JP2010127773A - Method for calculating remaining capacity of battery - Google Patents

Method for calculating remaining capacity of battery Download PDF

Info

Publication number
JP2010127773A
JP2010127773A JP2008302911A JP2008302911A JP2010127773A JP 2010127773 A JP2010127773 A JP 2010127773A JP 2008302911 A JP2008302911 A JP 2008302911A JP 2008302911 A JP2008302911 A JP 2008302911A JP 2010127773 A JP2010127773 A JP 2010127773A
Authority
JP
Japan
Prior art keywords
battery
capacity
ahf
remaining capacity
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008302911A
Other languages
Japanese (ja)
Other versions
JP5334546B2 (en
Inventor
Toru Nishikawa
透 西川
Shinichi Itagaki
真一 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008302911A priority Critical patent/JP5334546B2/en
Publication of JP2010127773A publication Critical patent/JP2010127773A/en
Application granted granted Critical
Publication of JP5334546B2 publication Critical patent/JP5334546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate a remaining capacity of a battery obtained by the first charge after a reset operation, while compensating it to a correct value. <P>SOLUTION: A method for calculating the remaining capacity of the battery is provided, which includes: a step of calculating a real capacity (Ah) of the battery by adding an integrated value (Ah) of charge current and by subtracting a product of an integrated value (Ah) of discharge current and a discharge coefficient; and a step of calculating the remaining capacity (%) of the battery from a ratio of the calculated real capacity (Ah) to a full charge capacity (Ahf) of the battery, by using an arithmetic circuit. Furthermore, the method for calculating the remaining capacity includes: a step of specifying the discharge coefficient of the battery to be charged after the arithmetic circuit is reset due to a voltage drop of the battery, by using the following equation: discharge coefficient=full charge capacity (Ahf)/[full charge capacity (Ahf)+corrected value]; and a step of calculating the remaining capacity by using an integrated value of the discharge coefficient and the charge current. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池の残容量を検出する方法に関し、とくに、電池の電圧が低下して残容量を演算する回路がリセットされた直後に、より正確に残容量を検出する方法に関する。   The present invention relates to a method for detecting a remaining capacity of a battery, and more particularly, to a method for more accurately detecting a remaining capacity immediately after a battery voltage is lowered and a circuit for calculating the remaining capacity is reset.

電池は、充電電流の積算値を加算し、放電電流の積算値を減算して実質的に放電できる実質容量(Ah)を演算できる。実質容量(Ah)が検出されると、満充電容量(Ahf)に対する比率を演算して、残容量(%)を演算できる。充電電流と放電電流の積算値から演算される残容量(%)は、電池の電圧で補正することで、より正確に検出できる。この方法は、満充電された電池の残容量を100%とし、完全に放電された電池の残容量を0%とする。電池の満充電と完全放電とは、電池の電圧によっても検出できる。たとえば、リチウムイオン電池は、放電される電池の電圧が最低電圧の3Vまで低下すると残容量を0%とし、また、充電される電池の電圧が最高電圧の4.2Vまで上昇する満充電と判定して残容量を100%とする。さらには、定電圧充電においては、充電電流が所定値以下になると、満充電と判定することもできる。   The battery can calculate a substantial capacity (Ah) that can be substantially discharged by adding the integrated value of charging current and subtracting the integrated value of discharging current. When the real capacity (Ah) is detected, the remaining capacity (%) can be calculated by calculating the ratio to the full charge capacity (Ahf). The remaining capacity (%) calculated from the integrated value of the charging current and discharging current can be detected more accurately by correcting with the battery voltage. This method sets the remaining capacity of a fully charged battery to 100% and the remaining capacity of a fully discharged battery to 0%. Battery full charge and complete discharge can also be detected by the battery voltage. For example, a lithium-ion battery is determined to be fully charged when the discharged battery voltage drops to the lowest voltage of 3V, the remaining capacity is 0%, and the charged battery voltage rises to the highest voltage of 4.2V. The remaining capacity is set to 100%. Furthermore, in the constant voltage charging, it can be determined that the battery is fully charged when the charging current becomes a predetermined value or less.

図1は、電池を一定の電流で放電して電圧が低下する特性を示すグラフである。この図は、放電される電池の放電容量(Ah)を横軸に、電池の電圧を縦軸に示している。曲線Aは、定格電流で放電する特性を示し、曲線Bは定格電流よりも大電流で放電する特性を示している。この図の曲線Bに示すように、電池は、放電電流を大きくすると、最低電圧に低下するまでに放電できる容量(Ah)が減少する。また、図示しないが、電池は、温度が低い状態においても、最低電圧に低下するまでに放電できる容量(Ah)が減少する。たとえば、放電電流を大きく、あるいは温度が低い状態で放電される電池は、最低電圧に低下するまでに放電できるトータル放電容量(Ahf)が半分の50%程度まで減少することがある。最低電圧に低下するまでに放電したトータル放電容量(Ahf)が半分となった電池は、半分の充電容量で満充電される。   FIG. 1 is a graph showing a characteristic in which a voltage is lowered by discharging a battery with a constant current. This figure shows the discharge capacity (Ah) of the discharged battery on the horizontal axis and the voltage of the battery on the vertical axis. Curve A shows the characteristic of discharging at the rated current, and curve B shows the characteristic of discharging at a larger current than the rated current. As shown by curve B in this figure, when the discharge current is increased, the capacity (Ah) that can be discharged before the battery is reduced to the minimum voltage is reduced. In addition, although not shown, the capacity (Ah) of the battery that can be discharged before the battery voltage is lowered to the minimum voltage is reduced even in a low temperature state. For example, in a battery discharged with a large discharge current or a low temperature, the total discharge capacity (Ahf) that can be discharged before the voltage drops to the lowest voltage may be reduced to about 50%. A battery in which the total discharge capacity (Ahf) discharged until the voltage drops to the lowest voltage is halved is fully charged with half the charge capacity.

最低電圧まで低下するまでに放電できるトータル放電容量(Ahf)が半分となる電池は、放電電流の積算値を減算して正確に実質容量(Ah)を演算できなくなる。曲線Bで放電される電池は、曲線Aで放電される電池に比較して、半分のトータル放電容量(Ahf)で残容量は0%まで低下する。半分のトータル放電容量(Ahf)で残容量を0%とするために、放電容量の2倍を減算して残容量を正確に検出できることになる。この計算方法を実現するために、放電係数を考慮して放電容量を検出する方法が開発されている(特許文献1参照)。この特許文献1に記載される方法は、放電電流の積算値と放電係数の積を減算して、残容量を正確に演算する。曲線Bは曲線Aに比較して半分の放電容量で残容量を0%とするので、放電容量は実質的に放電される容量の2倍となるので、放電係数を2として正確に残容量を検出できる。   A battery in which the total discharge capacity (Ahf) that can be discharged before the voltage drops to the minimum voltage is halved cannot accurately calculate the actual capacity (Ah) by subtracting the integrated value of the discharge current. The battery discharged on the curve B has a remaining capacity reduced to 0% at half the total discharge capacity (Ahf) compared to the battery discharged on the curve A. In order to reduce the remaining capacity to 0% with half the total discharge capacity (Ahf), the remaining capacity can be accurately detected by subtracting twice the discharge capacity. In order to realize this calculation method, a method for detecting the discharge capacity in consideration of the discharge coefficient has been developed (see Patent Document 1). In the method described in Patent Document 1, the remaining capacity is accurately calculated by subtracting the product of the integrated value of the discharge current and the discharge coefficient. Since curve B has half the discharge capacity compared to curve A and the remaining capacity is 0%, the discharge capacity is substantially twice the capacity to be discharged. It can be detected.

以上のことから、以下の式で放電係数を検出し、この放電係数と放電電流の積算値との積を減算することで残容量は正確に演算できる。
放電係数=満充電容量(Ahf)/トータル放電容量(Ahf)
トータル放電容量(Ahf)は、満充電された電池を完全に放電するまでの容量(Ah)、すなわち残容量を100%から0%まで放電する容量である。
たとえば、図1の曲線Bに示すように、満充電容量(Ahf)を1000mAhとする電池を、満充電して完全放電するまで放電して実質的に放電できるトータル放電容量(Ahf)が500mAhであるとすれば、放電係数は1000mAh/500mAhで2となる。すなわち、曲線Bで放電される電池は、放電係数を2として残容量を正確に検出できる。したがって、残容量を演算する回路は、過去の履歴からトータル放電容量(Ahf)を検出し、このトータル放電容量(Ahf)から放電係数を演算し、演算する放電係数を使用して残容量を正確に演算している。
特開平10−274670号公報
From the above, the remaining capacity can be accurately calculated by detecting the discharge coefficient by the following equation and subtracting the product of the discharge coefficient and the integrated value of the discharge current.
Discharge coefficient = full charge capacity (Ahf) / total discharge capacity (Ahf)
The total discharge capacity (Ahf) is a capacity (Ah) until the fully charged battery is completely discharged, that is, a capacity for discharging the remaining capacity from 100% to 0%.
For example, as shown in curve B of FIG. 1, a battery having a full charge capacity (Ahf) of 1000 mAh is discharged until it is fully charged and completely discharged, and the total discharge capacity (Ahf) that can be substantially discharged is 500 mAh. If so, the discharge coefficient is 2 at 1000 mAh / 500 mAh. That is, the battery discharged along the curve B can accurately detect the remaining capacity with a discharge coefficient of 2. Therefore, the circuit for calculating the remaining capacity detects the total discharge capacity (Ahf) from the past history, calculates the discharge coefficient from the total discharge capacity (Ahf), and accurately calculates the remaining capacity using the calculated discharge coefficient. It has been calculated.
JP-A-10-274670

図2と図3は、放電係数を1とする状態で放電された電池(図2)と、放電係数を2とする状態で放電された電池(図3)の放電容量を示している。放電係数を1とする状態で放電された電池は、電池の満充電容量(Ahf)に相当する容量を放電して残容量は0%となる。これに対して放電係数を2とする状態で放電された電池は、満充電容量(Ahf)の半分の容量を放電して残容量を0%とする。したがって、図2の電池は、満充電容量(Ahf)を充電して満充電されるが、図3の電池は、満充電容量(Ahf)の半分の充電で満充電される。したがって、図3で示すように、放電係数を2として放電された電池は、充電される状態においては、充電電流の積算値を2倍して充電容量(Ah)を演算する必要がある。半分の充電容量(Ah)で満充電されるからである。このため、電池の残容量(%)を正確に演算するためには、電池が放電された放電係数を考慮して演算する必要がある。   2 and 3 show the discharge capacities of a battery discharged with a discharge coefficient of 1 (FIG. 2) and a battery discharged with a discharge coefficient of 2 (FIG. 3). A battery discharged with a discharge coefficient of 1 discharges a capacity corresponding to the full charge capacity (Ahf) of the battery, and the remaining capacity becomes 0%. On the other hand, a battery discharged with a discharge coefficient of 2 discharges half the full charge capacity (Ahf) to a remaining capacity of 0%. Therefore, the battery of FIG. 2 is fully charged by charging the full charge capacity (Ahf), but the battery of FIG. 3 is fully charged by charging half of the full charge capacity (Ahf). Therefore, as shown in FIG. 3, a battery discharged with a discharge coefficient of 2 needs to calculate the charge capacity (Ah) by multiplying the integrated value of the charge current in a state of being charged. This is because the battery is fully charged with half the charge capacity (Ah). For this reason, in order to accurately calculate the remaining capacity (%) of the battery, it is necessary to calculate in consideration of the discharge coefficient with which the battery is discharged.

ところで、電池の残容量を検出する演算回路は、電池の電圧が最低電圧まで低下した後、さらに充電されないで放置されると、電池の電圧が低下してリセットされることがある。さらに、電池が高レートで放電されて、放電停止する前に、マイコンがリセットされる電圧まで電池の電圧が低下し、あるいは、ノイズ等により、演算回路がリセットされることもある。リセットされた演算回路はトータル放電容量(Ahf)を消失することから、その後に充電される状態にあっては、放電係数を特定できず、放電係数を1として残容量を演算している。ところが、この方法では、リセットした後、最初に充電される状態において、次第に増加する残容量を正確に演算できなくなる。たとえば、放電係数を2として放電された電池がリセットされて、これを放電係数を1として残容量を演算すると、演算される残容量が電池の現実の残容量よりも小さくなることから、残容量が50%まで増加した直後に100%に変化する弊害が発生する。放電係数を2として放電された電池は、放電係数を1として放電された電池の半分の充電容量(Ah)で満充電されて残容量が100%となるからである。   By the way, an arithmetic circuit for detecting the remaining capacity of a battery may be reset if the battery voltage is lowered to the minimum voltage and then left without being further charged. Furthermore, before the battery is discharged at a high rate and the discharge is stopped, the battery voltage may drop to a voltage at which the microcomputer is reset, or the arithmetic circuit may be reset due to noise or the like. Since the reset arithmetic circuit loses the total discharge capacity (Ahf), the discharge coefficient cannot be specified in the state of being charged thereafter, and the remaining capacity is calculated with the discharge coefficient being 1. However, with this method, the remaining capacity that gradually increases cannot be accurately calculated in the state of being charged for the first time after resetting. For example, if a discharged battery is reset with a discharge coefficient of 2 and the remaining capacity is calculated with the discharge coefficient set to 1, the calculated remaining capacity becomes smaller than the actual remaining capacity of the battery. Immediately after increasing to 50%, a harmful effect of changing to 100% occurs. This is because a battery discharged with a discharge coefficient of 2 is fully charged with half the charge capacity (Ah) of a battery discharged with a discharge coefficient of 1, and the remaining capacity becomes 100%.

放電係数2で放電された電池が、リセットされた後に、放電係数を1として残容量を演算して表示すると、図4の曲線Aで示すように、50%までは連続的に増加し、50%から100%には一瞬に変化することになって、電池の残容量の表示に「飛び」が発生して正確に表示できなくなる。この電池の実質的な残容量は、曲線Bの鎖線で示すように連続的に増加する。さらに、放電係数を1として放電された電池がリセットされた後、さらに相当の期間放置して自己放電された状態になると、リセットされて最初に充電するときに、曲線Cで示すように「ホールド」が発生して、演算される残容量が100%となっても、電池の現実の残容量は100%とならない。   After a battery discharged with a discharge coefficient of 2 is reset and the remaining capacity is calculated and displayed with a discharge coefficient of 1, the battery continuously increases up to 50% as shown by curve A in FIG. From 100% to 100%, it changes instantaneously, and a “flying” occurs in the display of the remaining capacity of the battery so that it cannot be displayed accurately. The substantial remaining capacity of this battery increases continuously as shown by the chain line of curve B. Furthermore, after the discharged battery with a discharge coefficient of 1 is reset, if the battery is left to stand for a considerable period of time and becomes self-discharged, when it is reset and charged for the first time, as shown by curve C, ”Occurs and the calculated remaining capacity becomes 100%, the actual remaining capacity of the battery does not become 100%.

本発明は、さらにこのような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、リセットされてから最初に充電される電池の残容量を正確な値に補正して演算できる電池の残容量の算出方法を提供することにある。   The present invention has been developed for the purpose of solving such drawbacks. An important object of the present invention is to provide a method for calculating a remaining battery capacity that can be calculated by correcting the remaining capacity of a battery that is initially charged after being reset to an accurate value.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の電池の残容量の算出方法は、充電電流の積算値(Ah)を加算し、放電電流の積算値(Ah)と放電係数の積を減算して電池の実質容量(Ah)を演算し、演算される実質容量(Ah)と電池の満充電容量(Ahf)との比率から演算回路でもって、電池の残容量(%)を算出する。さらに、残容量の算出方法は、電池の電圧低下によって演算回路がリセットされた後、充電される電池の放電係数を以下の式で特定し、この放電係数と充電電流との積算値で残容量を算出する。
放電係数=満充電容量(Ahf)/[満充電容量(Ahf)+補正値]
The battery remaining capacity calculation method according to the present invention calculates the actual battery capacity (Ah) by adding the integrated value (Ah) of the charging current and subtracting the product of the integrated value (Ah) of the discharging current and the discharge coefficient. Then, the remaining capacity (%) of the battery is calculated by an arithmetic circuit from the ratio between the calculated actual capacity (Ah) and the full charge capacity (Ahf) of the battery. Further, the remaining capacity is calculated by specifying the discharge coefficient of the battery to be charged by the following formula after the arithmetic circuit is reset due to the voltage drop of the battery, and using the integrated value of the discharge coefficient and the charging current. Is calculated.
Discharge coefficient = full charge capacity (Ahf) / [full charge capacity (Ahf) + correction value]

以上の算出方法は、電池の電圧が低下してリセットされた後、最初に充電される電池の残容量を正確な値に補正して演算できる。それは、リセットされてトータル放電容量(Ahf)が消失した後に残容量を演算する状態において、リセットされる前に放電された満充電容量(Ahf)を補正してトータル放電容量(Ahf)を特定し、補正されたトータル放電容量(Ahf)から放電係数を演算し、演算された放電係数でもって、リセットされた後の最初の残容量を演算するからである。たとえば、リセットされてから充電されるまでの期間をカウントするタイマを備える電池にあっては、リセットされてから電池が充電されるまでの間の自己放電容量(Ah)を推測し、この自己放電容量を満充電容量(Ahf)から減算してトータル放電容量(Ahf)を特定し、このトータル放電容量(Ahf)から演算される放電係数でもって、最初に充電される残容量を正確に演算できる。また、タイマを備えない電池にあっては、補正値をマイナスとすることで、満充電容量(Ahf)から補正値を減算してトータル放電容量(Ahf)を推測し、このトータル放電容量(Ahf)から放電係数を1よりも大きい値に補正することで、1よりも大きい放電係数で放電された電池の残容量をより正確に演算できる。また、仮に放電係数を1として放電された電池がリセットされて、その後に最初に充電されるときに、満充電容量(Ahf)から補正値を減算したトータル放電容量(Ahf)で放電係数を1よりも大きい値として演算し、この放電係数で残容量を演算すると、実質的な残容量よりも演算される残容量は大きくなる。この状態で演算される残容量を表示すると、図4の曲線Aで示す「飛び」は発生せず、曲線Dの鎖線で示すように、残容量は連続的に増加することから、ユーザーに不自然な表示のイメージを与えることはない。   The above calculation method can be performed by correcting the remaining capacity of the battery that is charged first to an accurate value after the battery voltage is lowered and reset. In the state where the remaining capacity is calculated after the total discharge capacity (Ahf) disappears after being reset, the full charge capacity (Ahf) discharged before the reset is corrected to specify the total discharge capacity (Ahf). This is because the discharge coefficient is calculated from the corrected total discharge capacity (Ahf), and the first remaining capacity after the reset is calculated using the calculated discharge coefficient. For example, in a battery having a timer that counts a period from reset to charge, the self-discharge capacity (Ah) from reset to charge of the battery is estimated and this self-discharge is estimated. By subtracting the capacity from the full charge capacity (Ahf), the total discharge capacity (Ahf) is specified, and the remaining capacity that is initially charged can be accurately calculated with the discharge coefficient calculated from the total discharge capacity (Ahf). . In addition, in a battery that does not have a timer, the correction value is set to a negative value so that the total discharge capacity (Ahf) is estimated by subtracting the correction value from the full charge capacity (Ahf). ) To correct the discharge coefficient to a value larger than 1, the remaining capacity of the battery discharged with a discharge coefficient larger than 1 can be calculated more accurately. Further, when a discharged battery is reset with a discharge coefficient of 1 and then charged for the first time, the discharge coefficient is set to 1 with the total discharge capacity (Ahf) obtained by subtracting the correction value from the full charge capacity (Ahf). If the remaining capacity is calculated using the discharge coefficient, the calculated remaining capacity becomes larger than the actual remaining capacity. When the remaining capacity calculated in this state is displayed, the “jump” shown by the curve A in FIG. 4 does not occur, and the remaining capacity continuously increases as shown by the chain line in the curve D. It does not give a natural display image.

本発明の電池の残容量の算出方法は、補正値を、満充電容量(Ahf)の0.1倍ないし0.5倍として放電係数を演算することができる。また、本発明の電池の残容量の算出方法は、補正値を、満充電容量(Ahf)の−0.1倍ないし−0.5倍として放電係数を演算することができる。   In the battery remaining capacity calculation method according to the present invention, the discharge coefficient can be calculated by setting the correction value to 0.1 to 0.5 times the full charge capacity (Ahf). In the battery capacity calculation method of the present invention, the discharge coefficient can be calculated by setting the correction value to -0.1 to -0.5 times the full charge capacity (Ahf).

本発明の電池の残容量の算出方法は、電池を、ラップトップマイコンの電源とすることができる。   The battery remaining capacity calculation method of the present invention can use a battery as a power source for a laptop microcomputer.

本発明の電池の残容量の算出方法は、リセットされてから再起動するまでの時間をカウントし、カウントされた時間でもって補正値を特定し、カウントされた時間が長くなるにしたがってプラスの補正値を大きくすることができる。   The battery remaining capacity calculation method of the present invention counts the time from reset to restart, specifies the correction value by the counted time, and increases the correction as the counted time becomes longer The value can be increased.

本発明の電池の残容量の算出方法は、リセットされてから再起動するまでの時間をカウントすることなく、再起動された状態で補正値を特定のマイナスの値とすることができる。   The battery remaining capacity calculation method of the present invention can set the correction value to a specific negative value in the restarted state without counting the time from the reset to the restart.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の残容量の算出方法を例示するものであって、本発明は電池の残容量の算出方法を以下の方法に特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a method for calculating the remaining capacity of the battery for embodying the technical idea of the present invention, and the present invention uses the following method for calculating the remaining capacity of the battery. Not specified.

以下、電池をリチウムイオン電池又はリチウムポリマー電池とする実施例を詳述する。ただし、本発明の残容量の算出方法は、リチウムイオン電池やリチウムポリマー電池に代わって、ニッケル水素電池、ニッケルカドミウム電池などの充電できる全ての電池とすることができる。   Hereinafter, the Example which uses a battery as a lithium ion battery or a lithium polymer battery is explained in full detail. However, the remaining capacity calculation method of the present invention can be any rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery, instead of a lithium ion battery or a lithium polymer battery.

ここで、本発明の算出方法で電池の残容量が算出されるパック電池の一例を図5に示す。この図に示すパック電池は、充電できる電池1と、電池1の充放電の電流を検出する電流検出部2と、電池1の電圧を検出する電圧検出部3と、電池1の温度を検出する温度検出部4と、電流検出部2と電圧検出部3と温度検出部4の検出値から電池1の残容量を算出すると共に、電池1の充放電を監視、制御する演算回路5とを備える。電流検出部2、電圧検出部3、及び温度検出部4からの出力は、A/Dコンバータ6でデジタル変換されて演算回路5に入力される。また、パック電池は、電池電圧、残容量、充放電電流値、電池温度等の各種の電池情報、各種指令の情報を、本体機器に伝送する通信部8を備えている。さらに、演算回路5は、各種データを記憶するメモリ9を備えている。   Here, an example of a battery pack in which the remaining battery capacity is calculated by the calculation method of the present invention is shown in FIG. The battery pack shown in this figure is a battery 1 that can be charged, a current detector 2 that detects the charge / discharge current of the battery 1, a voltage detector 3 that detects the voltage of the battery 1, and a temperature of the battery 1. A temperature detection unit 4, a current detection unit 2, a voltage detection unit 3, and a calculation circuit 5 that calculates the remaining capacity of the battery 1 from the detection values of the temperature detection unit 4 and monitors and controls charging / discharging of the battery 1 are provided. . Outputs from the current detection unit 2, the voltage detection unit 3, and the temperature detection unit 4 are digitally converted by the A / D converter 6 and input to the arithmetic circuit 5. The battery pack also includes a communication unit 8 that transmits various battery information such as battery voltage, remaining capacity, charge / discharge current value, battery temperature, and various command information to the main device. Further, the arithmetic circuit 5 includes a memory 9 for storing various data.

演算回路5は、A/Dコンバータ6から入力されるデータに基づいて、演算、比較、判定等を行う。すなわち、演算回路5は、電池1の充放電電流を積算して残容量を演算処理し、充電電流や電池電圧から電池1の満充電を検出し、また、異常電流、異常温度、異常電圧等を検出して充放電を制御する。演算回路5は、充放電スイッチ7をオンオフに制御して電池1の充放電を制御する。充放電スイッチ7は、たとえば、FET等からなるスイッチング素子で、演算回路5でオンオフ制御され、異常電流、異常温度、異常電圧の検出時にオフに切り換えられて電流を遮断する。さらに、演算回路5は、A/Dコンバータ6でデジタル変換されたデータから電池1の残容量(%)を算出している。本実施例では、演算回路5は、以下のように処理して残容量を算出する。   The arithmetic circuit 5 performs calculations, comparisons, determinations, and the like based on data input from the A / D converter 6. That is, the arithmetic circuit 5 calculates the remaining capacity by integrating the charging / discharging current of the battery 1, detects the full charge of the battery 1 from the charging current and the battery voltage, and detects abnormal current, abnormal temperature, abnormal voltage, etc. Is detected to control charging / discharging. The arithmetic circuit 5 controls the charging / discharging of the battery 1 by controlling the charging / discharging switch 7 on and off. The charge / discharge switch 7 is a switching element made of, for example, an FET, and is turned on / off by the arithmetic circuit 5 and is turned off when an abnormal current, abnormal temperature, or abnormal voltage is detected to cut off the current. Further, the arithmetic circuit 5 calculates the remaining capacity (%) of the battery 1 from the data digitally converted by the A / D converter 6. In the present embodiment, the arithmetic circuit 5 performs the following processing to calculate the remaining capacity.

演算回路5は、電池1を充放電する電流の積算値(Ah)で残容量を演算する。この方法は、充電電流の積算値を加算し、放電電流の積算値を減算して電池1の実質容量(Ah)を演算し、演算される実質容量(Ah)の満充電容量(Ahf)に対する比率で残容量(%)を演算する。満充電された電池の残容量は100%、完全に放電された電池の残容量は0%となる。さらに、演算回路5は、電池1の残容量(%)を電池1の電圧によっても判定する。電圧による残容量(%)は、満充電された100%の状態と、完全に放電された残容量を0%とする状態で正確に判別できる。したがって、電池1の電圧が最高電圧まで上昇すると残容量が100%、最低電圧まで低下すると0%と判定して、充放電の電流を積算して演算される残容量(%)を補正できる。   The arithmetic circuit 5 calculates the remaining capacity with the integrated value (Ah) of the current that charges and discharges the battery 1. In this method, the integrated value of the charging current is added, the integrated value of the discharging current is subtracted to calculate the actual capacity (Ah) of the battery 1, and the calculated actual capacity (Ah) with respect to the full charge capacity (Ahf). Calculate remaining capacity (%) as a percentage. The remaining capacity of a fully charged battery is 100%, and the remaining capacity of a fully discharged battery is 0%. Further, the arithmetic circuit 5 also determines the remaining capacity (%) of the battery 1 based on the voltage of the battery 1. The remaining capacity (%) due to voltage can be accurately discriminated between a fully charged state of 100% and a completely discharged remaining capacity of 0%. Therefore, when the voltage of the battery 1 increases to the maximum voltage, the remaining capacity is determined to be 100%, and when the voltage decreases to the minimum voltage, it is determined to be 0%, and the remaining capacity (%) calculated by integrating the charge / discharge current can be corrected.

演算回路5は、たとえば、満充電容量(Ahf)を1000mAhとする電池が100%に満充電された後、放電電流の積算値が400mAhとなるまで放電されると、実質容量(Ah)は1000mAh−400mAhとなって600mAhとなる。この実質容量(Ah)は、1000mAhの満充電容量(Ahf)に対して60%となるので、残容量は60%と判定する。電池1の実質容量(Ah)は、放電電流の積算値(Ah)を減算し、充電電流の積算値(Ah)を加算して演算される。実質容量(Ah)が演算されると、満充電容量(Ahf)に対する比率を演算して残容量(%)は演算できる。   For example, when the battery having a full charge capacity (Ahf) of 1000 mAh is fully charged to 100% and then discharged until the integrated value of the discharge current reaches 400 mAh, the arithmetic circuit 5 has a substantial capacity (Ah) of 1000 mAh. -400 mAh and 600 mAh. Since the real capacity (Ah) is 60% with respect to the full charge capacity (Ahf) of 1000 mAh, the remaining capacity is determined to be 60%. The actual capacity (Ah) of the battery 1 is calculated by subtracting the integrated value (Ah) of the discharge current and adding the integrated value (Ah) of the charging current. When the real capacity (Ah) is calculated, the remaining capacity (%) can be calculated by calculating the ratio to the full charge capacity (Ahf).

ところが、以上の方法で残容量(%)を演算するとき、電池の放電電流や温度によって残容量(%)を正確には演算できないことがある。図6は、満充電して残容量を100%とした電池を完全に放電する特性を示している。この図において、曲線Aは、定格電流で放電する電池の残容量(%)が減少する状態を示している。この電池を100%から0%に放電するまで放電するトータル放電容量(Ahf)は、電池の満充電容量(Ahf)となる。この状態で放電される電池は、充電電流の積算値を加算し、放電電流の積算値を減算して実質容量(Ah)を演算し、この実質容量(Ah)と満充電容量(Ahf)から正確に残容量(%)を演算できる。   However, when calculating the remaining capacity (%) by the above method, the remaining capacity (%) may not be accurately calculated depending on the discharge current and temperature of the battery. FIG. 6 shows the characteristics of fully discharging a battery that is fully charged and has a remaining capacity of 100%. In this figure, curve A shows a state in which the remaining capacity (%) of the battery discharged at the rated current decreases. The total discharge capacity (Ahf) for discharging the battery from 100% to 0% is the full charge capacity (Ahf) of the battery. In the battery discharged in this state, the accumulated value of the charging current is added, and the accumulated value of the discharging current is subtracted to calculate the real capacity (Ah). From the real capacity (Ah) and the full charge capacity (Ahf) The remaining capacity (%) can be calculated accurately.

しかしながら、電池は、放電電流を大きくし、あるいは低温で放電されると、少ない放電容量でセル電圧が3Vに到達するために、残容量が0となって、放電容量(Ah)に対して残容量(%)が急激に低下する(図6の曲線B参照)。このため、この電池を100%から0%まで放電するトータル放電容量(Ahf)は、電池の満充電容量(Ahf)よりも小さくなる。したがって、この状態で放電される電池は、放電電流の積算値(Ah)を減算して演算される実質容量(Ah)から残容量(%)を演算すると、正確に残容量(%)を演算できなくなる。図6の曲線Bで放電される電池は、放電電流の積算値と、1以上の係数で表される放電係数との積で減算することで正確に残容量(%)を演算できる。トータル放電容量(Ahf)が満充電容量(Ahf)よりも小さくなる状態で放電される電池は、満充電容量(Ahf)/トータル放電容量(Ahf)で特定される放電係数と放電電流の積算値(Ah)との積を減算して実質容量(Ah)を演算し、演算された実質容量(Ah)の満充電容量(Ahf)に対する比率を演算して正確に残容量(%)を演算できる。たとえば、トータル放電容量(Ahf)が満充電容量(Ahf)の半分になる状態で放電される電池は、放電係数を2として、放電電流の積算値(Ah)を2倍した値を減算して実質容量(Ah)を演算し、この実質容量(Ah)から残容量(%)を演算して正確に残容量(%)を正確に検出できる。すなわち、トータル放電容量(Ahf)が満充電容量(Ahf)の半分になる電池は、2倍の電流で放電されたとして演算することで残容量(%)を正確に検出できる。   However, when the discharge current is increased or the battery is discharged at a low temperature, the cell voltage reaches 3 V with a small discharge capacity, so the remaining capacity becomes 0 and the remaining capacity with respect to the discharge capacity (Ah). The capacity (%) rapidly decreases (see curve B in FIG. 6). Therefore, the total discharge capacity (Ahf) for discharging the battery from 100% to 0% is smaller than the full charge capacity (Ahf) of the battery. Therefore, a battery discharged in this state can be accurately calculated by calculating the remaining capacity (%) from the actual capacity (Ah) calculated by subtracting the integrated value (Ah) of the discharge current. become unable. The battery discharged by curve B in FIG. 6 can accurately calculate the remaining capacity (%) by subtracting the product of the integrated value of the discharge current and the discharge coefficient represented by one or more coefficients. A battery discharged in a state where the total discharge capacity (Ahf) is smaller than the full charge capacity (Ahf) is the integrated value of the discharge coefficient specified by the full charge capacity (Ahf) / total discharge capacity (Ahf) and the discharge current. The real capacity (Ah) is calculated by subtracting the product with (Ah), and the ratio of the calculated real capacity (Ah) to the full charge capacity (Ahf) is calculated to accurately calculate the remaining capacity (%). . For example, a battery that is discharged in a state where the total discharge capacity (Ahf) is half of the full charge capacity (Ahf) is calculated by subtracting a value obtained by doubling the integrated value (Ah) of the discharge current with a discharge coefficient of 2. The real capacity (Ah) is calculated, the remaining capacity (%) is calculated from the real capacity (Ah), and the remaining capacity (%) can be accurately detected. That is, a battery whose total discharge capacity (Ahf) is half of the full charge capacity (Ahf) can be accurately detected by calculating that the battery is discharged at twice the current.

以上のように、図6の曲線Bで放電される電池は、放電容量(Ahf)を放電係数で補正して減算することで残容量(%)を正確に検出できる。すなわち、充電される電池の残容量(%)を正確に演算するために、放電された電池の放電係数を必要とする。演算回路は、電池を100%から0%まで放電する放電電流の積算値から、電池のトータル放電容量(Ahf)を検出することができる。このため、このトータル放電容量(Ahf)と満充電容量(Ahf)から放電係数を演算し、演算された放電係数でもって、充電される電池の残容量(%)を正確に演算できる。   As described above, the battery discharged by the curve B in FIG. 6 can accurately detect the remaining capacity (%) by correcting and subtracting the discharge capacity (Ahf) with the discharge coefficient. That is, in order to accurately calculate the remaining capacity (%) of the battery to be charged, the discharge coefficient of the discharged battery is required. The arithmetic circuit can detect the total discharge capacity (Ahf) of the battery from the integrated value of the discharge current that discharges the battery from 100% to 0%. Therefore, the discharge coefficient is calculated from the total discharge capacity (Ahf) and the full charge capacity (Ahf), and the remaining capacity (%) of the battery to be charged can be accurately calculated using the calculated discharge coefficient.

また、図6の曲線Bで放電された電池は、トータル放電容量(Ahf)が満充電容量(Ahf)の半分となるので、100%から0%まで放電して、現実の放電容量は、満充電容量(Ahf)の半分となっている。したがって、曲線Bで0%まで放電された電池は、図3に示すように、トータル放電容量(Ahf)に相当する充電容量(Ah)を充電して、すなわち満充電容量(Ahf)の半分の充電容量(Ah)を充電して満充電されることになる。したがって、曲線Bで0%まで放電された電池を充電するとき、充電容量の積算値(Ah)を加算して実質容量(Ah)を演算し、この実質容量(Ah)から残容量(%)を演算すると、図6の曲線Cの鎖線で示すよう上昇して正確に残容量(%)を演算できなくなる。このため、曲線Bで放電された電池は、放電容量の積算値(Ah)を放電係数で補正して残容量(%)を演算する必要がある。図6の曲線Bで示すように、放電係数(満充電容量(Ahf)÷トータル放電容量(Ahf))を2とする状態で100%から0%まで放電された電池は、充電電流の積算値と放電係数2との積を加算することで残容量(%)を正確に演算できる。すなわち、0%から100%に向かって充電される電池は、放電条件で特定される放電係数で充電電流の積算値を補正することで、残容量(%)を正確に演算できる。たとえば、放電係数を2とする状態で放電された電池が充電されるとき、充電電流の積算値を2倍した容量を加算して演算される実質容量(Ah)と満充電容量(Ahf)との比率から残容量(%)を演算して正確に検出できる。   Further, since the battery discharged by curve B in FIG. 6 has a total discharge capacity (Ahf) that is half of the full charge capacity (Ahf), the battery discharges from 100% to 0%. It is half of the charge capacity (Ahf). Therefore, as shown in FIG. 3, the battery discharged to 0% on the curve B is charged with the charge capacity (Ah) corresponding to the total discharge capacity (Ahf), that is, half the full charge capacity (Ahf). The charging capacity (Ah) is charged and fully charged. Therefore, when charging a battery discharged to 0% on the curve B, the integrated value (Ah) of the charging capacity is added to calculate the real capacity (Ah), and the remaining capacity (%) is calculated from the real capacity (Ah). Is increased as shown by the chain line of the curve C in FIG. 6, and the remaining capacity (%) cannot be calculated accurately. For this reason, the battery discharged by the curve B needs to calculate the remaining capacity (%) by correcting the integrated value (Ah) of the discharge capacity with the discharge coefficient. As shown by curve B in FIG. 6, a battery discharged from 100% to 0% with a discharge coefficient (full charge capacity (Ahf) ÷ total discharge capacity (Ahf)) of 2 is an integrated value of charge current. The remaining capacity (%) can be accurately calculated by adding the product of the discharge coefficient 2 and the discharge coefficient 2. That is, a battery charged from 0% to 100% can accurately calculate the remaining capacity (%) by correcting the integrated value of the charging current with the discharge coefficient specified by the discharge condition. For example, when a discharged battery is charged in a state where the discharge coefficient is 2, the real capacity (Ah) and the full charge capacity (Ahf) calculated by adding the capacity obtained by doubling the accumulated value of the charging current The remaining capacity (%) can be calculated from the ratio and accurately detected.

電池は、残容量が0%となる状態からさらに深放電されて電池の電圧が異常に低下することがある。この状態まで放電されると、マイコンを備える演算回路5が、電源としての電池電圧の低下により、シャットダウンされ、その後、電源が供給されて電池が充電されるとき起動して、リセットされる。この状態になると、放電の履歴がリセットされてトータル放電容量(Ahf)が消失することから、トータル放電容量(Ahf)でもって放電係数を検出できなくなる。トータル放電容量(Ahf)から放電係数を演算できないので、トータル放電容量(Ahf)を満充電容量(Ahf)と仮定して、すなわち放電係数を1としてその後の残容量(%)が演算される。このため、電池がリセットされる状態では、電圧が低下して残容量が0%になったことは判別できるが、曲線Aで示す状態で放電されたか、あるいは曲線Bで示す状態で放電されたかは判別できない。リセットされた電池が最初に充電されるとき、充電電流の積算値(Ah)を加算して実質容量(Ah)を演算し、この実質容量(Ah)の満充電容量(Ahf)に対する比率から残容量(%)は演算されるが、放電係数を正確に特定できないことから、つねに正確な残容量(%)を演算できない。   The battery may be further deeply discharged from the state where the remaining capacity becomes 0%, and the battery voltage may be abnormally reduced. When discharged to this state, the arithmetic circuit 5 including the microcomputer is shut down due to a decrease in battery voltage as a power source, and then activated and reset when power is supplied and the battery is charged. In this state, since the discharge history is reset and the total discharge capacity (Ahf) disappears, the discharge coefficient cannot be detected with the total discharge capacity (Ahf). Since the discharge coefficient cannot be calculated from the total discharge capacity (Ahf), assuming that the total discharge capacity (Ahf) is the full charge capacity (Ahf), that is, assuming the discharge coefficient as 1, the subsequent remaining capacity (%) is calculated. For this reason, when the battery is reset, it can be determined that the voltage has dropped and the remaining capacity has reached 0%. However, whether the battery has been discharged in the state indicated by curve A or in the state indicated by curve B. Cannot be determined. When the reset battery is charged for the first time, the actual capacity (Ah) is calculated by adding the integrated value (Ah) of the charging current, and the remaining capacity is calculated from the ratio of the actual capacity (Ah) to the full charge capacity (Ahf). Although the capacity (%) is calculated, since the discharge coefficient cannot be accurately specified, the accurate remaining capacity (%) cannot always be calculated.

たとえば、図6の曲線Bで示す状態で放電された電池が、さらに深放電されて電圧が異常に低下して演算回路5がリセットされたとき、この電池を充電電流の積算値(Ah)を加算して実質容量(Ah)を検出して演算される残容量(%)は、図6の曲線Cで示す状態で増加する。すなわち、トータル放電容量(Ahf)に相当する容量が充電される状態で、充電電流の積算値から演算される残容量は50%となる。ところが、この電池はトータル放電容量(Ahf)に相当する容量(Ah)が充電されると、満充電検出(電池の電圧が最高電圧まで上昇することを検出、あるいは電流が所定値以下となることを検出)され、検出される残容量(%)が100%となる。したがって、50%まで直線的に増加した後、50%から100%に急変する「飛び」が発生する。   For example, when the battery discharged in the state shown by the curve B in FIG. 6 is further deeply discharged and the voltage drops abnormally and the arithmetic circuit 5 is reset, this battery is charged with the integrated value (Ah) of charging current. The remaining capacity (%) calculated by adding and detecting the real capacity (Ah) increases in a state indicated by a curve C in FIG. That is, in a state where the capacity corresponding to the total discharge capacity (Ahf) is charged, the remaining capacity calculated from the integrated value of the charging current is 50%. However, when the battery is charged with a capacity (Ah) corresponding to the total discharge capacity (Ahf), the battery is fully charged (the battery voltage is detected to rise to the maximum voltage, or the current falls below a predetermined value. The remaining capacity (%) detected is 100%. Therefore, after increasing linearly to 50%, a “jump” that suddenly changes from 50% to 100% occurs.

また、反対に、図6の曲線Aで0%まで放電された電池が、マイコンで検知できないシステムの放電電流分を深放電されて演算回路がリセットされると、この電池は満充電容量(Ahf)に自己放電(Ah)を加算した容量で放電される。この電池は、満充電容量(Ahf)よりも大容量に放電された状態にある。この電池がリセットされた後に充電されて、充電電流の積算値を0%から加算して残容量(%)が演算されると、この電池は充電容量(Ah)が満充電容量(Ahf)になっても満充電されない。放電された容量が満充電容量よりも大きくなっているからである。したがって、この電池をリセットから充電し、充電容量の積算値を加算して実質容量(Ah)を演算し、この実質容量(Ah)を満充電容量(Ahf)に比較して残容量(%)を検出すると、図4の曲線Cで示すように、満充電されない状態で満充電されたと表示し、演算される残容量(%)が100%を示す状態でさらに充電されて現実に満充電される。したがって、この電池の残容量(%)の表示は、100%を表示する状態が継続する「ホールド」状態となる。   On the other hand, when the battery discharged to 0% in the curve A of FIG. 6 is deeply discharged by the discharge current of the system that cannot be detected by the microcomputer and the arithmetic circuit is reset, the battery is fully charged (Ahf). ) And self-discharge (Ah). This battery is in a state of being discharged to a capacity larger than the full charge capacity (Ahf). When the battery is charged after being reset, and the remaining capacity (%) is calculated by adding the integrated value of the charging current from 0%, the battery is charged to the full charge capacity (Ahf). The battery is not fully charged. This is because the discharged capacity is larger than the full charge capacity. Therefore, the battery is charged from the reset, and the real capacity (Ah) is calculated by adding the integrated value of the charge capacity, and the remaining capacity (%) is compared with the full capacity (Ahf). 4 is displayed, as indicated by curve C in FIG. 4, it is displayed that the battery is fully charged in a state where it is not fully charged, and is further charged in a state where the calculated remaining capacity (%) indicates 100%. The Therefore, the remaining battery capacity (%) is displayed in a “hold” state in which the state of displaying 100% is continued.

演算回路5は、残容量(%)を表示する「飛び」や「ホールド」を避けるために、リセットされた後に充電される電池の残容量(%)を演算するのに使用される放電係数を、以下の式で演算する。
放電係数=満充電容量(Ahf)/[満充電容量(Ahf)+補正値]
すなわち、満充電容量(Ahf)を補正して放電係数を演算することで、残容量表示の「飛び」や「ホールド」を少なくする。補正値は、満充電容量(Ahf)の0.1倍〜0.5倍、または、−0.1倍〜−0.5倍の範囲に設定される。
The arithmetic circuit 5 calculates the discharge coefficient used to calculate the remaining capacity (%) of the battery to be charged after being reset in order to avoid “jump” or “hold” indicating the remaining capacity (%). The calculation is performed using the following formula.
Discharge coefficient = full charge capacity (Ahf) / [full charge capacity (Ahf) + correction value]
That is, by correcting the full charge capacity (Ahf) and calculating the discharge coefficient, “jump” and “hold” in the remaining capacity display are reduced. The correction value is set in a range of 0.1 to 0.5 times, or −0.1 to −0.5 times the full charge capacity (Ahf).

リセットされてからカウントするタイマを備える電池にあっては、タイマのカウント値で補正値を特定する。それは、リセットされてから時間が経過するにしたがって、0%まで放電された電池がさらに放電されてトータル放電容量(Ahf)が大きくなるからである。タイマのカウント値で満充電容量(Ahf)を補正してトータル放電容量(Ahf)を推測する方法は、補正値をプラスの値(満充電容量(Ahf)の0.1倍〜0.5倍)とする。この方法は、たとえば、リセットされてから再起動されるまでの時間をカウントし、カウントされた時間でもって、補正値を特定し、カウントされた時間が長くなるにしたがってプラスの補正値を大きくする。   In a battery having a timer that counts after being reset, the correction value is specified by the count value of the timer. This is because the battery discharged to 0% is further discharged and the total discharge capacity (Ahf) increases as time elapses after resetting. The method of estimating the total discharge capacity (Ahf) by correcting the full charge capacity (Ahf) with the count value of the timer is a positive value (0.1 to 0.5 times the full charge capacity (Ahf)). ). In this method, for example, the time from reset to restart is counted, the correction value is specified by the counted time, and the positive correction value is increased as the counted time becomes longer. .

また、タイマを装備しない演算回路は、−の補正値(満充電容量(Ahf)の−0.1倍〜−0.5倍)を記憶している。リセットされてから放電される電池は、自己放電によらない場合は、大電流や低温放電によってトータル放電容量(Ahf)が満充電容量(Ahf)よりも小さくなるからである。したがって、リセットされた電池は、トータル放電容量(Ahf)を満充電容量(Ahf)よりも小さく補正することで、「飛び」を少なくして、残容量(%)をより正確に演算できる。この方法で残容量(%)を演算するパック電池は、演算回路5に補正値を記憶する不揮発性のメモリ9を備えている。演算回路5がリセットされて最初に電池1が充電されるときは、このメモリ9に記憶される補正値を使用して放電係数を特定し、放電係数で充電電流の積算値を補正して残容量(%)を演算する。また、大電流や低温で放電される用途のパック電池にあっては、その用途に最適な補正値をメモリ9に記憶させる。   An arithmetic circuit not equipped with a timer stores a correction value of − (−0.1 to −0.5 times the full charge capacity (Ahf)). This is because a battery that is discharged after resetting has a total discharge capacity (Ahf) that is smaller than a full charge capacity (Ahf) due to a large current or low-temperature discharge if it does not depend on self-discharge. Therefore, the reset battery can correct the total discharge capacity (Ahf) to be smaller than the full charge capacity (Ahf), thereby reducing the “jump” and calculating the remaining capacity (%) more accurately. The battery pack for calculating the remaining capacity (%) by this method includes a non-volatile memory 9 for storing a correction value in the arithmetic circuit 5. When the arithmetic circuit 5 is reset and the battery 1 is charged for the first time, the discharge coefficient is specified by using the correction value stored in the memory 9, and the accumulated value of the charge current is corrected by the discharge coefficient to remain. Calculate capacity (%). In the case of a battery pack that is used for discharging at a high current or low temperature, a correction value optimum for the application is stored in the memory 9.

本発明は、電池が深放電された演算回路がリセットされた後、最初に充電される状態での残容量の演算を正確に検出することで、残容量を表示する「飛び」や「ホールド」を少なくして便利に使用できる。   The present invention accurately detects a remaining capacity calculation in a state where the battery is charged first after the arithmetic circuit in which the battery is deeply discharged is reset, thereby displaying “jump” or “hold” for displaying the remaining capacity. Can be used conveniently with less.

電池を一定の電流で放電して電圧が低下する特性を示すグラフである。It is a graph which shows the characteristic which discharges a battery with a fixed electric current and a voltage falls. 放電係数を1とする状態で放電された電池の状態を示す概念図である。It is a conceptual diagram which shows the state of the battery discharged in the state which sets a discharge coefficient to 1. 放電係数を2とする状態で放電された電池の状態を示す概念図である。It is a conceptual diagram which shows the state of the battery discharged in the state which makes a discharge coefficient 2. 電池の現実の残容量と演算される残容量の相違を示す図である。It is a figure which shows the difference of the remaining capacity calculated with the actual remaining capacity of a battery. 本発明の一実施例にかかる算出方法で電池の残容量が算出されるパック電池の一例を示すブロック回路図である。It is a block circuit diagram which shows an example of the battery pack in which the remaining capacity of a battery is calculated with the calculation method concerning one Example of this invention. 満充電した電池を完全に放電する特性を示す図である。It is a figure which shows the characteristic which discharges the fully charged battery completely.

符号の説明Explanation of symbols

1…電池
2…電流検出部
3…電圧検出部
4…温度検出部
5…演算回路
6…A/Dコンバータ
7…充放電スイッチ
8…通信部
9…メモリ
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Current detection part 3 ... Voltage detection part 4 ... Temperature detection part 5 ... Arithmetic circuit 6 ... A / D converter 7 ... Charge / discharge switch 8 ... Communication part 9 ... Memory

Claims (6)

充電電流の積算値(Ah)を加算し、放電電流の積算値(Ah)と放電係数の積を減算して電池の実質容量(Ah)を演算し、演算される実質容量(Ah)と電池の満充電容量(Ahf)との比率から演算回路でもって、電池の残容量(%)を算出する方法であって、
電池の電圧低下によって演算回路がリセットされた後、充電される電池の放電係数を以下の式で特定し、この放電係数と充電電流との積算値で残容量を算出することを特徴とする電池の残容量の算出方法。
放電係数=満充電容量(Ahf)/[満充電容量(Ahf)+補正値]
The accumulated value (Ah) of the charging current is added, the product of the accumulated value (Ah) of the discharge current and the discharge coefficient is subtracted to calculate the actual capacity (Ah) of the battery, and the calculated actual capacity (Ah) and the battery The remaining capacity (%) of the battery is calculated by a calculation circuit from the ratio to the full charge capacity (Ahf) of the battery,
A battery characterized in that after the arithmetic circuit is reset due to a battery voltage drop, a discharge coefficient of the battery to be charged is specified by the following formula, and a remaining capacity is calculated by an integrated value of the discharge coefficient and the charging current. To calculate the remaining capacity of the.
Discharge coefficient = full charge capacity (Ahf) / [full charge capacity (Ahf) + correction value]
前記補正値を、満充電容量(Ahf)の0.1倍ないし0.5倍として放電係数を演算する請求項1に記載される電池の残容量の算出方法。   The battery remaining capacity calculation method according to claim 1, wherein the discharge coefficient is calculated by setting the correction value as 0.1 to 0.5 times the full charge capacity (Ahf). 前記補正値を、満充電容量(Ahf)の−0.1倍ないし−0.5倍として放電係数を演算する請求項1に記載される電池の残容量の算出方法。   The battery remaining capacity calculation method according to claim 1, wherein the discharge coefficient is calculated by setting the correction value as -0.1 to -0.5 times the full charge capacity (Ahf). 電池がラップトップマイコンの電源である請求項1に記載される電池の残容量の算出方法。   2. The battery remaining capacity calculation method according to claim 1, wherein the battery is a power source of a laptop microcomputer. リセットされてから再起動されるまでの時間をカウントし、カウントされた時間でもって前記補正値を特定し、カウントされた時間が長くなるにしたがってプラスの補正値を大きくする請求項1に記載される電池の残容量の算出方法。   The time from a reset to restart is counted, the correction value is specified by the counted time, and the positive correction value is increased as the counted time becomes longer. To calculate the remaining battery capacity. リセットされてから再起動するまでの時間をカウントすることなく、再起動された状態で補正値を特定のマイナスの値とする請求項1に記載される電池の残容量の算出方法。   The battery remaining capacity calculation method according to claim 1, wherein the correction value is set to a specific negative value in the restarted state without counting the time from the reset to restarting.
JP2008302911A 2008-11-27 2008-11-27 How to calculate the remaining battery capacity Expired - Fee Related JP5334546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302911A JP5334546B2 (en) 2008-11-27 2008-11-27 How to calculate the remaining battery capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302911A JP5334546B2 (en) 2008-11-27 2008-11-27 How to calculate the remaining battery capacity

Publications (2)

Publication Number Publication Date
JP2010127773A true JP2010127773A (en) 2010-06-10
JP5334546B2 JP5334546B2 (en) 2013-11-06

Family

ID=42328281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302911A Expired - Fee Related JP5334546B2 (en) 2008-11-27 2008-11-27 How to calculate the remaining battery capacity

Country Status (1)

Country Link
JP (1) JP5334546B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655549A (en) * 2012-01-31 2012-09-05 吕林波 Method for estimating remaining time and capacity of battery
CN108414936A (en) * 2017-02-10 2018-08-17 宁德时代新能源科技股份有限公司 Method and device for calibrating state of charge of energy storage system
WO2021142675A1 (en) * 2020-01-15 2021-07-22 深圳市大疆创新科技有限公司 Method and system for calculating battery power, battery and mobile platform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107430A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Method for indicating residual capacity
JP2004170385A (en) * 2002-11-08 2004-06-17 Sanyo Electric Co Ltd Operation device for remaining capacity of battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107430A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Method for indicating residual capacity
JP2004170385A (en) * 2002-11-08 2004-06-17 Sanyo Electric Co Ltd Operation device for remaining capacity of battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655549A (en) * 2012-01-31 2012-09-05 吕林波 Method for estimating remaining time and capacity of battery
CN102655549B (en) * 2012-01-31 2014-03-12 吕林波 Method for estimating remaining time and capacity of battery
CN108414936A (en) * 2017-02-10 2018-08-17 宁德时代新能源科技股份有限公司 Method and device for calibrating state of charge of energy storage system
CN108414936B (en) * 2017-02-10 2019-10-29 宁德时代新能源科技股份有限公司 Method and device for calibrating state of charge of energy storage system
WO2021142675A1 (en) * 2020-01-15 2021-07-22 深圳市大疆创新科技有限公司 Method and system for calculating battery power, battery and mobile platform

Also Published As

Publication number Publication date
JP5334546B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4739040B2 (en) Secondary battery internal short-circuit detection device, secondary battery internal short-circuit detection method, secondary battery pack and electronic device
JP4983818B2 (en) Battery pack and battery capacity calculation method
US10164452B2 (en) Battery pack and method for controlling discharge of secondary cell
US20160064960A1 (en) User-behavior-driven battery charging
JP2007215309A (en) Battery pack control method
KR20110058378A (en) Battery pack capable of preventing battery cell from high temperature swelling and method thereof
JP2013083612A (en) Battery state measurement method and battery state measurement apparatus
JP2009201337A (en) Charger and charging method
JP2011053088A (en) Method for computing residual capacity of secondary battery and secondary battery device
JP2013135510A (en) Determination method of charging current and battery pack
JP2011115012A (en) Battery pack and control method
JPWO2015079607A1 (en) Battery pack
JP2001157369A (en) Method of controlling charging and discharging of battery
JP4796784B2 (en) Rechargeable battery charging method
CN111106400B (en) Battery control method and battery management equipment
JP2009199774A (en) Charging/discharging method for secondary battery
JP2009052974A (en) Battery capacity estimating circuit and battery pack
JP5334546B2 (en) How to calculate the remaining battery capacity
JP2009112180A (en) Battery pack and control method thereof
JP5620423B2 (en) Electronic device and battery charging method for electronic device
JP2009195036A (en) Control method of pack battery
JP5084394B2 (en) How to calculate the remaining battery capacity
JP2012135165A (en) Lifetime detection device for battery, and lifetime detection method for battery
JP4178141B2 (en) Charging apparatus and charging method
JP2014219332A (en) Calculation method of relative capacity of secondary battery for display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R151 Written notification of patent or utility model registration

Ref document number: 5334546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees