JP2010123267A - Cold cathode lamp and light-emitting device - Google Patents

Cold cathode lamp and light-emitting device Download PDF

Info

Publication number
JP2010123267A
JP2010123267A JP2008293040A JP2008293040A JP2010123267A JP 2010123267 A JP2010123267 A JP 2010123267A JP 2008293040 A JP2008293040 A JP 2008293040A JP 2008293040 A JP2008293040 A JP 2008293040A JP 2010123267 A JP2010123267 A JP 2010123267A
Authority
JP
Japan
Prior art keywords
electrode
mercury
cold cathode
discharge lamp
cathode discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008293040A
Other languages
Japanese (ja)
Inventor
Nobuaki Shindo
信明 新藤
Tetsuya Takano
哲也 高野
Yasuaki Hara
泰明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Shomei Precision Corp
Original Assignee
Toshiba Shomei Precision Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Shomei Precision Corp filed Critical Toshiba Shomei Precision Corp
Priority to JP2008293040A priority Critical patent/JP2010123267A/en
Priority to KR1020090062486A priority patent/KR20100055316A/en
Priority to TW098127876A priority patent/TW201021083A/en
Priority to CN200910168300A priority patent/CN101740304A/en
Publication of JP2010123267A publication Critical patent/JP2010123267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/50Means forming part of the tube or lamps for the purpose of providing electrical connection to it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/09Hollow cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/545Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode inside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/76Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only
    • H01J61/78Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only with cold cathode; with cathode heated only by discharge, e.g. high-tension lamp for advertising

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold cathode discharge lamp in which an environmental load can be reduced by controlling consumption of mercury due to sputtering and reducing the amount of mercury filled in the bulb and a light-emitting device using this cold cathode discharge lamp. <P>SOLUTION: The cold cathode discharge lamp 1 is provided with a translucent airtight bulb 2 in which rare gas and mercury are filled and a phosphor layer 4 is formed on the inner circumferential face, a pair of cylindrical electrodes 5 formed of Ni or Ni alloy which are installed opposed to at both end parts of the airtight bulb 2, of which one end side is made an aperture part 5a and the other end side is made a bottom end part 5b, and in which the length dimension in axial direction from the aperture part 5b toward the bottom end part 5b is 13 mm or more, and the ratio of the length dimension to the outer diameter dimension is 4 or more, and an electrode lead wire 6 which is jointed to the bottom end part 5b of the cylindrical electrode 5 and supplies power. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水銀封入量を削減できる冷陰極放電ランプ及びこの冷陰極放電ランプを用いた発光装置に関する。   The present invention relates to a cold cathode discharge lamp capable of reducing the amount of mercury enclosed and a light emitting device using the cold cathode discharge lamp.

従来、液晶ディスプレイに用いられるバックライトには、その光源として冷陰極放電ランプが使用されており、この冷陰極放電ランプの電極には、成形加工性に優れ、比較的安価なNi材料が広く用いられている。ところが、この種、冷陰極放電ランプにおいては、点灯の際の放電の過程で、イオン化された封入ガスが電極に衝突し、電極物質が飛散するスパッタリングという現象が生じる。このスパッタリングにより飛散した電極物質は、放電ランプのバルブ内に封入された水銀と結合し合金となり、水銀蒸気を消耗させ有効水銀量を低減させる。その結果、冷陰極放電ランプの寿命の低下につながっている。特に、液晶ディスプレイの表面輝度を向上するため、放電ランプの放電電流を多く流し、光出力を増大させようとする場合は顕著となる。このため、放電ランプのバルブ内には、スパッタリングによる水銀の減少分を補う等の理由で、本来放電を維持するために必要な水銀量を超えて過剰に水銀を封入しなければならない。   Conventionally, a cold cathode discharge lamp has been used as a light source for a backlight used in a liquid crystal display, and an electrode of this cold cathode discharge lamp is widely used with a Ni material that is excellent in molding processability and relatively inexpensive. It has been. However, in this type of cold cathode discharge lamp, a phenomenon of sputtering in which the ionized sealed gas collides with the electrode and the electrode material scatters in the process of discharge during lighting. The electrode material scattered by sputtering is combined with mercury enclosed in the bulb of the discharge lamp to become an alloy, which consumes mercury vapor and reduces the effective mercury amount. As a result, the lifetime of the cold cathode discharge lamp is reduced. In particular, in order to improve the surface brightness of the liquid crystal display, a large amount of discharge current of the discharge lamp flows to increase the light output. For this reason, in the bulb of the discharge lamp, excessive mercury must be enclosed in excess of the amount of mercury necessary to maintain the discharge for the purpose of compensating for the decrease in mercury due to sputtering.

したがって、近年の液晶ディスプレイ等の需要の増加に伴う冷陰極放電ランプの出荷数の増大は、少なくとも前記水銀量との関係において環境負荷の増大を招いている。   Therefore, an increase in the number of cold cathode discharge lamps shipped with an increase in demand for liquid crystal displays and the like in recent years has led to an increase in environmental load at least in relation to the amount of mercury.

一方、電極のスパッタ率を低下させ、水銀の消耗を少なくし、ランプの寿命を向上させるために、電極をNb又はTaを含有するNi合金で形成するものが提案されている(特許文献1参照)。
特開2004−235073号公報
On the other hand, in order to reduce the sputtering rate of the electrode, reduce mercury consumption, and improve the life of the lamp, there has been proposed an electrode formed of a Ni alloy containing Nb or Ta (see Patent Document 1). ).
JP 2004-235073 A

しかしながら、特許文献1に示されたものは、スパッタ率を低下させることは可能ではあるが、スパッタリングよって飛散する電極物質は発生するので、この電極物質によって水銀は消耗し、その分、過剰に水銀を封入しなければならない。   However, although it is possible to reduce the sputtering rate in the one disclosed in Patent Document 1, since an electrode material scattered by sputtering is generated, mercury is consumed by this electrode material, and an excessive amount of mercury is generated. Must be enclosed.

本発明は、上記課題に鑑みなされたもので、スパッタリングによる水銀の消耗を抑制し、バルブ内に封入する水銀量を削減し、環境負荷を軽減し得る冷陰極放電ランプ及びこの冷陰極放電ランプを用いた発光装置を提供することを目的とする。   The present invention has been made in view of the above problems. A cold cathode discharge lamp capable of suppressing mercury consumption due to sputtering, reducing the amount of mercury enclosed in a bulb, and reducing the environmental load, and the cold cathode discharge lamp. An object is to provide a light emitting device used.

請求項1に記載の冷陰極放電ランプは、内部に希ガス及び水銀が封入され、内周面に蛍光体層が形成された透光性の気密バルブと;この気密バルブの両端部に対向して一対封装され、一端側を開口部とし他端側を底端部とし、前記開口部から底端部に向かう軸方向の長さ寸法が13mm以上であって、外径寸法に対する長さ寸法の比が4以上のNi又はNi合金から形成された筒状電極と;この筒状電極の前記底端部に接合されて給電を行う電極リード線と;を具備していることを特徴とする。気密バルブは、直線状、U字状、L字状やコ字状等のものを適用でき、格別その形状が限定されるものではない。   The cold cathode discharge lamp according to claim 1 is a translucent airtight bulb in which a rare gas and mercury are enclosed, and a phosphor layer is formed on an inner peripheral surface thereof; opposed to both ends of the airtight bulb. And the other end side is the bottom end, the length in the axial direction from the opening toward the bottom end is 13 mm or more, and the length is relative to the outer diameter. A cylindrical electrode formed of Ni or a Ni alloy having a ratio of 4 or more; and an electrode lead wire that is joined to the bottom end portion of the cylindrical electrode and supplies power. As the airtight valve, a linear shape, a U-shape, an L-shape, a U-shape or the like can be applied, and the shape is not particularly limited.

請求項2に記載の発光装置は、装置本体と;この装置本体に装着された請求項1に記載の冷陰極放電ランプと;を具備していることを特徴とする。発光装置は、ディスプレイ装置やいわゆる空間を照らす照明器具を含む概念である。   A light emitting device according to a second aspect of the present invention includes: a device main body; and the cold cathode discharge lamp according to the first aspect mounted on the device main body. The light emitting device is a concept including a display device and a so-called lighting fixture that illuminates a space.

請求項1に記載の発明によれば、スパッタリングによる水銀の消耗を抑制し、バルブ内に封入する水銀量を削減して環境負荷を軽減し得る冷陰極放電ランプを提供することができる。   According to the first aspect of the present invention, it is possible to provide a cold cathode discharge lamp that can suppress the consumption of mercury by sputtering and reduce the amount of mercury enclosed in the bulb, thereby reducing the environmental load.

請求項2に記載の発明によれば、請求項1に記載の冷陰極放電ランプの効果を奏する発光装置を提供できる。   According to invention of Claim 2, the light-emitting device which has an effect of the cold cathode discharge lamp of Claim 1 can be provided.

以下、本発明の実施形態に係る冷陰極放電ランプについて図1乃至図3を参照して説明する。なお、各図において同一部分には同一符号を付し、重複した説明は省略する。図1は、冷陰極放電ランプを示す断面図、図2及び図3は、同本実施形態を説明するための模式的断面図である。   Hereinafter, a cold cathode discharge lamp according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. In addition, the same code | symbol is attached | subjected to the same part in each figure, and the overlapping description is abbreviate | omitted. FIG. 1 is a cross-sectional view showing a cold cathode discharge lamp, and FIGS. 2 and 3 are schematic cross-sectional views for explaining the embodiment.

まず、本実施形態の前提となる冷陰極放電ランプについて説明する。図1に示すように、冷陰極放電ランプ1は、透光性の気密バルブとしてガラスバルブ2と電極ユニット3とを備えている。ガラスバルブ2は、半硬質ガラスから形成されている。なお、半硬質ガラスに限らず、硬質ガラス、軟質ガラス等を適用でき、また、硼・珪酸ガラス、ソーダガラス等、ガラスの組成も格別限定されるものではない。この冷陰極放電ランプ1は、液晶パネルのバックライトの光源として用いられる場合、ガラスバルブ2の外径の種類にφ1.5mm〜φ5.0mmの範囲内において数種類のものが用意され、液晶パネルの仕様に応じて使い分けられる。そして、長さも150mm〜1300mm程度のものが用意されており、その寸法は、細径化、長尺化傾向にある。ガラスバルブ2は両端が封止されて内部に密閉空間が形成されており、Ar、Xe、Ne等の希ガス及び水銀蒸気が封入されている。また、ガラスバルブ2の内周面には、蛍光体層の蛍光膜4が形成されている。蛍光膜4は、ハロリン酸塩蛍光体や希土類金属酸化物蛍光体等が適用され得る。   First, a cold cathode discharge lamp that is a premise of the present embodiment will be described. As shown in FIG. 1, the cold cathode discharge lamp 1 includes a glass bulb 2 and an electrode unit 3 as a translucent airtight bulb. The glass bulb 2 is formed from semi-hard glass. In addition, not only semi-hard glass but hard glass and soft glass can be applied, and the composition of the glass such as boro-silicate glass and soda glass is not particularly limited. When the cold cathode discharge lamp 1 is used as a light source for a backlight of a liquid crystal panel, several types of glass bulbs 2 having an outer diameter of φ1.5 mm to φ5.0 mm are prepared. It is used properly according to the specifications. And the thing of about 150 mm-1300 mm in length is prepared, and the dimension exists in the tendency for diameter reduction and lengthening. The glass bulb 2 is sealed at both ends to form a sealed space, and is filled with a rare gas such as Ar, Xe, Ne, and mercury vapor. A fluorescent film 4 of a phosphor layer is formed on the inner peripheral surface of the glass bulb 2. The phosphor film 4 may be a halophosphate phosphor, a rare earth metal oxide phosphor, or the like.

電極ユニット3は、筒状電極5と、この筒状電極5に給電を行うために接合される電極リード線6とを備えている。電極5は、ガラスバルブ2の内径よりもやや小さい外径を有し、一端側を開口部5aとし他端側を底端部5bとするカップ形状であり、このようにカップ形状にすることによって、ホローカソード効果により陰極降下電圧を低下させることができる。また、電極5は、Ni又はNi合金からなり、板材をプレス加工又は線材を冷間鍛造加工することにより形成されている。   The electrode unit 3 includes a cylindrical electrode 5 and an electrode lead wire 6 joined to feed power to the cylindrical electrode 5. The electrode 5 has an outer diameter slightly smaller than the inner diameter of the glass bulb 2, and has a cup shape with one end side as an opening 5a and the other end side as a bottom end portion 5b. The cathode fall voltage can be lowered by the hollow cathode effect. The electrode 5 is made of Ni or a Ni alloy, and is formed by pressing a plate material or cold forging a wire.

電極リード線6は、封着部材6aとリード部材6bとから構成されており、封着部材6aの先端側は、電極5の底端部5bにレーザービーム溶接等によって接合されている。また、封着部材6aとリード部材6bとは、溶着によって接合されている。封着部材6aには、Kov(コバール)線が用いられており、リード部材6bには、ニッケル鉄合金の周りを銅で被覆したジュメット線が用いられている。   The electrode lead wire 6 includes a sealing member 6a and a lead member 6b, and the distal end side of the sealing member 6a is joined to the bottom end portion 5b of the electrode 5 by laser beam welding or the like. Moreover, the sealing member 6a and the lead member 6b are joined by welding. For the sealing member 6a, a Kov (Kovar) wire is used, and for the lead member 6b, a jumet wire having a nickel iron alloy covered with copper is used.

このように構成された電極ユニット3は、ガラスバルブ2の両端部に一対封装されており、カップ形状の電極5の開口部5aを互いに対向させて配置され、ガラスバルブ2の両端部から電極リード線6が導出されている。また、電極ユニット3のガラスバルブ2への封装にあたっては、封装に先立って封着部材6aにビードガラス7が溶着される。そして、電極ユニット3をガラスバルブ2に接合する際は、ビードガラス7とガラスバルブ2の端部とを溶融して封着する。   The electrode unit 3 configured in this manner is sealed in a pair at both ends of the glass bulb 2 and is disposed with the openings 5a of the cup-shaped electrode 5 facing each other. Line 6 is derived. Further, when sealing the electrode unit 3 to the glass bulb 2, the bead glass 7 is welded to the sealing member 6a prior to sealing. When the electrode unit 3 is joined to the glass bulb 2, the bead glass 7 and the end of the glass bulb 2 are melted and sealed.

次に、本発明者は、冷陰極放電ランプ1のガラスバルブ2内に封入する水銀量の削減を図るため、以下のとおり実験、測定を行い、調査分析を試みた。   Next, in order to reduce the amount of mercury enclosed in the glass bulb 2 of the cold cathode discharge lamp 1, the present inventor conducted experiments and measurements as follows, and tried investigation and analysis.

(実測例1)冷陰極放電ランプ1の初期品と、所定時間点灯し寿命試験を経過した寿命試験経過品との封入水銀量を測定した。また、寿命試験経過品については、水銀の消耗がどの部位で生じているかを把握するため、各部位ごとに水銀の付着量を測定した。その結果、下表のとおりとなった。   (Measurement Example 1) The amount of mercury contained in the initial product of the cold cathode discharge lamp 1 and the product in the life test that had been turned on for a predetermined time and passed the life test were measured. In addition, with regard to products that have undergone a life test, the amount of mercury deposited was measured at each site in order to determine where the mercury was consumed. The result is shown in the table below.

Figure 2010123267
Figure 2010123267

ここで、初期品の水銀封入量は3.9mgである。部位における「バルブ黒化部」とは、図2に示すように、寿命試験経過品における一対の電極5の開口部5a近傍に生じるガラスバルブ2の内面の黒化部Bkを指している。また、「黒化なし蛍光体層部」とは、主として黒化部Bkを除いたガラスバルブ2の内面の蛍光体層部を指している。この結果から、封入された水銀は、バルブ黒化部Bkに集中していることが判明した。さらに、この黒化部Bkを分析した結果、黒化部Bkから電極5材料と同一元素が検出され、これは点灯の際の放電の過程で電極5がスパッタリングされて飛散した電極物質であることが判明した。また、スパッタリングされた電極物質は微細な分子状態で飛散しているため活性であり水銀蒸気と反応し蒸気圧の低い化合物として黒化部Bkに付着していることが確認できた。   Here, the mercury content of the initial product is 3.9 mg. As shown in FIG. 2, the “bulb blackened portion” in the part refers to a blackened portion Bk on the inner surface of the glass bulb 2 generated in the vicinity of the openings 5 a of the pair of electrodes 5 in the life test progress product. The “non-blackened phosphor layer portion” mainly refers to the phosphor layer portion on the inner surface of the glass bulb 2 excluding the blackened portion Bk. From this result, it was found that the enclosed mercury was concentrated in the valve blackening portion Bk. Furthermore, as a result of analyzing the blackened portion Bk, the same element as the material of the electrode 5 is detected from the blackened portion Bk, and this is an electrode material that is spattered by the electrode 5 being sputtered during the discharge process at the time of lighting. There was found. Further, it was confirmed that the sputtered electrode material is active because it is scattered in a fine molecular state, reacts with mercury vapor, and adheres to the blackened portion Bk as a compound having a low vapor pressure.

したがって、このスッパタリングされた電極物質と水銀との反応を防止又は抑制すれば初期の水銀封入量を削減できるものと考えられる。なお、筒状電極5のどの部位がスパッタリングされているかをX線撮影で観察したところ、内周面の底端部5b近傍の部分Stが選択的にスパッタリングされていることが判明した。   Therefore, it is considered that the initial mercury sealing amount can be reduced by preventing or suppressing the reaction between the sputtered electrode material and mercury. It was found by X-ray imaging which part of the cylindrical electrode 5 was sputtered, and the portion St in the vicinity of the bottom end portion 5b on the inner peripheral surface was selectively sputtered.

(実測例2)次に、図3に示すように、具体的に、電極として外径寸法φ2.1mm、肉厚寸法t0.1mm、開口部5aから底端部5bまでの軸方向の長さ寸法L=5mm(図3(a))、L=7mm(図3(b))、L=10mm(図3(c))の3種類のNi合金からなる筒状電極5を用意し、この筒状電極5に外径寸法0.8mm、長さ寸法4mmのKov線の封着部材6aを接合し、電極ユニット3を構成した。これら電極ユニット3を外径寸法3.4mm、長さ寸法1000mmのガラスバルブ2の両端部に封装し、内部に希ガスとしてNe−Arを6×10Pa、水銀3.9mgを封入して冷陰極放電ランプ1を製作した。そして、これら冷陰極放電ランプ1をランプ電流10mAで6000時間点灯し、外観観察及びバルブ内封入水銀の分析を行った結果、下表のとおりとなった。本実測にあたっては、まず、筒状電極5の長さ寸法がL=5mm(図3(a))とL=7mm(図3(b))のランプについて測定分析を行い、その結果を踏まえて長さ寸法L=10mm(図3(c))のランプについて測定分析を行った。 (Measurement Example 2) Next, as shown in FIG. 3, specifically, the electrode has an outer diameter of φ2.1 mm, a wall thickness of t0.1 mm, and an axial length from the opening 5a to the bottom end 5b. A cylindrical electrode 5 made of three kinds of Ni alloys having dimensions L 1 = 5 mm (FIG. 3A), L 2 = 7 mm (FIG. 3B), and L 3 = 10 mm (FIG. 3C) is prepared. Then, a Kov line sealing member 6 a having an outer diameter of 0.8 mm and a length of 4 mm was joined to the cylindrical electrode 5 to constitute the electrode unit 3. These electrode units 3 are sealed at both ends of a glass bulb 2 having an outer diameter of 3.4 mm and a length of 1000 mm, and Ne—Ar 6 × 10 3 Pa and mercury 3.9 mg are enclosed as rare gases. A cold cathode discharge lamp 1 was manufactured. These cold cathode discharge lamps 1 were lit for 6000 hours at a lamp current of 10 mA, and the appearance was observed and the mercury contained in the bulb was analyzed. In this actual measurement, first, measurement analysis is performed for a lamp having the length of the cylindrical electrode 5 of L 1 = 5 mm (FIG. 3A) and L 2 = 7 mm (FIG. 3B), and the result is shown. Based on this, a measurement analysis was performed on a lamp having a length L 3 = 10 mm (FIG. 3C).

Figure 2010123267
Figure 2010123267

ここで、各部位におけるサンプリングは、ガラスバルブ2の両端の封止部から5mmの位置P1でガラスバルブ2を切断し、電極5を取出し「電極部」とするとともに、封止部から15mmの位置P2でガラスバルブ2を切断し、当該部を「バルブ黒化部」Aとし、残部の中央部のガラスバルブ2の部分を「黒化なし蛍光体層部」とした。   Here, sampling at each part is performed by cutting the glass bulb 2 at a position P1 of 5 mm from the sealing portions at both ends of the glass bulb 2 to take out the electrode 5 as an “electrode portion” and at a position 15 mm from the sealing portion. The glass bulb 2 was cut at P2, and this portion was designated as “bulb blackened portion” A, and the remaining central portion of the glass bulb 2 was designated as “non-blackened phosphor layer portion”.

図3(a)及び図3(b)に示すように、筒状電極5の長さ寸法がL=5mmとL=7mmのランプでは、スパッタリングが発生する位置は変わりなく、筒状電極5の内周面の底端部5b近傍の部分Stが選択的にスパッタリングされていた。また、電極5の開口部5a近傍に生じるガラスバルブ2の内面の黒化部Bkの長さ寸法は、電極5の長さ寸法がL=5mmのランプとL=7mmのランプでは、違いがあり、L=5mmのランプは約3mm、L=7mmのランプは約1mmで、L=5mmのランプの方が長く、電極5の長さ寸法と黒化部Bkの長さ寸法の和は、約8mmで同一になることが判明した。さらに、前記実測例1と同様に、封入された水銀は、バルブ黒化部Bkに集中していることが分かる。したがって、これらは、電極5のスパッタリングが発生する位置が同一で、電極5の飛散物質の飛散位置が同一なことから、電極5の飛散物質はスパッタリングが発生する位置から物理的に飛来してくると判断され、筒状電極5の長さ寸法を長くし、電極5の飛散物質が電極5の内周部に収まるようにすれば、飛散物質が水銀と結合して化合物を形成することがないと考えられる。 As shown in FIGS. 3 (a) and 3 (b), the position where the sputtering occurs in the lamp with the cylindrical electrode 5 having a length dimension of L 1 = 5 mm and L 2 = 7 mm remains unchanged. A portion St in the vicinity of the bottom end portion 5b of the inner peripheral surface 5 was selectively sputtered. Further, the length dimension of the blackened portion Bk on the inner surface of the glass bulb 2 generated in the vicinity of the opening 5a of the electrode 5 is different between the lamp with the length dimension of the electrode 5 of L 1 = 5 mm and the lamp with L 2 = 7 mm. The lamp of L 1 = 5 mm is about 3 mm, the lamp of L 2 = 7 mm is about 1 mm, and the lamp of L 1 = 5 mm is longer, the length dimension of the electrode 5 and the length dimension of the blackened portion Bk Was found to be the same at about 8 mm. Further, it can be seen that, as in the first measurement example, the enclosed mercury is concentrated in the valve blackening portion Bk. Therefore, since the position where the sputtering of the electrode 5 occurs is the same and the scattering position of the scattering material of the electrode 5 is the same, the scattering material of the electrode 5 physically comes from the position where the sputtering occurs. If the length of the cylindrical electrode 5 is increased and the scattering material of the electrode 5 is accommodated in the inner periphery of the electrode 5, the scattering material will not combine with mercury to form a compound. it is conceivable that.

前記知見を踏まえ、図3(c)に示すように、筒状電極5の長さ寸法L=10mmのランプでは、電極5の飛散物質が電極5の内周部に収まっていると考えられ、ガラスバルブ2の「バルブ黒化部」Aには、黒化は見られず、水銀もほとんど検出されていない。 Based on the above knowledge, as shown in FIG. 3C, it is considered that in the lamp with the length L 3 of the cylindrical electrode 5 = 10 mm, the scattered material of the electrode 5 is contained in the inner periphery of the electrode 5. In the “bulb blackening portion” A of the glass bulb 2, no blackening is observed, and almost no mercury is detected.

(実測例3)図示は省略するが、実測例2とは、筒状電極5の寸法等の条件を変えて同様な測定を行った。外径寸法φ2.7mm、肉厚寸法t0.1mm、長さ寸法L=5mm、L=7mm、L=10mm、L=15mmの4種類のNi合金からなる筒状電極5を用意し、この筒状電極5に外径寸法0.8mm、長さ寸法4mmのKov線の封着部材6aを接合し、電極ユニット3を構成した。これら電極ユニット3を外径寸法3.4mm、長さ寸法1000mmのガラスバルブ2の両端部に封装し、内部に希ガスとしてNe−Arを6×10Pa、水銀3.9mgを封入して冷陰極放電ランプ1を製作した。そして、これら冷陰極放電ランプ1をランプ電流13mAで6000時間点灯し、外観観察及びバルブ内封入水銀の分析を行った結果、下表のとおりとなった。 (Actual measurement example 3) Although not shown, the same measurement as in the actual measurement example 2 was performed by changing conditions such as the dimensions of the cylindrical electrode 5. Outer diameter φ2.7mm, thickness dimension T0.1Mm, length L 1 = 5mm, L 2 = 7mm, L 3 = 10mm, prepared cylindrical electrode 5 made of four kinds of Ni alloy L 4 = 15 mm Then, a Kov line sealing member 6 a having an outer diameter of 0.8 mm and a length of 4 mm was joined to the cylindrical electrode 5 to constitute the electrode unit 3. These electrode units 3 are sealed at both ends of a glass bulb 2 having an outer diameter of 3.4 mm and a length of 1000 mm, and Ne—Ar 6 × 10 3 Pa and mercury 3.9 mg are enclosed as rare gases. A cold cathode discharge lamp 1 was manufactured. These cold cathode discharge lamps 1 were lit for 6000 hours at a lamp current of 13 mA, and the appearance was observed and the mercury contained in the bulb was analyzed.

Figure 2010123267
Figure 2010123267

本実測例から分かるように、ガラスバルブ2の黒化は、電極5の長さ寸法L=5mm、L=7mmのランプに発生しており、電極5の開口部5a近傍に生じるガラスバルブ2の内面の黒化部Bkの長さ寸法は、電極5の長さ寸法がL=5mmのランプは約3mm、L=7mmのランプは約1mmで、電極5の長さ寸法と黒化部Bkの長さ寸法の和は、約8mmで同一となった。また、封入された水銀は、バルブ黒化部Bkに集中していることが分かる。一方、電極5の長さ寸法L=10mm、L=15mmのランプには、ガラスバルブ2の黒化は見られない。さらに、電極5の内周部を調べてみると、電極5の飛散物質が付着していたが、これら飛散物質には水銀はほとんど検出できなかった。この水銀の結合がない理由は次のように説明できる。 As can be seen from this actual measurement example, the blackening of the glass bulb 2 occurs in the lamp having the length dimensions L 1 = 5 mm and L 2 = 7 mm of the electrode 5, and the glass bulb generated in the vicinity of the opening 5 a of the electrode 5. The length of the blackened portion Bk on the inner surface of the electrode 2 is about 3 mm for the lamp with the electrode 5 having a length L 1 = 5 mm and about 1 mm for the lamp with the L 2 = 7 mm. The sum of the lengths of the conversion parts Bk was the same at about 8 mm. It can also be seen that the enclosed mercury is concentrated in the valve blackening portion Bk. On the other hand, blackening of the glass bulb 2 is not observed in the lamp having the length dimensions L 3 = 10 mm and L 4 = 15 mm of the electrode 5. Further, when the inner peripheral portion of the electrode 5 was examined, scattered substances of the electrode 5 were adhered, but mercury was hardly detected in these scattered substances. The reason for the lack of mercury bonding can be explained as follows.

陰極としての電極5の内周部から放出された電子は電界によって加速され、エネルギーを得て空間に存在する気体分子を電離する。そして、この電離された気体は正イオンとなる。電極5の内周部からは次々と電子が放出されるため、これに伴い正イオンも生成されることになり、水銀イオンは電極5の内周部から電気的に排除され存在しなくなる。したがって、電極5の飛散物質が電極5の内周部に堆積し収まったとしても、飛散物質に水銀が結合することはない。換言すれば、電極5の飛散物質が電極5の内周部に収まるようにすれば飛散物質が水銀と結合して化合物を形成することがない。   Electrons emitted from the inner periphery of the electrode 5 as a cathode are accelerated by an electric field, and obtain energy to ionize gas molecules existing in the space. This ionized gas becomes positive ions. Since electrons are emitted one after another from the inner peripheral portion of the electrode 5, positive ions are also generated accordingly, and mercury ions are electrically excluded from the inner peripheral portion of the electrode 5 and do not exist. Therefore, even if the scattered material of the electrode 5 accumulates and settles on the inner peripheral portion of the electrode 5, mercury does not bind to the scattered material. In other words, if the scattering material of the electrode 5 is accommodated in the inner peripheral portion of the electrode 5, the scattering material does not combine with mercury to form a compound.

(考察)以上の実測例によって、電極5の飛散物質が電極5の内周部に収まるように筒状電極5の長さ寸法を設定すれば、封入水銀量を削減できるとの知見を得た。具体的には、電極5の長さ寸法と黒化部Bkの長さ寸法の和は、約8mmであるから、これが電極5の飛散物質の飛来距離と考えると、筒状電極5の長さ寸法を約8mmとすれば、飛散物質の大半を電極5の内周部に収めることができると考えられる。さらに、実測例3に従えば、筒状電極5の外径寸法に対する長さ寸法の比、すなわち、長さ寸法/外径寸法は、8mm/2.7mm≒3との結果となる。したがって、筒状電極5の長さ寸法を8mm以上、長さ寸法に対する外径寸法の比を3以上に設定することにより、スパッタリングによる水銀の消耗を抑制し、封入水銀量の削減が可能となる。これに基づき、電極5の飛散物質を電極5の内周部に収めるべく確実性を向上するには、実測例2及び実測例3から推量すると、筒状電極5の長さ寸法を13mm以上、外径寸法に対する長さ寸法の比を4以上に設定するのが好適となる。   (Consideration) According to the above measurement example, it was found that the amount of enclosed mercury can be reduced by setting the length dimension of the cylindrical electrode 5 so that the scattering material of the electrode 5 is accommodated in the inner peripheral portion of the electrode 5. . Specifically, since the sum of the length dimension of the electrode 5 and the length dimension of the blackened portion Bk is about 8 mm, the length of the cylindrical electrode 5 is considered when this is considered as the flying distance of the scattered material of the electrode 5. If the size is about 8 mm, it is considered that most of the scattered material can be accommodated in the inner peripheral portion of the electrode 5. Furthermore, according to the measurement example 3, the ratio of the length dimension to the outer diameter dimension of the cylindrical electrode 5, that is, the length dimension / outer diameter dimension is 8 mm / 2.7 mm≈3. Therefore, by setting the length dimension of the cylindrical electrode 5 to 8 mm or more and the ratio of the outer diameter dimension to the length dimension to 3 or more, consumption of mercury due to sputtering can be suppressed and the amount of enclosed mercury can be reduced. . Based on this, in order to improve the certainty so that the scattering material of the electrode 5 can be accommodated in the inner peripheral portion of the electrode 5, when inferred from the measurement examples 2 and 3, the length dimension of the cylindrical electrode 5 is 13 mm or more, The ratio of the length dimension to the outer diameter dimension is preferably set to 4 or more.

以上のように本実施形態によれば、前記考察で述べたように、電極5の飛散物質が電極5の内周部に収まるように筒状電極5の長さ寸法を設定することにより、スパッタリングによる水銀の消耗を抑制し、封入水銀量の削減が可能な冷陰極放電ランプ1を提供することができる。   As described above, according to the present embodiment, as described in the above consideration, the length dimension of the cylindrical electrode 5 is set so that the scattering material of the electrode 5 is accommodated in the inner peripheral portion of the electrode 5. Thus, it is possible to provide the cold cathode discharge lamp 1 capable of suppressing mercury consumption due to the reduction of the amount of enclosed mercury.

次に、本発明の発光装置の実施形態について説明する。図示は省略するが、上記実施形態の放電ランプ1は、装置本体に装着し、発光装置として構成できる。ここで、発光装置は、ディスプレイ装置やいわゆる空間を照らす照明器具を含む概念である。例えば、液晶パネルのバックライト装置等の各種ディスプレイ装置、また、屋内又は屋外で使用される照明器具に適用可能である。なお、バックライト装置にあっては、直下方式、サイドライト方式等のいずれでも適用可能である。このような発光装置によれば、上記実施形態の効果を奏する発光装置を提供できる。   Next, an embodiment of the light emitting device of the present invention will be described. Although not shown, the discharge lamp 1 of the above embodiment can be mounted on the apparatus body and configured as a light emitting device. Here, the light emitting device is a concept including a display device and a lighting fixture that illuminates a so-called space. For example, the present invention can be applied to various display devices such as a backlight device of a liquid crystal panel, and lighting equipment used indoors or outdoors. In the backlight device, any of a direct method, a side light method, and the like can be applied. According to such a light emitting device, it is possible to provide a light emitting device that exhibits the effects of the above embodiment.

冷陰極放電ランプを示す断面図である。It is sectional drawing which shows a cold cathode discharge lamp. 本発明の実施形態に係る冷陰極放電ランプを説明するための模式的断面図である。It is typical sectional drawing for demonstrating the cold cathode discharge lamp which concerns on embodiment of this invention. 同じく実施形態に係る冷陰極放電ランプを説明するための模式的断面図である。It is a typical sectional view for explaining a cold cathode discharge lamp concerning an embodiment similarly.

符号の説明Explanation of symbols

1・・・冷陰極放電ランプ、2・・・透光性の気密バルブ(ガラスバルブ)、
3・・・電極ユニット、4・・・蛍光体層、5・・・筒状電極、
5a・・・開口部、5b・・・底端部、6・・・電極リード線
DESCRIPTION OF SYMBOLS 1 ... Cold cathode discharge lamp, 2 ... Translucent airtight bulb (glass bulb),
3 ... electrode unit, 4 ... phosphor layer, 5 ... cylindrical electrode,
5a ... opening, 5b ... bottom end, 6 ... electrode lead wire

請求項1に記載の冷陰極放電ランプは、内部に希ガス及び水銀が封入され、内周面に蛍光体層が形成された透光性の気密バルブと;この気密バルブの両端部に対向して一対封装され、一端側を開口部とし他端側を底端部とし、前記開口部から底端部に向かう軸方向の長さ寸法が13mm以上であって、外径寸法に対する長さ寸法の比が4以上のNi又はNi合金から形成された軸方向に沿う断面の内面が平坦状の筒状電極と;この筒状電極の前記底端部に接合されて給電を行う電極リード線と;を具備していることを特徴とする。気密バルブは、直線状、U字状、L字状やコ字状等のものを適用でき、格別その形状が限定されるものではない。 The cold cathode discharge lamp according to claim 1 is a translucent airtight bulb in which a rare gas and mercury are enclosed, and a phosphor layer is formed on an inner peripheral surface thereof; opposed to both ends of the airtight bulb. And the other end side is the bottom end, the length in the axial direction from the opening toward the bottom end is 13 mm or more, and the length is relative to the outer diameter. A cylindrical electrode having a flat cross-section along the axial direction and formed of Ni or a Ni alloy having a ratio of 4 or more; an electrode lead wire joined to the bottom end of the cylindrical electrode to supply power; It is characterized by comprising. As the airtight valve, a linear shape, a U-shape, an L-shape, a U-shape or the like can be applied, and the shape is not particularly limited.

ここで、各部位におけるサンプリングは、ガラスバルブ2の両端の封止部から5mmの位置P1でガラスバルブ2を切断し、電極5を取出し「電極部」とするとともに、封止部から15mmの位置P2でガラスバルブ2を切断し、当該部を「バルブ黒化部」Aとし、残部の中央部のガラスバルブ2の部分を「黒化なし蛍光体層部」とした。 Here, sampling at each part is performed by cutting the glass bulb 2 at a position P1 of 5 mm from the sealing portions at both ends of the glass bulb 2 to take out the electrode 5 as an “electrode portion” and at a position 15 mm from the sealing portion. The glass bulb 2 was cut at P2, and this portion was designated as “bulb blackened portion” A, and the remaining central portion of the glass bulb 2 was designated as “non-blackened phosphor layer portion” B.

請求項1に記載の冷陰極放電ランプは、内部に希ガス及び水銀が封入され、内周面に蛍光体層が形成された透光性の気密バルブと;この気密バルブの両端部に対向して一対封装され、一端側を開口部とし他端側を底端部とし、前記開口部から底端部に向かう軸方向の長さ寸法が13mm以上であって、外径寸法に対する長さ寸法の比が4以上のNi又はNi合金からなり、板材をプレス加工又は線材を冷間鍛造加工することにより形成された軸方向に沿う断面の内面が平坦状の筒状電極と;この筒状電極の前記底端部に接合されて給電を行う電極リード線と;を具備していることを特徴とする。気密バルブは、直線状、U字状、L字状やコ字状等のものを適用でき、格別その形状が限定されるものではない。 The cold cathode discharge lamp according to claim 1 is a translucent airtight bulb in which a rare gas and mercury are enclosed, and a phosphor layer is formed on an inner peripheral surface thereof; opposed to both ends of the airtight bulb. And the other end side is the bottom end, the length in the axial direction from the opening toward the bottom end is 13 mm or more, and the length is relative to the outer diameter. A cylindrical electrode made of Ni or Ni alloy having a ratio of 4 or more, formed by pressing a plate material or cold forging a wire, and having a flat inner surface in a cross section along the axial direction; And an electrode lead wire that is joined to the bottom end portion and supplies power. As the airtight valve, a linear shape, a U-shape, an L-shape, a U-shape or the like can be applied, and the shape is not particularly limited.

Claims (2)

内部に希ガス及び水銀が封入され、内周面に蛍光体層が形成された透光性の気密バルブと;
この気密バルブの両端部に対向して一対封装され、一端側を開口部とし他端側を底端部とし、前記開口部から底端部に向かう軸方向の長さ寸法が13mm以上であって、外径寸法に対する長さ寸法の比が4以上のNi又はNi合金から形成された筒状電極と;
この筒状電極の前記底端部に接合されて給電を行う電極リード線と;
を具備していることを特徴とする冷陰極放電ランプ。
A light-transmitting airtight valve in which a rare gas and mercury are enclosed, and a phosphor layer is formed on the inner peripheral surface;
A pair of the airtight valves are sealed opposite to both end portions, one end side is an opening portion, the other end side is a bottom end portion, and an axial length dimension from the opening portion toward the bottom end portion is 13 mm or more. A cylindrical electrode formed of Ni or a Ni alloy having a ratio of a length dimension to an outer diameter dimension of 4 or more;
An electrode lead wire that is joined to the bottom end of the cylindrical electrode and feeds power;
A cold cathode discharge lamp comprising:
装置本体と;
この装置本体に装着された請求項1に記載の冷陰極放電ランプと;
を具備していることを特徴とする発光装置。
The device body;
The cold cathode discharge lamp according to claim 1 mounted on the apparatus body;
A light-emitting device comprising:
JP2008293040A 2008-11-17 2008-11-17 Cold cathode lamp and light-emitting device Pending JP2010123267A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008293040A JP2010123267A (en) 2008-11-17 2008-11-17 Cold cathode lamp and light-emitting device
KR1020090062486A KR20100055316A (en) 2008-11-17 2009-07-09 Cold cathode lamp and luminescent device
TW098127876A TW201021083A (en) 2008-11-17 2009-08-19 Cold cathode discharge lamp and luminescent device
CN200910168300A CN101740304A (en) 2008-11-17 2009-08-20 Cold-cathode discharge lamp and illuminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293040A JP2010123267A (en) 2008-11-17 2008-11-17 Cold cathode lamp and light-emitting device

Publications (1)

Publication Number Publication Date
JP2010123267A true JP2010123267A (en) 2010-06-03

Family

ID=42279815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293040A Pending JP2010123267A (en) 2008-11-17 2008-11-17 Cold cathode lamp and light-emitting device

Country Status (4)

Country Link
JP (1) JP2010123267A (en)
KR (1) KR20100055316A (en)
CN (1) CN101740304A (en)
TW (1) TW201021083A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312887A (en) * 1997-05-12 1998-11-24 Harison Electric Co Ltd Cold cathode discharge lamp lighting device
JP2002289138A (en) * 2001-03-28 2002-10-04 Matsushita Electric Ind Co Ltd Cold cathode fluorescent lamp
JP2005071972A (en) * 2003-08-07 2005-03-17 Omc Co Ltd Electrode for cold cathode tube, and manufacturing method of the same
JP2005243351A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Cold-cathode fluorescent lamp and backlight unit
JP2007250343A (en) * 2006-03-16 2007-09-27 Toshiba Corp Manufacturing method of sintered electrode for cold-cathode tube
WO2008044334A1 (en) * 2006-10-13 2008-04-17 Kabushiki Kaisha Toshiba Electrode for cold cathode tube and cold cathode tube employing it
JP2008108493A (en) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd Low pressure discharge lamp, backlight unit, and liquid crystal display device
JP2008123722A (en) * 2006-11-08 2008-05-29 Sumitomo Electric Ind Ltd Electrode material for cold-cathode fluorescent lamp
JP2008300043A (en) * 2007-05-29 2008-12-11 Stanley Electric Co Ltd Electrode for discharge tube, and cold-cathode fluorescent tube using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312887A (en) * 1997-05-12 1998-11-24 Harison Electric Co Ltd Cold cathode discharge lamp lighting device
JP2002289138A (en) * 2001-03-28 2002-10-04 Matsushita Electric Ind Co Ltd Cold cathode fluorescent lamp
JP2005071972A (en) * 2003-08-07 2005-03-17 Omc Co Ltd Electrode for cold cathode tube, and manufacturing method of the same
JP2005243351A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Cold-cathode fluorescent lamp and backlight unit
JP2007250343A (en) * 2006-03-16 2007-09-27 Toshiba Corp Manufacturing method of sintered electrode for cold-cathode tube
WO2008044334A1 (en) * 2006-10-13 2008-04-17 Kabushiki Kaisha Toshiba Electrode for cold cathode tube and cold cathode tube employing it
JP2008108493A (en) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd Low pressure discharge lamp, backlight unit, and liquid crystal display device
JP2008123722A (en) * 2006-11-08 2008-05-29 Sumitomo Electric Ind Ltd Electrode material for cold-cathode fluorescent lamp
JP2008300043A (en) * 2007-05-29 2008-12-11 Stanley Electric Co Ltd Electrode for discharge tube, and cold-cathode fluorescent tube using the same

Also Published As

Publication number Publication date
TW201021083A (en) 2010-06-01
CN101740304A (en) 2010-06-16
KR20100055316A (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4966008B2 (en) Sintered electrode for cold cathode tube, cold cathode tube equipped with this sintered electrode for cold cathode tube, and liquid crystal display device
EP0964432A1 (en) High pressure discharge lamp
JP2006269301A (en) Discharge lamp and lighting system
JP2003157801A (en) Cold-cathode fluorescent lamp having double tube structure
US20040135489A1 (en) Fluorescent lamp
EP1729325A2 (en) Ultra-high pressure mercury lamp
JP2010123267A (en) Cold cathode lamp and light-emitting device
JP2008218071A (en) Fluorescence tube
JP2008300043A (en) Electrode for discharge tube, and cold-cathode fluorescent tube using the same
JP2004253245A (en) Cold cathode fluorescent lamp
KR200296091Y1 (en) Cold cathode fluorescent lamp
JP2011100700A (en) Cold cathode discharge lamp device, and light emitting device
JP2010232168A (en) Cold-cathode discharge lamp
KR100582236B1 (en) Cold cathode fluorescent lamp
JP2005251585A (en) Cold cathode fluorescent lamp
US20060290280A1 (en) Cold cathode fluorescent lamp and electrode thereof
JPH1021873A (en) Discharge lamp electrode, manufacture of discharge lamp electrode, discharge lamp and back light device, and illumination system
JP2002313277A (en) Cold cathode fluorescent lamp
JPH06251746A (en) Cold cathode low pressure discharge lamp
KR200422765Y1 (en) Cold cathode type fluorescent lamp
JP2002042724A (en) Cold cathode fluorescent tube
JP2011113813A (en) Cold cathode discharge tube and method of using the same
JP2003123692A (en) Cold-cathode fluorescent lamp
JP2002033076A (en) Cold cathode fluorescent lamp
JP2007188649A (en) Cold cathode fluorescent tube and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100928

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127