JP2010130197A - Imaging apparatus and onboard camera system - Google Patents

Imaging apparatus and onboard camera system Download PDF

Info

Publication number
JP2010130197A
JP2010130197A JP2008301169A JP2008301169A JP2010130197A JP 2010130197 A JP2010130197 A JP 2010130197A JP 2008301169 A JP2008301169 A JP 2008301169A JP 2008301169 A JP2008301169 A JP 2008301169A JP 2010130197 A JP2010130197 A JP 2010130197A
Authority
JP
Japan
Prior art keywords
wavelength band
image
vehicle
light
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008301169A
Other languages
Japanese (ja)
Other versions
JP5158713B2 (en
Inventor
Hiroyuki Minagawa
博幸 皆川
Hidetoshi Umeda
英敏 梅田
Takayuki Kimura
貴之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Denso Corp
Original Assignee
Kyocera Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Denso Corp filed Critical Kyocera Corp
Priority to JP2008301169A priority Critical patent/JP5158713B2/en
Publication of JP2010130197A publication Critical patent/JP2010130197A/en
Application granted granted Critical
Publication of JP5158713B2 publication Critical patent/JP5158713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus and an onboard camera system that recognizes an object in a desired light wavelength band without using a filter at low cost. <P>SOLUTION: An imaging apparatus has: an optical system 11; an imaging element 12 that carries out photoelectric conversion of an image obtained via the optical system 11, and outputs an image signal; and a signal processor 13 and a vehicle signal processor 14 that carry out a process to the image signal. The optical system 11 is formed so that the size of a point image of any first light wavelength band λ1 and that of a second light wavelength band λ2 other than the first light wavelength band λ1 are different from each other depending on aberration performance. The light receiving surface of the imaging element 12 is arranged at a position where a light ray of the light wavelength band whose point image becomes smaller among the first and second light wavelength bands λ1 and λ2 makes a focal point. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車等の車両に搭載可能な撮像装置および車載カメラシステムに関するものである。   The present invention relates to an imaging device and an in-vehicle camera system that can be mounted on a vehicle such as an automobile.

自動車の前部に搭載されて前方の車両の赤色テールランプを認識するための車載カメラシステム(車載撮像システム)が実用に供されている(たとえば特許文献1参照)。   An in-vehicle camera system (an in-vehicle imaging system) that is mounted on the front of an automobile and recognizes the red tail lamp of a vehicle ahead is in practical use (see, for example, Patent Document 1).

先行技術は車両のテールランプを他の光源から区別するシステムである。
この先行技術では、様々なスペクトル帯域の光線を正確に色で分類することができるように、光学システムにスペクトルフィルタ材料を組み込んで用いる技術が開示されている。
たとえば、代表的なテールランプの赤色を区別するために、赤色スペクトルフィルタ材料と赤外線スペクトルフィルタ材料とを組合せて用いる方法が開示されている。
特表2005−534903号公報
The prior art is a system that distinguishes the tail lamp of a vehicle from other light sources.
This prior art discloses a technique in which a spectral filter material is incorporated and used in an optical system so that light in various spectral bands can be accurately classified by color.
For example, a method is disclosed that uses a combination of a red spectral filter material and an infrared spectral filter material to distinguish the red color of a typical tail lamp.
JP 2005-534903 A

しかしながら、上述した手法では、少なくとも区別したい色の種類分の数のスペクトルフィルタ材料とその光学システムへの組み込みが必要であり、その分コストアップとなってしまう。   However, the above-described method requires at least as many spectral filter materials as the types of colors to be distinguished and their incorporation into the optical system, which increases the cost.

本発明は、フィルタを用いることなく低コストで所望の光波長帯域の対象物を認識することが可能な撮像装置および車載カメラシステムを提供することにある。   An object of the present invention is to provide an imaging device and an in-vehicle camera system that can recognize an object in a desired optical wavelength band at low cost without using a filter.

本発明の第1の観点の撮像装置は、光学系と、前記光学系を介して得られる像を光電変換し画像信号を出力する撮像素子と、前記画像信号に処理を施す画像処理部と、を有し、光学系は、任意の第1の光波長帯域と当該第1の光波長帯域以外の第2の光波長帯域とで収差性能によって点像の大きさが異なるように形成され、前記撮像素子は、前記第1の光波長帯域および前記第2の光波長帯域のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置されている。   An image pickup apparatus according to a first aspect of the present invention includes an optical system, an image pickup device that photoelectrically converts an image obtained through the optical system and outputs an image signal, an image processing unit that processes the image signal, And the optical system is formed such that the size of the point image differs depending on the aberration performance between an arbitrary first optical wavelength band and a second optical wavelength band other than the first optical wavelength band, In the imaging device, a light receiving surface is disposed at a position where a light beam in an optical wavelength band in which a point image becomes small is focused out of the first optical wavelength band and the second optical wavelength band.

好適には、前記画像処理部は、画像のぼけを低減する処理を施した画像信号を生成し、当該生成した画像信号と当該処理を施す前の画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行う。   Preferably, the image processing unit generates an image signal that has been subjected to a process that reduces image blur, and compares the generated image signal with an image signal that has not been subjected to the process. The object having the color in the light wavelength band is discriminated from the object having the color in the second light wavelength band.

好適には、前記画像処理部は、画像のぼけを低減する処理を効果の程度を変えて施した画像信号を複数生成し、効果の強い前記処理を施した画像信号と効果の弱い前記処理を施した画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行う。   Preferably, the image processing unit generates a plurality of image signals obtained by performing a process for reducing image blur by changing the degree of the effect, and the image signal obtained by performing the process having a strong effect and the process having a weak effect. By comparing the applied image signal, the color object in the first light wavelength band and the color object in the second light wavelength band are identified.

好適には、点像が小さくなる方の光波長帯域の光線が前記撮像素子の受光面に結ぶ点像分布ばらつきの径をφa、他方の光波長帯域の光線が前記撮像素子の受光面に結ぶ点像分布ばらつきの径をφbとしたとき、次の関係式を満足する。
φb ≧ 1.5 * φa
Preferably, the diameter of the point image distribution variation in which the light beam in the light wavelength band with the smaller point image is connected to the light receiving surface of the image sensor is φa, and the light beam in the other light wavelength band is connected to the light receiving surface of the image sensor. When the diameter of the point image distribution variation is φb, the following relational expression is satisfied.
φb ≧ 1.5 * φa

好適には、前記光学系において貼り合わせレンズ部分、または狭間隔の凹凸レンズの組み合わせ部分のアッベ数が、貼り合わせ凹レンズのアッベ数をν1、貼り合わせ凸レンズのアッベ数をν2としたとき以下の関係を満足する。
ν1≧ν2
Preferably, in the optical system, when the Abbe number of the bonded lens portion or the combination portion of the concave and convex lenses having a narrow interval is ν1, the Abbe number of the bonded concave lens is ν1, and the Abbe number of the bonded convex lens is ν2, the following relationship Satisfied.
ν1 ≧ ν2

好適には、前記第1の光波長帯域は略600〜700nmの波長帯域を含む。   Preferably, the first optical wavelength band includes a wavelength band of approximately 600 to 700 nm.

本発明の第2の観点の車載カメラシステムは、車両と、前記車両に配置され、当該車両の前方側を走行する他の車両を撮像可能な撮像装置としてのカメラと、を有し、前記カメラは、光学系と、前記光学系を介して得られる像を光電変換し画像信号を出力する撮像素子と、前記画像信号に処理を施す画像処理部と、を有し、光学系は、任意の第1の光波長帯域と当該第1の光波長帯域以外の第2の光波長帯域とで収差性能によって点像の大きさが異なるように形成され、前記撮像素子は、前記第1の光波長帯域および前記第2の光波長帯域のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置され、前記第1の光波長帯域は略600〜700nmの波長帯域を含み、前記画像処理部は、画像のぼけを低減する処理を施した画像信号を生成し、当該生成した画像信号と当該処理を施す前の画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行い、前記他の車両のテールランプを認識する。   An in-vehicle camera system according to a second aspect of the present invention includes a vehicle and a camera as an imaging device that is disposed in the vehicle and can image another vehicle that travels in front of the vehicle. Has an optical system, an image sensor that photoelectrically converts an image obtained through the optical system and outputs an image signal, and an image processing unit that processes the image signal. The first optical wavelength band and the second optical wavelength band other than the first optical wavelength band are formed so that the size of a point image differs depending on the aberration performance, and the imaging element includes the first optical wavelength band A light receiving surface is disposed at a position where a light beam in a light wavelength band in which a point image becomes small is focused on the band and the second light wavelength band, and the first light wavelength band has a wavelength band of about 600 to 700 nm. The image processing unit performs processing for reducing image blurring. The image signal is generated, and the generated image signal is compared with the image signal before the processing, so that the object having the color in the first light wavelength band and the color in the second light wavelength band are compared. Identification with the subject is performed, and the tail lamp of the other vehicle is recognized.

本発明の第3の観点の車載カメラシステムは、車両と、前記車両に配置され、当該車両の前方側を走行する他の車両を撮像可能な撮像装置としてのカメラと、を有し、前記カメラは、光学系と、前記光学系を介して得られる像を光電変換し画像信号を出力する撮像素子と、前記画像信号に処理を施す画像処理部と、を有し、光学系は、任意の第1の光波長帯域と当該第1の光波長帯域以外の第2の光波長帯域とで収差性能によって大きさが異なるように形成され、前記撮像素子は、前記第1の光波長帯域および前記第2の光波長帯域のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置され、前記第1の光波長帯域は略600〜700nmの波長帯域を含み、前記画像処理部は、画像のぼけを低減する処理を効果の程度を変えて施した画像信号を複数生成し、効果の強い前記処理を施した画像信号と効果の弱い前記処理を施した画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行い、前記他方の車両のテールランプを認識する。   An in-vehicle camera system according to a third aspect of the present invention includes a vehicle, and a camera as an imaging device that is disposed in the vehicle and can image another vehicle that travels in front of the vehicle. Has an optical system, an image sensor that photoelectrically converts an image obtained through the optical system and outputs an image signal, and an image processing unit that processes the image signal. The first optical wavelength band and the second optical wavelength band other than the first optical wavelength band are formed to have different sizes depending on the aberration performance, and the imaging element includes the first optical wavelength band and the second optical wavelength band. Of the second optical wavelength band, a light receiving surface is disposed at a position where a light beam in the optical wavelength band where the point image becomes small is focused, and the first optical wavelength band includes a wavelength band of approximately 600 to 700 nm, The image processor effectively performs the process of reducing image blur. By generating a plurality of image signals that have been subjected to a change and comparing the image signal that has been subjected to the processing having a strong effect with the image signal that has been subjected to the processing having a weak effect, the color of the first optical wavelength band The subject is discriminated from the subject having the color of the second light wavelength band, and the tail lamp of the other vehicle is recognized.

本発明によれば、フィルタを用いることなく低コストで所望の光波長帯域の対象物を認識することができる。   According to the present invention, an object in a desired optical wavelength band can be recognized at a low cost without using a filter.

以下、本発明の実施形態を図面に関連付けて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る撮像装置が適用される車載カメラシステムの一例を示す外観図である。
図2は、本実施形態に係る車載カメラシステムの構成例を示すブロック図である。
FIG. 1 is an external view showing an example of an in-vehicle camera system to which an imaging apparatus according to an embodiment of the present invention is applied.
FIG. 2 is a block diagram illustrating a configuration example of the in-vehicle camera system according to the present embodiment.

本実施形態の車載カメラシステム10は、図1に示すように、車両20、および車両20の前方を走行する他の車両を撮像可能な撮像装置としてのカメラ部30を有する。
カメラ部30は、たとえばルームミラー21のフロントガラス側に配置される。
As shown in FIG. 1, the in-vehicle camera system 10 of the present embodiment includes a camera unit 30 as an imaging device capable of imaging the vehicle 20 and other vehicles traveling in front of the vehicle 20.
The camera part 30 is arrange | positioned at the windshield side of the room mirror 21, for example.

車載カメラシステム10は、図2に示すように、光学系11、撮像素子12、信号処理部13、車両信号処理部14、および車両処理系15,16を含んで構成される。
これらの構成要素のうち光学系11、撮像素子12、および信号処理部13によりカメラ部30が形成される。
また、車両信号処理部14、および車両処理系15,16により車両20内のエンジンコントロールユニット(ECU)部40が形成される。
As shown in FIG. 2, the in-vehicle camera system 10 includes an optical system 11, an imaging device 12, a signal processing unit 13, a vehicle signal processing unit 14, and vehicle processing systems 15 and 16.
Among these components, the optical system 11, the image sensor 12, and the signal processing unit 13 form a camera unit 30.
The vehicle signal processing unit 14 and the vehicle processing systems 15 and 16 form an engine control unit (ECU) unit 40 in the vehicle 20.

本実施形態の車載カメラシステム10においては、光学系11の撮像レンズの収差特性を任意の第1の光波長帯域だけ異ならせて被写体の色によってボケの有無を作りだし、画像処理でボケを低減させたものとの差分(比較)を取ることによって被写体の色による区別を行う。
より具体的には、光学系11の撮像レンズの収差特性を任意の第1の光波長帯域(本実施形態では赤色のテールランプの波長帯域)だけ異ならせ、撮影画像のボケ具合に差が表れるようにして、撮影画像とその画像にエッジ強調の様なボケを低減する処理を施したものとの差分を取ることにより、任意の光波長帯域の色の画像だけを抽出可能となっている。
本実施形態においては、任意の第1の光波長帯域のみの収差を無くしそれ以外の第2の光波長帯域をボケさせる方法と、逆に任意の第1の光波長帯域のみをボケさせそれ以外の第2の光波長帯域の収差をなくす方法を採用することが可能である。
In the in-vehicle camera system 10 of the present embodiment, the aberration characteristic of the imaging lens of the optical system 11 is changed by an arbitrary first light wavelength band to create the presence or absence of blur depending on the color of the subject, and blur is reduced by image processing. The subject is distinguished based on the color of the subject by taking a difference (comparison) with the object.
More specifically, the aberration characteristic of the imaging lens of the optical system 11 is varied by an arbitrary first light wavelength band (in this embodiment, the wavelength band of the red tail lamp), so that a difference appears in the degree of blur of the captured image. Thus, by taking the difference between the photographed image and the image subjected to processing for reducing blur such as edge enhancement, it is possible to extract only an image of a color in an arbitrary light wavelength band.
In the present embodiment, the method of eliminating the aberration only in the arbitrary first optical wavelength band and blurring the other second optical wavelength band, and conversely, blurring only the arbitrary first optical wavelength band, and the others It is possible to employ a method of eliminating the aberration in the second optical wavelength band.

光学系11は、撮像レンズ111を含み、任意の第1の光波長帯域λ1とこの第1の光波長帯域λ1以外の第2の光波長帯域λ2とで収差性能によって点像の大きさが異なるように形成されている。   The optical system 11 includes an imaging lens 111, and the size of a point image differs depending on aberration performance between an arbitrary first optical wavelength band λ1 and a second optical wavelength band λ2 other than the first optical wavelength band λ1. It is formed as follows.

撮像素子12は、光学系11を介して得られる像を光電変換し画像信号S12を信号処理部13に出力する。
撮像素子12は、第1の光波長帯域λ1および第2の光波長帯域λ2のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置されている。
The image sensor 12 photoelectrically converts an image obtained via the optical system 11 and outputs an image signal S12 to the signal processing unit 13.
In the image pickup device 12, a light receiving surface is disposed at a position where a light beam in an optical wavelength band in which a point image becomes small is focused out of the first optical wavelength band λ1 and the second optical wavelength band λ2.

点像が小さくなる方の光波長帯域の光線が撮像素子12の受光面に結ぶ点像分布ばらつきの径をφa、他方の光波長帯域の光線が撮像素子12の受光面に結ぶ点像分布ばらつきの径をφbとしたとき、次の関係式を満足する。
φb ≧ 1.5 * φa
The diameter of the point image distribution variation in which the light beam in the light wavelength band with the smaller point image is connected to the light receiving surface of the image sensor 12 is φa, and the point image distribution variation in which the light beam in the other light wavelength band is connected to the light receiving surface of the image sensor 12 When the diameter is φb, the following relational expression is satisfied.
φb ≧ 1.5 * φa

これによって、物体が点像であっても1.5倍以上のボケ変化があることでは像面では2画素以上にまたがる像となり、撮像素子上での検出が可能となる。   As a result, even if the object is a point image, if there is a blur change of 1.5 times or more, an image that spans two or more pixels on the image plane becomes possible, and detection on the image sensor is possible.

信号処理部13は、撮像素子12による画像信号S12に対して所定の処理、たとえばエッジ抽出等の処理を行い、そのエッジ情報と画像信号を信号S13として車両信号処理部14に出力する。
信号処理部13は、撮像された画像信号S12から被写体であるたとえば光源体を検出し、検出した光源体のエッジ抽出処理を行う。
信号処理部13は、取り込んだ画像信号S13の閾値判定によりエリアの検出を行い、光源体と他の被写体を切り分ける機能を有する。
また、信号処理部13は、取り込まれた画像信号を基に、露出制御を行う機能を有する。
この露出制御機能は、車両信号処理部14が行うように構成することも可能である。
The signal processing unit 13 performs predetermined processing such as edge extraction on the image signal S12 from the image pickup device 12, and outputs the edge information and the image signal to the vehicle signal processing unit 14 as a signal S13.
The signal processing unit 13 detects, for example, a light source body that is a subject from the captured image signal S12, and performs edge extraction processing of the detected light source body.
The signal processing unit 13 has a function of detecting an area by determining a threshold value of the captured image signal S13 and separating the light source from other subjects.
The signal processing unit 13 has a function of performing exposure control based on the captured image signal.
This exposure control function can also be configured to be performed by the vehicle signal processing unit 14.

車両信号処理部14は、信号処理部13に出力信号S13を受けて、画像のぼけを低減する処理を施した画像信号を生成し、生成した画像信号と処理を施す前の画像信号とを比較することによって(差分をとることによって)、第1の光波長帯域λ1の色の被写体と第2の光波長帯域λ2の色の被写体との識別を行う。   The vehicle signal processing unit 14 receives the output signal S13 from the signal processing unit 13, generates an image signal that has been subjected to processing to reduce image blur, and compares the generated image signal with the image signal before the processing. By doing this (by taking the difference), a subject having a color in the first optical wavelength band λ1 and a subject having a color in the second optical wavelength band λ2 are identified.

あるいは、車両信号処理部14は、信号処理部13に出力信号S13を受けて、画像のぼけを低減する処理を効果の程度を変えて施した画像信号を複数生成し、効果の強い処理を施した画像信号と効果の弱い処理を施した画像信号とを比較することによって、第1の光波長帯域λ1の色の被写体と第2の光波長帯域λ2の色の被写体との識別を行う。
ここで、画像のボケを低減する処理とは、たとえばエッジ強調のような処理をいい、その効果の強弱によって像劣化の度合いを異ならせることができる。
Alternatively, the vehicle signal processing unit 14 receives the output signal S13 from the signal processing unit 13, generates a plurality of image signals that are subjected to processing for reducing the blurring of the image with varying degrees of effect, and performs processing with strong effect. By comparing the image signal that has been processed and the image signal that has been processed with a weak effect, the subject having the color in the first optical wavelength band λ1 and the subject having the color in the second optical wavelength band λ2 are identified.
Here, the process of reducing the blur of the image refers to a process such as edge enhancement, for example, and the degree of image degradation can be varied depending on the strength of the effect.

車両信号処理部14は、たとえば信号処理部13からのエッジ信号および画像信号により被写体の判定を行う。
車両信号処理部14は、信号処理部13で検出される被写体であるたとえば光源体に対してエッジのコントラストを判定して光源色を判定する。
The vehicle signal processing unit 14 determines a subject based on, for example, an edge signal and an image signal from the signal processing unit 13.
The vehicle signal processing unit 14 determines the light source color by determining the contrast of the edge with respect to, for example, the light source that is the subject detected by the signal processing unit 13.

本実施形態において、第1の光波長帯域λ1は車両に用いられる赤色のテールランプの光の波長帯域は略600〜700nmである。
第2の光波長領域λ2は、第1の光波長帯域λ1以外の第2の光波長帯域λ2は、600nmより短いあるいは700nmより長い波長帯域である。
In the present embodiment, the first light wavelength band λ1 is approximately 600 to 700 nm for the light of the red tail lamp used in the vehicle.
In the second optical wavelength region λ2, the second optical wavelength band λ2 other than the first optical wavelength band λ1 is a wavelength band shorter than 600 nm or longer than 700 nm.

本実施形態の車載カメラシステム10は、車両20の前部に搭載されて前方の車両の赤色テールランプを認識するのに用いられる車載カメラシステムとして構成される。
さらに具体的には、前述したように、撮像レンズ111を有する光学系11と光学系11を通した光を撮像する撮像素子12とを含む。
撮像レンズ111は特色のある色収差を有しており、たとえば撮像レンズ111と撮像素子12とは、撮像レンズ111を通った、波長が600〜700nmの光が、撮像素子12の受光面上で焦点を結ぶように配置されている。
そして、信号処理部13で光源体の検出を行い、車両信号処理部14において撮像素子12で撮像した画像のエッジ強調処理を行った前後の画像を比較して、画像のコントラストが変化していない部分を赤色の物体(光源体)であると認識する。
The in-vehicle camera system 10 of the present embodiment is configured as an in-vehicle camera system that is mounted on the front portion of the vehicle 20 and used to recognize the red tail lamp of the vehicle ahead.
More specifically, as described above, the optical system 11 including the imaging lens 111 and the imaging element 12 that captures light passing through the optical system 11 are included.
The imaging lens 111 has characteristic chromatic aberration. For example, in the imaging lens 111 and the imaging element 12, light having a wavelength of 600 to 700 nm passing through the imaging lens 111 is focused on the light receiving surface of the imaging element 12. Are arranged to tie.
The signal processing unit 13 detects the light source body, and the vehicle signal processing unit 14 compares the images before and after performing the edge enhancement processing of the image captured by the image sensor 12, and the contrast of the image is not changed. The part is recognized as a red object (light source).

以上の構成によれば、撮像レンズ111として、波長を600〜700nmの範囲で設計されたレンズを使用し、600〜700nmの範囲で適切にピント調整を行うことで、赤色の認識を可能とする車載カメラシステム10として機能する。
また、前記波長の波長ウエイトで設計された撮像レンズでは、赤色の物体のコントラストが高くなる画像をシステムに取り込んだ後に、画像のエッジ強調を行うことで、400nm〜600nmの波長を持った物体のエッジが強調されコントラストが高くなる。
そして、画像処理前後の比較を行うことで、コントラストが変化していない物が赤色であることが認識できる。
According to the above configuration, a lens designed in the wavelength range of 600 to 700 nm is used as the imaging lens 111, and red is recognized by appropriately adjusting the focus in the range of 600 to 700 nm. It functions as the in-vehicle camera system 10.
In addition, in the imaging lens designed with the wavelength weight of the wavelength, an image having a wavelength of 400 nm to 600 nm is obtained by performing edge enhancement of the image after capturing an image in which the contrast of the red object is high in the system. Edges are enhanced and contrast is increased.
Then, by comparing before and after image processing, it can be recognized that an object whose contrast has not changed is red.

本実施形態においては、光学系11は、撮像素子12で撮像した画像が、撮影される物体の波長特性により像劣化(ボケ)が発生し、たとえば600nmより短い波長特性の持つ画像に対して、次のように像劣化を起こすように形成される。   In the present embodiment, the optical system 11 causes image degradation (blur) of the image captured by the image sensor 12 due to the wavelength characteristics of the object to be captured. For example, for an image having a wavelength characteristic shorter than 600 nm, It is formed so as to cause image degradation as follows.

φ(550) ≧1.5φ(600-700)
φ(600-700):波長600〜700nm領域の点像物体のボケ量
φ(550) :波長550nm以下の領域を含む点像物体のボケ量
φ (550) ≧ 1.5φ (600-700)
φ (600-700): Blur amount of point image object in the wavelength range of 600 to 700nm φ (550): Blur amount of point image object including region of wavelength 550nm or less

これは、物体が発する波長による像劣化(ボケ)量を規定しており、550nm以下の波長特性をもつ物体と、600〜700nmの波長特性を持つ物体を、本実施形態の光学系で撮影したときの像劣化の特性を表している。   This regulates the amount of image degradation (blur) due to the wavelength emitted by the object, and an object having a wavelength characteristic of 550 nm or less and an object having a wavelength characteristic of 600 to 700 nm were photographed with the optical system of this embodiment. It represents the characteristics of the image degradation.

また、本実施形態の車載カメラシステム10は、次のように形成することも可能である。
撮像レンズ111は色収差を有しており、撮像レンズ111と撮像素子12とは、撮像レンズ111を通った波長が400〜550nmの光が、撮像素子12の受光面上で焦点を結ぶように配置される。
画像処理部としての信号処理部13および車両信号処理部14は、撮像素子12で撮像した画像の強いエッジ強調処理と弱いエッジ強調処理とを行って両処理後の画像の差分を検出して、画像の差分が表れていない部分を赤色の物体であると認識する。
Moreover, the vehicle-mounted camera system 10 of this embodiment can also be formed as follows.
The imaging lens 111 has chromatic aberration, and the imaging lens 111 and the imaging element 12 are arranged so that light having a wavelength of 400 to 550 nm passing through the imaging lens 111 is focused on the light receiving surface of the imaging element 12. Is done.
The signal processing unit 13 and the vehicle signal processing unit 14 as the image processing unit detect a difference between the images after both processing by performing strong edge enhancement processing and weak edge enhancement processing of the image captured by the image sensor 12. The part where the image difference does not appear is recognized as a red object.

この構成によれば、上記構成とは逆に、撮像レンズの波長ウエイトを400〜550nmの範囲でバランス良く設計されたレンズを使用し、400nm〜550nm程度の可視光領域でピント調整を行うと、赤色(600〜700nm)の領域にある画像は、ピンぼけの状態となる。
その場合、画像をシステムに取り込んだ後に、または、撮像素子12の画像信号出力後の画像信号処理において、強い画像のエッジ強調と弱いエッジ強調を行い、その差分を取ることで600nm〜700nmの波長を持った物体のエッジが強調され差分が表れるが、550nm以下の赤色の波長を持った物体は差分が表れず赤色物体の認識が可能となる。
According to this configuration, on the contrary to the above configuration, using a lens designed with a well-balanced wavelength weight of the imaging lens in the range of 400 to 550 nm, and performing focus adjustment in the visible light region of about 400 nm to 550 nm, An image in the red (600 to 700 nm) region is out of focus.
In that case, after the image is taken into the system or in the image signal processing after the image signal is output from the image sensor 12, the edge enhancement of the strong image and the weak edge enhancement are performed, and a wavelength of 600 nm to 700 nm is obtained by taking the difference therebetween. The edge of an object having a dot is emphasized and a difference appears, but an object having a red wavelength of 550 nm or less does not show a difference, and a red object can be recognized.

車両処理系15は、たとえば夜間走行等において、車両信号処理部14で前方車の赤色テールランプを認識したことが報知されると、アップラインとしていたヘッドランプを通常のダウンライトに自動的に切り替える等の制御を行う。
車両処理系16は、たとえば車両信号処理部14で前方車の赤色テールランプを認識したことが報知されると、自動的に車間距離を測定し、近づきすぎであると認識すると、自動的にスピードを抑制し、また、表示あるいは音声で注意を喚起するような制御を行う。
When the vehicle signal processing unit 15 is informed that the vehicle signal processing unit 14 has recognized the red tail lamp of the preceding vehicle, for example, during night driving, the vehicle processing system 15 automatically switches the headlamp that has been uplined to a normal downlight, etc. Control.
For example, when the vehicle signal processing unit 14 is informed that the red tail lamp of the preceding vehicle has been recognized, the vehicle processing system 16 automatically measures the inter-vehicle distance, and if it recognizes that it is too close, it automatically increases the speed. In addition, control is performed so as to call attention by display or voice.

以上、本実施形態に係る車載カメラシステムの構成の特徴について説明した。
以下に、本実施形態に係る車載カメラシステム10の赤色のテールランプを認識する原理について説明する。
In the above, the characteristic of the structure of the vehicle-mounted camera system which concerns on this embodiment was demonstrated.
Below, the principle which recognizes the red tail lamp of the vehicle-mounted camera system 10 which concerns on this embodiment is demonstrated.

図3は、本実施形態の原理を説明するための図であって、色収差の特性を表している。   FIG. 3 is a diagram for explaining the principle of the present embodiment and represents the characteristics of chromatic aberration.

図3において、20Fは前方車を示し、前方車20Fは赤色のテールランプ22Rがカメラ部30で撮像可能となっている。
20Cは対向車を示し、対向車20Cはヘッドランプ22Hがカメラ部30で撮像可能となっている。
赤色(R)、緑色(G)、青色(B)の波長特性を利用し、赤成分のみに色収差が少なくフォーカスするレンズ系111を設計し、その他の色成分は収差が大きくなりボケる。
物点が点像であっても1.5倍以上のボケ変化があることで、像面では2画素以上にまたがる像となり、撮像素子上での検出が可能となる。
そして、本実施形態においては、上述したように、赤領域波長の特徴を持つ物体と、赤領域以外の波長を持つ物体の形状の形状認識を行う。
In FIG. 3, 20 </ b> F indicates a front vehicle, and a red tail lamp 22 </ b> R can be imaged by the camera unit 30 in the front vehicle 20 </ b> F.
Reference numeral 20C denotes an oncoming vehicle, and the headlamp 22H of the oncoming vehicle 20C can be imaged by the camera unit 30.
Using the wavelength characteristics of red (R), green (G), and blue (B), a lens system 111 that focuses with little chromatic aberration only on the red component is designed, and other color components are blurred due to large aberration.
Even if the object point is a point image, there is a blur change of 1.5 times or more, so that an image extending over two pixels or more on the image plane can be detected, and detection on the image sensor is possible.
In the present embodiment, as described above, shape recognition is performed on the shape of an object having a red region wavelength characteristic and an object having a wavelength other than the red region.

図4は、形状認識手法を説明するための図である。
図4に示すように、中心の出力値と、周辺の出力値の差を認識して形状を判定する。
FIG. 4 is a diagram for explaining the shape recognition method.
As shown in FIG. 4, the shape is determined by recognizing the difference between the central output value and the peripheral output value.

図5は、誘導灯等の認識処理を説明するための図である。
前方車20Fのテールランプ22Rの赤波長と誘導灯50の橙とは、波長特性の差が半値で100nm程度有るため、本実施形態にて赤波長の収差とオレンジ波長を認識が可能となる。
FIG. 5 is a diagram for explaining recognition processing for a guide light or the like.
Since the difference in wavelength characteristics between the red wavelength of the tail lamp 22R of the front vehicle 20F and the orange of the guide light 50 is about 100 nm at half value, the red wavelength aberration and the orange wavelength can be recognized in this embodiment.

図6は、光学系の構成例を示す図である。
図7は、波長600nm〜700nmの像劣化(ボケ)の様子を示す図である。
図8は、波長550nm〜700nmの像劣化(ボケ)の様子を示す図である。
FIG. 6 is a diagram illustrating a configuration example of the optical system.
FIG. 7 is a diagram illustrating a state of image deterioration (blur) with a wavelength of 600 nm to 700 nm.
FIG. 8 is a diagram showing a state of image deterioration (blurring) at a wavelength of 550 nm to 700 nm.

たとえば、光学系11は、5枚の撮像レンズ111−1〜111−5により形成されている。
撮像レンズ111−4と111−5は接合レンズとして形成されている。
For example, the optical system 11 is formed by five imaging lenses 111-1 to 111-5.
The imaging lenses 111-4 and 111-5 are formed as cemented lenses.

光学系11において貼り合わせレンズ部分、または狭間隔の凹凸レンズの組み合わせ部分、図6の例では、撮像レンズ111−4と111−5は接合レンズのアッベ数が、撮像レンズ111−4の貼り合わせ凹レンズのアッベ数をν1、撮像レンズ111−5の貼り合わせ凸レンズのアッベ数をν2としたとき以下の関係を満足する。
ν1≧ν2
In the optical system 11, a bonded lens portion or a combination portion of concave and convex lenses having a narrow interval, in the example of FIG. 6, the imaging lenses 111-4 and 111-5 have an Abbe number of the cemented lens, and the imaging lens 111-4 is bonded. When the Abbe number of the concave lens is ν1 and the Abbe number of the cemented convex lens of the imaging lens 111-5 is ν2, the following relationship is satisfied.
ν1 ≧ ν2

通常の光学系では、このアッベ数の関係が逆となるように形成されるが、本実施形態では、ν1≧ν2なる関係をもたせることで本実施形態における機能を十分に発現することが可能となっている。   In a normal optical system, the Abbe number relationship is formed so as to be reversed. However, in the present embodiment, the relationship of ν1 ≧ ν2 can be provided so that the functions in the present embodiment can be sufficiently expressed. It has become.

図7および図8は、600〜700nm領域の点像物体と、550nm領域を含んだ点像物体の像劣化(ボケ)の様子を表しており、波長領域の違いによるボケの状態の違いを画像によって認識可能である。   FIGS. 7 and 8 show the state of image degradation (blurring) between a point image object in the 600 to 700 nm region and a point image object including the 550 nm region. Can be recognized.

図9は、本実施形態に係る車載カメラシステム10の動作例を説明するためのフローチャートである。
次に、図2の構成による動作を図9のフローチャートに関連付けて説明する。
FIG. 9 is a flowchart for explaining an operation example of the in-vehicle camera system 10 according to the present embodiment.
Next, the operation of the configuration of FIG. 2 will be described with reference to the flowchart of FIG.

カメラの動作が開始された後、所定の処理後、画像取り込みが開始される(ST1)。
光学系11、撮像素子12により取り込まれた画像信号S12を基に信号処理部13により露出制御が行われる(ST2)。
これにより、安定した画像を得られるようになる。
露出制御後に光源体の検出を行う(ST3)。
光源体の検出では、信号処理部13において、取り込んだ画像信号S12の閾値判定にてエリアの検出を行い、光源体と他の被写体を切り分ける。
そして、光源体が検出された場合、信号処理部13において、エッジ検出処理を行い、光源体のエッジを検出する(ST4)。
After the operation of the camera is started, image capture is started after predetermined processing (ST1).
Based on the image signal S12 captured by the optical system 11 and the image sensor 12, exposure control is performed by the signal processing unit 13 (ST2).
Thereby, a stable image can be obtained.
After the exposure control, the light source body is detected (ST3).
In the detection of the light source body, the signal processing unit 13 detects an area by determining the threshold value of the captured image signal S12, and separates the light source body from other subjects.
When the light source body is detected, the signal processing unit 13 performs edge detection processing to detect the edge of the light source body (ST4).

次に、車両信号処理部14において、検出された光源体のエッジに対して、エッジのコントラストを判定し、光源色を判定する(ST5)。
光源色が赤色であれば、閾値以上のエッジ出力を持つこととなり、閾値以下であればその他の色の光源体として判定される。
光源体の判定が終了した後は、新たな画像を取り込むために露出制御ルーチンに戻り画像の判定を繰り返し行う(ST6,ST7)。
Next, in the vehicle signal processing unit 14, the contrast of the edge is determined for the detected edge of the light source body, and the light source color is determined (ST5).
If the light source color is red, the edge output is greater than or equal to the threshold value, and if the light source color is less than or equal to the threshold value, it is determined as a light source body of other colors.
After the determination of the light source is completed, the process returns to the exposure control routine to capture a new image and the image determination is repeated (ST6, ST7).

なお、車両信号処理部14から判定結果を受けた車両処理系15は、たとえば夜間走行等において、車両信号処理部14で前方車の赤色テールランプを認識したことが報知されると、アップラインとしていたヘッドランプを通常のダウンライトに自動的に切り替える等の制御を行う。
あるいは、車両処理系16は、たとえば車両信号処理部14で前方車の赤色テールランプを認識したことが報知されると、自動的に車間距離を測定し、近づきすぎであると認識すると、自動的にスピードを抑制し、また、表示あるいは音声で注意を喚起するような制御を行う。
The vehicle processing system 15 that has received the determination result from the vehicle signal processing unit 14 is up-line when it is notified that the vehicle signal processing unit 14 has recognized the red tail lamp of the preceding vehicle, for example, during night driving. Controls such as automatically switching the headlamp to a normal downlight.
Alternatively, for example, when the vehicle signal processing unit 14 is informed that the red tail lamp of the preceding vehicle has been recognized, the vehicle processing system 16 automatically measures the inter-vehicle distance and automatically recognizes that it is too close. Control is performed to suppress the speed and call attention by display or voice.

以上説明したように、本実施形態によれば、光学系11と、光学系11を介して得られる像を光電変換し画像信号を出力する撮像素子12と、画像信号に処理を施す信号処理部13および車両信号処理部14と、を有する。
そして、光学系11は、任意の第1の光波長帯域λ1と第1の光波長帯域λ1以外の第2の光波長帯域λ2とで収差性能が異なるように形成され、撮像素子12は、第1の光波長帯域λ1および第2の光波長帯域λ2のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置されている。
これにより、本実施形態では、撮像レンズ111の収差特性を任意の光波長帯域だけ異ならせて被写体の色によってボケの有無を作りだし、画像処理でボケを低減させたものとの差分を取ることによって被写体の色による区別を行うため、コストアップを避けることができる。
すなわち、本実施形態によれば、フィルタを用いることなく低コストで所望の光波長帯域の対象物を認識することが可能な撮像装置および車載カメラシステムを実現することができる。
As described above, according to the present embodiment, the optical system 11, the image sensor 12 that photoelectrically converts an image obtained via the optical system 11 and outputs an image signal, and the signal processing unit that processes the image signal 13 and the vehicle signal processing unit 14.
The optical system 11 is formed so that aberration performance differs between an arbitrary first optical wavelength band λ1 and a second optical wavelength band λ2 other than the first optical wavelength band λ1, and the imaging element 12 includes The light receiving surface is arranged at a position where the light beam in the optical wavelength band in which the point image becomes small is focused out of the first optical wavelength band λ1 and the second optical wavelength band λ2.
Thus, in the present embodiment, the aberration characteristic of the imaging lens 111 is varied by an arbitrary light wavelength band to create the presence / absence of blur depending on the color of the subject, and by taking the difference from the blur reduced by image processing Since the distinction is made according to the color of the subject, an increase in cost can be avoided.
That is, according to the present embodiment, it is possible to realize an imaging device and an in-vehicle camera system that can recognize an object in a desired optical wavelength band at a low cost without using a filter.

本発明の実施形態に係る撮像装置が適用される車載カメラシステムの一例を示す外観図である。1 is an external view illustrating an example of an in-vehicle camera system to which an imaging device according to an embodiment of the present invention is applied. 本実施形態に係る車載カメラシステムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the vehicle-mounted camera system which concerns on this embodiment. 本実施形態の原理を説明するための図であって、色収差の特性を表している。It is a figure for demonstrating the principle of this embodiment, Comprising: The characteristic of chromatic aberration is represented. 形状認識手法を説明するための図である。It is a figure for demonstrating a shape recognition method. 誘導灯等の認識処理を説明するための図である。It is a figure for demonstrating recognition processing, such as a guide light. 光学系の構成例を示す図である。It is a figure which shows the structural example of an optical system. 波長600nm〜700nmの像劣化(ボケ)の様子を示す図である。It is a figure which shows the mode of image degradation (blurring) with a wavelength of 600 nm-700 nm. 波長550nm〜700nmの像劣化(ボケ)の様子を示す図である。It is a figure which shows the mode of image degradation (blurring) with a wavelength of 550 nm-700 nm. 本実施形態に係る車載カメラシステム10の動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example of the vehicle-mounted camera system 10 which concerns on this embodiment.

符号の説明Explanation of symbols

10・・・車載カメラシステム、11・・・光学系、12・・・撮像素子、13・・・信号処理部、14・・・車両信号処理部、15,16・・・車両処理系、20・・・車両、30・・・カメラ部、40・・・ECU部。   DESCRIPTION OF SYMBOLS 10 ... Car-mounted camera system, 11 ... Optical system, 12 ... Image sensor, 13 ... Signal processing part, 14 ... Vehicle signal processing part, 15, 16 ... Vehicle processing system, 20 ... Vehicle, 30 ... Camera part, 40 ... ECU part.

Claims (8)

光学系と、
前記光学系を介して得られる像を光電変換し画像信号を出力する撮像素子と、
前記画像信号に処理を施す画像処理部と、を有し、
光学系は、
任意の第1の光波長帯域と当該第1の光波長帯域以外の第2の光波長帯域とで収差性能によって点像の大きさが異なるように形成され、
前記撮像素子は、
前記第1の光波長帯域および前記第2の光波長帯域のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置されている
撮像装置。
Optical system,
An image sensor that photoelectrically converts an image obtained through the optical system and outputs an image signal;
An image processing unit for processing the image signal,
The optical system
It is formed so that the size of a point image differs depending on the aberration performance between an arbitrary first optical wavelength band and a second optical wavelength band other than the first optical wavelength band,
The image sensor is
An imaging device in which a light receiving surface is disposed at a position where a light beam in a light wavelength band in which a point image becomes small is focused in the first light wavelength band and the second light wavelength band.
前記画像処理部は、
画像のぼけを低減する処理を施した画像信号を生成し、当該生成した画像信号と当該処理を施す前の画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行う
請求項1に記載の撮像装置。
The image processing unit
By generating an image signal that has been subjected to processing that reduces image blur, and comparing the generated image signal with an image signal that has not been subjected to the processing, an object having a color in the first optical wavelength band and the The imaging apparatus according to claim 1, wherein the imaging apparatus performs identification from an object having a color in the second light wavelength band.
前記画像処理部は、
画像のぼけを低減する処理を効果の程度を変えて施した画像信号を複数生成し、効果の強い前記処理を施した画像信号と効果の弱い前記処理を施した画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行う
請求項1に記載の撮像装置。
The image processing unit
By generating a plurality of image signals obtained by changing the degree of effect of processing for reducing image blur and comparing the image signal subjected to the processing having a strong effect with the image signal subjected to the processing having a weak effect The imaging apparatus according to claim 1, wherein a subject having a color in the first light wavelength band and a subject having a color in the second light wavelength band are identified.
点像が小さくなる方の光波長帯域の光線が前記撮像素子の受光面に結ぶ点像分布ばらつきの径をφa、他方の光波長帯域の光線が前記撮像素子の受光面に結ぶ点像分布ばらつきの径をφbとしたとき、次の関係式を満足する
請求項1から3のいずれか一に記載の撮像装置。
φb ≧ 1.5 * φa
The diameter of the point image distribution variation in which the light beam in the light wavelength band with the smaller point image is connected to the light receiving surface of the image sensor is φa, and the point image distribution variation in which the light beam in the other light wavelength band is connected to the light receiving surface of the image sensor. The imaging apparatus according to any one of claims 1 to 3, wherein the following relational expression is satisfied when the diameter of the lens is φb.
φb ≧ 1.5 * φa
前記光学系において貼り合わせレンズ部分、または狭間隔の凹凸レンズの組み合わせ部分のアッベ数が、貼り合わせ凹レンズのアッベ数をν1、貼り合わせ凸レンズのアッベ数をν2としたとき以下の関係を満足する
請求項1から4のいずれか一に記載の撮像装置。
ν1≧ν2
In the optical system, the Abbe number of the bonded lens portion or the combination portion of the concave and convex lenses having a narrow interval satisfies the following relationship when the Abbe number of the cemented concave lens is ν1 and the Abbe number of the cemented convex lens is ν2. Item 5. The imaging device according to any one of Items 1 to 4.
ν1 ≧ ν2
前記第1の光波長帯域は略600〜700nmの波長帯域を含む
請求項1から5のいずれか一に記載の撮像装置。
The imaging device according to any one of claims 1 to 5, wherein the first optical wavelength band includes a wavelength band of approximately 600 to 700 nm.
車両と、
前記車両に配置され、当該車両の前方側を走行する他の車両を撮像可能な撮像装置としてのカメラと、を有し、
前記カメラは、
光学系と、
前記光学系を介して得られる像を光電変換し画像信号を出力する撮像素子と、
前記画像信号に処理を施す画像処理部と、を有し、
光学系は、
任意の第1の光波長帯域と当該第1の光波長帯域以外の第2の光波長帯域とで収差性能によって点像の大きさが異なるように形成され、
前記撮像素子は、
前記第1の光波長帯域および前記第2の光波長帯域のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置され、
前記第1の光波長帯域は略600〜700nmの波長帯域を含み、
前記画像処理部は、
画像のぼけを低減する処理を施した画像信号を生成し、当該生成した画像信号と当該処理を施す前の画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行い、前記他の車両のテールランプを認識する
車載カメラシステム。
A vehicle,
A camera as an imaging device that is arranged in the vehicle and capable of imaging other vehicles traveling on the front side of the vehicle;
The camera
Optical system,
An image sensor that photoelectrically converts an image obtained through the optical system and outputs an image signal;
An image processing unit for processing the image signal,
The optical system
It is formed so that the size of a point image differs depending on the aberration performance between an arbitrary first optical wavelength band and a second optical wavelength band other than the first optical wavelength band,
The image sensor is
A light receiving surface is disposed at a position where a light beam in a light wavelength band in which a point image becomes small in the first light wavelength band and the second light wavelength band is focused,
The first optical wavelength band includes a wavelength band of approximately 600 to 700 nm,
The image processing unit
By generating an image signal that has been subjected to processing that reduces image blur, and comparing the generated image signal with an image signal that has not been subjected to the processing, an object having a color in the first optical wavelength band and the An in-vehicle camera system that recognizes a tail lamp of the other vehicle by identifying a subject having a color in the second light wavelength band.
車両と、
前記車両に配置され、当該車両の前方側を走行する他の車両を撮像可能な撮像装置としてのカメラと、を有し、
前記カメラは、
光学系と、
前記光学系を介して得られる像を光電変換し画像信号を出力する撮像素子と、
前記画像信号に処理を施す画像処理部と、を有し、
光学系は、
任意の第1の光波長帯域と当該第1の光波長帯域以外の第2の光波長帯域とで収差性能によって点像の大きさが異なるように形成され、
前記撮像素子は、
前記第1の光波長帯域および前記第2の光波長帯域のうち、点像が小さくなる光波長帯域の光線が焦点を結ぶ位置に受光面が配置され、
前記第1の光波長帯域は略600〜700nmの波長帯域を含み、
前記画像処理部は、
画像のぼけを低減する処理を効果の程度を変えて施した画像信号を複数生成し、効果の強い前記処理を施した画像信号と効果の弱い前記処理を施した画像信号とを比較することによって、前記第1の光波長帯域の色の被写体と前記第2の光波長帯域の色の被写体との識別を行い、前記他方の車両のテールランプを認識する
車載カメラシステム。
A vehicle,
A camera as an imaging device that is arranged in the vehicle and capable of imaging other vehicles traveling on the front side of the vehicle;
The camera
Optical system,
An image sensor that photoelectrically converts an image obtained through the optical system and outputs an image signal;
An image processing unit for processing the image signal,
The optical system
It is formed so that the size of a point image differs depending on the aberration performance between an arbitrary first optical wavelength band and a second optical wavelength band other than the first optical wavelength band,
The image sensor is
A light receiving surface is disposed at a position where a light beam in a light wavelength band in which a point image becomes small in the first light wavelength band and the second light wavelength band is focused,
The first optical wavelength band includes a wavelength band of approximately 600 to 700 nm,
The image processing unit
By generating a plurality of image signals obtained by changing the degree of effect of processing for reducing image blur and comparing the image signal subjected to the processing having a strong effect with the image signal subjected to the processing having a weak effect A vehicle-mounted camera system that distinguishes between a subject having a color in the first light wavelength band and a subject having a color in the second light wavelength band and recognizes the tail lamp of the other vehicle.
JP2008301169A 2008-11-26 2008-11-26 Imaging device and in-vehicle camera system Active JP5158713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301169A JP5158713B2 (en) 2008-11-26 2008-11-26 Imaging device and in-vehicle camera system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301169A JP5158713B2 (en) 2008-11-26 2008-11-26 Imaging device and in-vehicle camera system

Publications (2)

Publication Number Publication Date
JP2010130197A true JP2010130197A (en) 2010-06-10
JP5158713B2 JP5158713B2 (en) 2013-03-06

Family

ID=42330286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301169A Active JP5158713B2 (en) 2008-11-26 2008-11-26 Imaging device and in-vehicle camera system

Country Status (1)

Country Link
JP (1) JP5158713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705353A (en) * 2013-11-15 2016-06-22 金泰克斯公司 Imaging system including dynamic compensation for color attenuation for vehicle windscreens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532449A (en) * 2005-03-07 2008-08-14 ディーエックスオー ラブズ Using color digital images, a method of activating function, ie sharpness change
JP2008244982A (en) * 2007-03-28 2008-10-09 Konica Minolta Opto Inc Super-depth image generating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532449A (en) * 2005-03-07 2008-08-14 ディーエックスオー ラブズ Using color digital images, a method of activating function, ie sharpness change
JP2008244982A (en) * 2007-03-28 2008-10-09 Konica Minolta Opto Inc Super-depth image generating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705353A (en) * 2013-11-15 2016-06-22 金泰克斯公司 Imaging system including dynamic compensation for color attenuation for vehicle windscreens
KR101794821B1 (en) * 2013-11-15 2017-11-07 젠텍스 코포레이션 Imaging system including dynamic compensation for color attenuation for vehicle windscreens
CN105705353B (en) * 2013-11-15 2018-05-01 金泰克斯公司 Including decaying to color into the imaging system of Mobile state compensation

Also Published As

Publication number Publication date
JP5158713B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP6380843B2 (en) Object detection apparatus, mobile device control system including the same, and object detection program
EP1923280B1 (en) Light-sensitive sensor in the automobile field
US9176006B2 (en) Detection and classification of light sources using a diffraction grating
JP5633503B2 (en) Image processing system, vehicle equipped with image processing system, image processing method and program
US10848660B2 (en) Imaging apparatus, imaging module, and control method of imaging apparatus
CN110073652B (en) Image forming apparatus and method of controlling the same
CN104618665B (en) Multiple imager vehicle optical sensor system
JP5839253B2 (en) Object detection device and in-vehicle device control device including the same
JP2004289786A (en) Imaging apparatus
JP5158713B2 (en) Imaging device and in-vehicle camera system
JP2013095315A (en) Inside rear view mirror device with built-in imaging device, and vehicle equipped with the same
JP4692273B2 (en) Focus detection device and camera
US10900770B2 (en) Distance measuring device, imaging apparatus, moving device, robot device, and recording medium
CN104469116A (en) Star level bayonet all-in-one machine
JP5590457B2 (en) IMAGING DEVICE, OBJECT DETECTION DEVICE HAVING THE SAME, AND ON-VEHICLE DEVICE CONTROL DEVICE
US10999488B2 (en) Control device, imaging device, and control method
US10873732B2 (en) Imaging device, imaging system, and method of controlling imaging device
JP6536946B2 (en) Imaging device, imaging method, program, and mobile device control system
JP2015194388A (en) Imaging device and imaging system
JP2003169260A (en) Visible and infrared imaging unit and system
JP2012015834A (en) Imaging device
JP2002334986A (en) Light transmission type image recognition element and image recognition sensor
JP2019212937A (en) Image display device and image display method
JP2018106001A (en) Imaging apparatus, on-vehicle camera, and moving body
JP2015027104A (en) Image processing system, wiper control system and vehicle having image processing system, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

R150 Certificate of patent or registration of utility model

Ref document number: 5158713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3