grounded. The brush 12a is connected to a drain of a driving element 23 whose source is grounded. The brush 12b is connected to a drain of a driving element 24 whose source is grounded. Drive signal input terminals 25, 26 turn on/off the driving elements 23, 24 or perform PWM current control of them to drive the field windings 7, 8, individually. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、界磁巻線型回転子を有する界磁巻線型モータ及びその制御方法に関する。   The present invention relates to a field winding type motor having a field winding type rotor and a control method thereof.

界磁巻線型回転子を有する界磁巻線型モータにおいて、弱め界磁制御を行う場合には、界磁巻線の電流を減少させて行っていた(例えば、特許文献1)。また、一対のランデル型回転子を有するランデル型モータの場合、2つの回転子巻線は、直列又は並列に接続されて、一対のスリップリングから界磁電流が供給されていた(例えば、特許文献2)。
特開平11−313498号公報 特開2002−171731号公報
In the field winding type motor having the field winding type rotor, when the field weakening control is performed, the current of the field winding is reduced (for example, Patent Document 1). Further, in the case of a Landell type motor having a pair of Landel type rotors, two rotor windings are connected in series or in parallel, and a field current is supplied from a pair of slip rings (for example, Patent Documents). 2).
JP-A-11-31498 JP 2002-171731 A

しかしながら、上記従来の界磁巻線型モータにおいて、弱め界磁制御を行う場合には、例え界磁巻線を2つ備えていても2つの界磁巻線同時に界磁電流を減少させていたため、弱め界磁制御時の磁束は、非飽和領域となり、界磁電流のばらつきによって生じる磁束量の変動によりモータトルクが大きくばらつくという問題点があった。   However, in the above-described conventional field winding type motor, when field weakening control is performed, even if two field windings are provided, the field current is reduced at the same time because two field windings are provided. The magnetic flux at that time is in a non-saturated region, and there is a problem that the motor torque varies greatly due to fluctuations in the amount of magnetic flux caused by variations in the field current.

上記問題点を解決するために本発明は、界磁巻線型回転子を備えた界磁巻線型モータにおいて、複数の界磁巻線と、界磁巻線毎に電流を供給するスリップリング及び界磁電流制御回路とを備える。   In order to solve the above problems, the present invention provides a field winding type motor including a field winding type rotor, a plurality of field windings, a slip ring for supplying a current to each field winding, and a field winding. A magnetic current control circuit.

本発明によれば、界磁巻線毎に界磁電流を制御できるので、弱め界磁制御を行う際には、一方の界磁巻線を飽和領域で励磁しながら、他方の界磁巻線を非飽和領域で励磁或いは通電停止することにより、界磁電流のばらつきによるモータトルクのばらつきを抑制することができるという効果がある。   According to the present invention, since the field current can be controlled for each field winding, when performing field-weakening control, while exciting one field winding in the saturation region, By exciting or stopping energization in the saturation region, there is an effect that variation in motor torque due to variation in field current can be suppressed.

次に、図面を参照して本発明の実施の形態を詳細に説明する。図1は、本発明に係る界磁巻線型回転子を備えた界磁巻線型モータ1の実施例の構造を説明する断面図である。図2は、図1の界磁巻線型モータ1の界磁電流制御回路例を示す接続図である。図3は、界磁電流と発生トルクとの関係を示す図である。図4乃至図7は、実施例における弱め界磁制御時の各種通電パターンを示す図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view illustrating the structure of an embodiment of a field winding type motor 1 having a field winding type rotor according to the present invention. FIG. 2 is a connection diagram showing an example of a field current control circuit of the field winding type motor 1 of FIG. FIG. 3 is a diagram showing the relationship between the field current and the generated torque. 4 to 7 are diagrams showing various energization patterns at the time of field weakening control in the embodiment.

図1において、界磁巻線型回転子を備えた界磁巻線型モータ1は、ハウジング1と、ハウジングに固定された固定子コア3と、固定子コア3に巻回された固定子巻線4とを備える。また界磁巻線型モータ1は、モータの軸方向に配置されたランデル型の回転子コア5,6と、回転子コア5,6にそれぞれ巻回された界磁巻線7,8とを備える。   In FIG. 1, a field winding type motor 1 having a field winding type rotor includes a housing 1, a stator core 3 fixed to the housing, and a stator winding 4 wound around the stator core 3. With. The field winding type motor 1 includes Landel-type rotor cores 5 and 6 disposed in the axial direction of the motor, and field windings 7 and 8 wound around the rotor cores 5 and 6, respectively. .

回転子コア5,6は、共通のシャフト9に固定され、一体となって回転する。シャフト9はベアリング10a,10bにより、ハウジング1に軸支されている。シャフト9の図中右部には、3つのスリップリング11a,11b,11cがシャフト9と一体に設けられている。これらスリップリング11a,11b,11cのそれぞれに摺動しながら接触するブラシ12a,12b,12cが設けられている。   The rotor cores 5 and 6 are fixed to a common shaft 9 and rotate together. The shaft 9 is pivotally supported on the housing 1 by bearings 10a and 10b. Three slip rings 11 a, 11 b, 11 c are provided integrally with the shaft 9 on the right side of the shaft 9 in the drawing. Brushes 12a, 12b, and 12c that are in contact with the slip rings 11a, 11b, and 11c while sliding are provided.

ブラシ12a,12b,12cは、それぞれハウジング1に固定された筒状のブラシホルダ13の中を上下に滑動可能に配置され、それぞれコイルバネ14によりスリップリング側(図中下方)へ付勢されている。   The brushes 12a, 12b, and 12c are arranged so as to be slidable up and down in a cylindrical brush holder 13 fixed to the housing 1, and are urged toward the slip ring side (downward in the figure) by a coil spring 14, respectively. .

またブラシ12a,12b,12cからは引出線15が引き出されている。引出線15は、図外の界磁電電流制御回路に接続され、界磁巻線7,8それぞれ独立に界磁電流を供給可能となっている。さらにシャフト9の図中右端部には、シャフト9の回転位置を検出する回転センサ16が設けられている。回転センサ16からは信号線17が引き出され、例えば図外の界磁電電流制御回路やインバータに接続されている。   Leaders 15 are drawn from the brushes 12a, 12b, and 12c. The lead wire 15 is connected to a field electric current control circuit (not shown) and can supply a field current independently of the field windings 7 and 8. Further, a rotation sensor 16 that detects the rotational position of the shaft 9 is provided at the right end of the shaft 9 in the drawing. A signal line 17 is drawn from the rotation sensor 16 and connected to, for example, a field electric current control circuit and an inverter not shown in the figure.

尚、図1では、2つの界磁巻線7,8を有する界磁巻線型回転子を備えた界磁巻線型モータ1を説明したが、本発明における界磁巻線の数は、2に限定されず3以上の整数Nでもよい。この場合には、スリップリング及びブラシの数は、N+1となる。また、実施例では、回転子コア5,6に界磁巻線7,8が巻かれていて、界磁巻線7,8に通電することによって界磁磁束を発生する構造となっている。しかし回転子には磁束を補助する永久磁石を併用して界磁磁束を発生させる構造のものも含むこととする。   In FIG. 1, the field winding type motor 1 including the field winding type rotor having the two field windings 7 and 8 has been described. However, the number of field windings in the present invention is two. It is not limited and may be an integer N of 3 or more. In this case, the number of slip rings and brushes is N + 1. In the embodiment, the field windings 7 and 8 are wound around the rotor cores 5 and 6, and a field magnetic flux is generated by energizing the field windings 7 and 8. However, the rotor includes a structure that generates a field magnetic flux by using a permanent magnet that assists the magnetic flux.

図2において、3相の固定子巻線4は、インバータ20から駆動される。界磁巻線7,8のそれぞれの一方の端子は、スリップリング11a,11bにそれぞれ接続されている。界磁巻線7,8のそれぞれの他方の端子は、共通にスリップリング11cに接続されている。   In FIG. 2, the three-phase stator winding 4 is driven from an inverter 20. One terminal of each of field windings 7 and 8 is connected to slip rings 11a and 11b, respectively. The other terminals of the field windings 7 and 8 are commonly connected to the slip ring 11c.

また、直流電源22と、例えばMOS−FETを用いた駆動素子23,24と、駆動信号入力端子25,26とを備えた界磁電流制御回路21が設けられている。   Further, a field current control circuit 21 including a DC power supply 22, drive elements 23 and 24 using, for example, MOS-FETs, and drive signal input terminals 25 and 26 is provided.

スリップリング11cに摺動するブラシ12cは、負極が接地された直流電源22の正極に接続されている。スリップリング11aに摺動するブラシ12aは、駆動素子23のドレインに接続され、駆動素子23のソースは接地されている。同様に、スリップリング11bに摺動するブラシ12bは、駆動素子24のドレインに接続され、駆動素子24のソースは接地されている。駆動素子23,24のそれぞれのゲートは、駆動信号入力端子25,26に接続されている。   The brush 12c that slides on the slip ring 11c is connected to the positive electrode of the DC power supply 22 whose negative electrode is grounded. The brush 12a that slides on the slip ring 11a is connected to the drain of the drive element 23, and the source of the drive element 23 is grounded. Similarly, the brush 12b that slides on the slip ring 11b is connected to the drain of the drive element 24, and the source of the drive element 24 is grounded. The gates of the drive elements 23 and 24 are connected to drive signal input terminals 25 and 26, respectively.

界磁電流制御回路21は、個別に配置された駆動信号入力端子25,26により、駆動素子23,24を個別にオン/オフ、或いはPWM電流制御することができる。従って、界磁電流制御回路21は、界磁巻線7,8に個別に界磁電流を供給することができるようになっている。尚、図2では、図1と同様に2つの界磁巻線7,8を有する例を説明したが、界磁巻線の数を3以上の整数Nとしてもよい。この場合には、駆動素子の数は、Nとなる。   The field current control circuit 21 can individually turn on / off the drive elements 23 and 24 or perform PWM current control using the drive signal input terminals 25 and 26 arranged individually. Therefore, the field current control circuit 21 can supply the field current to the field windings 7 and 8 individually. In FIG. 2, the example having two field windings 7 and 8 has been described as in FIG. 1, but the number of field windings may be an integer N of 3 or more. In this case, the number of drive elements is N.

次に、本実施例の界磁電流制御回路21による界磁巻線の駆動制御について説明する。   Next, drive control of the field winding by the field current control circuit 21 of the present embodiment will be described.

一般にモータの発生トルクは、下記の(1)式で表される。
T=Pn×{φa×Iq+(Ld−Lq)×Id×Iq} …(1)
ここで、T:トルク、Pn:極対数、φa:鎖交磁束数、Ld:d軸インダクタンス、Lq:q軸インダクタンス、Id:d軸電流、Iq:q軸電流である。
Generally, the generated torque of the motor is expressed by the following equation (1).
T = Pn × {φa × Iq + (Ld−Lq) × Id × Iq} (1)
Here, T: torque, Pn: number of pole pairs, φa: number of flux linkages, Ld: d-axis inductance, Lq: q-axis inductance, Id: d-axis current, Iq: q-axis current.

本発明に適用される界磁巻線型モータ1の場合、界磁の磁束を界磁電流Ifによって制御することが可能なので、φa=φa’×Ifとすると(1)式は、(2)式へ書き換えることができる。
T=Pn×{φa’×If×Iq+(Ld−Lq)×Id×Iq} …(2)
In the case of the field winding type motor 1 applied to the present invention, since the magnetic flux of the field can be controlled by the field current If, if φa = φa ′ × If, the equation (1) is expressed by the equation (2) Can be rewritten.
T = Pn × {φa ′ × If × Iq + (Ld−Lq) × Id × Iq} (2)

このときリラクタンストルクを表す第2項を無視すると(2)式は、(3)式となり、電機子のq軸電流Iqが一定と仮定すると、トルクTは界磁電流Ifに比例する。
T=Pn×φa’×If×Iq …(3)
T∝If …(4)
If the second term representing the reluctance torque is ignored at this time, Equation (2) becomes Equation (3), and assuming that the q-axis current Iq of the armature is constant, the torque T is proportional to the field current If.
T = Pn × φa ′ × If × Iq (3)
T∝If (4)

一方、モータを駆動する際には、モータによる誘起電圧がある程度高くなると、これ以上電機子電流を流し込めないことにより回転数が制限されてしまうので、弱め界磁制御により高回転を可能とする。   On the other hand, when the motor is driven, if the induced voltage by the motor becomes high to some extent, the rotation speed is limited by the fact that no further armature current can flow, so that high rotation is possible by field-weakening control.

然しながら、界磁電流の減少による弱め界磁制御は、例えば図3のような磁束特性の場合、界磁電流を小さくすると界磁電流−磁束特性のグラフの傾きが大きくなることから、少し界磁電流のばらつきが、発生する磁束すなわちトルクへ大きく影響する。   However, field weakening control by reducing the field current is, for example, in the case of the magnetic flux characteristics as shown in FIG. 3, if the field current is reduced, the slope of the field current-flux characteristic graph becomes larger. The variation greatly affects the generated magnetic flux, that is, the torque.

図3は、界磁電流と誘起電圧との関係例を示す図である。ここで、誘起電圧は、界磁磁束とトルクに比例するので、縦軸の誘起電圧は、モータのトルクに読み替えることができる。図3において、界磁電流Ifが3.0〔A〕の非飽和領域において、誘起電圧は、43〔V〕である。界磁電流Ifが3.0〔A〕±0.2〔A〕の変動をした場合、誘起電圧は、41〜44〔V〕に変動し、その変動率は、約4.6%である。これに対して、界磁電流Ifが7.0〔A〕の飽和領域において、誘起電圧は、66〔V〕である。界磁電流Ifが7.0〔A〕±0.2〔A〕の変動をした場合、誘起電圧は、65.5〜66.5〔V〕に変動し、その変動率は、約0.75%である。このように、同じ±0.2〔A〕の界磁電流値のばらつきが、非飽和領域では、トルクの約4.6%のばらつきとなり、飽和領域では、トルクの約0.75%のばらつきとなる。このように同じ大きさの界磁電流のばらつきによるトルクのばらつきは、飽和領域に比べて非飽和領域が非常に大きくなる。   FIG. 3 is a diagram illustrating a relationship example between the field current and the induced voltage. Here, since the induced voltage is proportional to the field magnetic flux and the torque, the induced voltage on the vertical axis can be read as the torque of the motor. In FIG. 3, in the non-saturated region where the field current If is 3.0 [A], the induced voltage is 43 [V]. When the field current If fluctuates by 3.0 [A] ± 0.2 [A], the induced voltage fluctuates from 41 to 44 [V], and the fluctuation rate is about 4.6%. . In contrast, in the saturation region where the field current If is 7.0 [A], the induced voltage is 66 [V]. When the field current If fluctuates by 7.0 [A] ± 0.2 [A], the induced voltage fluctuates from 65.5 to 66.5 [V], and the fluctuation rate is about 0. 75%. Thus, the same field current variation of ± 0.2 [A] is about 4.6% of torque variation in the non-saturation region, and about 0.75% variation of torque in the saturation region. It becomes. As described above, the torque variation due to the variation in the field current of the same magnitude is much larger in the non-saturated region than in the saturated region.

特許文献1に記載されているとおり、電機子のd軸電流Idと界磁電流Ifは構造上、相互に誘導するので、単なる界磁電流Ifの電流制御の精度だけでなく、トルク急変動によって電機子のd軸電流Idの変化が大きい場合、それによって界磁電流Ifも変動しやすくなる。このように従来例では、弱め界磁制御を行う場合、界磁巻線の電流−磁束特性の通り2つの界磁巻線とも非飽和域で通電するためトルクの変動が大きい。   As described in Patent Document 1, since the d-axis current Id and the field current If of the armature are mutually induced due to the structure, not only the accuracy of the current control of the field current If but also a sudden torque fluctuation When the change of the d-axis current Id of the armature is large, the field current If also tends to fluctuate accordingly. As described above, in the conventional example, when field-weakening control is performed, the two field windings are energized in the non-saturated region according to the current-flux characteristics of the field windings, so that the torque fluctuation is large.

本発明では、複数の界磁巻線を有するモータにおいて、界磁巻線毎に通電制御するので、界磁電流の変化に対してトルク変動が大きい界磁電流−磁束特性の非飽和領域の使用を減らして、トルクを安定させることができる。   In the present invention, in a motor having a plurality of field windings, energization control is performed for each field winding. Therefore, use of a non-saturated region of the field current-flux characteristics in which torque fluctuation is large with respect to changes in the field current. Can be reduced to stabilize the torque.

本実施例では、一方の界磁巻線に定格電流を流すことにより、一方の回転子コアの磁束は飽和領域で使用できる。このとき他方の界磁巻線の電流は、例えばほぼゼロにでき、他方の回転子コアによって鎖交する磁束をゼロにすることができる。結果的に発生するトルクは、2つの界磁巻線を少ない電流で駆動させた弱め界磁制御時と同等のトルクを発生することができる。すなわちトルクを維持しながらトルクばらつきを低減することができるという効果がある。   In this embodiment, the magnetic flux of one rotor core can be used in the saturation region by passing a rated current through one of the field windings. At this time, the current of the other field winding can be made substantially zero, for example, and the magnetic flux linked by the other rotor core can be made zero. As a result, the generated torque can generate a torque equivalent to that in the field-weakening control in which the two field windings are driven with a small current. That is, the torque variation can be reduced while maintaining the torque.

次に、図4乃至図7を参照して、本実施例における弱め界磁制御時の界磁巻線の通電パターンを説明する。   Next, with reference to FIGS. 4 to 7, the energization pattern of the field winding at the time of field weakening control in this embodiment will be described.

図4の第1通電パターンは、従来のモータと同様な弱め界磁制御時の通電パターンである。一方の界磁巻線の界磁電流If1と、他方の界磁巻線の界磁電流If2とを同時に飽和領域の定格値IM から電流を下げる場合である。但し、第1通電パターンでは、本発明の効果はない。   The first energization pattern in FIG. 4 is an energization pattern at the time of field weakening control similar to a conventional motor. In this case, the field current If1 of one field winding and the field current If2 of the other field winding are simultaneously reduced from the rated value IM in the saturation region. However, the first energization pattern does not have the effect of the present invention.

図5の第2通電パターンは、一方の界磁巻線の界磁電流If1を減少させながら弱め界磁制御を行う際に、他方の界磁巻線の界磁電流If2は飽和領域の定格値IM を維持する場合である。弱め界磁制御の開始から時刻taまでは、界磁電流If2は飽和領域の定格値IM を維持しながら、界磁電流If1を減少させる。このとき界磁電流If2は飽和領域の定格値IM であるので、界磁電流If1,If2のばらつきによるトルクばらつきは、第1通電パターンより小さくなるという効果がある。時刻taで界磁電流If1が0となった後は、界磁電流If2を減少させる制御を行う。   In the second energization pattern of FIG. 5, when the field weakening control is performed while the field current If1 of one field winding is reduced, the field current If2 of the other field winding has a rated value IM in the saturation region. It is a case of maintaining. From the start of the field weakening control to the time ta, the field current If2 decreases the field current If1 while maintaining the rated value IM in the saturation region. At this time, since the field current If2 is the rated value IM in the saturation region, the torque variation due to the variations in the field currents If1 and If2 has an effect of being smaller than that of the first energization pattern. After the field current If1 becomes 0 at time ta, control is performed to reduce the field current If2.

図6は、図5の第2通電パターンの変形例であり、3つの界磁巻線を備えた場合である。弱め界磁制御の開始から時刻taまでは、第1界磁巻線の界磁電流If1を減少させながら、第2、第3界磁巻線の界磁電流If2,If3は飽和領域の定格値IM を維持する。時刻taで第1界磁巻線の界磁電流If1が0となった後は、第3界磁巻線の界磁電流If3を飽和領域の定格値IM に維持しながら第2界磁巻線の界磁電流If2を減少させる制御を行う。時刻tbで第2界磁巻線の界磁電流If2が0となった後は、第3界磁巻線の界磁電流If3を減少させる制御を行う。4以上の界磁巻線を有する場合も同様で、他の界磁巻線の界磁電流を維持しながら、一つずつの界磁巻線の界磁電流を0まで減少させる制御を行う。界磁巻線の数が3以上であっても弱め界磁制御時のトルク変動を抑制することができる。   FIG. 6 is a modified example of the second energization pattern of FIG. 5 and includes three field windings. From the start of the field weakening control until time ta, the field currents If2 and If3 of the second and third field windings decrease the rated value IM in the saturation region while decreasing the field current If1 of the first field winding. maintain. After the field current If1 of the first field winding becomes zero at time ta, the second field winding is maintained while maintaining the field current If3 of the third field winding at the rated value IM in the saturation region. Control is performed to reduce the field current If2. After the field current If2 of the second field winding becomes 0 at time tb, control is performed to reduce the field current If3 of the third field winding. The same applies to the case where there are four or more field windings, and control is performed to reduce the field current of each field winding to 0 while maintaining the field currents of the other field windings. Even if the number of field windings is three or more, torque fluctuations during field weakening control can be suppressed.

図7は、第3通電パターンを説明する図である。第3通電パターンでは、最初に第1界磁巻線の界磁電流If1と第2界磁巻線の界磁電流If2とをそれぞれ飽和領域の定格値IM から同時に減少を開始させる。ある時刻tdで、界磁電流If1が電流値I1 に達したときの界磁電流If2が電流値I2 であったとする。このとき、界磁電流If1を飽和領域の定格値IM に増加させるとともに、界磁電流If2を0にする。以後、界磁電流If2を0に維持したまま、界磁電流If1を減少させる制御を行う。この第3通電パターンにおいても一方の界磁電流を飽和領域に近いところで使用することになるので、界磁電流のばらつきによるトルクばらつきを低減させることができるという効果がある。   FIG. 7 is a diagram illustrating the third energization pattern. In the third energization pattern, first, the field current If1 of the first field winding and the field current If2 of the second field winding are simultaneously started to decrease simultaneously from the rated value IM in the saturation region. It is assumed that the field current If2 at the time td when the field current If1 reaches the current value I1 is the current value I2. At this time, the field current If1 is increased to the rated value IM in the saturation region, and the field current If2 is set to zero. Thereafter, control is performed to reduce the field current If1 while maintaining the field current If2 at zero. Also in this third energization pattern, since one field current is used in the vicinity of the saturation region, there is an effect that the torque variation due to the field current variation can be reduced.

以上の第1乃至第3通電パターンは、それぞれのモータ設計に応じてトルク性能、トルクばらつき、熱性能などに応じて、最適な設定をすることができる。   The first to third energization patterns described above can be optimally set according to torque performance, torque variation, thermal performance, and the like according to each motor design.

尚、図示しなかったが本実施例において、界磁巻線毎にその温度を検出する温度センサを設けて、温度センサの検出値に基づいて、各界磁巻線の電流を制御することもできる。即ち、モータは連続運転によって温度が上昇する。過度な温度上昇は保護機能が作動して、出力制限や出力停止となる。界磁巻線毎の温度を温度センサで検出し、温度が最も高い界磁巻線の電流を減じ、温度が最も低い界磁巻線の電流を増加させる制御を行うことにより、温度保護機能が作動する前になるべく長くモータを運転させることも可能である。   Although not shown, in the present embodiment, a temperature sensor for detecting the temperature of each field winding is provided, and the current of each field winding can be controlled based on the detection value of the temperature sensor. . That is, the temperature of the motor increases due to continuous operation. If the temperature rises excessively, the protection function is activated, and output is limited or stopped. The temperature protection function is achieved by detecting the temperature of each field winding with a temperature sensor, reducing the current of the field winding with the highest temperature, and increasing the current of the field winding with the lowest temperature. It is also possible to run the motor as long as possible before it is activated.

本発明に係る界磁巻線型モータの実施例の構造を説明する断面図である。It is sectional drawing explaining the structure of the Example of the field winding type motor which concerns on this invention. 図1の界磁巻線型モータと界磁電流制御回路例との接続を示す接続図である。FIG. 2 is a connection diagram illustrating a connection between the field winding type motor of FIG. 1 and a field current control circuit example. 界磁電流と、誘起電圧(∝発生磁束∝トルク)との関係例を示す図である。It is a figure which shows the example of a relationship between a field current and an induced voltage (soot generation | occurrence | production magnetic flux∝torque). 実施例における弱め界磁制御の第1通電パターンを示す図である。It is a figure which shows the 1st electricity supply pattern of the field weakening control in an Example. 実施例における弱め界磁制御の第2通電パターンを示す図である。It is a figure which shows the 2nd electricity supply pattern of field weakening control in an Example. 第2通電パターンの変形例を示す図である。It is a figure which shows the modification of a 2nd electricity supply pattern. 実施例における弱め界磁制御の第3通電パターンを示す図である。It is a figure which shows the 3rd electricity supply pattern of field weakening control in an Example.

符号の説明Explanation of symbols

1…界磁巻線型モータ、2…ハウジング、3…固定子コア、4…固定子巻線、5…回転子コア、6…回転子コア、7…界磁巻線、8…界磁巻線、9…シャフト、10a,10b…ベアリング、11a,11b,11c…スリップリング、12a,12b,12c…ブラシ、13…ブラシホルダ、14…コイルバネ、15…引出線、16…回転センサ、17…信号線、20…インバータ、21…界磁電流制御回路、22…直流電源、23,24…駆動素子、25,26…駆動信号入力端子。   DESCRIPTION OF SYMBOLS 1 ... Field winding type motor, 2 ... Housing, 3 ... Stator core, 4 ... Stator winding, 5 ... Rotor core, 6 ... Rotor core, 7 ... Field winding, 8 ... Field winding , 9 ... shaft, 10a, 10b ... bearing, 11a, 11b, 11c ... slip ring, 12a, 12b, 12c ... brush, 13 ... brush holder, 14 ... coil spring, 15 ... lead wire, 16 ... rotation sensor, 17 ... signal Line 20, inverter 21, field current control circuit 22, DC power supply 23, 24 drive element 25, 26 drive signal input terminal

Claims (2)

界磁巻線型回転子を備えた界磁巻線型モータにおいて、
複数の界磁巻線と、
前記界磁巻線毎に電流を供給するスリップリングと、
前記界磁巻線毎に電流を供給する界磁電流制御回路と、
を備えたことを特徴とする界磁巻線型モータ。
In a field winding type motor equipped with a field winding type rotor,
A plurality of field windings;
A slip ring for supplying current to each field winding;
A field current control circuit for supplying current to each field winding;
A field winding type motor characterized by comprising:
請求項1に記載の界磁巻線型モータの制御方法であって、
弱め界磁制御時に、第1の界磁巻線に順次低減する電流を供給し、第2の界磁巻線に飽和電流を供給することを特徴とする界磁巻線型モータの制御方法。
It is a control method of the field winding type motor according to claim 1,
A field winding type motor control method comprising: supplying a current to be sequentially reduced to a first field winding and supplying a saturation current to a second field winding during field weakening control.
JP2008305964A 2008-12-01 2008-12-01 Winding field type motor, and control method thereof Pending JP2010130870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305964A JP2010130870A (en) 2008-12-01 2008-12-01 Winding field type motor, and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305964A JP2010130870A (en) 2008-12-01 2008-12-01 Winding field type motor, and control method thereof

Publications (1)

Publication Number Publication Date
JP2010130870A true JP2010130870A (en) 2010-06-10

Family

ID=42330825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305964A Pending JP2010130870A (en) 2008-12-01 2008-12-01 Winding field type motor, and control method thereof

Country Status (1)

Country Link
JP (1) JP2010130870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258899A (en) * 2012-06-11 2013-12-26 Tai-Her Yang Electric machine
JP2015076942A (en) * 2013-10-08 2015-04-20 三菱電機株式会社 Motor control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258899A (en) * 2012-06-11 2013-12-26 Tai-Her Yang Electric machine
EP2675050A3 (en) * 2012-06-11 2017-06-28 Tai-Her Yang Switch type DC electric machine having auxiliary excitation winding and conduction ring and brush
JP2015076942A (en) * 2013-10-08 2015-04-20 三菱電機株式会社 Motor control device
US9294018B2 (en) 2013-10-08 2016-03-22 Mitsubishi Electric Corporation Electric motor control device

Similar Documents

Publication Publication Date Title
EP3376650A1 (en) Permanent magnet starter-generator with magnetic flux regulation
EP2782226A2 (en) Flux controlled PM electric machine rotor
JP2016063728A (en) Brushless motor
US20130106338A1 (en) Apparatus and method of driving switched reluctance motor
JP5790447B2 (en) Rotation force generator
JP4718580B2 (en) Permanent magnet type rotating electric machine and electric power steering device
US20120139465A1 (en) Asymmetrical reluctance machine
US20170005555A1 (en) Asymmetric salient permanent magnet synchronous machine
JP5985119B1 (en) Permanent magnet rotating electric machine
JP5751147B2 (en) Motor equipment
JP2008283806A (en) Buried-magnet motor
JP2010130870A (en) Winding field type motor, and control method thereof
JP2005057941A (en) Rotary electric machine
JP2012228077A (en) Permanent magnet type rotary electrical machine
US11133733B2 (en) Rotary electrical machine
US20170353074A1 (en) Rotor for rotating electric machine
US11146158B2 (en) Rotary electrical machine
JP2018019528A (en) Controller for switched reluctance motor
CN103532322B (en) A kind of list of the novel low-vibration torque winding that changes has brushless motor
JP5272464B2 (en) Rotating field synchronous machine
Babu et al. A Comparative Analysis of Cogging Torque Reduction in BLDC Motor Using Bifurcation and Slot Opening Variation
JPH06233511A (en) Permanent magnet type synchronous motor, and field controlling method therefor
JP2013021814A (en) Brushless motor and vehicle including the same
JP2009022120A (en) Electric motor for electric power steering device
JP2006054984A (en) Electric blower