JP2010125594A - Minor diameter cbn end mill - Google Patents

Minor diameter cbn end mill Download PDF

Info

Publication number
JP2010125594A
JP2010125594A JP2008328673A JP2008328673A JP2010125594A JP 2010125594 A JP2010125594 A JP 2010125594A JP 2008328673 A JP2008328673 A JP 2008328673A JP 2008328673 A JP2008328673 A JP 2008328673A JP 2010125594 A JP2010125594 A JP 2010125594A
Authority
JP
Japan
Prior art keywords
cutting edge
end mill
cbn
diameter
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008328673A
Other languages
Japanese (ja)
Other versions
JP5403480B2 (en
Inventor
Takeshi Akamatsu
猛史 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008328673A priority Critical patent/JP5403480B2/en
Publication of JP2010125594A publication Critical patent/JP2010125594A/en
Application granted granted Critical
Publication of JP5403480B2 publication Critical patent/JP5403480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a minor diameter CBN end mill in a new shape capable of performing the cutting of a high-hardness material such as a precision component with high accuracy and efficiency for a long time without the occurrence of abrasion and chipping, and especially to provide a minor diameter CBN square end mill and a radius end mill with an edge diameter of 3 mm or less. <P>SOLUTION: A minor diameter end mill in which a part of cemented carbide material integrally sintered to a CBN sintered material is inserted and fixed to a shank hole part is provided with a cutting edge on its tip with an edge diameter of 3 mm or less. In the minor diameter CBN end mill, a peripheral cutting edge is formed so as to be a right edge torsional to left, and at least 60% of the peripheral cutting edge, desirably whole of it, is formed by a gash. The axial rake of the cutting edge at the tip of the end mill is -5&deg; to -25&deg;, and further desirably the radial rake of the tip of the cutting edge is +10&deg; beyond -5&deg;. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、少なくとも刃部の一部がCBN焼結部から構成され、超硬合金部分と一体焼結された構造を有するものであり、刃径が3mm以下の小径CBNエンドミルに関する。  The present invention relates to a small-diameter CBN end mill having a structure in which at least a part of a blade portion is composed of a CBN sintered portion and integrally sintered with a cemented carbide portion, and the blade diameter is 3 mm or less.

立方晶窒化硼素(CBN)切削工具は、ダイヤモンドに次ぐ硬さを有する窒化硼素(BN)を、超高圧で焼結した切削工具である。鉄系材料の切削にはダイヤモンドが向かないため、CBNは鉄系高硬度材料や難削材の切削、または低硬度鉄系材料の高速切削、断続切削などに用いられる。しかし、CBN切削工具は、超硬工具に比べて極めて脆く、切削中にチッピングや欠損を起こしやすいという欠点があり、切削ボリュームを大きくした高能率切削は不可能であり、制約された環境化で超仕上げ加工として使われているにすぎない。特に小径CBNエンドミルの場合は、少なくとも刃部はCBN焼結材で構成されており、刃部の後方の逃げ面、及びバックメタルの部分もCBN焼結材である。このことから、切削中に横方向の力が加わると、強度不足でチッピングを起こしてしまう。従って、刃径が3mm以下の小径エンドミルでは、CBN焼結材に比べて靭性に優れた超硬エンドミルを用いて精度の低い加工を余儀なくされており、場合によっては、極めて加工能率の低い放電加工が依然として採用されている。  The cubic boron nitride (CBN) cutting tool is a cutting tool obtained by sintering boron nitride (BN) having hardness next to diamond at an ultrahigh pressure. Since diamond is not suitable for cutting iron-based materials, CBN is used for cutting iron-based high-hardness materials and difficult-to-cut materials, or for high-speed cutting and intermittent cutting of low-hardness iron-based materials. However, CBN cutting tools are extremely fragile compared to cemented carbide tools, and have the disadvantage that they are prone to chipping and chipping during cutting, and high-efficiency cutting with a large cutting volume is not possible. It is only used for super finishing. Particularly in the case of a small-diameter CBN end mill, at least the blade portion is made of a CBN sintered material, and the flank on the rear side of the blade portion and the back metal portion are also CBN sintered material. For this reason, if a lateral force is applied during cutting, chipping occurs due to insufficient strength. Therefore, in a small-diameter end mill having a blade diameter of 3 mm or less, machining with low accuracy is forced by using a carbide end mill having excellent toughness compared to a CBN sintered material. In some cases, electric discharge machining with extremely low machining efficiency is required. Is still adopted.

非特許文献1には、小径CBNラジアスエンドミルが記載されており、工具のカケ防止として、エンド切れ刃およびコーナ切れ刃を含むエンドミル先端切れ刃から外周切れ刃にかけてチャンファーリング、すなわち、切れ刃全体に大きな負のすくい角を有したエンドミルが提案されている。
また別の特許文献1には少なくとも先端部が超高圧CBN焼結体で構成され、シャンク側からみて切削回転方向に対して反対方向にねじれを有した外周刃をもつCBNエンドミルを用いて、加工能率を向上させることができると提案されている。
特開2008−110411号公報 「型技術」第21巻第8号 2006年7月号(P.38−39)
Non-Patent Document 1 describes a small-diameter CBN radius end mill, and as a tool for preventing chipping, a chamfer ring, that is, the entire cutting edge, from an end mill end cutting edge including an end cutting edge and a corner cutting edge to an outer peripheral cutting edge. An end mill having a large negative rake angle has been proposed.
Another Patent Document 1 uses a CBN end mill having at least a tip portion made of an ultra-high pressure CBN sintered body and having an outer peripheral blade having a twist in a direction opposite to the cutting rotation direction when viewed from the shank side. It has been proposed that efficiency can be improved.
JP 2008-110411 A "Type Technology" Vol. 21, No. 8, July 2006 (P.38-39)

近年、家電製品や機械製品の小型精密化は目を見張るものがあり、電子部品関係や半導体関連の部品も精密かつ複雑化している。例えばコネクタ関連の金型では60HRCを越える高硬度鋼材の加工に小径エンドミルを用いて切削する必要がでてきている。また近年、携帯電話の厚みは年々薄くなってきており、薄くてもフレームの強度を持たせるためにリブの構造が変わってきている。つまり微細なリブのプレス加工のために、従来よりも、より硬い金型材料が必要とされており、切削加工も、微細加工の必要性から特に刃径が3mm以下の小径エンドミルが要請されている。しかしながら前記のような高硬度鋼材は切削工具による加工では、工具の摩耗に問題があり、長時間における高能率・高精度な加工が困難である。このため、極めて加工能率の低い放電加工が依然として採用されている。  In recent years, miniaturization of home appliances and machine products has been remarkable, and electronic parts and semiconductor-related parts have become more precise and complicated. For example, in a connector-related mold, it is necessary to use a small-diameter end mill to cut a high-hardness steel material exceeding 60 HRC. In recent years, the thickness of mobile phones has become thinner year by year, and the structure of the ribs has changed in order to give the frame strength even if it is thin. In other words, a mold material that is harder than before is required for press processing of fine ribs, and a small-diameter end mill with a blade diameter of 3 mm or less is particularly required for cutting because of the need for fine processing. Yes. However, such hard steel materials as described above have a problem in tool wear when processed with a cutting tool, and it is difficult to perform highly efficient and highly accurate processing over a long period of time. For this reason, electric discharge machining with extremely low machining efficiency is still employed.

放電加工を用いないでこれら高硬度材の材料を加工する場合、一般的には超硬合金製のコーティング被覆工具が用いられている。高硬度材の材料を長時間において高精度な加工を行うためには、工具の材質そのものの硬度を上げ、耐摩耗性を向上させる必要がある。そのような背景の中で近年、切れ刃がCBN焼結体で形成されたCBN焼結工具が用いられるケースが増えてきた。しかしながらCBN焼結工具は、超硬工具に比べて極めて脆く、切削中にチッピングや欠損を起こしやすいという欠点があり、切削ボリュームを大きくした高能率切削は不可能であり、制約された環境化で超仕上げ加工として使われているにすぎない。ここで刃先にボール刃を有するボールエンドミルの場合、ピッチを細かくしないと形状が仕上がらないため高能率な切削ができない。すなわち超硬合金製のエンドミルであっても高能率な仕上げ加工をすることは困難である。ましてや切れ刃がCBN焼結体で形成されたCBNボールエンドミルの場合は、無理に高能率な加工を行って切削条件を上げると欠損してしまい、用途的に採用されない。CBN焼結材特有の問題点を解決するためにCBNボールエンドミルの形状を改善した提案が前述した非特許文献1や特許文献1で提案されているが、上述に示すように高能率な加工を行う上で問題があり、無理に高能率な加工を行って切削条件を上げると欠損してしまうという課題が残っている。  When machining these materials with high hardness without using electric discharge machining, generally a coated tool made of cemented carbide is used. In order to perform high-precision processing of a material with high hardness over a long period of time, it is necessary to increase the hardness of the tool material itself and improve wear resistance. In such a background, in recent years, the number of cases in which a CBN sintered tool having a cutting edge formed of a CBN sintered body is used has increased. However, CBN sintered tools are extremely fragile compared to cemented carbide tools, and have the disadvantage that they are prone to chipping and chipping during cutting, and high-efficiency cutting with a large cutting volume is impossible. It is only used for super finishing. Here, in the case of a ball end mill having a ball blade at the cutting edge, the shape is not finished unless the pitch is made fine, so that highly efficient cutting cannot be performed. That is, it is difficult to perform highly efficient finishing even with an end mill made of cemented carbide. In addition, in the case of a CBN ball end mill having a cutting edge formed of a CBN sintered body, if the cutting condition is increased by forcibly performing high-efficiency processing, the cutting edge will be lost, and it will not be adopted for use. In order to solve the problems peculiar to CBN sintered materials, proposals for improving the shape of the CBN ball end mill have been proposed in Non-Patent Document 1 and Patent Document 1 described above. There is a problem in performing, and there remains a problem that if the cutting condition is raised by forcibly performing high-efficiency machining, the chip is lost.

本発明者は特に小径のCBNエンドミルの刃先からシャンクまでの全体の構成と刃先の形状を詳しく検討した。その結果、特に直径が3mm以下の小径CBNエンドミルの場合は、少なくとも刃部がCBN焼結材で構成されていると、刃部の後方の逃げ面、及びバックメタルの部分もCBN焼結材であるので、切削中に横方向の力が加わると、刃径が細いこともあって強度不足でチッピングを起こしてしまうことが分かった。  The present inventor has examined in detail the overall configuration from the blade tip to the shank of the small diameter CBN end mill and the shape of the blade tip. As a result, especially in the case of a small-diameter CBN end mill with a diameter of 3 mm or less, if at least the blade portion is made of a CBN sintered material, the flank and the back metal portion behind the blade portion are also made of the CBN sintered material. Therefore, it was found that when a lateral force is applied during cutting, chipping occurs due to insufficient strength due to the small blade diameter.

刃先にボール刃を有するボールエンドミルの場合、精密部品加工や携帯電話のリブ構造と異なるフレーム部分の金型加工など3次元の形状を有さない加工、すなわち2次元もしくは2.5次元の加工においては、ピッチを細かくしないと形状が仕上がらないため高能率な加工ができず、根本的にその用途に全く合わない。すなわち対象のエンドミル形状にはなり得ない。  In the case of a ball end mill having a ball blade at the cutting edge, in processing that does not have a three-dimensional shape, such as precision part processing or mold processing of a frame part that is different from the rib structure of a mobile phone, that is, in two-dimensional or 2.5-dimensional processing Since the shape is not finished unless the pitch is made fine, high-efficiency processing cannot be performed, and it does not fit the application at all. That is, the target end mill shape cannot be obtained.

ここで、精密部品や携帯電話のリブ構造と異なるフレーム部分の金型加工などの加工においては、刃先にボール刃を有するボールエンドミルよりも、刃先がフラットであるスクエアエンドミルや丸コーナを持つラジアスエンドミルの方が、底刃フラット部分が広いために高能率な加工が可能である。しかし、底面部の加工において、図1に示すように、ボールエンドミル1とラジアスエンドミル2ともに同じ切込み量3で切削すると、ラジアスエンドミル2は底刃フラット部分が広いがゆえに、その分被削材4に接触する切れ刃の接触面積5が広くなるため抵抗が上がりやすいという欠点を抱えている。図1には被削材4に接触する切れ刃の接触面積5の部分が太い線で比較して描かれているが、両者を比較するとラジアスエンドミル2の方が切れ刃の接触面積5が大きいことが分かる。  Here, in processing such as mold processing of frame parts that are different from precision parts and mobile phone rib structures, a square end mill with a flat cutting edge and a radius end mill with a round corner are used rather than a ball end mill with a ball cutting edge at the cutting edge. Since the bottom blade flat part is wider, highly efficient processing is possible. However, in the processing of the bottom surface portion, as shown in FIG. 1, when both the ball end mill 1 and the radius end mill 2 are cut with the same cutting depth 3, the radius end mill 2 has a wide bottom edge flat portion, so that the work material 4 is divided accordingly. Since the contact area 5 of the cutting blade that comes into contact with the substrate increases, the resistance tends to increase. In FIG. 1, a portion of the contact area 5 of the cutting edge that contacts the work material 4 is drawn by comparison with a thick line, but when compared, the radius end mill 2 has a larger contact area 5 of the cutting edge. I understand that.

これに対して非特許文献1には、小径CBNラジアスエンドミルであって、カケ防止のために切れ刃全体に大きな負のすくい角をもったエンドミルが提案されているが、この提案のエンドミルでは、切削抵抗がさらに大きくなり、その抵抗に耐えられず、より大きな欠損につながってしまう。つまり刃先がフラットであるスクエアエンドミルや丸コーナを持つラジアスエンドミルの場合、工具の材質がCBN焼結材で形成されると、より欠損を引き起こしやすく、安定した加工が望めない。  On the other hand, Non-Patent Document 1 proposes a small-diameter CBN radius end mill that has a large negative rake angle for the entire cutting edge to prevent chipping. In this proposed end mill, The cutting resistance is further increased, cannot withstand the resistance, and leads to a larger defect. In other words, in the case of a square end mill having a flat cutting edge or a radius end mill having a round corner, if the material of the tool is formed of a CBN sintered material, it is more likely to cause chipping and stable machining cannot be expected.

また特許文献1には、少なくとも先端部が超高圧CBN焼結体で構成され、シャンク側からみて切削回転方向に対して反対方向にねじれを有した外周切れ刃をもつCBNエンドミルが提案されている。これによってコーナ切れ刃の刃先角が大きくなって刃先強度が増し、ラップやホーニング等によるチャンファー処理で刃先を丸くする必要がなく、刃カケが抑制されるとしている。しかし、この提案のエンドミルでは、図2に示すように、コーナ切れ刃のすくい面27と外周切れ刃のすくい面28が違う面で形成されることになる。すなわち精密部品加工や携帯電話のリブ構造と異なるフレーム部分の金型加工などの底面部の加工、特に金型のコーナ部の加工において、コーナ切れ刃が接触したときの抵抗と外周切れ刃が接触したときの抵抗が変化するため、底刃の接触面積が広くあたって発生する振動と相まって、大きな抵抗が発生する。特に高能率な加工を行うと刃先の強度が耐えられずに欠損し、安定した加工は望めない。  Patent Document 1 proposes a CBN end mill having at least a tip portion made of an ultra-high pressure CBN sintered body and having an outer peripheral cutting edge having a twist in a direction opposite to the cutting rotation direction when viewed from the shank side. . As a result, the edge angle of the corner cutting edge increases and the edge strength increases, and it is not necessary to round the edge by chamfering such as lapping or honing, which suppresses blade chipping. However, in this proposed end mill, as shown in FIG. 2, the rake face 27 of the corner cutting edge and the rake face 28 of the outer peripheral cutting edge are formed by different surfaces. That is, the resistance when the corner cutting edge comes into contact with the outer peripheral cutting edge in the machining of the bottom surface, such as the precision part machining and the die machining of the frame part different from the rib structure of the mobile phone, especially the machining of the corner part of the mold. Since the resistance at this time changes, a large resistance is generated in combination with the vibration generated due to the large contact area of the bottom blade. In particular, when high-efficiency processing is performed, the strength of the cutting edge cannot be withstood, and the chip is lost, and stable processing cannot be expected.

さらに切り屑排出時のチップポケットを形成するコーナ切れ刃のすくい面27と外周切れ刃のすくい面28が違う面で形成されているため、すくい面境界部29に段差が生じやすく、切削加工時に生成された切り屑がチップポケット内で噛みこみやすく、仕上げ面に傷をつけることや、噛みこみが原因で抵抗が増大し、欠損することもある。
またこのエンドミルの提案によれば、外周切れ刃のすくい角は負のすくい角になるほど良いとされているが、負のすくい角では食い付き性が悪化し、抵抗の増大に伴う振動が極めて大きく発生しやすく、安定した加工は望めない。
本発明は係る従来の事情に鑑み、精密部品加工のような高硬度材の切削加工を高精度、高能率で長時間にわたって加工ができる、刃部の刃径が3mm以下の小径CBNエンドミル、特にその中で高能率切削加工を達成できる3mm以下の小径CBNスクエアエンドミル及び小径CBNラジアスエンドミルを提供するものである。
Further, since the rake face 27 of the corner cutting edge and the rake face 28 of the outer peripheral cutting edge that form the chip pocket when chip is discharged are formed with different surfaces, a step is likely to occur at the rake face boundary 29, and at the time of cutting processing. The generated chips are easy to bite in the chip pocket, and the finished surface may be damaged, or the resistance may increase due to the bite and may be lost.
Also, according to the proposal of this end mill, the rake angle of the outer peripheral cutting edge is said to be better as it becomes a negative rake angle, but at the negative rake angle, the biting property deteriorates and the vibration accompanying the increase in resistance is extremely large. It is likely to occur and stable processing cannot be expected.
In view of the conventional circumstances of the present invention, a small-diameter CBN end mill having a blade diameter of 3 mm or less, particularly capable of machining a high-hardness material such as precision part machining with high accuracy and high efficiency over a long period of time. Among them, a small-diameter CBN square end mill and a small-diameter CBN radius end mill of 3 mm or less that can achieve high-efficiency cutting are provided.

本発明は、図3、図4に示すように、少なくとも刃部26がCBN焼結部6からなり、前記CBN焼結部6に一体焼結された超硬合金部分17の後端部7がシャンク孔部に差し込まれて固定されている構造であり、前記刃部26は刃径が3mm以下の先端切れ刃11を有した小径エンドミルであって、外周切れ刃8の60%以上がギャッシュ9で形成されており、前記刃部26の外周切れ刃8は右刃左ねじれで形成され、前記エンドミル先端切れ刃11のアキシャルレーキが−5°〜−25°であることを特徴とする小径CBNエンドミルである。外周切れ刃8はギャッシュ9と刃溝で形成された外周切れ刃10からなる。ここでエンドミル先端切れ刃11は、エンド切れ刃12とコーナ切れ刃13および外周切れ刃8を合わせたものとし、エンド切れ刃12、コーナ切れ刃13および外周切れ刃8のアキシャルレーキがすべて同じとする。また、刃部26とはエンドミル先端切れ刃を総称的に指す語句であり、刃径30とはこの刃部の最大径部を指す。  In the present invention, as shown in FIGS. 3 and 4, at least the blade portion 26 is formed of the CBN sintered portion 6, and the rear end portion 7 of the cemented carbide portion 17 integrally sintered with the CBN sintered portion 6 is provided. The blade portion 26 is a small-diameter end mill having a tip edge 11 having a blade diameter of 3 mm or less, and 60% or more of the outer peripheral edge 8 is a gash 9. The outer peripheral cutting edge 8 of the blade portion 26 is formed by a right-handed left-handed twist, and the axial rake of the end mill end cutting edge 11 is −5 ° to −25 °. It is an end mill. The outer peripheral cutting edge 8 includes an outer peripheral cutting edge 10 formed by a gash 9 and a blade groove. Here, the end mill end cutting edge 11 is a combination of the end cutting edge 12, the corner cutting edge 13 and the outer peripheral cutting edge 8, and the axial rakes of the end cutting edge 12, the corner cutting edge 13 and the outer peripheral cutting edge 8 are all the same. To do. The blade portion 26 is a term generically indicating the end mill tip cutting edge, and the blade diameter 30 indicates the maximum diameter portion of the blade portion.

本発明の小径CBNエンドミルはボールエンドミルでも実現可能であるが、ボールエンドミルでは難しい高能率な切削を目的とする場合には、本発明の特徴を大きく生かせるスクエアエンドミルまたはラジアスエンドミルが望ましい。  Although the small-diameter CBN end mill of the present invention can be realized by a ball end mill, a square end mill or a radius end mill that makes the most of the features of the present invention is desirable for the purpose of high-efficiency cutting that is difficult with a ball end mill.

本発明の他の発明は、該外周切れ刃後方に干渉回避部分が設けられ、たことを特徴とする小径CBNエンドミルである。この発明の場合には、図3、図4で示される刃溝で形成された外周切れ刃10は無く、外周切れ刃8は図の符号10まで延長されたギャッシュ9のみからなる。またこの場合には、該外周切れ刃後方に工具回転時の干渉回避部分が設けられるのが特徴である。  Another invention of the present invention is a small diameter CBN end mill characterized in that an interference avoidance portion is provided behind the outer peripheral cutting edge. In the case of the present invention, there is no outer peripheral cutting edge 10 formed by the blade groove shown in FIGS. 3 and 4, and the outer peripheral cutting edge 8 consists only of a gash 9 extended to the reference numeral 10 in the figure. In this case, an interference avoidance part at the time of tool rotation is provided behind the outer peripheral cutting edge.

本発明の他の発明は、エンド切れ刃12のラジアルレーキと外周切れ刃8のラジアルレーキがほぼ同一の角度であることを特徴とする小径CBNエンドミルである。前記のほぼ同一の角度とは具体的には±1°以内の角度の差異を言う。この発明の場合には、図5に示すようにコーナ切れ刃のすくい面27と外周切れ刃のすくい面28がほぼ同一であることになり、図6に示すような従来例に発生するすくい面段差31が発生しない。すなわち、エンドミル先端切れ刃11内に刃溝で形成されたすくい面36が存在しない。  Another invention of the present invention is a small-diameter CBN end mill characterized in that the radial rake of the end cutting edge 12 and the radial rake of the outer peripheral cutting edge 8 have substantially the same angle. Specifically, the substantially same angle means a difference in angle within ± 1 °. In the case of the present invention, the rake face 27 of the corner cutting edge and the rake face 28 of the outer peripheral cutting edge are substantially the same as shown in FIG. 5, and the rake face generated in the conventional example as shown in FIG. The step 31 does not occur. That is, there is no rake face 36 formed by a blade groove in the end mill tip cutting edge 11.

本発明の小径CBNエンドミルにおいて、エンドミル先端切れ刃のラジアルレーキは−5°を越えて+10°であることが望ましい。また、本発明の小径CBNエンドミルにおいて、刃部の形状はエンドミル先端切れ刃両端にコーナRを有したラジアスエンドミルであることが望ましい。  In the small diameter CBN end mill of the present invention, it is desirable that the radial rake of the end mill end cutting edge is more than −5 ° and + 10 °. In the small diameter CBN end mill of the present invention, the shape of the blade is preferably a radius end mill having corner radii at both ends of the end mill tip.

本発明の小径CBNエンドミルは、シャンクから刃部までの全体の構成として、
シャンク孔部内に差し込まれている超硬合金部分の後端部7は、その底面19と少なくとも外周面部18の一部が接合材を介してシャンク部23に固定され、前記の少なくとも外周面18の一部の工具軸方向の長さ20は刃径の1倍以上とするのが良い。本発明の小径CBNエンドミルは、CBN焼結部と超硬合金部が一体焼結されて製造されるが、その超硬合金部の後端部はシャンクにろう材などの接合剤を用いて接合される。前記の外周面とは、超硬合金部分の後端の外周面を指す。
The small-diameter CBN end mill of the present invention has the entire configuration from the shank to the blade part,
The rear end portion 7 of the cemented carbide portion inserted into the shank hole portion is fixed at its bottom surface 19 and at least a part of the outer peripheral surface portion 18 to the shank portion 23 via a bonding material. The length 20 in a part of the tool axis direction is preferably set to be 1 or more times the blade diameter. The small diameter CBN end mill of the present invention is manufactured by integrally sintering a CBN sintered part and a cemented carbide part. The rear end part of the cemented carbide part is joined to the shank using a joining agent such as a brazing material. Is done. The said outer peripheral surface refers to the outer peripheral surface of the rear end of a cemented carbide part.

本発明は、60%以上の外周切れ刃がギャッシュでのみ形成されているので、エンド切れ刃近傍にすくい面段差がない。その効果で、生成された切り屑が段差によって噛みこむことも抑制でき従来例のような切り屑の噛みこみに対する問題を解決できる。  In the present invention, since the outer peripheral cutting edge of 60% or more is formed only by gash, there is no rake face step in the vicinity of the end cutting edge. As a result, it is possible to suppress the generated chips from being bitten by a step, and to solve the problem of chip biting as in the conventional example.

また仕上げ工程の前工程で取りしろが不均一な加工の場合においても、本発明の小径エンドミルは、外周切れ刃の60%以上をギャッシュのみで形成し、該エンドミル先端切れ刃のアキシャルレーキを−5°〜−25°としているので、従来の小径CBNエンドミルの最大の問題点である工具の振動および強度不足から生じるCBN粒子の脱落、チッピングや欠損、不安定性を防止できる効果がある。  Further, even in the case of machining with a non-uniform margin in the previous process of the finishing process, the small-diameter end mill of the present invention forms 60% or more of the outer peripheral cutting edge only with the gash, and the axial rake of the end mill cutting edge is − Since the angle is set to 5 ° to −25 °, there is an effect of preventing the dropping of the CBN particles, chipping, chipping, and instability resulting from the vibration of the tool and insufficient strength, which are the biggest problems of the conventional small diameter CBN end mill.

本発明では外周切れ刃の60%以上をギャッシュのみで形成できるため、従来のような刃溝で剛性が低下する部分がなくなる。この工具剛性の確保の効果は、本発明が対象とする刃径が3mm以下で、CBNという脆性工具を小径エンドミルで実現するためにとても大切な効果である。  In the present invention, 60% or more of the outer peripheral cutting edge can be formed only by the gash, so there is no portion where the rigidity is lowered by the conventional blade groove. This effect of ensuring the tool rigidity is a very important effect for realizing a brittle tool called CBN with a small diameter end mill with a blade diameter of 3 mm or less targeted by the present invention.

本発明の小径エンドミル先端切れ刃11のアキシャルレーキは−5°〜−25°としていることを大きな特徴としており、外周切れ刃は右刃左ねじれで形成される。この効果によって該エンドミルは工作機械の主軸側へ引っ張られる方向に力が加わるため、切削工具の保持剛性が上がり、工作物側への振動が軽減できる。また切れ刃剛性が上がり、チッピングを抑制する効果もある。  A major feature of the axial rake of the small-diameter end mill tip cutting edge 11 of the present invention is that it is -5 ° to -25 °, and the outer peripheral cutting edge is formed by a right-handed left-handed twist. Due to this effect, the end mill is applied with a force in the direction of being pulled toward the main spindle side of the machine tool, so that the holding rigidity of the cutting tool is increased and the vibration toward the workpiece side can be reduced. Further, the cutting edge rigidity is increased, and there is an effect of suppressing chipping.

本発明のエンドミル先端切れ刃11のラジアルレーキが−5°を越え+10°である場合には、十分な食い付き性を確保できるので、より安定した加工が実現できる効果がある。特にラジアルレーキは+5°〜0°の範囲が好ましく、食い付き性と強度のバランスから最適である。  When the radial rake of the end mill end cutting edge 11 of the present invention is more than −5 ° and + 10 °, sufficient biting property can be secured, so that there is an effect that more stable processing can be realized. In particular, the radial rake is preferably in the range of + 5 ° to 0 °, and is optimal from the balance of biting property and strength.

本発明の小径エンドミルは、CBN刃部に一体焼結された超硬合金部分の後端部がシャンク孔部に差し込まれ、前記後端部の外周面部と底面部がろう付け等で固定されているので、前記後端部の挿入部分の機械強度が確保され、首部取り付け部近傍の強度が大きくなり、たわみによる振動等にも強くなり、工具形状の効果と相まって、極めて安定した加工を実現することができる。  In the small diameter end mill of the present invention, the rear end portion of the cemented carbide portion integrally sintered with the CBN blade portion is inserted into the shank hole portion, and the outer peripheral surface portion and the bottom surface portion of the rear end portion are fixed by brazing or the like. Therefore, the mechanical strength of the insertion portion at the rear end is ensured, the strength in the vicinity of the neck mounting portion is increased, the vibration due to deflection is increased, and the like, combined with the effect of the tool shape, realizes extremely stable machining. be able to.

本発明を適用することにより、例えば刃径が3mm以下のCBN小径エンドミルを使用する精密部品や携帯電話のリブ構造と異なるフレーム部分の金型加工などの加工において、たとえ金型材が高硬度材であっても、チッピングを引き起こすことなく、安定して長時間の高精度加工が実現でき、精密部品加工などのコスト削減に有効である。  By applying the present invention, for example, in the machining of precision parts using a CBN small diameter end mill with a blade diameter of 3 mm or less and the frame processing of a frame part different from the rib structure of a mobile phone, the mold material is made of a high hardness material. Even in such a case, high-precision machining can be realized stably for a long time without causing chipping, which is effective for cost reduction of precision parts machining.

本発明は、少なくとも刃部がCBN焼結部からなり、前記CBN焼結部に一体焼結された超硬合金部分の後端部がシャンク孔部に差し込まれて固定されている構造であり、前記刃部は刃径が3mm以下の先端切れ刃を有した小径エンドミルであって、前記小径エンドミルの外周切れ刃の60%以上がギャッシュで形成されており、前記刃部の外周切れ刃は右刃左ねじれで形成され、前記刃部の先端切れ刃のアキシャルレーキが−5°〜−25°であることを特徴とする小径CBNエンドミルである。実施例で後述するが、好ましくは75%以上の外周切れ刃がギャッシュでのみ形成されているのがより望ましいことを確認している。  The present invention is a structure in which at least the blade portion is made of a CBN sintered portion, and the rear end portion of the cemented carbide portion integrally sintered with the CBN sintered portion is inserted and fixed in the shank hole portion, The blade part is a small-diameter end mill having a cutting edge with a blade diameter of 3 mm or less, and 60% or more of the outer peripheral cutting edge of the small-diameter end mill is formed by gash, and the outer peripheral cutting edge of the blade part is right A small-diameter CBN end mill, which is formed by blade left-hand twist and has an axial rake of the cutting edge of the blade portion of −5 ° to −25 °. As will be described later in Examples, it has been confirmed that it is preferable that 75% or more of the outer peripheral cutting edge is formed only by gash.

高硬度の材料において、2次元もしくは2.5次元の形状加工を行う場合、刃部がCBN焼結材で構成された小径CBNスクエアエンドミルや小径CBNラジアスエンドミルの場合、底面部の加工において切れ刃の接触面積が広くなるため抵抗が上がりやすく、先端切れ刃のチッピングを誘発し、大きな欠損につながってしまう。すなわち切削抵抗を下げる必要があるが、切れ刃のすくい角を鋭角にすると切れ刃の剛性が不足し、かえって大きな欠損を引き起こしてしまう。  In case of 2D or 2.5D shape processing in high hardness material, in case of small diameter CBN square end mill or small diameter CBN radius end mill where the blade is made of CBN sintered material, Since the contact area of the substrate becomes large, the resistance tends to increase, leading to chipping of the cutting edge and leading to a large defect. In other words, it is necessary to reduce the cutting resistance. However, if the rake angle of the cutting edge is set to an acute angle, the cutting edge has insufficient rigidity, which causes a large defect.

本発明は刃の形状として、外周切れ刃8の60%以上をギャッシュでのみ形成したことを大きな特徴としている。これによって図7に示すように、エンド切れ刃12とコーナ切れ刃13およびギャッシュのみで形成された外周切れ刃9がすべて同じすくい面で形成される。この外周切れ刃の特徴は精密部品や携帯電話のリブ構造と異なるフレーム部分の金型加工などの、高硬度材加工のコーナ部加工において大きな効果として発揮される。例えば、図8に示すように、コーナ部加工では、エンド切れ刃12、コーナ切れ刃13に抵抗が加わると共に、ギャッシュでのみ形成された外周切れ刃9と刃溝で形成された外周切れ刃10も接触するが、刃溝で形成された外周切れ刃10以外は同一のすくい面で形成されるため抵抗が一定である。逆に言えば刃溝で形成された外周切れ刃10のみが切削抵抗が変化し、振動を誘発する原因になるが、本発明者は60%以上の外周切れ刃がギャッシュでのみ形成すれば振動抑制に大きな効果があることを発見した。さらに、60%以上の外周切れ刃がギャッシュでのみ形成されていれば図7のようにエンド切れ刃12近傍にはすくい面段差31がないため、生成された切り屑がその段差によって噛みこむことも抑制でき、従来例の図6に示すようにエンド切れ刃12近傍にすくい面段差31が存在する切り屑の噛みこみに対する問題が解決できる。  The present invention is characterized in that as a shape of the blade, 60% or more of the outer peripheral cutting edge 8 is formed only by gash. As a result, as shown in FIG. 7, the end cutting edge 12, the corner cutting edge 13, and the outer peripheral cutting edge 9 formed only by the gash are all formed with the same rake face. The feature of this outer peripheral cutting edge is exhibited as a great effect in corner processing of high-hardness material processing, such as die processing of a frame part different from the precision parts and the rib structure of a mobile phone. For example, as shown in FIG. 8, in corner processing, resistance is applied to the end cutting edge 12 and the corner cutting edge 13, and an outer peripheral cutting edge 10 formed only by a gash and an outer peripheral cutting edge 10 formed by a blade groove. However, the resistance is constant because it is formed by the same rake face except for the outer peripheral cutting edge 10 formed by the blade groove. In other words, only the outer peripheral cutting edge 10 formed by the blade groove changes the cutting resistance and causes vibration, but the present inventor vibrates if 60% or more of the outer peripheral cutting edge is formed only by the gash. I found that the suppression has a big effect. Further, if the outer peripheral cutting edge of 60% or more is formed only by gash, there is no rake face step 31 in the vicinity of the end cutting edge 12 as shown in FIG. 7, and thus generated chips are bitten by the step. As shown in FIG. 6 of the conventional example, it is possible to solve the problem of chip biting in which a rake face step 31 exists in the vicinity of the end cutting edge 12.

また、該エンドミル先端切れ刃11のアキシャルレーキを−5°〜−25°としていることを大きな特徴としている。これによって外周切れ刃8は右刃左ねじれで形成されることになるが、この効果によって該エンドミルは工作機械の主軸側へ引っ張られる方向に力が加わるため、保持剛性が上がり、工作物側への振動が軽減できる。またエンドミル先端切れ刃11のアキシャルレーキが−5°〜−25°であるため切れ刃剛性が上がり、チッピングを抑制することができる。ここで先端切れ刃のアキシャルレーキが−5°よりもプラス方向に大きいと、切れ刃剛性が不足し、CBN焼結材の強度が持たず、CBNの粒子が脱落して、最終的にはチッピングを起こしてしまい、−25°よりもマイナス方向に大きいと刃先剛性は上がるものの、抵抗が増大してしまい、逆にCBN粒子の脱落が進行し、大きな欠損につながってしまう。  In addition, the main feature is that the axial rake of the end mill cutting edge 11 is set to -5 ° to -25 °. As a result, the outer peripheral cutting edge 8 is formed with a right-handed left-handed twist, but this effect applies a force in the direction in which the end mill is pulled to the spindle side of the machine tool. Can reduce vibration. Further, since the axial rake of the end mill tip cutting edge 11 is −5 ° to −25 °, the cutting edge rigidity is increased and chipping can be suppressed. Here, if the axial rake of the tip cutting edge is larger than -5 ° in the plus direction, the cutting edge rigidity is insufficient, the strength of the CBN sintered material does not exist, and the CBN particles fall off, eventually chipping. If it is larger than −25 ° in the minus direction, the cutting edge rigidity increases, but the resistance increases, and conversely, the CBN particles fall off, leading to a large defect.

外周切れ刃8は刃の長さの60%以上をギャッシュでのみ形成するのが、本発明の特徴の一つであるが、本発明のさらに好ましい形態としては、図9に示すように、外周切れ刃8はギャッシュでのみ形成する方が望ましい。これによって図8に示した加工時においても接触する切れ刃はすべて同一のすくい面で形成されるから抵抗の変化がなく安定した加工が望める。さらに図5の本発明例と図6の従来例で対比して示すように、エンドミル先端切れ刃11にすくい面段差31が存在しないため、段差による切り屑の噛みこみが全く発生せず、切り屑の噛みこみによる切削抵抗の変化やチッピング等をより確実に抑制できる。また刃溝が必要なくなるので、刃溝をつける場合の図3、図4に示される刃溝長さ14のような剛性が低下する部分が必要なくなる。すなわち発明者は図9のように不必要な刃溝を削除し、工具の回転軌跡の干渉部分を必要最低限だけ除去した干渉回避部分25を外周切れ刃後方に設けた。これによってむだな工具剛性の低下を抑制でき、つまり全体の剛性が向上し、より安定した加工を実現する。ここで干渉回避部分25の形状は凹状、凸状、多角形状などでよく、必要最低限の干渉部分を除去できればどのような形状でも効果を発揮する。  It is one of the features of the present invention that the outer peripheral cutting edge 8 is formed by gasching only 60% or more of the length of the blade. As a more preferable embodiment of the present invention, as shown in FIG. It is desirable to form the cutting edge 8 only by gash. As a result, even during the machining shown in FIG. 8, all the cutting edges that come into contact with each other are formed with the same rake face, so that stable machining without any change in resistance can be expected. Further, as shown in comparison between the example of the present invention in FIG. 5 and the conventional example in FIG. 6, there is no rake face step 31 on the end mill end cutting edge 11, so that no chips are generated due to the step and the cutting is not performed. Changes in cutting resistance, chipping, and the like due to scraping can be more reliably suppressed. Further, since the blade groove is not necessary, a portion where the rigidity is reduced, such as the blade groove length 14 shown in FIGS. 3 and 4 when the blade groove is provided, is not necessary. That is, the inventor deleted unnecessary blade grooves as shown in FIG. 9, and provided an interference avoidance portion 25 at the rear of the outer peripheral cutting blade from which only a necessary minimum interference portion of the rotation locus of the tool was removed. As a result, it is possible to suppress the reduction of the waste tool rigidity, that is, the overall rigidity is improved and more stable machining is realized. Here, the shape of the interference avoidance portion 25 may be a concave shape, a convex shape, a polygonal shape or the like, and any shape can be effective as long as the minimum necessary interference portion can be removed.

本発明のさらに好ましい形態としては、該エンドミル先端切れ刃11のラジアルレーキが−5°を越え+10°であることが望ましい。ラジアルレーキを前記範囲にすることで、十分な食い付き性を確保し、より安定した加工を実現する。さらに望ましくは+5°〜0°の範囲が食い付き性と強度のバランスから最適であることを発明者は明らかにしている。  As a more preferable mode of the present invention, it is desirable that the radial rake of the end mill tip cutting edge 11 is more than −5 ° and + 10 °. By setting the radial rake within the above range, sufficient biting property is secured and more stable processing is realized. Further, the inventor has clarified that the range of + 5 ° to 0 ° is optimal from the balance of biting property and strength.

本発明のさらに好ましい形態としては、該エンドミル先端切れ刃エッジにコーナRを有したラジアスエンドミルであることが望ましい。先端切れ刃エッジにコーナRを有することで先端切れ刃エッジの強度がさらに増し、チッピング等の抑制効果がさらに上がる。  As a more preferable embodiment of the present invention, a radius end mill having a corner R at the end mill edge is desirable. By having the corner R at the leading edge, the strength of the leading edge is further increased, and the effect of suppressing chipping and the like is further increased.

本発明のより好ましい態様は、本発明の小径CBNエンドミルにおいて、シャンク孔部内に差し込まれている超硬合金部分の後端部7は、その底面19と少なくとも外周面18の一部が接合剤を介してシャンク23に固定され、前記少なくとも外周面の一部の工具軸方向の長さ20は刃径の1倍以上であることが望ましい。工具軸方向の長さ20は刃径の1倍以上とするのは、接合剤によるシャンクへの固定を確実にするためである。CBN焼結部に一体焼結された超硬合金部分の後端部7をシャンク孔部に差し込む手段として、該孔部内に差し込まれている超硬合金部分はテーパ部15の途中の差し込みスタート位置16から固定され、一体焼結された超硬合金材部分17のうちの孔部内に差し込まれた超硬合金材の一部7の外周面部18と底面部19をろう付け等で固定するのが望ましい。これにより該孔部先端から挿入部分の機械強度が確保され、首部取り付け部近傍の強度が大きくなり、たわみによる振動等にも強くなり、工具形状の効果と相まって、極めて安定した加工を実現する。  In a more preferred embodiment of the present invention, in the small diameter CBN end mill of the present invention, the rear end portion 7 of the cemented carbide portion inserted into the shank hole portion has a bottom surface 19 and at least a part of the outer peripheral surface 18 containing a bonding agent. The length 20 in the tool axis direction of at least a part of the outer peripheral surface is preferably 1 time or more of the blade diameter. The reason why the length 20 in the tool axis direction is at least one times the blade diameter is to ensure the fixing to the shank by the bonding agent. As a means for inserting the rear end portion 7 of the cemented carbide portion integrally sintered with the CBN sintered portion into the shank hole portion, the cemented carbide portion inserted into the hole portion is inserted into the taper portion 15 at the insertion start position. It is fixed by brazing etc. the outer peripheral surface part 18 and the bottom face part 19 of the part 7 of the cemented carbide material inserted in the hole of the cemented carbide part 17 fixed from 16 and sintered integrally. desirable. As a result, the mechanical strength of the insertion portion from the tip of the hole portion is ensured, the strength in the vicinity of the neck mounting portion is increased, the vibration is also increased due to deflection, and the extremely stable machining is realized in combination with the effect of the tool shape.

次に、本発明の刃部を形成するCBNとシャンク孔部に差し込まれる超硬合金の一体焼結体の素材の製造について説明する。
CBN焼結材とその下部に構成する超硬合金材とが一体焼結されたディスク上の素材から必要な大きさに切断し、その超硬合金材の1部をシャンク部の孔部に固定して製造する。固定する方法としては、ろう付け、圧着、嵌合等があるが、ろう付けが固定後の精度と信頼性及び経済的利便性が高く好ましい。ろう材にはNi−Cr系ろう材やAg−Cu−Ti、Ag−Cu−Zn系が用いられていることが好ましい。例えば、Ag−Cu−TiやAg−Cu−Zn系ろう材では890〜1173°K、Ni−Cr系ろう材では1200〜1490°Kと、より高温で超高硬度焼結材をろう付けすることが出来、切削時に刃先温度が上がった場合にも、ろう付け強度が落ちることなく、より信頼性の高い小径エンドミルが実現できる。
以下、本発明を実施例に基づいて説明する。
Next, the production of a material of an integrally sintered body of cemented carbide inserted into the CBN forming the blade portion of the present invention and the shank hole will be described.
The CBN sintered material and the cemented carbide material that forms the lower part are cut to the required size from the material on the disc that is integrally sintered, and one part of the cemented carbide material is fixed to the hole in the shank. To manufacture. Examples of the fixing method include brazing, crimping, and fitting. Brazing is preferable because it has high accuracy and reliability after fixing and is economically convenient. As the brazing material, it is preferable to use a Ni—Cr brazing material, an Ag—Cu—Ti, or an Ag—Cu—Zn system. For example, an ultra-high hardness sintered material is brazed at a higher temperature, such as 890 to 1173 ° K. for Ag—Cu—Ti and Ag—Cu—Zn brazing materials, and 1200 to 1490 ° K. for Ni—Cr brazing materials. Even when the cutting edge temperature rises during cutting, a more reliable small-diameter end mill can be realized without lowering the brazing strength.
Hereinafter, the present invention will be described based on examples.

(実施例1)
図7、図10は本発明に係る小径CBNラジアスエンドミルの実施例の形状を示す。本発明例1として、CBN含有量が65%、平均粒径が3μmのCBN焼結材に一体焼結された超硬合金材の一部7を刃径の0.3倍とした0.3mmの長さだけシャンク孔部に差し込んで、外周面部18と底面部19をろう付けで固定した。図10に示されるように実施例1はCBN焼結材で構成されたCBN焼結部6と超硬合金材で構成された超硬合金部21からなるCBNラジアスエンドミルである。この工具の先端からエンド切れ刃12とコーナ切れ刃13、外周切れ刃8、首部22、テーパ部15、シャンク部23を設け、刃数は2枚刃、外周切れ刃8のねじれ角が−20°とした。すなわちエンドミル先端切れ刃11のアキシャルレーキが−20°であり、エンドミル先端切れ刃11のラジアルレーキが0°とした。CBNラジアスエンドミルの刃径30は1mm、コーナRのサイズが0.2mm、ギャッシュのみで形成された外周切れ刃9の長さが0.3mm、刃溝で形成された外周切れ刃10の長さが0.1mmとし、つまりエンドミル先端切れ刃の長さ(以下、有効刃長と称する)を0.6mmとした。首部はストレート形状で、首部直径を0.94mm、首下長さを3mmで刃径に対して3倍、シャンク径を4mmにしたものを用意した。
Example 1
7 and 10 show the shape of an embodiment of the small-diameter CBN radius end mill according to the present invention. As Example 1 of the present invention, a part 7 of a cemented carbide material integrally sintered with a CBN sintered material having a CBN content of 65% and an average particle size of 3 μm is 0.3 mm, which is 0.3 times the blade diameter. The outer peripheral surface portion 18 and the bottom surface portion 19 were fixed by brazing. As shown in FIG. 10, Example 1 is a CBN radius end mill including a CBN sintered portion 6 made of a CBN sintered material and a cemented carbide portion 21 made of a cemented carbide material. An end cutting edge 12, a corner cutting edge 13, an outer peripheral cutting edge 8, a neck portion 22, a taper portion 15, and a shank portion 23 are provided from the tip of the tool, the number of blades is two, and the twist angle of the outer peripheral cutting edge 8 is -20. °. That is, the axial rake of the end mill end cutting edge 11 was −20 °, and the radial rake of the end mill end cutting edge 11 was 0 °. The blade diameter 30 of the CBN radius end mill is 1 mm, the size of the corner R is 0.2 mm, the length of the outer peripheral cutting edge 9 formed only by the gash is 0.3 mm, and the length of the outer peripheral cutting edge 10 formed by the blade groove Was 0.1 mm, that is, the length of the end mill cutting edge (hereinafter referred to as an effective cutting edge length) was 0.6 mm. The neck was straight, and the neck diameter was 0.94 mm, the neck length was 3 mm, 3 times the blade diameter, and the shank diameter was 4 mm.

また従来例2として、エンドミル先端切れ刃11のアキシャルレーキを0°でギャッシュを形成した後に、チャンファーリング24で刃部26全体に−40°の大きな負のすくい角とラジアルレーキ−40°を設け、その他の仕様は本発明例1と同様の仕様のものを用意した。従来例3として、図6のような刃溝で外周切れ刃を形成し、アキシャルレーキを−10°、ラジアルレーキ−20°、その他の仕様は本発明例1と同様の仕様のものを用意し、それぞれ切削テストを行った。  Further, as a conventional example 2, after forming an axial rake of the end mill end cutting edge 11 at 0 °, a crusher ring 24 gives a large negative rake angle of −40 ° to the entire blade portion 26 and a radial rake of −40 °. The other specifications were the same as those of Example 1 of the present invention. As Conventional Example 3, an outer peripheral cutting edge is formed with a blade groove as shown in FIG. 6, axial rake is −10 °, radial rake is 20 °, and other specifications are the same as those of Example 1 of the present invention. Each was subjected to a cutting test.

切削テストに用いるワークとして、被削材にSKD11(HRC60)で、一部に高さ1mm、アール0.2mmのコーナ部を有したL字形状の底面切削を行った。切削条件は回転数が40000min−1、送り速度が2.4m/min、一回当たりの工具軸方向の切込み量を0.02mm、一回当たりの工具半径方向切込み量を0.3mmとして、クーラントにミストを用いて行った。  As a workpiece to be used for the cutting test, an L-shaped bottom cut having a corner portion having a height of 1 mm and a radius of 0.2 mm was performed on the work material with SKD11 (HRC60). Cutting conditions are as follows: the rotational speed is 40,000 min-1, the feed rate is 2.4 m / min, the cutting depth in the tool axis direction is 0.02 mm, and the cutting depth in the tool radial direction is 0.3 mm. The mist was used.

評価方法としては、工具摩耗の推移及び、コーナ部における切削初期の切削抵抗の測定、それぞれ切削距離100m毎の仕上げ面の状態を観察した。工具摩耗に関しては走査型電子顕微鏡で250倍の倍率で観察し、逃げ面の摩耗幅が0.1mmに達するもの、もしくはチッピング等により切削不可能となったものを寿命と判断し、最終的に500mまで切削を行った。仕上げ面の状態の評価は、実用上から良好なものは◎印、若干のくすみは○印、びびり面は△印、むしれた光沢のない状態や工具の欠損に至ったものは判断した切削距離を示し、その距離において×印で示した。
各試料の仕様と結果を表1に示す。
As an evaluation method, transition of tool wear, measurement of cutting resistance at the initial stage of cutting at the corner, and the state of the finished surface at each cutting distance of 100 m were observed. Regarding tool wear, observe with a scanning electron microscope at a magnification of 250 times, and determine that the wear width of the flank surface reaches 0.1 mm or that cannot be cut due to chipping or the like is the life, and finally Cutting was performed to 500 m. The evaluation of the finished surface is ◎ marked for practically good, ○ marked for some dullness, △ marked for the chatter surface, and the cutting judged as unsatisfactory or glossy or tool failure. The distance is shown, and the x is indicated at that distance.
Table 1 shows the specifications and results of each sample.

Figure 2010125594
Figure 2010125594

その結果、本発明例1は、切削距離500m切削後もほとんど摩耗もなく安定した切削状態であった。さらに仕上げ面も光沢のある面であり、工具送り方向に直角方向の最大仕上げ面粗さはRzで0.98μmと非常に優れた結果となった。それに対して、従来例2は、切削距離100mの時点でエンド切れ刃からコーナ切れ刃にかけてCBNの脱落による大きな欠損が発生し、切削不可能となった。また仕上げ面もむしれた光沢のない極めて悪い結果であった。また切削初期のコーナ部における切削抵抗値も22Nと大きな値を示した。これは、従来例2のエンドミルは、エンドミル先端切れ刃全体に−40°の大きな負のすくい角をもったチャンファーリング24を設けたため、底面切削時に特にエンド切れ刃の広い範囲が工作物に接触した際に切削抵抗が増大し、CBN焼結材の強度が耐えられずに欠損したためと考えられる。ここで、図11に500m切削時の本発明例1と100m切削時の従来例2の工具摩耗状態の比較を示す。同図からも従来例2はチャンファーリング24の影響で抵抗が増大し、100m切削時にすでにエンド切れ刃12とコーナ切れ刃13の境界部分を起点に欠損している様子がわかる。
一方、本発明例1は先端切れ刃のアキシャルレーキを−20°に設定したことによって切れ刃は右刃左ねじれで形成されることになり、該エンドミルは工作機械の主軸側へ引っ張られる方向に力が加わるため、保持剛性が上がり、工作物側への振動が軽減できたことで安定し、さらに切れ刃剛性も上がったことで極めて良好な結果を示したと考えられる。
As a result, Example 1 of the present invention was in a stable cutting state with almost no wear after cutting at a cutting distance of 500 m. Furthermore, the finished surface was also a glossy surface, and the maximum finished surface roughness in the direction perpendicular to the tool feed direction was 0.98 μm in Rz, which was a very excellent result. On the other hand, in Conventional Example 2, when the cutting distance was 100 m, a large chipping occurred due to the drop of CBN from the end cutting edge to the corner cutting edge, making cutting impossible. In addition, the finished surface was very bad with no gloss. Further, the cutting resistance value at the corner portion at the initial stage of cutting was as large as 22N. This is because the end mill of Conventional Example 2 is provided with the chamfer ring 24 having a large negative rake angle of −40 ° on the entire end mill cutting edge, so that a wide range of the end cutting edge can be used for the workpiece particularly when cutting the bottom surface. This is probably because the cutting resistance increased when contacted, and the strength of the CBN sintered material could not withstand and was lost. Here, FIG. 11 shows a comparison of the tool wear state between Example 1 of the present invention when cutting 500 m and Conventional Example 2 when cutting 100 m. It can also be seen from FIG. 3 that the resistance in the conventional example 2 is increased by the influence of the chamfer ring 24 and the boundary portion between the end cutting edge 12 and the corner cutting edge 13 is already missing at the time of 100 m cutting.
On the other hand, in Example 1 of the present invention, the axial rake of the tip cutting edge is set to -20 °, so that the cutting edge is formed with a right-handed left-handed twist, and the end mill is pulled in the direction of being pulled toward the spindle side of the machine tool Since force is applied, the holding rigidity is increased, the vibration to the workpiece side can be reduced, and the stability is improved, and the cutting edge rigidity is also increased.

また従来例3のエンドミルは、切削距離100mの時点ではほとんど摩耗もなく安定していたが、切削初期からコーナ部における切削抵抗値が14Nと高く、切削距離200mの時点で仕上げ面の状態としてびびりが観察され、工具には微小チッピングの発生とすくい面段差31の部分に溶着物が多く観察され、最終的に400m終了時に欠損した。  The end mill of Conventional Example 3 was stable with almost no wear at a cutting distance of 100 m, but the cutting resistance value at the corner portion was as high as 14 N from the beginning of cutting, and the finished surface was chattered at a cutting distance of 200 m. In the tool, a small amount of chipping was observed, and a large amount of deposit was observed at the rake face step 31, and finally the chip was lost at the end of 400 m.

(実施例2)
次に本発明例5〜8、10、11および比較例4、9、12として、エンドミル先端切れ刃のアキシャルレーキの最適化をはかるためにテストを行った。テスト方法としては、本発明例1と同様の仕様でラジアルレーキが0°、エンドミル先端切れ刃11のアキシャルレーキを比較例4は−2°、本発明例5〜8は−5°〜−25°、比較例9は−30°とした。
また、本発明例10、11と比較例12のものは、アキシャルレーキが−20°とし、有効刃長が0.5mmで外周切れ刃後方に干渉回避部分25を設け、外周切れ刃が100%ギャッシュで形成された本発明例10、有効刃長が0.7mmの外周切れ刃の60%がギャッシュで形成された本発明例11、有効刃長が0.8mmの外周切れ刃の50%がギャッシュで形成された比較例12を用いて、実施例1と同様の加工と評価を行った。結果を表2に示す。
(Example 2)
Next, as Examples 5 to 8, 10, and 11 of the present invention and Comparative Examples 4, 9, and 12, tests were performed in order to optimize the axial rake of the end mill end cutting edge. As a test method, the radial rake is 0 ° with the same specifications as in the first example of the present invention, the axial rake of the end mill end cutting edge 11 is -2 ° in the comparative example 4, the -5 ° to -25 in the present invention examples 5-8. °, Comparative Example 9 was -30 °.
Further, in Examples 10 and 11 of the present invention and Comparative Example 12, the axial rake is −20 °, the effective blade length is 0.5 mm, the interference avoiding portion 25 is provided behind the outer peripheral cutting edge, and the outer peripheral cutting edge is 100%. Example 10 of the present invention formed with a gash, 60% of an outer peripheral cutting edge with an effective blade length of 0.7 mm, an example of an invention 11 with an effective blade length of 0.7 mm, 50% of an outer peripheral cutting edge with an effective blade length of 0.8 mm The same processing and evaluation as in Example 1 were performed using Comparative Example 12 formed by gassing. The results are shown in Table 2.

Figure 2010125594
Figure 2010125594

その結果、本発明例5〜8および10、11の工具はすべて500mまで切削しても安定した加工ができた。本発明例5、8の工具は500m切削後に微小チッピングと仕上げ面も若干のくすみが確認されたが、摩耗はほとんど確認されなかった。また本発明例11の工具は500m切削後の仕上げ面状態に若干のびびり面が確認されたが、チッピング等もなく優れた性能を示した。特に、本発明例10の工具は500m切削後も全く摩耗が見られず、仕上げ面も極めて良好な状態であった。  As a result, all the tools of Invention Examples 5 to 8, 10, and 11 could be stably processed even after cutting to 500 m. In the tools of Invention Examples 5 and 8, fine chipping and slight dullness were confirmed on the finished surface after 500 m cutting, but almost no wear was confirmed. In addition, the tool of Invention Example 11 showed a slight chatter surface in the finished surface state after cutting 500 m, but showed excellent performance without chipping and the like. In particular, the tool of Inventive Example 10 showed no wear even after cutting 500 m, and the finished surface was in a very good state.

一方、比較例4は200m切削時に工具を確認したところエンド切れ刃のすくい面にチッピングが発生し、仕上げ面も非常に悪くむしれた光沢のない状態が確認された。これはエンドミル先端切れ刃の剛性が十分ではなく、CBN焼結材の強度が持たず、CBNの粒子が脱落、最終的にはチッピングを引き起こしたためと考えられる。また比較例9も同様に100m切削時に工具を確認したところ、エンド切れ刃から大きなチッピングが発生し、このことによる仕上げ面も極めて悪い結果となった。これは、アキシャルレーキが大きな負のすくい角になりすぎて、抵抗が増大してしまい、逆にCBN粒子の脱落が進行し、大きなチッピングの発生につながったためと考えられる。また比較例12の工具は100m切削時は若干のびびり面は確認されたが、チッピングもなく安定していた、しかし200m時に微小チッピングを引き起こし、仕上げ面の状態としてびびり面が観察され、300mの途中で欠損した。これは有効刃長が長くなった分、刃溝長さが長くなってしまい、工具そのものの剛性が低下したことで振動により欠損したと考えられる。  On the other hand, in Comparative Example 4, when the tool was confirmed at the time of cutting 200 m, chipping occurred on the rake face of the end cutting edge, and the finished surface was also found to be in a very glossy state that was very bad. This is probably because the end mill end cutting edge has insufficient rigidity, the strength of the CBN sintered material does not exist, and the CBN particles fall off and eventually cause chipping. Similarly, in Comparative Example 9, when the tool was checked at the time of cutting 100 m, large chipping occurred from the end cutting edge, and the finished surface due to this resulted in extremely bad results. This is presumably because the axial rake has a large negative rake angle, the resistance increases, and on the contrary, the dropout of the CBN particles proceeds, leading to the occurrence of large chipping. Further, in the tool of Comparative Example 12, a slight chatter surface was confirmed at the time of cutting 100 m, but it was stable without chipping. However, at 200 m, a minute chipping was caused, and the chatter surface was observed as a finished surface state. Missing along the way. This is considered to be due to the fact that the effective groove length is increased, the blade groove length is increased, and the rigidity of the tool itself is reduced, resulting in loss due to vibration.

ここで図12に代表的な工具摩耗状態として、500m切削時の本発明例10と比較例4の100m切削時の工具摩耗状態の比較を示す。同図からも比較例4の工具はエンドミル先端切れ刃の剛性が十分ではなく、エンド切れ刃12とコーナ切れ刃13の境界付近からCBN粒子の脱落が始まり、最終的にチッピングに繋がったと考えられる。一方本発明例10の工具は全く摩耗していない様子がわかる。
実施例1および実施例2の結果より、より好ましくは75%以上の外周切れ刃がギャッシュでのみ形成されているのが望ましいことを確認した。
Here, as a representative tool wear state, FIG. 12 shows a comparison of the tool wear state at the time of 100 m cutting of the present invention example 10 and the comparative example 4 at the time of 500 m cutting. From the same figure, it can be considered that the tool of Comparative Example 4 does not have sufficient rigidity at the end mill end cutting edge, and CBN particles began to fall off from the vicinity of the boundary between the end cutting edge 12 and the corner cutting edge 13 and eventually led to chipping. . On the other hand, it can be seen that the tool of Invention Example 10 is not worn at all.
From the results of Example 1 and Example 2, it was confirmed that more preferably 75% or more of the outer peripheral cutting edge is formed only by the gash.

(実施例3)
次に本発明例13〜17として、エンドミル先端切れ刃のラジアルレーキのより最適な範囲を見いだすためにテストを行った。エンドミル先端切れ刃のアキシャルレーキは−20°で一定とし、エンドミル先端切れ刃11のラジアルレーキが15°から−10°を変化させ、他は本発明例1と同様の仕様で製作したものを使用した。評価方法としては、実施例1と同様の加工と評価を行った。結果を表3に示す。
(Example 3)
Next, as Examples 13 to 17 of the present invention, tests were performed in order to find a more optimal range of the radial rake of the end mill end cutting edge. The axial rake of the end mill end cutting edge is fixed at -20 °, the radial rake of the end mill end cutting edge 11 is changed from 15 ° to -10 °, and the others are manufactured according to the same specifications as Example 1 of the present invention. did. As an evaluation method, the same processing and evaluation as in Example 1 were performed. The results are shown in Table 3.

Figure 2010125594
Figure 2010125594

その結果、本発明例13〜17の工具はすべて500mまで切削しても安定した加工ができた。本発明例13の工具は400m切削時に微小チッピングの確認と、仕上げ面が若干のくすみが観察されたが500m切削後もそこから大きなチッピングを引き起こすことはなく良好であった。また本発明例17の工具も400m切削時の仕上げ面に若干のびびり面が確認されたが、工具にチッピング等はなく500m切削時に微小な脱落摩耗が確認された。一方、本発明例15は500m切削後もほとんど摩耗もなく、仕上げ面粗さも0.96μmと非常に優れた結果となった。好ましくは、エンドミル先端切れ刃のラジアルレーキの範囲は+5°〜0°の範囲がより最適な範囲と推察した。  As a result, all of the tools of Examples 13 to 17 of the present invention were able to perform stable processing even after cutting to 500 m. The tool of Example 13 of the present invention was confirmed to have fine chipping during 400 m cutting and a slight dullness on the finished surface, but it did not cause large chipping after 500 m cutting and was good. Further, in the tool of Invention Example 17 as well, a slight chatter surface was confirmed on the finished surface when cutting 400 m, but there was no chipping or the like on the finished surface, and minute drop wear was confirmed when cutting 500 m. On the other hand, Example 15 of the present invention showed very good results with almost no wear after cutting 500 m and a finished surface roughness of 0.96 μm. Preferably, the radial rake range of the end mill end cutting edge is presumed that the range of + 5 ° to 0 ° is more optimal.

(実施例4)
次に本発明例1と同様の仕様で、本発明例18として、コーナRのないスクエアエンドミルを、本発明例19としてコーナRが0.2mmで、CBN焼結材に一体焼結された超硬合金部分の後端部7を1mmの長さだけシャンク孔部に差し込んだものを用いて、実施例1と同様の加工と評価を行った。結果を表4に示す。
Example 4
Next, with the same specifications as Example 1 of the present invention, a square end mill without corner R is used as Example 18 of the invention, and a corner end R of 0.2 mm is set as Example 19 of the invention, and the super sintered body is integrally sintered with a CBN sintered material. The same processing and evaluation as in Example 1 were carried out using a hard alloy portion having a rear end 7 inserted into the shank hole by a length of 1 mm. The results are shown in Table 4.

Figure 2010125594
Figure 2010125594

その結果、本発明例18、19ともに500mまで切削しても安定した加工ができた。本発明例18の工具は400m切削時にコーナ切れ刃に微小チッピングがみられ、仕上げ面も若干のくすんだ面となったが、500m切削時もチッピングが大きくなることはなかった。また、本発明例19の工具は500m切削後も全く摩耗が見られず、仕上げ面も極めて良好な状態であった。これはCBN焼結材に一体焼結された超硬合金部分の後端部7をより深くまでシャンク孔部に差し込んだことによって孔部先端から挿入部分の機械強度が確保され、首部取り付け部近傍の強度が大きくなり、たわみによる振動等にも強くなったためと考えられる。  As a result, both the inventive examples 18 and 19 were able to be processed stably even after cutting to 500 m. In the tool of Inventive Example 18, fine chipping was observed at the corner cutting edge when cutting 400 m, and the finished surface was slightly dull, but chipping did not increase even after cutting 500 m. Further, the tool of Inventive Example 19 showed no wear even after cutting 500 m, and the finished surface was in a very good state. This is because the mechanical strength of the insertion part is secured from the tip of the hole part by inserting the rear end part 7 of the cemented carbide part sintered integrally with the CBN sintered material deeply into the shank hole part, and in the vicinity of the neck part attachment part This is thought to be due to the fact that the strength of the film increased and the vibration caused by the deflection increased.

図1は、ボールエンドミルとラジアスエンドミルの切削抵抗の相違点を比較する図を示す。FIG. 1 shows a diagram comparing the difference in cutting resistance between a ball end mill and a radius end mill. 図2は、従来の小径CBNエンドミルのすくい面の一例を示す。FIG. 2 shows an example of a rake face of a conventional small diameter CBN end mill. 図3は、本発明に係る小径CBNラジアスエンドミルの一例を示す。FIG. 3 shows an example of a small diameter CBN radius end mill according to the present invention. 図4は、本発明に係る小径CBNスクエアエンドミルの一例を示す。FIG. 4 shows an example of a small diameter CBN square end mill according to the present invention. 図5は、本発明に係る小径CBNエンドミルのすくい面の拡大部ですくい面の段差がないことを示す。FIG. 5 shows that there is no step on the rake face in the enlarged part of the rake face of the small diameter CBN end mill according to the present invention. 図6は、従来の小径CBNエンドミルの段差があるすくい面の拡大部を示す。FIG. 6 shows an enlarged portion of a rake face with a step of a conventional small diameter CBN end mill. 図7は、本発明に係る別の小径CBNエンドミルのすくい面を示す。FIG. 7 shows the rake face of another small diameter CBN end mill according to the present invention. 図8は、金型のコーナ部加工におけるラジアスエンドミルの切れ刃の抵抗を示す。FIG. 8 shows the resistance of the radius end mill cutting edge in the corner machining of the mold. 図9は、外周切れ刃はギャッシュのみで形成され、外周切れ刃後方に干渉回避部分が設けられた本発明に係る小径CBNエンドミルを示す。FIG. 9 shows a small-diameter CBN end mill according to the present invention in which the outer peripheral cutting edge is formed only by a gash and an interference avoidance portion is provided behind the outer peripheral cutting edge. 図10は、本発明に係る別の小径CBNラジアスエンドミルの一例を示す。FIG. 10 shows an example of another small-diameter CBN radius end mill according to the present invention. 図11は、本発明例1と従来例2の工具摩耗状態の比較を示す。FIG. 11 shows a comparison of the tool wear state between Example 1 of the present invention and Example 2 of the prior art. 図12は、本発明例10と比較例4の工具摩耗状態の比較を示す。FIG. 12 shows a comparison of the tool wear state between the inventive example 10 and the comparative example 4.

符号の説明Explanation of symbols

1 ボールエンドミル
2 ラジアスエンドミル
3 切込み量
4 被削材
5 切れ刃の接触面積
6 CBN焼結部
7 CBN焼結材に一体焼結された超硬合金部分の後端部
8 外周切れ刃
9 ギャッシュで形成された外周切れ刃
10 刃溝で形成された外周切れ刃
11 エンドミル先端切れ刃
12 エンド切れ刃
13 コーナ切れ刃
14 刃溝長さ
15 テーパ部
16 差し込みスタート位置
17 一体焼結された超硬合金部分
18 外周面部
19 底面部
20 差し込んだ一体焼結された超硬合金部分の後端部の長さ
21 超硬合金部
22 首部
23 シャンク部
24 チャンファーリング
25 干渉回避部分
26 刃部
27 コーナ切れ刃のすくい面
28 外周切れ刃のすくい面
29 すくい面境界部
30 刃径
31 すくい面段差
32 コーナ逃げ面
33 外周逃げ面
34 エンド切れ刃のすくい面
35 ギャッシュで形成されたすくい面
36 刃溝で形成されたすくい面
DESCRIPTION OF SYMBOLS 1 Ball end mill 2 Radius end mill 3 Cutting depth 4 Work material 5 Cutting blade contact area 6 CBN sintered part 7 Rear end part 8 of cemented carbide integrally sintered with CBN sintered material Outer peripheral cutting edge 10 formed Outer peripheral cutting edge 11 formed by a blade groove End mill tip cutting edge 12 End cutting edge 13 Corner cutting edge 14 Cutting groove length 15 Taper portion 16 Insertion start position 17 Solid sintered cemented carbide Part 18 Peripheral surface part 19 Bottom part 20 Length of rear end part of cemented and sintered cemented carbide part 21 Carbide part 22 Neck part 23 Shank part 24 Chamfer ring 25 Interference avoiding part 26 Blade part 27 Corner cut Edge rake face 28 Edge edge rake face 29 Edge face boundary 30 Edge diameter 31 Edge face step 32 Corner flank face 33 Edge flank face 34 End edge edge Rake face 35 Rake face formed by gash 36 Rake face formed by blade groove

Claims (5)

少なくとも刃部がCBN焼結部からなり、前記CBN焼結部に一体焼結された超硬合金部分の後端部がシャンク孔部に差し込まれて固定されている構造であり、前記刃部は刃径が3mm以下の先端切れ刃を有した小径エンドミルであって、前記小径エンドミルの外周切れ刃の60%以上がギャッシュで形成されており、前記刃部の外周切れ刃は右刃左ねじれで形成され、前記刃部の先端切れ刃のアキシャルレーキが−5°〜−25°であることを特徴とする小径CBNエンドミル。At least the blade portion is composed of a CBN sintered portion, and the rear end portion of the cemented carbide portion integrally sintered with the CBN sintered portion is inserted into the shank hole portion and fixed, and the blade portion is A small-diameter end mill having a cutting edge with a tip diameter of 3 mm or less, wherein 60% or more of the outer peripheral cutting edge of the small-diameter end mill is formed by gash, and the outer peripheral cutting edge of the blade portion is a right-handed left-handed twist. A small-diameter CBN end mill that is formed and has an axial rake of the cutting edge of the blade portion of −5 ° to −25 °. 請求項1に記載の小径CBNエンドミルにおいて、該外周切れ刃後方に干渉回避部分が設けられたことを特徴とする小径CBNエンドミル。2. The small diameter CBN end mill according to claim 1, wherein an interference avoidance portion is provided behind the outer peripheral cutting edge. 請求項1または2に記載の小径CBNエンドミルにおいて、前記刃部の先端切れ刃のラジアルレーキと外周切れ刃のラジアルレーキがほぼ同一の角度であることを特徴とする小径CBNエンドミル。The small-diameter CBN end mill according to claim 1 or 2, wherein the radial rake of the tip cutting edge of the blade portion and the radial rake of the outer peripheral cutting edge are substantially the same angle. 請求項1乃至3のいずれかに記載の小径CBNエンドミルにおいて、該エンドミル先端切れ刃のラジアルレーキが−5°を越えて+10°であることを特徴とする小径CBNエンドミル。The small-diameter CBN end mill according to any one of claims 1 to 3, wherein a radial rake of the end mill cutting edge exceeds + 5 ° and is + 10 °. 請求項1乃至4のいずれかに記載の小径CBNエンドミルにおいて、シャンク孔部内に差し込まれている超硬合金部分の後端部は、その底面と少なくとも外周面の一部が接合材を介してシャンクに固定され、前記少なくとも外周面の一部の工具軸方向の長さは刃径の1倍以上であることを特徴とする小径CBNエンドミル。5. The small diameter CBN end mill according to claim 1, wherein a rear end portion of the cemented carbide portion inserted into the shank hole portion has a bottom surface and at least a part of an outer peripheral surface of the cemented carbide via a bonding material. The small-diameter CBN end mill is characterized in that the length in the tool axis direction of at least a part of the outer peripheral surface is at least one times the blade diameter.
JP2008328673A 2008-12-01 2008-12-01 Small diameter CBN end mill Active JP5403480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328673A JP5403480B2 (en) 2008-12-01 2008-12-01 Small diameter CBN end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328673A JP5403480B2 (en) 2008-12-01 2008-12-01 Small diameter CBN end mill

Publications (2)

Publication Number Publication Date
JP2010125594A true JP2010125594A (en) 2010-06-10
JP5403480B2 JP5403480B2 (en) 2014-01-29

Family

ID=42326324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328673A Active JP5403480B2 (en) 2008-12-01 2008-12-01 Small diameter CBN end mill

Country Status (1)

Country Link
JP (1) JP5403480B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027972A (en) * 2011-06-20 2013-02-07 Hitachi Tool Engineering Ltd Square end mill
CN102990146A (en) * 2012-11-12 2013-03-27 大连经济技术开发区伊达工具有限公司 Fillet CBN (Cubic Boron Nitride) milling cutter
CN107876849A (en) * 2017-11-23 2018-04-06 天津大强钢铁有限公司 A kind of novel tapered rose cutter
CN111250763A (en) * 2020-03-06 2020-06-09 厦门金鹭特种合金有限公司 Small-diameter complex cutter for processing composite laminated plate
CN114378345A (en) * 2021-12-30 2022-04-22 株洲钻石切削刀具股份有限公司 Milling cutter for machining and forming large chamfer forming surface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136209A (en) * 1995-11-16 1997-05-27 Yutaka Giken Co Ltd End mill
JP2004268202A (en) * 2003-03-10 2004-09-30 Hitachi Tool Engineering Ltd Small diameter end mill
JP2007075944A (en) * 2005-09-14 2007-03-29 Tungaloy Corp Ball end mill
JP2007290105A (en) * 2006-04-27 2007-11-08 Tungaloy Corp End mill
JP2008049409A (en) * 2006-08-22 2008-03-06 Sumitomo Electric Hardmetal Corp Ball end mill and its manufacturing method
JP2008080408A (en) * 2006-09-25 2008-04-10 Nisshin Kogu Kk End mill
JP2008110411A (en) * 2006-10-27 2008-05-15 Osg Corp Cbn end mill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136209A (en) * 1995-11-16 1997-05-27 Yutaka Giken Co Ltd End mill
JP2004268202A (en) * 2003-03-10 2004-09-30 Hitachi Tool Engineering Ltd Small diameter end mill
JP2007075944A (en) * 2005-09-14 2007-03-29 Tungaloy Corp Ball end mill
JP2007290105A (en) * 2006-04-27 2007-11-08 Tungaloy Corp End mill
JP2008049409A (en) * 2006-08-22 2008-03-06 Sumitomo Electric Hardmetal Corp Ball end mill and its manufacturing method
JP2008080408A (en) * 2006-09-25 2008-04-10 Nisshin Kogu Kk End mill
JP2008110411A (en) * 2006-10-27 2008-05-15 Osg Corp Cbn end mill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027972A (en) * 2011-06-20 2013-02-07 Hitachi Tool Engineering Ltd Square end mill
CN102990146A (en) * 2012-11-12 2013-03-27 大连经济技术开发区伊达工具有限公司 Fillet CBN (Cubic Boron Nitride) milling cutter
CN107876849A (en) * 2017-11-23 2018-04-06 天津大强钢铁有限公司 A kind of novel tapered rose cutter
CN111250763A (en) * 2020-03-06 2020-06-09 厦门金鹭特种合金有限公司 Small-diameter complex cutter for processing composite laminated plate
CN114378345A (en) * 2021-12-30 2022-04-22 株洲钻石切削刀具股份有限公司 Milling cutter for machining and forming large chamfer forming surface
CN114378345B (en) * 2021-12-30 2023-09-19 株洲钻石切削刀具股份有限公司 Large-chamfer forming surface machining forming milling cutter

Also Published As

Publication number Publication date
JP5403480B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP4653744B2 (en) CBN cutting tool for high quality and high efficiency machining
JP5088678B2 (en) Long neck radius end mill
JP2009241190A (en) Cbn radius end mill
JP6420239B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
WO2014057783A1 (en) Ball end mill and insert
JP2003311524A (en) Cemented carbide ball end mill
JP4975395B2 (en) Ball end mill
JP5403480B2 (en) Small diameter CBN end mill
JP2012091306A (en) End mill made of cemented carbide
JP2010162677A (en) Small-diameter cbn ball end mill
JP2010162677A5 (en)
JP2005111651A (en) Tip, milling cutter, and machining method using the same
JP5974695B2 (en) Drill and method for manufacturing drill tip
JP2007296588A (en) High hardness end mill
JP2010264592A (en) End mill for high-hardness materials
JP6228229B2 (en) Cutting insert, cutting tool, and manufacturing method of cut workpiece
JP7112584B2 (en) Diamond cutting tools for hard brittle and difficult-to-cut materials
JP4097515B2 (en) Ball end mill
JP6179165B2 (en) Radius end mill
JP6086180B1 (en) Replaceable blade cutting tool and insert
JP2013013962A (en) Cbn end mill
JP6212863B2 (en) Radius end mill
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP5906838B2 (en) Square end mill
JP4448386B2 (en) Small-diameter ball end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5403480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131020

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350