JP2010122089A - Method and apparatus for computing direct current superposition inductance - Google Patents

Method and apparatus for computing direct current superposition inductance Download PDF

Info

Publication number
JP2010122089A
JP2010122089A JP2008296404A JP2008296404A JP2010122089A JP 2010122089 A JP2010122089 A JP 2010122089A JP 2008296404 A JP2008296404 A JP 2008296404A JP 2008296404 A JP2008296404 A JP 2008296404A JP 2010122089 A JP2010122089 A JP 2010122089A
Authority
JP
Japan
Prior art keywords
magnetic
inductance
field strength
curve
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008296404A
Other languages
Japanese (ja)
Inventor
Okikuni Takahata
興邦 高畑
Yoshitaka Saito
義孝 齋藤
Kenichi Chatani
健一 茶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008296404A priority Critical patent/JP2010122089A/en
Publication of JP2010122089A publication Critical patent/JP2010122089A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct current superposition inductance computing method capable of accurately computing the inductance and direct current superposition characteristics of magnetic parts with a small amount of computation in a short computation time without having to produce a trial product. <P>SOLUTION: By using, as the initial magnetization characteristics of a magnetic material, the integration characteristics of a characteristic curve of magnetic permeability-field strength of the magnetic material made of the same material as that of a magnetic member and having a closed magnetic circuit shape or characteristics obtained by performing demagnetization correction on the integration characteristics of a characteristic curve of magnetic permeability-field strength of the magnetic material made of the same material as that of the magnetic member and having an open magnetic circuit shape, inductance L is determined by equation on the basis of magnetic flux density B<SB>I</SB>and field strength H<SB>I</SB>generated by an exciting current I of the magnetic member to a characteristic DC current component; magnetic flux density B<SB>I+dI</SB>and field strength H<SB>I+dI</SB>generated by the sum of the exciting current I and a very small electric current dI; and the volume v of the space enveloping the magnetic member. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばスイッチング電源の平滑チョークのように直流電流に交流電流が重畳された電流で励磁される磁性部材のインダクタンスの算出方法および直流重畳インダクタンス算出装置に関する。   The present invention relates to a method for calculating an inductance of a magnetic member excited by a current in which an alternating current is superimposed on a direct current, such as a smoothing choke of a switching power supply, and a direct current superimposed inductance calculating apparatus.

直流重畳インダクタンスを計算装置により見積もることは、試作を行うことなく平滑チョーク等のインダクタの特性を把握することに有効であり、開発効率の向上や、開発期間の短縮に繋がる。   Estimating the DC superimposed inductance using a calculation device is effective for grasping the characteristics of an inductor such as a smooth choke without making a prototype, leading to improvement in development efficiency and shortening of the development period.

インダクタンスを見積もるための基礎となる磁界の計算には、マクスウェル方程式をもとに差分法や有限要素法による近似を行い、インダクタンスの計算の対象となる磁性部材を微小領域に分割して計算を行うことが一般的であり、例えば、特許文献1にはそのための基礎方程式および近似方法が記載されている。   For the calculation of the magnetic field that is the basis for estimating the inductance, the approximation is performed by the difference method or the finite element method based on the Maxwell equation, and the magnetic member that is the object of the inductance calculation is divided into small regions. For example, Patent Document 1 describes a basic equation and an approximation method therefor.

特許文献1では、直流重畳インダクタンスの計算に対し、以下が提案されている。即ち、直流電流に交流電流が重畳した電流で励磁された磁性部材のインダクタンスを算出するインダクタンス計算装置において、磁性部材と同一材質で反磁界係数が極小である形状をした磁性材料の初磁化特性及び磁性部材の幾何学情報に基づいて、直流電流成分に対する磁性部材の各微小領域の磁束密度を算出する第1磁束密度算出手段;第1磁束密度算出手段が算出した磁束密度と磁性部材と同一材質で反磁界係数が極小である形状をした磁性材料の増分透磁率に基づいて各微小領域の増分透磁率を決定する増分透磁率決定手段;磁性部材の各微小領域の増分透磁率と磁性部材の幾何学情報に基づいて磁性部材の交流電流成分に対する磁束密度及び磁界強度を算出する第2磁束密度及び磁界強度算出手段;および、第2磁束密度及び磁界強度算出手段が算出した磁束密度及び磁界強度に基づいて磁性部材のインダクタンスを算出する計算手段;を備える直流重畳のインダクタンス計算装置である。   In Patent Document 1, the following is proposed for the calculation of the DC superimposed inductance. That is, in an inductance calculation apparatus for calculating the inductance of a magnetic member excited by a current obtained by superimposing an alternating current on a direct current, the initial magnetization characteristics of the magnetic material having the same material as the magnetic member and a shape having a minimum demagnetizing factor and First magnetic flux density calculating means for calculating the magnetic flux density of each minute region of the magnetic member with respect to the direct current component based on geometric information of the magnetic member; the magnetic flux density calculated by the first magnetic flux density calculating means and the same material as the magnetic member Incremental permeability determining means for determining the incremental permeability of each minute region based on the incremental permeability of a magnetic material having a shape having a minimum demagnetizing field coefficient; the incremental permeability of each minute region of the magnetic member and the magnetic member Second magnetic flux density and magnetic field strength calculating means for calculating a magnetic flux density and a magnetic field strength with respect to an alternating current component of the magnetic member based on geometric information; and a second magnetic flux density and a magnetic field An inductance computing device DC superposition comprising; degrees calculating means calculating means for calculating the inductance of the magnetic member based on the magnetic flux density and magnetic field strength was calculated.

特許文献1のインダクタンス算出法によれば、磁性部品と同一材質で反磁界係数が極小である形状をした磁性材料の初磁化特性から算出された磁性部品の直流バイアス電流成分に対する磁束密度(Bdc)と磁性材料の増分透磁率(μ)に基づいて材料定数を決定し、材料定数から算出された磁性部品の交流電流成分に対する磁束密度(Bac)に基づいて磁性部品のインダクタンス(L)を算出するため、1個の磁性材料により任意の形状をした磁性部品の直流重畳特性を特に磁性部品を試作することなく精度よく算出でき、試作費用および試作期間が短縮されると記載されている。   According to the inductance calculation method of Patent Document 1, the magnetic flux density (Bdc) with respect to the DC bias current component of the magnetic component calculated from the initial magnetization characteristics of the magnetic material having the same material as the magnetic component and the shape having the smallest demagnetizing factor. The material constant is determined based on the incremental permeability (μ) of the magnetic material, and the inductance (L) of the magnetic component is calculated based on the magnetic flux density (Bac) with respect to the alternating current component of the magnetic component calculated from the material constant. Therefore, it is described that the DC superimposition characteristic of a magnetic part having an arbitrary shape with one magnetic material can be accurately calculated without particularly making a magnetic part prototype, and the trial cost and the trial period are shortened.

また、1回の計算が小型計算機でも比較的短時間に行えるため複数の材質特性,形状に関して計算水準を設けることができ、機器の設計上必要とされる所定の直流重畳特性に対し最適な材質、形状を決定しうると記載されている。   In addition, since a single calculation can be performed in a relatively short time even on a small computer, calculation levels can be set for multiple material characteristics and shapes, and the optimum material for the specified DC superimposition characteristics required for equipment design. The shape can be determined.

特許第2984108号公報Japanese Patent No. 2984108

しかしながら、特許文献1に記載されたインダクタンス算出法では、インダクタンスを算出するのに未だ計算量が多く、そのために時間がかかるという問題があった。   However, the inductance calculation method described in Patent Document 1 has a problem in that it requires a large amount of calculation to calculate the inductance, which takes time.

特許文献1においては、計算過程において磁性部材と同一材質で反磁界係数が極小である形状をした磁性材料の初磁化特性及び磁性部材の幾何学情報に基づいて、直流電流成分に対する磁性部材の各微小領域の磁束密度(Bdc)を算出するという過程、第1磁束密度算出手段が算出した磁束密度(Bdc)と磁性部材と同一材質で反磁界係数が極小である形状をした磁性材料の増分透磁率に基づいて各微小領域の増分透磁率を決定する過程、即ち磁性部材の各微小領域に着目した計算手段が必須となっている。   In Patent Document 1, based on the initial magnetization characteristics and magnetic member geometric information of a magnetic material that has the same material as the magnetic member and has a minimal demagnetizing factor in the calculation process, The process of calculating the magnetic flux density (Bdc) of the minute region, the incremental transmission of the magnetic material having the same material as the magnetic member and the magnetic material having the minimum demagnetizing factor coefficient, and the magnetic flux density (Bdc) calculated by the first magnetic flux density calculating means. A process for determining the incremental magnetic permeability of each minute region based on the magnetic permeability, that is, a calculation means focusing on each minute region of the magnetic member is essential.

磁性部材のインダクタンス算出において、差分法や有限要素法による近似を行う際には、磁性部材を微小領域に分割することが一般的である。その分割数は、精度良くインダクタンスを算出するためには、例えば数mm立法程度の磁性部材においても数百〜数万、場合によっては数十万に及ぶ。このような磁性部材の分割数一点一点に対して、磁性部材と同一材質で反磁界係数が極小である形状をした磁性材料の初磁化特性及び磁性部材の幾何学情報に基づいて、直流電流成分に対する磁性部材の各微小領域の磁束密度(Bdc)を算出するという過程、第1磁束密度算出手段が算出した磁束密度(Bdc)と磁性部材と同一材質で反磁界係数が極小である形状をした磁性材料の増分透磁率に基づいて各微小領域の増分透磁率を決定する過程を経ることは、そのままでは計算量が多く、計算時間がかかることを意味する。   In calculating the inductance of a magnetic member, when performing approximation by a difference method or a finite element method, the magnetic member is generally divided into minute regions. In order to accurately calculate the inductance, the number of divisions is, for example, several hundred to several tens of thousands even in a magnetic member of about several millimeters, and in some cases, several hundreds of thousands. Based on the initial magnetization characteristics of the magnetic material having the same material as the magnetic member and the minimum demagnetizing factor, and the geometric information of the magnetic member for each division number of the magnetic member, The process of calculating the magnetic flux density (Bdc) of each minute region of the magnetic member with respect to the current component, the shape with the same material as the magnetic flux density (Bdc) calculated by the first magnetic flux density calculating means and the minimum demagnetizing field coefficient The process of determining the incremental magnetic permeability of each minute region based on the incremental magnetic permeability of the magnetic material that has been processed means that the calculation amount is large as it is and the calculation time is long.

そこで本発明の課題は、特に試作品を製作することなく、かつ少ない計算量、計算時間で磁性部品のインダクタンス、直流重畳特性を算定できる直流重畳インダクタンス算出方法および直流重畳インダクタンス算出装置を提供することにある。   Accordingly, an object of the present invention is to provide a DC superimposed inductance calculating method and a DC superimposed inductance calculating apparatus capable of calculating the inductance and DC superimposed characteristics of a magnetic component without producing a prototype, and with a small amount of calculation and calculation time. It is in.

前記課題を解決するため、本発明者等は種々検討の結果、以下の発明をするに至った。すなわち、直流電流に交流電流を重畳した電流で励磁された磁性部材のインダクタンス算出方法であって、磁性部材と同一材質で閉磁路形状をした磁性材の初磁化特性に基づき、直流電流成分に対する磁性部材の励磁電流Iによって生じる第1の磁束密度B、第1の磁界強度H、及び励磁電流Iと重畳される微少電流dIとの和(I+dI)によって生じる第2の磁束密度BI+dI、第2の磁界強度HI+dI、及び磁性部材を内包する空間の体積vから、インダクタンスLを数1によって求めることによって、少ない計算量、計算時間で磁性部品のインダクタンス、直流重畳特性を算定できる直流重畳インダクタンス算出方法を提供することが可能であることを見出した。 In order to solve the above problems, the present inventors have made the following inventions as a result of various studies. That is, a method for calculating the inductance of a magnetic member excited by a current obtained by superimposing an alternating current on a direct current, which is based on the initial magnetization characteristics of a magnetic material having the same material as that of the magnetic member and having a closed magnetic circuit shape. A second magnetic flux density B I + dI generated by the first magnetic flux density B I generated by the excitation current I of the member, the first magnetic field strength H I , and the sum of the excitation current I and the minute current dI superimposed (I + dI), DC superposition that can calculate the inductance of the magnetic component and the DC superposition characteristics with a small amount of calculation and calculation time by calculating the inductance L from the second magnetic field strength H I + dI and the volume v of the space containing the magnetic member according to Equation 1. It has been found that an inductance calculation method can be provided.

Figure 2010122089
Figure 2010122089

また、磁束密度及び磁界強度を算出するための初磁化特性として、予め測定しておいた磁性部材と同一材質で閉磁路形状をした磁性材の透磁率−磁界強度特性曲線を積分した積分特性を用いることによって、直流重畳インダクタンスの算出を精度良く行うことができることを見出した。   In addition, as an initial magnetization characteristic for calculating the magnetic flux density and the magnetic field strength, an integral characteristic obtained by integrating a permeability-magnetic field strength characteristic curve of a magnetic material having a closed magnetic circuit shape made of the same material as the magnetic member measured in advance is used. It has been found that the calculation of the DC superimposed inductance can be performed with high accuracy by using it.

更に、磁性部材が実質的に反磁界係数を有する開磁路構造である場合、磁束密度及び磁界強度を算出するための初磁化特性として、磁性部材と同一材質で開磁路形状をした磁性材の透磁率−磁界強度特性曲線を積分した積分特性に対し磁性部材が有する反磁界係数を用いて反磁界補正を行った積分特性を用いることによって、直流重畳インダクタンスの算出を精度良く行うことができることを見出した。   Furthermore, when the magnetic member has an open magnetic circuit structure having substantially a demagnetizing field coefficient, the magnetic material having the same magnetic material as the magnetic member and having an open magnetic circuit shape as initial magnetization characteristics for calculating magnetic flux density and magnetic field strength DC integral inductance can be calculated with high accuracy by using the integral characteristic obtained by demagnetizing the magnetic material using the demagnetizing field coefficient of the integral characteristic obtained by integrating the magnetic permeability-magnetic field strength characteristic curve of the magnetic material. I found.

また、本発明は、前述の3つの直流重畳インダクタンス算出方法のいずれか1つにより直流電流に交流電流を重畳した電流で励磁された磁性部材のインダクタンスを算出する手段を備える直流重畳インダクタンス算出装置である。   The present invention is also a DC superimposed inductance calculation apparatus comprising means for calculating the inductance of a magnetic member excited by a current obtained by superimposing an AC current on a DC current by any one of the three DC superimposed inductance calculation methods described above. is there.

本発明によれば、少ない計算量、算出時間で磁性部品のインダクタンス、直流重畳特性を算定できる直流重畳インダクタンス算出方法および直流重畳インダクタンス算出装置を提供することが可能である。   According to the present invention, it is possible to provide a DC superimposed inductance calculating method and a DC superimposed inductance calculating apparatus capable of calculating the inductance and DC superimposed characteristics of a magnetic component with a small amount of calculation and calculation time.

以下、図面を参照しながら、本発明を実施するための最良の形態について説明する。対象となるものが閉磁路構造の磁性部材の場合、以下によって直流重畳インダクタンスの計算を精度良く行うことができる。尚、以下特に断りがない限り、SI単位系である。   The best mode for carrying out the present invention will be described below with reference to the drawings. When the target is a magnetic member having a closed magnetic circuit structure, the calculation of the DC superimposed inductance can be performed with high accuracy by the following. In addition, unless otherwise indicated below, it is an SI unit system.

図2は、巻線された閉磁路コアの概観を示す図であり、磁性材2と、磁性材2にコイル状に巻線された導線1からなるトロイダル状の閉磁路コアでなる磁性部材である。この磁性部材の透磁率−磁界強度曲線(以下μ−H曲線)を予め測定する。測定には、例えばLCR meterのような市販の測定機器を用いることができる。図3は、巻線された閉磁路コアの磁界強度H−透磁率μの関係を示す図であり、図2の磁性部材に対して図3に示すようなμ−H曲線が得られる。   FIG. 2 is a diagram showing an overview of a wound closed magnetic circuit core, which is a magnetic member composed of a magnetic material 2 and a toroidal closed magnetic circuit core made of a magnetic wire 2 and a conducting wire 1 wound in a coil shape. is there. A magnetic permeability-magnetic field strength curve (hereinafter referred to as a μ-H curve) of the magnetic member is measured in advance. For the measurement, for example, a commercially available measuring instrument such as LCR meter can be used. FIG. 3 is a diagram showing the relationship of magnetic field strength H-permeability μ of the wound closed magnetic path core, and a μ-H curve as shown in FIG. 3 is obtained for the magnetic member of FIG.

図4は、巻線された閉磁路コアの磁界強度H−透磁率μ曲線を積分した曲線を示す図である。得られたμ−H曲線を適切な関数で数値的に近似し、その関数を数値積分することによって、図4に示すようなμ−H積分曲線(∫μdH曲線)が得られる。尚、μ−H積分曲線の導出には、例えば、台形近似法を用いても構わない。μ−H積分曲線は、その定義に従い磁束密度Bと同じ次元を有する。   FIG. 4 is a diagram showing a curve obtained by integrating the magnetic field strength H-permeability μ curve of the wound closed magnetic path core. The obtained μ-H curve is numerically approximated with an appropriate function, and the function is numerically integrated to obtain a μ-H integration curve (∫μdH curve) as shown in FIG. For example, a trapezoidal approximation method may be used to derive the μ-H integral curve. The μ-H integral curve has the same dimension as the magnetic flux density B according to its definition.

得られるμ−H積分曲線、既定の直流電流値Iを用い、特許文献1にも詳細に示されているマクスウェル方程式を解くことで、直流電流値Iに対応する磁束密度B、磁界強度Hを得ることができる。 Using the obtained μ-H integral curve and a predetermined DC current value I, the Maxwell equation detailed in Patent Document 1 is solved to obtain a magnetic flux density B I corresponding to the DC current value I and a magnetic field strength H. I can be obtained.

同様にして、μ−H積分曲線、既定の直流電流値Iに重畳される微小電流値dIを加えた電流値I+dIを用いて、マクスウェル方程式を解くことで、直流電流値I+dIに対応した磁束密度BI+dI、磁界強度HI+dIが得られる。 Similarly, by using the μ-H integral curve and the current value I + dI obtained by adding the minute current value dI superimposed on the predetermined DC current value I, by solving the Maxwell equation, the magnetic flux density corresponding to the DC current value I + dI B I + dI and magnetic field strength H I + dI are obtained.

図5は、既定の直流電流値I、直流電流値Iに対応した磁束密度B、磁界強度H、既定の直流電流値Iに微小電流値dIを加えた電流値I+dI、I+dIに対応した磁束密度BI+dI、磁界強度HI+dI、の関係を示す図である。B、H、BI+dI、HI+dIからなる線分の傾きは磁性部材の透磁率に他ならないから、B、BI+dIとの差をdB、H、HI+dIの差をdH、即ち式(1)および式(2)
dB=BI+dI−B (1)
dH=HI+dI−H (2)
とすれば、磁性部材が存在する任意の微小空間に蓄積される微小エネルギーdEは、解析空間の体積をvとして、インダクタンスLに対して、数2となり、ここからインダクタンスを数3により算出することができる。
FIG. 5 corresponds to the predetermined DC current value I, the magnetic flux density B I corresponding to the DC current value I, the magnetic field intensity H I , and the current values I + dI and I + dI obtained by adding the minute current value dI to the predetermined DC current value I. It is a figure which shows the relationship between magnetic flux density B I + dI and magnetic field intensity H I + dI . Since the slope of the line segment composed of B I , H I , B I + dI , H I + dI is nothing but the magnetic permeability of the magnetic member, the difference from B I , B I + dI is dB, the difference between H I , H I + dI is dH, Formula (1) and Formula (2)
dB = B I + dI −B I (1)
dH = H I + dI -H I (2)
Then, the minute energy dE accumulated in an arbitrary minute space where the magnetic member exists is expressed by Equation 2 with respect to the inductance L, where v is the volume of the analysis space, and the inductance is calculated by Equation 3 from here. Can do.

Figure 2010122089
Figure 2010122089
なお、数3は、dBおよびdHに対する式(1)および式(2)を参照すれば、数1と同じ内容のものである。
Figure 2010122089
Figure 2010122089
Note that Equation 3 has the same contents as Equation 1 with reference to Equation (1) and Equation (2) for dB and dH.

開磁路構造の磁性部材の場合の直流重畳インダクタンスの算出手順をさらに詳細に説明する。   The calculation procedure of the DC superimposed inductance in the case of a magnetic member having an open magnetic circuit structure will be described in more detail.

図6は、巻線された開磁路コアでなる磁性材の概観を示す図である。図6に示すような磁性材4、磁性材4にコイル状に巻線された導線3、磁性材4に設けられたエアギャップ5からなるトロイダル状の開磁路コアでなる磁性部材のμ−H曲線を予め測定する。図7は、巻線された開磁路コアの磁界強度H−透磁率μの関係を示す図である。   FIG. 6 is a diagram showing an overview of a magnetic material composed of a wound open magnetic path core. As shown in FIG. 6, the magnetic member 4 is composed of a toroidal open magnetic path core composed of a magnetic material 4, a conductive wire 3 wound around the magnetic material 4 in a coil shape, and an air gap 5 provided in the magnetic material 4. The H curve is measured in advance. FIG. 7 is a diagram showing the relationship between the magnetic field strength H of the wound open magnetic path core and the magnetic permeability μ.

図8は、巻線された開磁路コアの磁界強度H−透磁率μ曲線を積分した曲線、及び反磁界補正した磁界強度H−透磁率μ積分曲線を示す図である。得られたμ−H曲線を適切な関数で数値的に近似し、その関数を数値積分することで図8の磁界強度H−透磁率μの積分曲線6に示すようなμ−H積分曲線(∫μdH曲線)が得られる。尚、μ−H積分曲線の導出には、台形近似法を用いても構わない。μ−H積分曲線は、その定義に従い磁束密度Bと同じ次元を有する。   FIG. 8 is a diagram showing a curve obtained by integrating a magnetic field strength H-permeability μ curve of a wound open magnetic path core, and a magnetic field strength H-permeability μ integration curve corrected for a demagnetizing field. The obtained μ-H curve is numerically approximated with an appropriate function, and the function is numerically integrated to obtain a μ-H integration curve (as shown in the integral curve 6 of magnetic field strength H-permeability μ in FIG. ∫μdH curve) is obtained. Note that the trapezoidal approximation method may be used to derive the μ-H integral curve. The μ-H integral curve has the same dimension as the magnetic flux density B according to its definition.

トロイダル状の閉磁路コアでなる磁性部材の内径linnner、外形louter、高さhから、次式(3)によって実効断面積Aを求める。
e=(linnner−louter)/2×h (3)
同様に次式(4)によって実効磁路長Leを求める。
e=(linnner+louter)/2×π (4)
Inside diameter l Innner of the magnetic member made of a toroidal-shaped closed magnetic path core, external l outer, from the height h, obtaining the effective area A by the following equation (3).
A e = (l inner −l outer ) / 2 × h (3)
Similarly determine the effective magnetic path length L e by the following equation (4).
L e = (l inner + l outer ) / 2 × π (4)

トロイダル状の開磁路コアのμ−H積分曲線を用いて、初磁化特性に対する電流I0の蓄積エネルギーE0(数4で示される)より、マクスウェル方程式を解くことで、数5によって初期インダクタンスLを求める。 Using the μ-H integral curve of the toroidal open magnetic circuit core, the initial inductance is obtained from Equation 5 by solving the Maxwell equation from the stored energy E 0 (shown in Equation 4) of the current I 0 with respect to the initial magnetization characteristics. determine the L 0.

Figure 2010122089
Figure 2010122089
ここで、B0およびH0は、初磁化特性に関わる磁束密度と磁界を表す。
Figure 2010122089
Figure 2010122089
Here, B 0 and H 0 represent the magnetic flux density and the magnetic field related to the initial magnetization characteristics.

得られたAe、Le、L0、及び開磁路コアの巻線である導線3のターン数nから、次式(5)によって実効透磁率μeを求める。
μe=L0×Le/Ae/n2/(4π×10-7) (5)
From the obtained A e , L e , L 0 , and the number n of turns of the conducting wire 3 that is the winding of the open magnetic circuit core, the effective permeability μ e is obtained by the following equation (5).
μ e = L 0 × L e / A e / n 2 / (4π × 10 −7 ) (5)

開磁路コアの磁性材4の固有透磁率μ、前述の実効透磁率μeの関係を示す式(6)から、式(7)によって反磁界係数Nを求める。
1/μm=1/μe− N (6)
∴ N =1/μe−1/μm (7)
The demagnetizing factor N is obtained from Equation (6) showing the relationship between the intrinsic permeability μ m of the magnetic material 4 of the open magnetic path core and the effective permeability μ e described above.
1 / μ m = 1 / μ e - N (6)
N N = 1 / μ e −1 / μ m (7)

このようにして得られた反磁界係数Nを用い、図8に示した磁界強度H−透磁率μの積分曲線6(∫μdH曲線)に対し、式(8)を用いて一般的なB−H曲線の反磁界補正と同様に任意の磁界強度H(Oe)、磁束密度B(G)に対して反磁界補正を行い、図8に示すような実効的磁界強度Heff(Oe)に対する反磁界補正した磁界強度H−透磁率μの積分曲線7(∫μdHeff(G))を数6により求める。
Heff=H−B×N (8)
Using the demagnetizing factor N obtained in this way, an integral curve 6 (∫μdH curve) of magnetic field strength H−permeability μ shown in FIG. Similarly to the demagnetizing field correction of the H curve, the demagnetizing field correction is performed on an arbitrary magnetic field strength H (Oe) and magnetic flux density B (G), and the demagnetizing field against the effective magnetic field strength Heff (Oe) as shown in FIG. An integral curve 7 (∫μdHeff (G)) of corrected magnetic field strength H−permeability μ is obtained by Equation 6.
Heff = H−B × N (8)

Figure 2010122089
尚、反磁界係数Nを種々変化させて検討を行った結果、∫μdHeff−Heff曲線は反磁界係数Nに依存せず、全て同一の挙動を示すことが分かった。
Figure 2010122089
As a result of various changes in the demagnetizing factor N, it was found that the ∫μdHeff-Heff curve does not depend on the demagnetizing factor N and all exhibits the same behavior.

得られた反磁界補正μ−H積分曲線、既定の直流電流値Iを用い、マクスウェル方程式を解くことで、直流電流値Iに対応した磁束密度B、磁界強度Hを得ることができる。 By using the obtained demagnetizing field correction μ-H integral curve and a predetermined direct current value I and solving the Maxwell equation, the magnetic flux density B I and the magnetic field strength H I corresponding to the direct current value I can be obtained.

同様にして、反磁界補正μ−H積分曲線、既定の直流電流値Iに微小電流値dIを加えた電流値I+dIを用い、マクスウェル方程式を解くことで、直流電流値I+dIに対応した磁束密度BI+dI、磁界強度HI+dI、を得る。 Similarly, the magnetic flux density B corresponding to the DC current value I + dI is obtained by solving the Maxwell equation using the demagnetizing field correction μ-H integral curve, the current value I + dI obtained by adding the minute current value dI to the predetermined DC current value I. I + dI and magnetic field strength H I + dI are obtained.

、H、BI+dI、HI+dIの関係は、基本的に図5に示すようになる。従って、前に述べた通り、B、BI+dIの差dB、H、HI+dIの差dHから磁性部材が存在する任意空間に蓄積されるエネルギーは、解析空間の体積をv、微小電流dIとして、前述の数2で得られ、インダクタンスは、前述の数3すなわち数1により算出することができる。 The relationship among B I , H I , B I + dI , and H I + dI is basically as shown in FIG. Therefore, as described above, the energy accumulated in an arbitrary space where the magnetic member exists from the difference dH between B I , B I + dI , H I , H I + dI is v and the minute current dI. As described above, the inductance is obtained by the above-described equation 2, and the inductance can be calculated by the aforementioned equation 3, that is, the equation 1.

図1は、本発明の実施フローチャートを示す図である。以下、図1に示すフローチャートを基にして本発明の具体的実施例を詳細に説明する。   FIG. 1 is a diagram showing an implementation flowchart of the present invention. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the flowchart shown in FIG.

(実施例1)
外径16mm、内径10mm、高さ6mm、コイルターン数15の、閉磁路トロイダル状磁性部材の解析を、以下の手順で行った。
Example 1
Analysis of a closed magnetic circuit toroidal magnetic member having an outer diameter of 16 mm, an inner diameter of 10 mm, a height of 6 mm, and a coil turn number of 15 was performed by the following procedure.

まず、前述の図2に示すようなトロイダル状の閉磁路コアの透磁率−磁界強度曲線(以下μ−H曲線)を測定した(図1中101の工程)。測定には、Agilent4284A LCR meterを用いた。図9は、本発明の実施例に関わり、巻線された閉磁路トロイダル状磁性部材の磁界強度H−透磁率μの関係を示す図である。   First, a permeability-magnetic field strength curve (hereinafter referred to as a μ-H curve) of a toroidal closed magnetic path core as shown in FIG. 2 was measured (step 101 in FIG. 1). Agilent 4284A LCR meter was used for the measurement. FIG. 9 is a diagram showing the relationship between the magnetic field strength H and the magnetic permeability μ of the wound closed magnetic circuit toroidal magnetic member according to the embodiment of the present invention.

図10は、本発明の実施例に関わり、巻線された閉磁路トロイダル状磁性部材の磁界強度H−透磁率μ曲線を積分した曲線を示す図である。図9のμ−H曲線を数値積分することで図10に示したμ−H積分曲線(∫μdH曲線)を得た(図1中102の工程)。この時、図9の曲線は、適切な関数で近似されている。   FIG. 10 is a diagram showing a curve obtained by integrating a magnetic field strength H-permeability μ curve of a wound closed magnetic circuit toroidal magnetic member according to an embodiment of the present invention. The μ-H integral curve (∫μdH curve) shown in FIG. 10 was obtained by numerical integration of the μ-H curve in FIG. 9 (step 102 in FIG. 1). At this time, the curve of FIG. 9 is approximated by an appropriate function.

図11は、本発明の実施例に関わり、直流重畳インダクタンス算出装置の構成を示す図である。図10のμ−H積分曲線の数値および、既定の直流電流値Iを、図11に示した構成の直流重畳インダクタンス算出装置に入力した(図1中104の工程)。尚、直流重畳インダクタンス算出装置は、同様の機能を有するものであれば、市販のパソコン等を用いても構わない。磁性部材に反磁界がない場合には、反磁界補正は不要である(図1中103の工程に対応)。   FIG. 11 is a diagram illustrating a configuration of a DC superimposed inductance calculation apparatus according to an embodiment of the present invention. The numerical value of the μ-H integral curve in FIG. 10 and the predetermined DC current value I were input to the DC superimposed inductance calculating apparatus having the configuration shown in FIG. 11 (step 104 in FIG. 1). Note that the DC superimposed inductance calculation device may use a commercially available personal computer or the like as long as it has a similar function. When the magnetic member has no demagnetizing field, demagnetizing field correction is unnecessary (corresponding to step 103 in FIG. 1).

続いて、磁性材2の幾何学情報(内径、外径、高さ)を入力した(図1中105の工程)。これらの数値を基に、直流重畳インダクタンス算出装置で、マクスウェル方程式を有限要素法により解いて、直流電流値Iに対応した磁束密度B、磁界強度Hを得た(図1中106の工程)。 Subsequently, geometric information (inner diameter, outer diameter, height) of the magnetic material 2 was input (step 105 in FIG. 1). Based on these numerical values, the Maxwell equation was solved by the finite element method with a DC superimposed inductance calculation device to obtain the magnetic flux density B I and the magnetic field strength H I corresponding to the DC current value I (step 106 in FIG. 1). ).

計算には有限要素法を用い、コア分割数は100,000個とした。尚、磁界計算においては、幾何学情報による微小領域に対して有限要素法による非線形磁界解析として一般的であるニュートン・ラプソン法を用いた非線形反復計算を行った。以下、全ての実施例、比較例においても同様である。全ての実施例、比較例では、10〜13回程度の反復計算で収束した。   A finite element method was used for the calculation, and the number of core divisions was 100,000. In the magnetic field calculation, non-linear iterative calculation using the Newton-Raphson method, which is general as a non-linear magnetic field analysis by the finite element method, was performed on a minute region based on geometric information. The same applies to all examples and comparative examples. In all Examples and Comparative Examples, convergence was achieved by about 10 to 13 iterations.

同様にして、μ−H積分曲線と、既定の直流電流値Iに重畳される微小電流値dIを加えた電流値I+dIを用いて、マクスウェル方程式を解くことで、直流電流値I+dIに対応した磁束密度BI+dI、磁界強度HI+dI、を得た。計算には有限要素法を用い、コア分割数は同様に100,000個とした(図1中107の工程)。 Similarly, the magnetic flux corresponding to the DC current value I + dI is solved by solving the Maxwell equation using the μ-H integral curve and the current value I + dI obtained by adding the minute current value dI superimposed on the predetermined DC current value I. Density B I + dI and magnetic field strength H I + dI were obtained. The finite element method was used for the calculation, and the number of core divisions was similarly set to 100,000 (step 107 in FIG. 1).

このようにして得られたB、H、BI+dI、HI+dIの関係から、式(1)ないし数3に従ってインダクタンスLを算出した(図1中108の工程)。尚、解析領域の体積については、磁性部材を中心とし、磁性部材の最大長の3倍が一辺の立方体のものとした。以下全ての実施例においても同様である。以下、所定の電流値Iをパラメータとしてそれぞれの電流値Iに対応するインダクタンスLの算出を繰り返し(図1中109の工程)、直流重畳インダクタンスL−I特性を得た。 From the relationship of B I , H I , B I + dI , and H I + dI obtained in this way, the inductance L was calculated according to Equation (1) to Equation 3 (step 108 in FIG. 1). Note that the volume of the analysis region is a cube with the magnetic member as the center and three times the maximum length of the magnetic member as one side. The same applies to all the following examples. Hereinafter, calculation of the inductance L corresponding to each current value I was repeated using the predetermined current value I as a parameter (step 109 in FIG. 1), and a DC superimposed inductance LI characteristic was obtained.

(実施例2)
図12は、本発明の実施例に関わり、製品形状の磁性部材の概観を示す図である。図12に示したような、縦3mm×横3mm×高1.2mmであり、ボビン状で固有透磁率μm≒500である磁性材からなる磁性コア8、磁性金属粉末が分散され、μ≒10のモールド樹脂9、磁性コア8の中脚にコイル状に巻線された導線10からなる開磁路磁性部材の解析を、図1のフローチャートに従い、以下の手順で行った。
(Example 2)
FIG. 12 is a diagram showing an overview of a product-shaped magnetic member according to an embodiment of the present invention. As shown in FIG. 12, the magnetic core 8 made of a magnetic material having a length of 3 mm × width 3 mm × height 1.2 mm, bobbin shape and inherent permeability μm≈500, and magnetic metal powder are dispersed, μ≈10 Analysis of an open magnetic path magnetic member comprising a mold resin 9 and a conductive wire 10 wound in a coil shape on the middle leg of the magnetic core 8 was performed according to the following procedure in accordance with the flowchart of FIG.

まず、外径16mm、内径10mm、高さ6mm、コイルターン数15で、幅1.2mmのギャップ部を有し、図12に示した磁性部材の磁性コアと同一材料の開磁路トロイダル状コアの透磁率−磁界強度曲線(以下μ−H曲線)を測定した(図1中101の工程)。測定には、Agilent4284A LCR meterを用いた。図13は、本発明の実施例に関わり、巻線された開磁路コアの磁界強度H−透磁率μの関係を示す図である。   First, an open magnetic circuit toroidal core of the same material as the magnetic core of the magnetic member shown in FIG. 12, having an outer diameter of 16 mm, an inner diameter of 10 mm, a height of 6 mm, a coil turn number of 15 and a gap of 1.2 mm in width. The permeability-magnetic field strength curve (hereinafter referred to as μ-H curve) was measured (step 101 in FIG. 1). Agilent 4284A LCR meter was used for the measurement. FIG. 13 is a diagram showing the relationship between the magnetic field strength H of the wound open magnetic path core and the magnetic permeability μ in the embodiment of the present invention.

図14は、本発明の実施例に関わり、巻線された開磁路コアの磁界強度H−透磁率μ曲線を積分した曲線、及び反磁界補正した磁界強度H−透磁率μ積分曲線を示す図である。図13のμ−H曲線を関数で近似し、その関数を数値積分することで図14の磁界強度H−透磁率μの積分曲線11に示したμ−H積分曲線(∫μdH曲線)を得た(図1中102の工程)。   FIG. 14 relates to an embodiment of the present invention, and shows a curve obtained by integrating a magnetic field strength H-permeability μ curve of a wound open magnetic path core, and a magnetic field strength H-permeability μ integration curve corrected for a demagnetizing field. FIG. The μ-H curve (に μdH curve) shown in the integral curve 11 of FIG. 14 is obtained by approximating the μ-H curve of FIG. 13 by a function and numerically integrating the function. (Step 102 in FIG. 1).

本実施例の閉磁路磁性部材には反磁界があるので、図14の磁界強度H−透磁率μの積分曲線11に対し、以下の手順に従って反磁界補正を行った(図1中103の工程)。   Since the closed magnetic path magnetic member of the present embodiment has a demagnetizing field, demagnetizing field correction was performed on the integral curve 11 of the magnetic field strength H-permeability μ in FIG. 14 according to the following procedure (step 103 in FIG. 1). ).

トロイダル状の閉磁路コアの内径linnner=10mm、外形louter=16mm、高さh=6mmから、式(3)、式(4)によって実効断面積Aeおよび実効磁路長Leを求めた。
e=(linnner−louter)/2×h=18.0mm2
e=(linnner+louter)/2×π=40.8mm
Inside diameter l innner = 10mm of toroidal closed magnetic path core, external l outer = 16 mm, the height h = 6 mm, equation (3), determine the effective area A e and the effective magnetic path length L e by equation (4) It was.
A e = (l inner −l outer ) /2×h=18.0 mm 2
L e = (l inner + l outer ) /2×π=40.8 mm

次に、トロイダル状の開磁路コアについて、数5によって初期インダクタンスL0を求めた。 Next, with respect to the toroidal open magnetic circuit core, the initial inductance L 0 was obtained by Equation 5.

続いて、得られたAe、Le、L0、及び開磁路コアのコイルターン数n=15から、式(5)によって実効透磁率μeを求めた。 Subsequently, from the obtained A e , L e , L 0 , and the coil turn number n = 15 of the open magnetic path core, the effective magnetic permeability μ e was obtained by the equation (5).

磁性材の固有透磁率μmと実効透磁率μeから、式(7)によって反磁界係数Nを求めた。 From the unique permeability mu m and the effective permeability mu e of the magnetic material to obtain the demagnetizing factor N by the equation (7).

得られた反磁界係数N用い、図14のμ−H積分曲線11(∫μdH(G))に対し、式(8)、数6を用い、一般的なB−H曲線の反磁界補正と同様、任意の磁界強度H(Oe)、磁束密度B(G)に対して反磁界補正を行い、図14の反磁界補正した磁界強度H−透磁率μの積分曲線12に示した磁界強度Heff(Oe)、磁束密度∫μdHeff(G)を求めた。   Using the obtained demagnetizing factor N, a general BH curve demagnetizing field correction using Equation (8) and Equation 6 for the μ-H integral curve 11 (∫μdH (G)) of FIG. Similarly, a demagnetizing field correction is performed on an arbitrary magnetic field strength H (Oe) and magnetic flux density B (G), and the demagnetizing field correction H-permeability μ integral field 12 shown in FIG. (Oe) and magnetic flux density ∫μdHeff (G) were obtained.

図14の反磁界補正した磁界強度H−透磁率μの積分曲線12の数値と、既定の直流電流値Iを、図11に示した構成の直流重畳インダクタンス算出装置に入力した(図1中104の工程)。さらに、磁性部材の幾何学情報を入力した(図1中105の工程)。   The numerical value of the integral curve 12 of the magnetic field strength H-permeability μ corrected for the demagnetizing field in FIG. 14 and the predetermined DC current value I are input to the DC superimposed inductance calculating apparatus having the configuration shown in FIG. 11 (104 in FIG. 1). Process). Furthermore, the geometric information of the magnetic member was input (step 105 in FIG. 1).

計算装置によってマクスウェル方程式を有限要素法を用いて解き、直流電流値Iに対応した磁束密度B、磁界強度Hを得た(図1中106の工程)。計算には有限要素法を用い、コア分割数は200,000個とした。 The Maxwell equation was solved by a finite element method using a calculation device, and magnetic flux density B I and magnetic field strength H I corresponding to DC current value I were obtained (step 106 in FIG. 1). A finite element method was used for the calculation, and the number of core divisions was 200,000.

同様にして、μ−H積分曲線、既定の直流電流値Iに重畳微小電流値dIを加えた電流値I+dIを用い、マクスウェル方程式を解くことで、直流電流値I+dIに対応した磁束密度BI+dI、磁界強度HI+dI、を得た(図1中107の工程)。計算には有限要素法を用い、コア分割数は200,000個とした。 Similarly, by using the μ-H integral curve, the current value I + dI obtained by adding the superposed minute current value dI to the predetermined DC current value I, by solving the Maxwell equation, the magnetic flux density B I + dI corresponding to the DC current value I + dI , Magnetic field strength H I + dI was obtained (step 107 in FIG. 1). A finite element method was used for the calculation, and the number of core divisions was 200,000.

、H、BI+dI、HI+dIの関係から、式(1)、式(2)、数2、数3に従ってインダクタンスLを算出した(図1中108の工程)。 From the relationship of B I , H I , B I + dI , H I + dI , the inductance L was calculated according to Equation (1), Equation (2), Equation 2, and Equation 3 (step 108 in FIG. 1).

以下、所定の電流値をパラメータとして、上記の算出手順を繰り返し(図1中109の工程)、直流重畳インダクタンスL−I特性を得た。   Hereinafter, the above calculation procedure was repeated using a predetermined current value as a parameter (step 109 in FIG. 1), and a DC superimposed inductance LI characteristic was obtained.

(比較例1)
外径16mm、内径10mm、高さ6mm、コイルターン数15の、閉磁路トロイダル状磁性部材の解析を、本発明の方法とは異なる以下の従来の手順で行った。
(Comparative Example 1)
Analysis of a closed magnetic circuit toroidal magnetic member having an outer diameter of 16 mm, an inner diameter of 10 mm, a height of 6 mm, and a coil turn number of 15 was performed by the following conventional procedure different from the method of the present invention.

図15は、本発明の比較例に関わり、巻線された閉磁路トロイダル状磁性部材の磁界強度H−磁束密度Bの関係を示す図である。上記の磁性部材の磁束密度−磁界強度曲線(以下B−H曲線)を測定し、図15に示したB−H曲線を得た。測定にはAgilent4194Aインピーダンスアナライザを用いた。   FIG. 15 is a diagram showing a relationship between magnetic field strength H and magnetic flux density B of a wound closed magnetic circuit toroidal magnetic member according to a comparative example of the present invention. A magnetic flux density-magnetic field strength curve (hereinafter referred to as a BH curve) of the above magnetic member was measured to obtain a BH curve shown in FIG. An Agilent 4194A impedance analyzer was used for the measurement.

続いて、磁性部材の透磁率−磁界強度曲線(以下μ−H曲線)を測定した。測定には、Agilent4284A LCR meterを用いた。図9に示したものと同様のμ−H曲線を得た。   Subsequently, a magnetic permeability-magnetic field strength curve (hereinafter referred to as a μ-H curve) of the magnetic member was measured. Agilent 4284A LCR meter was used for the measurement. A μ-H curve similar to that shown in FIG. 9 was obtained.

磁性部材の幾何学情報とB−H曲線、及び所定の直流重畳電流の直流重畳成分値に基づいて磁界計算を行った。計算はマクスウェル方程式を解くことによって行い、有限要素法を用いた。尚、有限要素法におけるコア分割数は100,000個とし、分割した各微小領域の透磁率μiを決定した。 Magnetic field calculation was performed based on the geometric information of the magnetic member, the BH curve, and the DC superimposed component value of a predetermined DC superimposed current. The calculation was performed by solving the Maxwell equation and the finite element method was used. The core division number in the finite element method and 100,000, were determined permeability mu i of each minute divided areas.

各微小領域の増分透磁率μiと各微小領域を対応させ、幾何学情報、直流重畳電流の交流電流成分値Iacから同じ磁界計算法を用いて計算を行った。 The incremental magnetic permeability μ i of each minute region was associated with each minute region, and the calculation was performed using the same magnetic field calculation method from the geometric information and the alternating current component value Iac of the direct current superimposed current.

上記交流電流成分に対応した磁束密度Bacと磁界強度Hacから数7によりインダクタンスLを求めた。   The inductance L was obtained from Equation 7 from the magnetic flux density Bac corresponding to the AC current component and the magnetic field strength Hac.

Figure 2010122089
Figure 2010122089

所定の重畳電流成分の数に応じて以上の算出を繰り返し、直流重畳インダクタンスL−I特性を得た。   The above calculation was repeated according to a predetermined number of superimposed current components, and a DC superimposed inductance LI characteristic was obtained.

(比較例2)
図12に示したような、縦3mm×横3mm×高1.2mmであり、コア材料の固有透磁率μm≒500、μ≒10で磁性金属粉末が分散されたモールド部を持つ、開磁路磁性部材の解析を、比較例1と同様の以下の手順で行った。
(Comparative Example 2)
As shown in FIG. 12, the open magnetic circuit has a mold portion of 3 mm in length, 3 mm in width, and 1.2 mm in height, in which the magnetic permeability of the core material is dispersed with a magnetic permeability of μm≈500, μ≈10. The magnetic member was analyzed by the following procedure similar to that of Comparative Example 1.

まず、外径16mm、内径10mm、高さ6mm、コイルターン数15で、コア材料と同一材料の閉磁路トロイダルコアの磁束密度−磁界強度曲線(B−H曲線)の測定および透磁率−磁界強度曲線(μ−H曲線)の測定を行い、標記磁性部材の幾何学情報とB−H曲線、及び所定の直流重畳電流の直流重畳成分値に基づいて有限要素法により磁界計算を行った。尚、有限要素法におけるコア分割数は200,000個とし、分割した各微小領域の透磁率μiを決定した。 First, measurement of magnetic flux density-magnetic field strength curve (BH curve) and permeability-magnetic field strength of a closed magnetic circuit toroidal core of the same material as the core material with an outer diameter of 16 mm, an inner diameter of 10 mm, a height of 6 mm, and a coil turn number of 15. The curve (μ-H curve) was measured, and the magnetic field was calculated by the finite element method based on the geometric information of the title magnetic member, the BH curve, and the DC superimposed component value of a predetermined DC superimposed current. The number of core divisions in the finite element method was 200,000, and the magnetic permeability μ i of each divided micro area was determined.

各微小領域の増分透磁率μiと各微小領域を対応させ、比較例1と同様にして直流重畳インダクタンスL−I特性を得た。 The incremental magnetic permeability μ i of each minute region was associated with each minute region, and the DC superimposed inductance L-I characteristic was obtained in the same manner as in Comparative Example 1.

図16は、本発明の実施例に関わり、外径16mm、内径10mm、高さ6mm、コイルターン数15の閉磁路トロイダル状磁性部材の実施例1、比較例1における計算結果、実測結果を示す図である。図16から分かるように、実施例1および比較例1での算出結果と実測値はよい一致を見せていることが分かる。   FIG. 16 relates to an example of the present invention, and shows calculation results and actual measurement results in Example 1 and Comparative Example 1 of a closed magnetic circuit toroidal magnetic member having an outer diameter of 16 mm, an inner diameter of 10 mm, a height of 6 mm, and a coil turn number of 15. FIG. As can be seen from FIG. 16, it can be seen that the calculation results in Example 1 and Comparative Example 1 and the actual measurement values are in good agreement.

図17は、本発明の実施例に関わり、縦3mm×横3mm×高1.2mmであり、磁性金属粉末が分散されたモールド部を持つ、開磁路磁性部材の実施例2、比較例2の直流重畳特性計算結果、実測結果を示す図である。図17から分かるように、実施例2および比較例2での算出結果と実測値はよい一致を見せていることが分かる。   FIG. 17 relates to an example of the present invention. Example 2 of an open magnetic path magnetic member, which is 3 mm long × 3 mm wide × 1.2 mm high and has a mold part in which magnetic metal powder is dispersed, and Comparative Example 2 It is a figure which shows the direct current superimposition characteristic calculation result of this, and an actual measurement result. As can be seen from FIG. 17, it can be seen that the calculation results in Example 2 and Comparative Example 2 and the actual measurement values are in good agreement.

実施例1、実施例2および比較例1、比較2は、算出結果から判断すると、大差はなく、実測値と良い一致を見せている。すなわち、本発明による方法は、実用性を有することが分かる。   In Example 1, Example 2, Comparative Example 1, and Comparison 2, judging from the calculation results, there is no great difference and shows good agreement with the actual measurement values. That is, it can be seen that the method according to the present invention has practicality.

表1に、実施例1、実施例2および比較例1、比較例2における、所定の直流重畳電流に対するインダクタンスを全て算出するために要した時間を、比較例1は実施例1と対比して、比較例2は実施例2と対比示した。   Table 1 shows the time required to calculate all the inductances for a predetermined DC superimposed current in Example 1, Example 2, Comparative Example 1, and Comparative Example 2, and Comparative Example 1 is compared with Example 1. Comparative Example 2 is shown in comparison with Example 2.

Figure 2010122089
Figure 2010122089

表1から分かるように、本発明の実施例1は、比較例1と比較して算出時間が約1/6となり、実施例2は比較例2と比較して算出時間が約1/10と大きく改善している。尚、実際の算出時間は図11中に示したCPUの能力に大きく依存するが、所定の直流重畳電流に対して全て算出するために要した時間は、概略実施例1で1時間程度、実施例2で2時間程度であった。   As can be seen from Table 1, Example 1 of the present invention has a calculation time of about 1/6 compared to Comparative Example 1, and Example 2 has a calculation time of about 1/10 compared to Comparative Example 2. Greatly improved. The actual calculation time greatly depends on the CPU capability shown in FIG. 11, but the time required to calculate all of the predetermined DC superimposed current is approximately 1 hour in the first embodiment. In Example 2, it was about 2 hours.

また、本発明の実施例1、2においては材料特性情報としてμ−H曲線のみしか必要としないのに対し、比較例1、2においてはB−H曲線、μ−H曲線の2種類を必要とする。即ち、算出の準備に要する測定時間も、本発明による方法では短いと言える。   In Examples 1 and 2 of the present invention, only the μ-H curve is required as material property information, whereas in Comparative Examples 1 and 2, two types of BH curve and μ-H curve are required. And That is, it can be said that the measurement time required for preparation for calculation is short in the method according to the present invention.

本発明の実施フローチャートを示す図。The figure which shows the implementation flowchart of this invention. 巻線された閉磁路コアの概観を示す図。The figure which shows the general view of the wound closed magnetic circuit core. 巻線された閉磁路コアの磁界強度H−透磁率μの関係を示す図。The figure which shows the relationship of the magnetic field intensity H-magnetic permeability (micro | micron | mu) of the wound closed magnetic path core. 巻線された閉磁路コアの磁界強度H−透磁率μ曲線を積分した曲線を示す図。The figure which shows the curve which integrated the magnetic field strength H-permeability (micro | micron | mu) curve of the wound closed magnetic circuit core. 既定の直流電流値I、直流電流値Iに対応した磁束密度B、磁界強度H、既定の直流電流値Iに微小電流値dIを加えた電流値I+dI、I+dIに対応した磁束密度BI+dI、磁界強度HI+dI、の関係を示す図。A predetermined DC current value I, a magnetic flux density B I corresponding to the DC current value I, a magnetic field intensity H I , a current value I + dI obtained by adding a minute current value dI to the predetermined DC current value I, and a magnetic flux density B I + dI corresponding to I + dI The figure which shows the relationship of magnetic field intensity HI + dI . 巻線された開磁路コアでなる磁性材の概観を示す図。The figure which shows the general view of the magnetic material which consists of a wound open magnetic path core. 巻線された開磁路コアの磁界強度H−透磁率μの関係を示す図。The figure which shows the relationship of the magnetic field intensity H-permeability (micro | micron | mu) of the open magnetic path core wound. 巻線された開磁路コアの磁界強度H−透磁率μ曲線を積分した曲線、及び反磁界補正した磁界強度H−透磁率μ積分曲線を示す図。The figure which shows the curve which integrated the magnetic field strength H-permeability (micro | micron | mu) curve of the wound open magnetic path core, and the magnetic field strength H-permeability (micro | micron | mu) integral curve which corrected the demagnetizing field. 本発明の実施例に関わり、巻線された閉磁路トロイダル状磁性部材の磁界強度H−透磁率μの関係を示す図。The figure which concerns on the Example of this invention and shows the relationship of the magnetic field strength H-magnetic permeability (micro | micron | mu) of the wound closed magnetic circuit toroidal magnetic member. 本発明の実施例に関わり、巻線された閉磁路トロイダル状磁性部材の磁界強度H−透磁率μ曲線を積分した曲線を示す図。The figure which shows the curve which concerns on the Example of this invention and integrated the magnetic field strength H-permeability (micro | micron | mu) curve of the wound closed magnetic circuit toroidal magnetic member. 本発明の実施例に関わり、直流重畳インダクタンス算出装置の構成を示す図。The figure which concerns on the Example of this invention, and shows the structure of a DC superimposed inductance calculation apparatus. 本発明の実施例に関わり、製品形状の磁性部材の概観を示す図。The figure which concerns on the Example of this invention and shows the general view of the magnetic member of a product shape. 本発明の実施例に関わり、巻線された開磁路コアの磁界強度H−透磁率μの関係を示す図。The figure which concerns on the Example of this invention, and shows the relationship of the magnetic field intensity H-permeability (micro | micron | mu) of the wound open magnetic path core. 本発明の実施例に関わり、巻線された開磁路コアの磁界強度H−透磁率μ曲線を積分した曲線、及び反磁界補正した磁界強度H−透磁率μ積分曲線を示す図。The figure which shows the curve which integrated the magnetic field intensity H-permeability (micro | micron | mu) curve of the wound open magnetic path core in connection with the Example of this invention, and the magnetic field intensity H-permeability (micro | micron | mu) integral curve which corrected the demagnetizing field. 本発明の比較例に関わり、巻線された閉磁路トロイダル状磁性部材の磁界強度H−磁束密度Bの関係を示す図。The figure which concerns on the comparative example of this invention, and shows the relationship of the magnetic field intensity H-magnetic flux density B of the wound closed magnetic circuit toroidal magnetic member. 本発明の実施例に関わり、外径16mm、内径10mm、高さ6mm、コイルターン数15の閉磁路トロイダル状磁性部材の実施例1、比較例1における計算結果、実測結果を示す図。The figure which shows the calculation result in Example 1 and the comparative example 1 of a closed magnetic circuit toroidal magnetic member of the outer diameter 16mm, inner diameter 10mm, height 6mm, and the number of coil turns 15 in connection with the Example of this invention. 本発明の実施例に関わり、縦3mm×横3mm×高1.2mmであり、磁性金属粉末が分散されたモールド部を持つ、開磁路磁性部材の実施例2、比較例2の直流重畳特性計算結果、実測結果を示す図。In connection with the examples of the present invention, the DC superimposition characteristics of Example 2 and Comparative Example 2 of the open magnetic path magnetic member having a mold portion in which the length is 3 mm × width 3 mm × height 1.2 mm and the magnetic metal powder is dispersed. The figure which shows a calculation result and an actual measurement result.

符号の説明Explanation of symbols

1 導線
2 磁性材
3 導線
4 磁性材
5 エアギャップ
6 磁界強度H−透磁率μの積分曲線
7 反磁界補正した磁界強度H−透磁率μの積分曲線
8 磁性コア
9 モールド樹脂
10 導線(コイル、リング状)
11 磁界強度H−透磁率μの積分曲線
12 反磁界補正した磁界強度H−透磁率μの積分曲線
DESCRIPTION OF SYMBOLS 1 Conductor 2 Magnetic material 3 Conductor 4 Magnetic material 5 Air gap 6 Integral curve 7 of magnetic field strength H-permeability μ Demagnetized magnetic field strength H-integral curve 8 of magnetic permeability 8 Magnetic core 9 Mold resin 10 Conductor (coil, Ring)
11 Integral curve of magnetic field strength H-permeability μ 12 Integral curve of magnetic field strength H-permeability μ corrected for demagnetizing field

Claims (4)

直流電流に交流電流を重畳した電流で励磁された磁性部材のインダクタンス算出方法であって、
前記磁性部材と同一材質で閉磁路形状をした磁性材の初磁化特性に基づき、前記直流電流成分に対する磁性部材の励磁電流Iによって生じる第1の磁束密度BI、第1の磁界強度HI、及び前記励磁電流Iと重畳される微少電流dIとの和(I+dI)によって生じる第2の磁束密度BI+dI、第2の磁界強度HI+dI、及び前記磁性部材を内包する空間の体積vから、インダクタンスLを数1によって求めることを特徴とする直流重畳インダクタンス算出方法。
Figure 2010122089
An inductance calculation method for a magnetic member excited by a current obtained by superimposing an alternating current on a direct current,
Based on the initial magnetization characteristics of a magnetic material made of the same material as the magnetic member and having a closed magnetic circuit shape, the first magnetic flux density BI, the first magnetic field strength HI, and the like generated by the exciting current I of the magnetic member with respect to the direct current component, and The inductance L is calculated from the second magnetic flux density B I + dI generated by the sum (I + dI) of the excitation current I and the minute current dI superimposed, the second magnetic field strength H I + dI , and the volume v of the space containing the magnetic member. A DC superimposed inductance calculation method characterized in that the DC superimposed inductance calculation is performed by Equation (1).
Figure 2010122089
前記初磁化特性として、予め測定された前記磁性材の透磁率−磁界強度特性曲線を積分した積分特性を用いることを特徴とする請求項1に記載の直流重畳インダクタンス算出方法。   2. The DC superimposed inductance calculation method according to claim 1, wherein an integral characteristic obtained by integrating a permeability-magnetic field strength characteristic curve of the magnetic material measured in advance is used as the initial magnetization characteristic. 前記磁性部材が実質的に反磁界係数を有する開磁路構造である場合、前記初磁化特性として、予め測定された前記磁性材の透磁率−磁界強度特性曲線を積分した積分特性に対して、前記磁性材が有する反磁界係数を用いて反磁界補正を行った積分特性を用いることを特徴とする請求項1に記載の直流重畳インダクタンス算出方法。   When the magnetic member has an open magnetic circuit structure having a substantially demagnetizing factor, as the initial magnetization characteristic, an integral characteristic obtained by integrating a magnetic permeability-magnetic field strength characteristic curve of the magnetic material measured in advance. 2. The DC superimposed inductance calculation method according to claim 1, wherein an integral characteristic obtained by performing demagnetizing field correction using a demagnetizing field coefficient of the magnetic material is used. 請求項1ないし請求項3のいずれか一項に記載の直流重畳インダクタンス算出方法により直流電流に交流電流を重畳した電流で励磁された磁性部材のインダクタンスを算出する手段を備えることを特徴とする直流重畳インダクタンス算出装置。   A means for calculating an inductance of a magnetic member excited by a current obtained by superimposing an alternating current on a direct current by the direct current superimposed inductance calculating method according to any one of claims 1 to 3. Superimposed inductance calculation device.
JP2008296404A 2008-11-20 2008-11-20 Method and apparatus for computing direct current superposition inductance Pending JP2010122089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296404A JP2010122089A (en) 2008-11-20 2008-11-20 Method and apparatus for computing direct current superposition inductance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296404A JP2010122089A (en) 2008-11-20 2008-11-20 Method and apparatus for computing direct current superposition inductance

Publications (1)

Publication Number Publication Date
JP2010122089A true JP2010122089A (en) 2010-06-03

Family

ID=42323557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296404A Pending JP2010122089A (en) 2008-11-20 2008-11-20 Method and apparatus for computing direct current superposition inductance

Country Status (1)

Country Link
JP (1) JP2010122089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506995B2 (en) 2011-07-19 2016-11-29 Hitachi, Ltd. Magnetic field analysis programs and magnetic field analysis methods
CN107765199A (en) * 2017-10-11 2018-03-06 福州大学 The DC excitation measuring method of magnetic element amplitude magnetic conductivity and incremental permeability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506995B2 (en) 2011-07-19 2016-11-29 Hitachi, Ltd. Magnetic field analysis programs and magnetic field analysis methods
CN107765199A (en) * 2017-10-11 2018-03-06 福州大学 The DC excitation measuring method of magnetic element amplitude magnetic conductivity and incremental permeability
CN107765199B (en) * 2017-10-11 2019-06-07 福州大学 The DC excitation measurement method of magnetic element amplitude magnetic conductivity and incremental permeability

Similar Documents

Publication Publication Date Title
TW201428782A (en) Magnetic device with high saturation current and low core loss
JP4587005B2 (en) Method for analyzing DC superposition characteristics of inductance element and electromagnetic field simulator
WO2013088766A1 (en) Current sensor
Salas et al. Simulation of the saturation and air-gap effects in a pot ferrite core with a 2-D finite element model
Prochazka et al. Magnetic circuit of a high-voltage transformer up to 10 kHz
US8788227B2 (en) Measuring method of critical current density of superconductor wires using measurement of magnetization loss
Beddingfield et al. Shielding of leakage flux induced losses in high power, medium frequency transformers
Stadler et al. The influence of the winding layout on the core losses and the leakage inductance in high frequency transformers
Mirzaei et al. Analytical functions of magnetization curves for high magnetic permeability materials
Cale et al. An improved magnetic characterization method for highly permeable materials
CN104576005B (en) AC current transformer
JP2010122089A (en) Method and apparatus for computing direct current superposition inductance
Stein et al. Figure of merit for resonant wireless power transfer
JP6210193B2 (en) Current detector
Sixdenier et al. Statistical study of nanocrystalline alloy cut cores from two different manufacturers
Salas et al. Nonlinear saturation modeling of magnetic components with an RM-type core
Sato et al. Study on an accurate iron loss calculation method considering the non-uniformity of the magnetic flux density
Stenglein et al. Analytical calculation method for the non-linear characteristic of ferrite-cored inductors with stepped air gap
Jensen et al. Modeling overlapping laminations in magnetic core materials using 2-D finite-element analysis
Kleeb Investigation on Performance Advantage of Functionally Integrated Magnetic Components in Decentralised Power Electronic Applications
Sato et al. Iron-loss calculation of inductors considering non-uniform flux density conditions
Deželak et al. Usage of a simplified and Jiles–Atherton model when accounting for the hysteresis losses within a welding transformer
Stenglein et al. Analytical calculation of the current depending inductance of a stepped air gap inductor
Winkler et al. Using powder materials to replace air-gaps for fringing flux reduction
JP6119384B2 (en) Current detector