JP2010125974A - Noncontact electric supply system for railway vehicle - Google Patents

Noncontact electric supply system for railway vehicle Download PDF

Info

Publication number
JP2010125974A
JP2010125974A JP2008302386A JP2008302386A JP2010125974A JP 2010125974 A JP2010125974 A JP 2010125974A JP 2008302386 A JP2008302386 A JP 2008302386A JP 2008302386 A JP2008302386 A JP 2008302386A JP 2010125974 A JP2010125974 A JP 2010125974A
Authority
JP
Japan
Prior art keywords
coil
railway vehicle
vehicle
current collecting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008302386A
Other languages
Japanese (ja)
Other versions
JP5425449B2 (en
Inventor
Hitoshi Hasegawa
均 長谷川
Takayuki Kashiwagi
隆行 柏木
Yasuaki Sakamoto
泰明 坂本
Taku Sasagawa
卓 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2008302386A priority Critical patent/JP5425449B2/en
Publication of JP2010125974A publication Critical patent/JP2010125974A/en
Application granted granted Critical
Publication of JP5425449B2 publication Critical patent/JP5425449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact electric supply system for a railway vehicle, which provides noncontact electric supply without changing conventional equipment with the simple structure, in which an electric supply coil is installed between rails on the ground side, and an electric collection coil is installed on a vehicle side, and a rail heating amount is also reduced. <P>SOLUTION: The noncontact electric supply system for a railway vehicle is provided with: an electric supply coil 3 with figure of eight arranged between rails 2 and 2' installed on a track A; a high frequency wave supply source 1 for supplying electricity to the electric supply coil 3; an electric collection coil 6 with figure of eight arranged on the bottom of a railway vehicle 4 traveling on the rails 2 and 2', and facing the electric supply coil 3 with figure of eight when the railway vehicle travels; a converter 7 connected to the electric collection coil 6; and a rechargeable battery 8 connected to the converter 7. Output from the electric collection coil 6 is charged to the rechargeable battery 8 by relative movement of the electric collection coil 6 to the electric supply coil 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄道車両用非接触給電システムに係り、特に、鉄道レール側に給電コイルを配置し、鉄道車両側の集電コイルにより集電する鉄道車両用非接触給電システムに関するものである。   The present invention relates to a railway vehicle non-contact power feeding system, and more particularly to a railway vehicle non-contact power feeding system in which a power feeding coil is arranged on a rail rail side and current is collected by a power collecting coil on the rail car side.

近年、感電の心配や摩耗がなく、移動体や回転体にエネルギー供給の可能な非接触集電技術を用いた電池バスや工場内搬送装置の実用化が進んでいる(下記非特許文献1,2,3参照)。これらの背景には、地球温暖化に対する省エネルギー効果、安全性、保守性への期待がある。   In recent years, battery buses and factory transport devices using non-contact current collection technology that can supply energy to moving bodies and rotating bodies without worrying about electric shock and wear have been put into practical use (the following Non-Patent Documents 1 and 2). 2 and 3). In these backgrounds, there are expectations for energy-saving effects, safety and maintainability against global warming.

一方、最近の半導体の高速スイッチングにみられるようなパワーエレクトロニクスの発達、電磁界解析技術の高度化、磁性材料の進歩など、非接触集電技術に欠かせない要素も発達してきている。   On the other hand, indispensable elements for non-contact current collection technology have been developed, such as the development of power electronics as seen in recent high-speed switching of semiconductors, the advancement of electromagnetic field analysis technology, and the advancement of magnetic materials.

非接触給電システムを原理的に分類すると、
(a)電磁誘導を用いたリニア変圧器方式
(b)走行体の運動エネルギーを用いたリニア発電機方式
(c)電磁波を用いたマイクロ波方式
(d)その他(下記非特許文献4参照)
に分けることができる。
In principle, contactless power supply systems are classified as follows:
(A) Linear transformer system using electromagnetic induction (b) Linear generator system using kinetic energy of traveling body (c) Microwave system using electromagnetic waves (d) Others (see Non-Patent Document 4 below)
Can be divided into

上述の電池バスや搬送装置では、(a)方式すなわちリニア変圧器方式が採用されている。これは、(b)方式は磁気浮上式車両のような地上1次システムでしか実現できない(下記非特許文献5参照)ことや、(c)方式はエネルギー密度が極端に小さい等の理由からと考えられる。   In the above-described battery bus and transfer device, the (a) method, that is, the linear transformer method is adopted. This is because (b) method can be realized only by a primary system such as a magnetically levitated vehicle (see Non-Patent Document 5 below), and (c) method has an extremely low energy density. Conceivable.

もっとも、(a)のリニア変圧器方式も高周波電流を使用するため渦電流損が大きい、ギャップ変動の影響が大きい等の克服しなければならない問題もある。 ところで、鉄道車両の非接触給電システムとして、リニア変圧器による給電(集電)方式を適用することが考えられている(下記非特許文献6〜8参照)。この場合、運転時のエネルギー供給の他、デッドセクションや保守基地での電力供給などへの利用が考えられる。しかしながら、在来鉄道では、互換性や相互乗り入れが重要視されるため、現状の設備や車両を大幅に変更することは難しい。このため、現在の車両限界や建築限界内に給電コイル等を配置しなければならない。
紙屋雄史,中村幸司,中村達,大聖泰弘,高橋俊輔,山本喜多男,佐藤剛,松木英敏,成澤和幸,「電動車両用非接触急速誘導充電装置の開発と性能評価(第1報)−送電部と受電部の設計最適化ならびに機器の性能評価−」,社団法人自動車技術会春季学術講演会前刷集(2007) 谷澤秀一,内藤信吾,「無接触給電搬送システムの技術と新市場」,DAIFUKU NEWS,No.161,pp.10−13(2001) M.Bauer,P.Becker,Q.Zheng,“Inductive Power Supply(IPS) for the Transrapid”,Maglev 2006,Vol.2,pp.471(2006) A.Kurs,A.Karalis,R.Moffatt,J.D.Joannopoulos,P.Fisher,M.Soljacic,“Wireless Power Transfer via Strongly Coupled Magnetic Resonances”,SCIENCE,Vol.317,pp.83−86,July(2007) T.Murai,S.Fujiwara,H.Hasegawa,K.Nemoto,H.Watanabe,Y.Furukawa,M.Shinobu,M.Igarashi,S.Inadama,H.Akagi,M.Oki,“Development of Linear Generators for Superconducting Maglev”,Maglev’98,pp.262−267(1998) 黒田玄,河村篤男,「移動体用非接触給電システムにおける高効率化検討および移動時の特性測定」,社団法人電気学会 半導体電力変換研究会,SPC−07−30(2007) 松下真也,及川康史,岩田卓也、金子裕良,阿部茂,「直列および並列共振コンデンサを用いた移動型非接触給電システム」,電気学会半導体電力変換研究会,SPC−07−29,2007 N.Fujii,K.Sakata,T.Yoshida,T.Mizuma,“Secondary Current Controlled Linear Induction Motor with Function of Linear Transformer for Wireless LRV”,ICEM 2008,ID 918(2008) 山本貴光,古谷勇真,米山崇,小川賢一,「燃料電池試験電車の構内走行試験等による燃費及び効率の評価」,鉄道総研報告,第22巻第2号(2008) A.Diekmann,W.Hahn,K.Kunze & W.Hufenbach,“The support magnet cladding with integrated IPS pick−up coil of Transrapid vehicles”,Maglev 2006,Vol.2,pp.477−481(2006) 「PHOTO−Series EDDY ユーザーズマニュアル」,株式会社フォトン
However, since the linear transformer system (a) also uses a high frequency current, there are problems such as large eddy current loss and large influence of gap fluctuation. By the way, as a non-contact power feeding system for a railway vehicle, it is considered to apply a power feeding (collecting) method using a linear transformer (see Non-Patent Documents 6 to 8 below). In this case, in addition to energy supply during operation, it can be used for power supply in dead sections and maintenance bases. However, in conventional railways, compatibility and mutual entry are regarded as important, so it is difficult to significantly change existing facilities and vehicles. For this reason, a feeding coil or the like must be disposed within the current vehicle limit or building limit.
Yuji Kamiya, Koji Nakamura, Tatsu Nakamura, Yasuhiro Daisei, Shunsuke Takahashi, Kitao Yamamoto, Go Sato, Hidetoshi Matsuki, Kazuyuki Narusawa, “Development and Performance Evaluation of Contactless Rapid Inductive Charger for Electric Vehicles (1st Report)-Power Transmission Design optimization of equipment and power receiving part and performance evaluation of equipment- ", Preprint of Spring Society Lecture Meeting of Automobile Engineering Society of Japan (2007) Shuichi Tanizawa, Shingo Naito, “Technology and New Market of Contactless Power Transfer System”, DAIFUKU NEWS, No. 161, pp. 10-13 (2001) M.M. Bauer, P.M. Becker, Q.M. Zheng, “Inductive Power Supply (IPS) for the Transrapid”, Maglev 2006, Vol. 2, pp. 471 (2006) A. Kurs, A.A. Karalis, R.A. Moffatt, J.M. D. Joannopoulos, P.M. Fisher, M.M. Soljac, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, SCIENCE, Vol. 317, pp. 83-86, July (2007) T. T. Murai, S .; Fujiwara, H .; Hasegawa, K .; Nemoto, H .; Watanabe, Y. et al. Furukawa, M .; Shinobu, M .; Igarashi, S .; Inadama, H .; Akagi, M .; Oki, "Development of Linear Generators for Superconducting Maglev", Maglev '98, pp. 262-267 (1998) Gen Kuroda and Atsio Kawamura, “Evaluation of high efficiency and measurement of moving characteristics of wireless power transfer system for moving objects”, Institute of Electrical Engineers of Japan, Semiconductor Power Conversion Study Group, SPC-07-30 (2007) Shinya Matsushita, Yasushi Oikawa, Takuya Iwata, Hiroyoshi Kaneko, Shigeru Abe, “Mobile Non-contact Power Supply System Using Series and Parallel Resonant Capacitors”, IEEJ Semiconductor Power Conversion Study Group, SPC-07-29, 2007 N. Fujii, K .; Sakata, T .; Yoshida, T .; Mizuma, “Secondary Current Controlled Linear Induction Motor with Function of Linear Transformer for Wireless LRV”, ICEM 2008, ID 918 (2008) Takamitsu Yamamoto, Yuma Furuya, Takashi Yoneyama, Kenichi Ogawa, “Evaluation of fuel efficiency and efficiency by on-site running test of fuel cell test train”, Railway Research Institute Report, Vol. 22, No. 2 (2008) A. Diekmann, W.M. Hahn, K .; Kunze & W. Hufenbach, “The support magnesium cladding with integrated IPS pick-up coil of Transpid vehicles”, Maglev 2006, Vol. 2, pp. 477-481 (2006) “PHOTO-Series EDDY User's Manual”, Photon Co., Ltd.

上記したように、鉄道では従来との互換性や相互乗り入れが重視されるため、現状の設備や車両を大きく変更して非接触給電を行うことは難しい。   As described above, since compatibility with conventional railways and mutual entry are emphasized in railways, it is difficult to perform non-contact power supply by greatly changing existing facilities and vehicles.

また、リニア変圧器方式の非接触型給電システムを鉄道車両に適用する場合、金属である鉄道レールへの渦電流による発熱が問題となる。そのため、鉄道レールを有する鉄道車両への非接触型給電システムへの適用は、いまだになされていないのが現状である。   In addition, when a linear transformer type non-contact power supply system is applied to a railway vehicle, heat generation due to eddy current to the railway rail, which is a metal, becomes a problem. Therefore, the present situation is that the application to the non-contact-type electric power feeding system to the railway vehicle which has a rail is not made yet.

本発明は、上記状況に鑑みて、地上側に給電コイル、車上側に集電コイルを設置するという簡単な構成により従来の設備を変えずに非接触給電を行い、しかもレールの発熱量を低減できる鉄道車両への非接触型給電システムを提供することを目的とする。   In view of the above situation, the present invention performs non-contact power feeding without changing the conventional equipment with a simple configuration of installing a power feeding coil on the ground side and a current collecting coil on the upper side of the vehicle, and further reduces the amount of heat generated by the rail. An object of the present invention is to provide a non-contact power supply system for a railway vehicle.

本発明は、上記目的を達成するために、
〔1〕鉄道車両用非接触給電システムにおいて、軌道上に敷設される鉄道レールに配置され、前記鉄道レールへの磁気的影響が低減される給電コイルと、この給電コイルに給電する高周波電源と、前記鉄道レールを走行する車両の底部に配置され、走行時に前記給電コイルに対向し、前記鉄道レールへの磁気的影響が低減される集電コイルと、この集電コイルに接続されるコンバータと、このコンバータに接続される充電式電池とを備え、前記給電コイルに対する前記集電コイルの相対的移動による前記集電コイルからの出力を前記充電式電池に充電するようにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a non-contact power supply system for railway vehicles, a power supply coil that is disposed between railroad rails laid on a track and that reduces magnetic influence on the railroad rail, and a high-frequency power source that supplies power to the power supply coil; A current collector coil disposed at the bottom of the vehicle traveling on the railroad rail, facing the power supply coil during travel and reducing magnetic influence on the railroad rail, and a converter connected to the current collector coil; And a rechargeable battery connected to the converter, wherein the rechargeable battery is charged with an output from the current collecting coil due to relative movement of the current collecting coil with respect to the power feeding coil. .

〔2〕上記〔1〕記載の鉄道車両用非接触給電システムにおいて、前記給電コイルは絶縁支持板を、前記集電コイルの背面と前記車両の底部間には背面磁性体板を配置することを特徴とする。   [2] In the non-contact power supply system for a railway vehicle according to [1], the power supply coil includes an insulating support plate, and a back magnetic plate is disposed between the back surface of the current collecting coil and the bottom of the vehicle. Features.

〔3〕上記〔1〕又は〔2〕記載の鉄道車両用非接触給電システムにおいて、前記給電コイル及び前記集電コイルは8の字コイルであることを特徴とする。   [3] The railway vehicle non-contact power feeding system according to [1] or [2], wherein the power feeding coil and the current collecting coil are 8-shaped coils.

〔4〕上記〔1〕又は〔2〕記載の鉄道車両用非接触給電システムにおいて、前記高周波電源は20kHzオーダーの高周波電源であることを特徴とする。   [4] In the non-contact power feeding system for railway vehicles according to [1] or [2], the high-frequency power source is a high-frequency power source on the order of 20 kHz.

〔5〕上記〔1〕又は〔2〕記載の鉄道車両用非接触給電システムにおいて、前記充電式電池はリチウムイオン蓄電池であることを特徴とする。   [5] The non-contact power feeding system for railway vehicles according to [1] or [2], wherein the rechargeable battery is a lithium ion storage battery.

本発明によれば、地上側の鉄道レール間に給電コイル、車上側に集電コイルを設置する簡単な構成により、従来の設備を変えずに非接触給電を行い、しかもレールの発熱量を低減できる鉄道車両用非接触型給電システムを構築することができる。   According to the present invention, a simple configuration in which a power supply coil is installed between the railway rails on the ground side and a current collecting coil is installed on the upper side of the vehicle, non-contact power supply is performed without changing the conventional equipment, and the heat generation of the rail is reduced. A non-contact power supply system for railway vehicles can be constructed.

本発明の鉄道車両用非接触給電システムは、軌道上に敷設される鉄道レールに配置され、前記鉄道レールへの磁気的影響が低減される給電コイルと、この給電コイルに給電する高周波電源と、前記鉄道レールを走行する車両の底部に配置され、走行時に前記給電コイルに対向し、前記鉄道レールへの磁気的影響が低減される集電コイルと、この集電コイルに接続されるコンバータと、このコンバータに接続される充電式電池とを備え、前記給電コイルに対する前記集電コイルの相対的移動による前記集電コイルからの出力を前記充電式電池に充電する。 A non-contact power supply system for a railway vehicle according to the present invention is disposed between railway rails laid on a track, a power supply coil that reduces magnetic influence on the rail, and a high-frequency power source that supplies power to the power supply coil. A current collector coil disposed at the bottom of the vehicle traveling on the railroad rail, facing the power supply coil during travel and reducing magnetic influence on the railroad rail, and a converter connected to the current collector coil; A rechargeable battery connected to the converter, and charges the rechargeable battery with an output from the current collecting coil due to relative movement of the current collecting coil with respect to the power feeding coil.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

鉄道車両への非接触給電システムの適用としては次の2つの方式が想定される。   The following two methods are assumed as the application of the non-contact power supply system to the railway vehicle.

(i)レール方式:地上側に給電コイルまたはループを連続して設置し、常時車上に給電を行い走行する。   (I) Rail system: A power supply coil or loop is continuously installed on the ground side, and power is supplied to the vehicle at all times to travel.

(ii) ステーション方式:駅や給電ポイントに給電コイルを設置し、蓄電池等に充電を行って走行する。   (Ii) Station system: A power supply coil is installed at a station or a power supply point, and a battery is charged to travel.

考え方としては、レール方式は非接触給電を使った電化であり、ステーション方式は、非電化区間の排ガスレス化と捉えられる。力行時の電力補助や回生電力吸収を考えると、レール方式・ステーション方式共に蓄電池等の車載は必須となる。   The idea is that the rail system is electrification using non-contact power feeding, and the station system is regarded as exhaust gas reduction in the non-electrified section. Considering power assistance during power running and absorption of regenerative power, it is indispensable to install a storage battery or the like in both the rail system and the station system.

図1は本発明の実施例を示す鉄道車両用非接触給電システムの模式図、図2はその側面図、図3はその要部断面図である。   FIG. 1 is a schematic diagram of a railway vehicle non-contact power feeding system according to an embodiment of the present invention, FIG. 2 is a side view thereof, and FIG.

これらの図において、Aは軌道(地上配置)、1は高周波電源、2,2′は軌道Aに敷設される鉄道レール、3は鉄道レール2と2′間に配置される一回巻きの地上側の給電コイル(1次コイル:8の字コイル)、Bは地上側の給電コイル3の絶縁支持体、4は鉄道車両、5は鉄道車両4の車輪、6は鉄道車両4の底面に配置される車両側集電コイル(2次コイル:8の字コイル)、Cは車両側の集電コイル6の背面(車体底面と車両側の集電コイル6との間)に配置される背面磁性板(フェライト板)、7は車両側の集電コイル6に接続されるコンバータ、8はコンバータ7に接続される充電式電池(リチウムイオン蓄電池)である。   In these drawings, A is a track (arranged on the ground), 1 is a high-frequency power source, 2 and 2 'are railway rails laid on the track A, and 3 is a one-turn ground disposed between the rails 2 and 2'. Side feed coil (primary coil: figure 8 coil), B is an insulating support for the ground side feed coil 3, 4 is a rail vehicle, 5 is a wheel of the rail vehicle 4, and 6 is placed on the bottom of the rail vehicle 4 Vehicle-side current collecting coil (secondary coil: figure 8 coil), C is a rear magnetism disposed on the rear surface of the vehicle-side current collecting coil 6 (between the bottom of the vehicle body and the vehicle-side current collecting coil 6). A plate (ferrite plate), 7 is a converter connected to the current collecting coil 6 on the vehicle side, and 8 is a rechargeable battery (lithium ion storage battery) connected to the converter 7.

なお、背面磁性板Cは鉄道車両4の底面に配置される種々の部材に対する磁気シールドとしてコイル回路を担保するために重要である。   The back magnetic plate C is important for securing a coil circuit as a magnetic shield for various members arranged on the bottom surface of the railway vehicle 4.

また、地上側の給電コイル3の絶縁支持体Bは軌道からの絶縁を確保するために重要である。   Further, the insulating support B of the ground-side feeding coil 3 is important for ensuring insulation from the track.

これらの図に示すように、本発明では、レール方式の非接触給電システムとした。鉄道車両4は在来線狭軌の通勤近郊型電車を想定している。この鉄道車両4の電源構成は、リチウムイオン蓄電池8を搭載した試験車両の仕様を参考とした。すなわち、レール方式の非接触給電システムにより常時給電された電力を、力行時にはリチウムイオン蓄電池8から補助し、減速時にはそのリチウムイオン蓄電池8に回生して走行する。   As shown in these drawings, the present invention is a rail-type non-contact power feeding system. The railway vehicle 4 is assumed to be a conventional commuter suburban train with narrow gauge. The power supply configuration of the railway vehicle 4 was based on the specifications of the test vehicle equipped with the lithium ion storage battery 8. That is, the power supplied constantly by the rail-type non-contact power supply system is assisted by the lithium ion storage battery 8 during power running, and regenerated and travels to the lithium ion storage battery 8 during deceleration.

非接触給電システムの諸元としては、機械的な部分は在来線の車両限界を基準に算定し、電気的な部分はドイツのトランスラピッドの給電装置を参考とした。   As the specifications of the non-contact power supply system, the mechanical part was calculated based on the vehicle limit of the conventional line, and the electrical part was referred to the German Transrapid power supply device.

表1に非接触給電システムの概念設計例を示す。   Table 1 shows a conceptual design example of a non-contact power feeding system.

より詳細に説明すると、列車は2車両を1セットとしている。給電コイルの出力電力は20kW/1コイル、地上側の給電コイル3と車上側の集電コイル6との間の間隔は75mm、給電コイルへの印加周波数は20kHz、コイル幅は600mmである。また、給電コイルの電流は200A, 巻回数は1回であり、一方、集電コイルの電流は60A、巻回数は20回である。なお、給電コイルへの印加周波数は、電波法に準拠して10kHz以下としても、出力は若干低減するが、システムとしては問題なく適用することができる。 More specifically, the train has two vehicles as one set. The output power of the feeding coil is 20 kW / 1 coil, the distance between the ground-side feeding coil 3 and the vehicle-side current collecting coil 6 is 75 mm, the frequency applied to the feeding coil is 20 kHz, and the coil width is 600 mm. Further, the current of the feeding coil is 200 A and the number of turns is 1, while the current of the current collecting coil is 60 A and the number of turns is 20. Even if the frequency applied to the feeding coil is 10 kHz or less in accordance with the Radio Law, the output is slightly reduced, but the system can be applied without any problem.

次に、問題となる鉄道レールの渦電流について説明する。   Next, the eddy current of the railway rail which becomes a problem is demonstrated.

ここでは、非線形動磁場解析の問題となる。レール進行方向については一様で無限長と見てよいため、2次元にて近似可能である。さらに、枕木方向については、車両−地上間で相対運動はなく、運動非連成である。   Here, it becomes a problem of nonlinear dynamic magnetic field analysis. Since the rail traveling direction is uniform and may be viewed as infinite, it can be approximated in two dimensions. Furthermore, in the sleeper direction, there is no relative movement between the vehicle and the ground, and the movement is not coupled.

解析コードには、A−φ法を用いた有限要素法であるフォトン社のEddyを使用した(上記非特許文献11参照)。   For the analysis code, Eddy of Photon, which is a finite element method using the A-φ method, was used (see Non-Patent Document 11 above).

図4は本発明の比較例を示す鉄道車両用非接触給電システムの模式図、図5は給電コイル及び集電コイルが8の字コイルである場合の解析モデル、図6は給電コイル及び集電コイルが矩形コイルである場合の解析モデルである。   4 is a schematic diagram of a railway vehicle non-contact power feeding system showing a comparative example of the present invention, FIG. 5 is an analysis model when the power feeding coil and the current collecting coil are 8-shaped coils, and FIG. 6 is a power feeding coil and a current collector. It is an analysis model in case a coil is a rectangular coil.

図4において、Aは軌道(地上配置)、11は高周波電源、12,12′は軌道Aに敷設される鉄道レール、13は鉄道レール12と12′間に配置される一回巻きの地上側の給電コイル(1次コイル:矩形コイル)、Bは地上側の給電コイル13の絶縁支持体、14は鉄道車両、15は鉄道車両14の車輪、16は鉄道車両14の底面に配置される車両側の集電コイル(2次コイル:矩形コイル)、Cは車両側の集電コイル16の背面(車体底面と車両側の集電コイル16との間)に配置される背面磁性板(フェライト板)、17は車両側の集電コイル16に接続されるコンバータ、18はコンバータ17に接続される充電式電池(リチウムイオン蓄電池)である。   In FIG. 4, A is a track (arranged on the ground), 11 is a high-frequency power source, 12, 12 'are railway rails laid on the track A, and 13 is a one-turn ground side disposed between the rails 12 and 12'. B is an insulating support for the ground-side power supply coil 13, 14 is a railway vehicle, 15 is a wheel of the railway vehicle 14, and 16 is a vehicle disposed on the bottom surface of the railway vehicle 14. Current collecting coil (secondary coil: rectangular coil), C is a rear magnetic plate (ferrite plate) disposed on the rear surface of the vehicle current collecting coil 16 (between the bottom of the vehicle body and the vehicle current collecting coil 16) ), 17 is a converter connected to the current collecting coil 16 on the vehicle side, and 18 is a rechargeable battery (lithium ion storage battery) connected to the converter 17.

図5において、21は軌道の中心線、22は鉄道レール、23は給電コイル(1次コイル:8の字コイル)、24は背面磁性板(フェライト)、25は背面磁性板24に取付けられる集電コイル(2次コイル:8の字コイル)である。   In FIG. 5, 21 is a track center line, 22 is a railroad rail, 23 is a feeding coil (primary coil: 8-shaped coil), 24 is a back magnetic plate (ferrite), and 25 is a collection attached to the back magnetic plate 24. It is an electric coil (secondary coil: figure 8 coil).

図6において、31は軌道の中心線、32は鉄道レール、33は給電コイル(1次コイル:矩形コイル)、34は背面磁性板、35は背面磁性板34に取付けられる集電コイル(2次コイル:矩形コイル)である。   In FIG. 6, 31 is a track center line, 32 is a railroad rail, 33 is a feeding coil (primary coil: rectangular coil), 34 is a back magnetic plate, and 35 is a current collecting coil (secondary) attached to the back magnetic plate 34. Coil: rectangular coil).

漏れ磁束の影響を検討するため、8の字コイル(Null−flux mode)(図5)と矩形コイル(Normal−flux mode)(図6)のモデルを作成した。この解析では、x方向を枕木方向、y方向を天上方向、z方向をレール進行方向とした。   In order to examine the influence of the leakage magnetic flux, models of an 8-shaped coil (Null-flux mode) (FIG. 5) and a rectangular coil (Normal-flux mode) (FIG. 6) were created. In this analysis, the x direction is the sleeper direction, the y direction is the top direction, and the z direction is the rail traveling direction.

モデルは対象性を考慮して、yz面に反対称境界条件(ベクトルポテンシャルの接線方向が0)、x,y方向の遠方に対称境界条件(ベクトルポテンシャルの法線方向が0)を指定した。   In consideration of objectivity, the model specified an antisymmetric boundary condition on the yz plane (the tangential direction of the vector potential is 0), and a symmetric boundary condition (the normal direction of the vector potential is 0) far in the x and y directions.

扱う周波数が高いため、渦電流の流れる鉄道レール22,32の表面部分は、表皮厚以下になるように細かく要素分割を行った。   Since the frequency to be handled is high, the surface portions of the rails 22 and 32 through which eddy currents flow are finely divided so that the thickness is less than the skin thickness.

図7は解析のため非線形計算に使用したB−Hカーブを示す図であり、□はフェライト、○は鉄を示している。   FIG. 7 is a diagram showing a BH curve used for nonlinear calculation for analysis, where □ indicates ferrite and ◯ indicates iron.

以下解析結果を順を追って示す。解析結果の横軸は電流値であり、表1に示した定格電流を1とした。鉄道レールへの電磁的な影響ということで、単位長さ当たりの発熱量を評価対象とした。   The analysis results are shown below in order. The horizontal axis of the analysis result is the current value, and the rated current shown in Table 1 is 1. The amount of heat generated per unit length was evaluated as an electromagnetic influence on railway rails.

まず、線形解析にて近似可能であれば、計算時間を大幅に短縮できるため、非線形解析との比較を行った。   First, if it can be approximated by linear analysis, the calculation time can be greatly reduced, so we compared it with nonlinear analysis.

図8は線形解析と非線形解析での計算結果を示す図である。ここで、□は非線形解析、○は線形解析を示している。   FIG. 8 is a diagram showing calculation results in linear analysis and nonlinear analysis. Here, □ indicates nonlinear analysis, and ◯ indicates linear analysis.

図8を見ると、電流の大きな領域で線形解析と非線形解析との計算結果に大きな乖離が生じることがわかる。また、鉄道レール、背面磁性板ともに定格値付近でも飽和領域に達しており、非線形解析が必要であることがわかった。   As can be seen from FIG. 8, there is a large divergence between the calculation results of the linear analysis and the nonlinear analysis in a region where the current is large. In addition, it was found that both the rail and the back magnetic plate reached the saturation region near the rated value, and nonlinear analysis was necessary.

図9は給電コイル及び集電コイルが8の字コイルの場合の定格電流時の磁束密度分布を示す図、図10は給電コイル及び集電コイルが矩形コイルの場合の定格電流時の磁束密度分布を示す図である。   FIG. 9 is a diagram showing the magnetic flux density distribution at the rated current when the feeding coil and the collecting coil are 8-shaped coils, and FIG. 10 is the magnetic flux density distribution at the rated current when the feeding coil and the collecting coil are rectangular coils. FIG.

図9においては、集電(2次)コイル25の背面磁性板24と、鉄道レール22の表面に磁束が集中している様子がわかる。表面の渦電流により磁界が遮蔽されて、鉄道レール22内部には磁束が侵入していないことも読み取れる。   In FIG. 9, it can be seen that the magnetic flux is concentrated on the rear magnetic plate 24 of the current collecting (secondary) coil 25 and the surface of the railway rail 22. It can also be seen that the magnetic field is shielded by the eddy current on the surface, and the magnetic flux does not enter the rail 22.

一般的に、図4に示した矩形コイル同士よりも、図1に示した8の字コイル同士の方が周囲への漏れ磁束が小さい構成が可能である。そのため、鉄道車両への非接触給電システムにおいて、8の字コイルの方が過電流を低減し、鉄道レールの発熱を抑えることができる。   Generally, a configuration in which the leakage flux to the surroundings is smaller between the 8-shaped coils shown in FIG. 1 than the rectangular coils shown in FIG. 4 is possible. Therefore, in the non-contact power supply system to the railway vehicle, the 8-shaped coil can reduce the overcurrent and suppress the heat generation of the railway rail.

そこで、鉄道レールの発熱を抑える試みとして、給電コイル及び集電コイルが矩形コイルと8の字コイルの場合の比較を行った。   Therefore, as an attempt to suppress the heat generation of the railroad rail, a comparison was made between the case where the feeding coil and the collecting coil were a rectangular coil and an 8-shaped coil.

図11は矩形コイルと8の字コイルの場合の数値解析の結果を示す図であり、横軸に給電(1次)コイル電流(規格化)、縦軸に発熱量〔W/m〕が示され、また、◇は矩形コイル、○は8の字コイルの結果を示している。   FIG. 11 is a diagram showing the results of numerical analysis in the case of a rectangular coil and an 8-shaped coil, where the horizontal axis shows the power supply (primary) coil current (normalized) and the vertical axis shows the heat generation [W / m]. In addition, ◇ indicates the result of the rectangular coil, and ○ indicates the result of the 8-shaped coil.

8の字コイルの方が鉄道レールの発熱量は小さかった。現状の車両限界や建築限界を想定すると、8の字コイルにより鉄道レールへの影響をより小さく抑えることができる。   The figure 8 coil produced less heat on the rail. Assuming current vehicle limits and building limits, the figure-shaped coil can further reduce the influence on the rail.

図12は給電(1次)コイル電流のみ、集電(2次)コイル電流のみ通電した場合の解析結果を示す図である。ここで、◇は給電(1次)コイル電流、○は集電(2次)コイル電流を示している。   FIG. 12 is a diagram showing an analysis result when only the power feeding (primary) coil current and only the current collecting (secondary) coil current are applied. Here, ◇ indicates a feeding (primary) coil current, and ◯ indicates a current collecting (secondary) coil current.

給電(1次)コイルの方が、幾何学的には鉄道レールに近接しているため、鉄道レールに与える影響が大きいと考えられた。しかし、今回の諸元では、集電(2次)コイル電流のアンペアターンが大きいため、集電(2次)コイル電流の影響が大きいことがわかった。発熱量で比較すると、電流値の自乗に比例するため、このような結果となったと考えられる。   Since the feeding (primary) coil is geometrically closer to the rail, it is considered to have a larger influence on the rail. However, it was found that the current (secondary) coil current has a large ampere turn in this specification, so that the influence of the current collection (secondary) coil current is large. When comparing by calorific value, it is considered to be such a result because it is proportional to the square of the current value.

図13は鉄道レールの導電率を変化させた場合の解析結果を示す図である。   FIG. 13 is a diagram illustrating an analysis result when the conductivity of the rail is changed.

一般的な鉄の導電率である1×106 〜1×107 〔S/m〕の範囲内を解析したところ、1桁変化させても発熱量は4割程度の違いしか発生しなかった。 Analysis of the general iron conductivity range of 1 × 10 6 to 1 × 10 7 [S / m] revealed that the calorific value only changed by about 40% even if it was changed by one digit. .

図14は給電(1次)コイル電流の位相と集電(2次)コイル電流の位相を変化させた場合の解析結果を示す図である。   FIG. 14 is a diagram showing an analysis result when the phase of the feeding (primary) coil current and the phase of the current collecting (secondary) coil current are changed.

給電(1次)コイル電流と集電(2次)コイル電流の位相差を変化させると劇的に変化するような点がある。一方、実際の非接触給電では共振現象を利用するため、大きな位相差変化はない。そのため、図14では位相差を5deg.変化させた場合の結果のみを示した。この程度の範囲内では、大きな変化が見られないことがわかる。   There is a point that changes dramatically when the phase difference between the feeding (primary) coil current and the collecting (secondary) coil current is changed. On the other hand, the actual non-contact power feeding uses a resonance phenomenon, so there is no large phase difference change. Therefore, in FIG. 14, the phase difference is 5 deg. Only the results when changed are shown. It can be seen that there is no significant change within this range.

以上の解析結果から次のことがわかった。   The following results were found from the above analysis results.

(1)数10kW級の電力を得るためには、電流値が大きくなるため、磁性体の飽和領域となり、非線形解析が必要となる。   (1) In order to obtain electric power of several tens of kW class, the current value becomes large, so that it becomes a saturation region of the magnetic material, and nonlinear analysis is necessary.

(2)給電(1次)コイルの周波数が20kHzと高いため、漏れ磁束による渦電流は鉄道レール表面部に集中する。   (2) Since the frequency of the feeding (primary) coil is as high as 20 kHz, the eddy current due to the leakage magnetic flux is concentrated on the rail surface.

(3矩形コイルと8の字コイルでは、8の字コイルの方が鉄道レールへの影響は小さい。   (In the case of the three rectangular coils and the 8-shaped coil, the 8-shaped coil has a smaller influence on the rail.

(4) 集電(2次)コイルのアンペアターンが大きいため、鉄道レールへの影響は給電(1次)コイルより集電(2次)コイルの影響の方が大きい。   (4) Since the ampere turn of the current collecting (secondary) coil is large, the influence on the railroad rail is larger than that of the power feeding (primary) coil.

(5)鉄道レールの導電率や給電(1次)コイルと集電(2次)コイルの電流の位相差の変化では、鉄道レールへの影響には大きな違いが見られなかった。   (5) There was no significant difference in the effect on the railroad rail in the change in the electrical conductivity of the railroad rail or the phase difference between the currents of the feeding (primary) coil and the current collecting (secondary) coil.

このように、本発明では、地上側に給電コイル、車上側に集電コイルを設置することにより、鉄道車両への非接触給電を行うようにした。このとき鉄道では従来車両や設備との互換性が重視されるため、土木設備の大幅な変更は考えられない。   As described above, in the present invention, the power supply coil is installed on the ground side and the current collecting coil is installed on the vehicle upper side, so that non-contact power supply to the railway vehicle is performed. At this time, since railways place importance on compatibility with conventional vehicles and equipment, drastic changes in civil engineering equipment cannot be considered.

ここでは、その鉄道レールへの電磁的な影響を抑えるため、鉄道レールの発熱量を評価対象として、コイル構成や物性値等を変化させ、有限要素法による電磁場解析により計算を行った。   Here, in order to suppress the electromagnetic influence on the railroad rail, the amount of heat generated on the railroad rail was evaluated, and the coil configuration, physical property values, etc. were changed, and the calculation was performed by electromagnetic field analysis by the finite element method.

その結果、コイル構成を8の字形状にすることにより漏れ磁束による鉄道レール発熱が低減できることがわかった。   As a result, it was found that railway rail heat generation due to leakage magnetic flux can be reduced by making the coil configuration into a figure eight shape.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の鉄道車両用非接触給電システムは、従来の設備や車両を変更することなく適用できる鉄道車両用非接触給電システムとして利用することができる。   The non-contact power supply system for railway vehicles of the present invention can be used as a non-contact power supply system for railway vehicles that can be applied without changing conventional facilities and vehicles.

本発明の実施例を示す鉄道車両用非接触給電システムの模式図である。It is a schematic diagram of the non-contact electric power feeding system for rail vehicles which shows the Example of this invention. 本発明の実施例を示す鉄道車両用非接触給電システムの側面図である。It is a side view of the non-contact electric power feeding system for rail vehicles which shows the Example of this invention. 本発明の実施例を示す鉄道車両用非接触給電システムの要部断面図である。It is principal part sectional drawing of the non-contact electric power feeding system for rail vehicles which shows the Example of this invention. 本発明の比較例を示す鉄道車両用非接触給電システムの模式図である。It is a schematic diagram of the non-contact electric power feeding system for rail vehicles which shows the comparative example of this invention. 給電コイル及び集電コイルが8の字コイルである場合の解析モデルである。It is an analysis model in case a feeding coil and a current collection coil are figure 8 coils. 給電コイル及び集電コイルが矩形コイルである場合の解析モデルである。It is an analysis model in case a feeding coil and a current collection coil are rectangular coils. 解析のためのB−Hカーブを示す図である。It is a figure which shows the BH curve for an analysis. 線形解析と非線形解析での計算結果を示す図である。It is a figure which shows the calculation result in a linear analysis and a nonlinear analysis. 給電コイル及び集電コイルが8の字コイルの場合の定格電流時の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution at the time of a rated current in case a feeding coil and a current collection coil are 8-shaped coils. 給電コイル及び集電コイルが矩形コイルの場合の定格電流時の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution at the time of rated current in case a feeding coil and a current collection coil are rectangular coils. 矩形コイルと8の字コイルの場合の数値解析の結果を示す図である。It is a figure which shows the result of the numerical analysis in the case of a rectangular coil and an 8-shaped coil. 給電(1次)コイル電流のみ、集電(2次)コイル電流のみ通電した場合の解析結果を示す図である。It is a figure which shows the analysis result at the time of supplying only electric power feeding (primary) coil current and only current collection (secondary) coil current. 鉄道レールの導電率を変化させた場合の解析結果を示す図である。It is a figure which shows the analysis result at the time of changing the electrical conductivity of a railroad rail. 給電(1次)コイル電流の位相と集電(2次)コイル電流の位相を変化させた場合の解析結果を示す図である。It is a figure which shows the analysis result at the time of changing the phase of electric power feeding (primary) coil current and the phase of current collection (secondary) coil current.

符号の説明Explanation of symbols

A 軌道
1,11 高周波電源
2,2′,12,12′,22,32 鉄道レール
B 絶縁支持体
3,23 給電コイル(1次コイル:8の字コイル)
C,24,34 背面磁性体板
4,14 鉄道車両
5,15 鉄道車両の車輪
6,25 集電コイル(2次コイル:8の字コイル)
7,17 コンバータ
8,18 充電式電池(リチウムイオン蓄電池)
13,33 給電コイル(1次コイル:矩形コイル)
16,35 集電コイル(2次コイル:矩形コイル)
21,31 軌道の中心線
A Track 1,11 High-frequency power source 2,2 ', 12,12', 22,32 Railroad rail B Insulation support 3,23 Feed coil (primary coil: 8-shaped coil)
C, 24, 34 Rear magnetic plate 4,14 Rail vehicle 5,15 Rail vehicle wheel 6,25 Current collecting coil (secondary coil: 8-shaped coil)
7,17 Converter 8,18 Rechargeable battery (lithium ion storage battery)
13, 33 Feed coil (primary coil: rectangular coil)
16, 35 Current collecting coil (secondary coil: rectangular coil)
21,31 orbit centerline

Claims (5)

(a)軌道上に敷設される鉄道レール間に配置され、前記鉄道レールへの磁気的影響が低減される給電コイルと、
(b)該給電コイルに給電する高周波電源と、
(c)前記鉄道レールを走行する車両の底部に配置され、走行時に前記給電コイルに対向し、前記鉄道レールへの磁気的影響が低減される集電コイルと、
(d)該集電コイルに接続されるコンバータと、
(e)該コンバータに接続される充電式電池とを備え、
(f)前記給電コイルに対する前記集電コイルの相対的移動による前記集電コイルからの出力を前記充電式電池に充電するようにしたことを特徴とする鉄道車両用非接触給電システム。
(A) a power feeding coil that is disposed between railroad rails laid on a track and that reduces magnetic influence on the railroad rail;
(B) a high-frequency power source for supplying power to the power supply coil;
(C) a current collecting coil that is disposed at the bottom of a vehicle that travels on the railroad rail, faces the feeding coil during travelling, and reduces magnetic influence on the railroad rail;
(D) a converter connected to the current collecting coil;
(E) a rechargeable battery connected to the converter;
(F) A non-contact power feeding system for a railway vehicle, wherein the rechargeable battery is charged with an output from the current collecting coil by relative movement of the current collecting coil with respect to the power feeding coil.
請求項1記載の鉄道車両用非接触給電システムにおいて、前記給電コイルは絶縁支持板を、前記集電コイルの背面と前記車両の底部間には背面磁性体板を配置することを特徴とする鉄道車両用非接触給電システム。   2. The railway vehicle non-contact power feeding system according to claim 1, wherein the power feeding coil includes an insulating support plate, and a back magnetic plate is disposed between the back surface of the current collecting coil and the bottom of the vehicle. Non-contact power supply system for vehicles. 請求項1又は2記載の鉄道車両用非接触給電システムにおいて、前記給電コイル及び前記集電コイルは8の字コイルであることを特徴とする鉄道車両用非接触給電システム。   The non-contact power feeding system for a railway vehicle according to claim 1 or 2, wherein the power feeding coil and the current collecting coil are 8-shaped coils. 請求項1又は2記載の鉄道車両用非接触給電システムにおいて、前記高周波電源は20kHzオーダーの高周波電源であることを特徴とする鉄道車両用非接触給電システム。   3. The railway vehicle non-contact power feeding system according to claim 1, wherein the high frequency power source is a high frequency power source on the order of 20 kHz. 請求項1又は2記載の鉄道車両用非接触給電システムにおいて、前記充電式電池はリチウムイオン蓄電池であることを特徴とする鉄道車両用非接触給電システム。   The contactless power supply system for railway vehicles according to claim 1 or 2, wherein the rechargeable battery is a lithium ion storage battery.
JP2008302386A 2008-11-27 2008-11-27 Non-contact power supply system for railway vehicles Expired - Fee Related JP5425449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302386A JP5425449B2 (en) 2008-11-27 2008-11-27 Non-contact power supply system for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302386A JP5425449B2 (en) 2008-11-27 2008-11-27 Non-contact power supply system for railway vehicles

Publications (2)

Publication Number Publication Date
JP2010125974A true JP2010125974A (en) 2010-06-10
JP5425449B2 JP5425449B2 (en) 2014-02-26

Family

ID=42326654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302386A Expired - Fee Related JP5425449B2 (en) 2008-11-27 2008-11-27 Non-contact power supply system for railway vehicles

Country Status (1)

Country Link
JP (1) JP5425449B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133254A1 (en) * 2012-03-08 2013-09-12 日産自動車株式会社 Contactless power transfer device
JP2015100161A (en) * 2013-11-18 2015-05-28 株式会社Ihi Non-contact power supply system
KR101559806B1 (en) 2014-04-11 2015-10-15 한국과학기술원 power supply and pickup for tracked vehicle with inwheel pick-up coil
WO2017046946A1 (en) * 2015-09-18 2017-03-23 富士機械製造株式会社 Non-contact power supply device
JP2018014864A (en) * 2016-07-22 2018-01-25 キヤノン株式会社 Wireless power transmission system, control method and program
CN109383303A (en) * 2017-08-08 2019-02-26 大连奇想科技有限公司 Electronic guiding permanent magnetic levitation train rail system
EP2447105B1 (en) * 2010-10-07 2020-01-22 ALSTOM Transport Technologies System for supplying a transport vehicle via the ground and related methods
JP2020048407A (en) * 2019-11-07 2020-03-26 株式会社Fuji Substrate production line
JP2021078238A (en) * 2019-11-08 2021-05-20 株式会社今仙電機製作所 Wireless power supply system and control method therefor
JP6968391B1 (en) * 2021-02-24 2021-11-17 株式会社ジーエスエレテック Contactless power supply coil unit and contactless power supply system
WO2023168994A1 (en) * 2022-03-11 2023-09-14 中车长春轨道客车股份有限公司 Method and device for generating coil model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414820B2 (en) * 2015-03-20 2018-10-31 公益財団法人鉄道総合技術研究所 Non-contact power supply device, non-contact power supply system, control method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637112A (en) * 1986-06-26 1988-01-13 Mitsubishi Electric Corp Linear motor type conveying apparatus
JPH09191502A (en) * 1995-11-09 1997-07-22 Railway Technical Res Inst Noncontact inductive current collector
JP2002118018A (en) * 2000-10-06 2002-04-19 Hitachi Ltd Ground coil for magnetically levitated railway
JP2006121791A (en) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The Noncontact power feeder for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637112A (en) * 1986-06-26 1988-01-13 Mitsubishi Electric Corp Linear motor type conveying apparatus
JPH09191502A (en) * 1995-11-09 1997-07-22 Railway Technical Res Inst Noncontact inductive current collector
JP2002118018A (en) * 2000-10-06 2002-04-19 Hitachi Ltd Ground coil for magnetically levitated railway
JP2006121791A (en) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The Noncontact power feeder for vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447105B1 (en) * 2010-10-07 2020-01-22 ALSTOM Transport Technologies System for supplying a transport vehicle via the ground and related methods
WO2013133254A1 (en) * 2012-03-08 2013-09-12 日産自動車株式会社 Contactless power transfer device
JP2013187378A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Non-contact power supply device
JP2015100161A (en) * 2013-11-18 2015-05-28 株式会社Ihi Non-contact power supply system
KR101559806B1 (en) 2014-04-11 2015-10-15 한국과학기술원 power supply and pickup for tracked vehicle with inwheel pick-up coil
JPWO2017046946A1 (en) * 2015-09-18 2018-07-05 株式会社Fuji Non-contact power feeding device
WO2017046946A1 (en) * 2015-09-18 2017-03-23 富士機械製造株式会社 Non-contact power supply device
US11005295B2 (en) 2015-09-18 2021-05-11 Fuji Corporation Non-contact power feeding device
US11223238B2 (en) 2015-09-18 2022-01-11 Fuji Corporation Non-contact power feeding device
JP2018014864A (en) * 2016-07-22 2018-01-25 キヤノン株式会社 Wireless power transmission system, control method and program
CN109383303A (en) * 2017-08-08 2019-02-26 大连奇想科技有限公司 Electronic guiding permanent magnetic levitation train rail system
JP2020048407A (en) * 2019-11-07 2020-03-26 株式会社Fuji Substrate production line
JP2021078238A (en) * 2019-11-08 2021-05-20 株式会社今仙電機製作所 Wireless power supply system and control method therefor
JP6968391B1 (en) * 2021-02-24 2021-11-17 株式会社ジーエスエレテック Contactless power supply coil unit and contactless power supply system
WO2023168994A1 (en) * 2022-03-11 2023-09-14 中车长春轨道客车股份有限公司 Method and device for generating coil model

Also Published As

Publication number Publication date
JP5425449B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5425449B2 (en) Non-contact power supply system for railway vehicles
Li et al. Wireless power transfer by electric field resonance and its application in dynamic charging
Li et al. Wireless power transfer for electric vehicle applications
Ahmad et al. A comprehensive review of wireless charging technologies for electric vehicles
Covic et al. Modern trends in inductive power transfer for transportation applications
Mude Battery charging method for electric vehicles: From wired to on-road wireless charging
Mi et al. Modern advances in wireless power transfer systems for roadway powered electric vehicles
Wang et al. A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles
Huh et al. Narrow-width inductive power transfer system for online electrical vehicles
Choi et al. Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis
Xiang et al. A crossed DD geometry and its double-coil excitation method for electric vehicle dynamic wireless charging systems
Covic et al. Electric Vehicles–Personal transportation for the future
Chen et al. A promoted design for primary coil in roadway-powered system
Choi et al. Generalized models on self-decoupled dual pick-up coils for large lateral tolerance
Shimode et al. A study of structure of inductive power transfer coil for railway vehicles
Rasekh et al. Thermal analysis and electromagnetic characteristics of three single-sided flux pads for wireless power transfer
Jiang et al. Designing an M-shape magnetic coupler for the wireless charging system in railway applications
Chowdhury et al. Design and performance evaluation for a new power pad in electric vehicles wireless charging systems
Vuddanti et al. Design of a one kilowatt wireless charging system for electric vehicle in line with Bharath EV standards
Liang et al. Emerging wireless charging systems for electric vehicles-achieving high power transfer efficiency: a review
Frolova et al. Critical Review of Wireless Electromagnetic Power Transmission Methods
Manivannan et al. A review on wireless charging methods–The prospects for future charging of EV
Chun et al. System and electromagnetic compatibility of resonance coupling wireless power transfer in on-line electric vehicle
Tudorache et al. Inductive coupler for battery charging system of heavy electric vehicles
Zhang et al. Basic concepts of static/dynamic wireless power transfer for electric vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees