JP2010121911A - Moisture separation heater - Google Patents

Moisture separation heater Download PDF

Info

Publication number
JP2010121911A
JP2010121911A JP2008298512A JP2008298512A JP2010121911A JP 2010121911 A JP2010121911 A JP 2010121911A JP 2008298512 A JP2008298512 A JP 2008298512A JP 2008298512 A JP2008298512 A JP 2008298512A JP 2010121911 A JP2010121911 A JP 2010121911A
Authority
JP
Japan
Prior art keywords
drain
heater
steam
moisture
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298512A
Other languages
Japanese (ja)
Other versions
JP5198230B2 (en
Inventor
Koichi Yoshimura
浩一 吉村
Sumio Kurita
純夫 栗田
Saori Hamada
早織 濱田
Naoki Sugitani
直紀 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008298512A priority Critical patent/JP5198230B2/en
Publication of JP2010121911A publication Critical patent/JP2010121911A/en
Application granted granted Critical
Publication of JP5198230B2 publication Critical patent/JP5198230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve plant efficiency by reducing a flow rate of cycle steam flowing through a body interior and reducing its pressure loss or the like. <P>SOLUTION: The moisture separation heater 12 of a one-stage reheat type includes the body 17, a cycle steam inlet 18 provided in a bottom of the body and introducing the cycle steam into the body, an MS element 21 obliquely disposed in a lower region of a body interior and separating moisture in the cycle steam, and a heater 22 disposed in a substantially center region of the body interior and equipped with a plurality of heat transfer tubes 31 carrying heating steam and a single heating steam head 32 communicated with the heat transfer tubes. A tube bundle size W/H is set so that the expression, 1.6<W/H<1.9, is satisfied when a lateral width of a tube bundle in the plurality of heat transfer tubes 31 is W and a height is H, and the heating steam header is made into a transverse installation cylindrical type. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は湿分分離加熱器に係り、特に加熱器の加熱蒸気ヘッダが単一である1段再熱式の湿分分離加熱器に関する。   The present invention relates to a moisture separation heater, and more particularly to a one-stage reheat type moisture separation heater in which the heater has a single heating steam header.

従来の1段再熱式の湿分分離加熱器100は、特許文献1並びに図14及び図15に示すように、横型円筒容器製の胴体101を備え、高圧蒸気タービンからの湿ったサイクル蒸気を片側の鏡板に設けられたサイクル蒸気入口102から導入し、胴体101内下部のMSエレメント103(MSエレメントとは湿分分離エレメントを意味し、“MS”とはmoisture separatorの略である。)により湿分を分離し除去した後、胴体101内上部の加熱器104により加熱し、胴体101頂部のサイクル蒸気出口105から過熱蒸気を低圧蒸気タービンへ供給する。加熱器104の加熱蒸気ヘッダ106は、サイクル蒸気が流入する鏡板と反対側の鏡板の外側に突出して設置されている。   As shown in Patent Document 1 and FIGS. 14 and 15, a conventional one-stage reheat type moisture separation heater 100 includes a body 101 made of a horizontal cylindrical container, and receives wet cycle steam from a high-pressure steam turbine. It is introduced from a cycle steam inlet 102 provided on one end plate, and is provided by an MS element 103 (the MS element is a moisture separation element, and “MS” is an abbreviation of moisture separator) in the lower part of the body 101. After the moisture is separated and removed, it is heated by the heater 104 in the upper part of the fuselage 101, and superheated steam is supplied from the cycle steam outlet 105 at the top of the fuselage 101 to the low-pressure steam turbine. The heating steam header 106 of the heater 104 is installed so as to protrude to the outside of the end plate opposite to the end plate into which the cycle steam flows.

加熱蒸気ヘッダ106をコンパクトにするために、加熱器104の複数本の伝熱管107における管束の横幅Wと高さHを同等にして(例えばW/H<1.3程度)、円形管板108の径を小さくすることが一般的である。   In order to make the heated steam header 106 compact, the horizontal width W and height H of the tube bundle in the plurality of heat transfer tubes 107 of the heater 104 are made equal (for example, about W / H <1.3), and the circular tube plate 108. It is common to reduce the diameter.

尚、上述のような1段再熱式の湿分分離加熱器100は原子力プラント初期の機器であり、伝熱管107に銅合金を使用しているものが多く、最近、ステンレス製の伝熱管107に更新するプラントが増えてきている。本発明では、このような1段再熱式の湿分分離加熱器100の更新を対象としている。   The above-described one-stage reheat type moisture separator / heater 100 is a device in the early stage of a nuclear power plant, and many of them use a copper alloy for the heat transfer tube 107, and recently, a heat transfer tube 107 made of stainless steel is used. More and more plants are being renewed. The present invention is intended to update such a one-stage reheating type moisture separation heater 100.

また、サイクル蒸気を胴体下部から流入させる湿分分離加熱器として、2個の加熱蒸気ヘッダを胴体内部に配置する2段再熱式の湿分分離加熱器が開示されている(特許文献2参照)。   Also, a two-stage reheating type moisture separation heater in which two heating steam headers are arranged inside the fuselage is disclosed as a moisture separation heater for flowing cycle steam from the lower part of the fuselage (see Patent Document 2). ).

更に、加熱器の伝熱管内に生ずる凝縮ドレンの過冷却を防止するために、加熱蒸気ヘッダ近傍の管板にオリフィス板を設ける湿分分離加熱器が、特許文献3に開示されている。
実開平2−7411号公報 実開平2−7410号公報 特開昭49−72503号公報
Further, Patent Document 3 discloses a moisture separation heater in which an orifice plate is provided on a tube plate in the vicinity of a heating steam header in order to prevent overcooling of the condensed drain generated in the heat transfer tube of the heater.
Japanese Utility Model Publication 2-7411 Japanese Utility Model Publication 2-7410 JP-A-49-72503

ところで、特許文献1及び図14等に示す1段再熱式の湿分分離加熱器100では、鏡板に設置されたサイクル蒸気入口102からサイクル蒸気を導入しているため、MSエレメント103に至るまでの流路が狭く、この流路を流れるサイクル蒸気の流速が速くなって、蒸気の圧力損失が大きくなってしまう。MSエレメント103の高さhが低い場合、MSエレメント103の物量を低減することはできるが、このMSエレメント103を通過するサイクル蒸気の流速が速くなり、サイクル蒸気の圧力損失が大きくなってしまう。   By the way, in the one-stage reheating type moisture separation heater 100 shown in Patent Document 1 and FIG. 14 and the like, since the cycle steam is introduced from the cycle steam inlet 102 installed in the end plate, the MS element 103 is reached. The flow path is narrow, the flow velocity of the cycle steam flowing through this flow path is increased, and the pressure loss of the steam is increased. When the height h of the MS element 103 is low, the quantity of the MS element 103 can be reduced, but the flow rate of the cycle steam passing through the MS element 103 becomes high, and the pressure loss of the cycle steam becomes large.

また、鏡板の外側に加熱蒸気ヘッダ106を突出して設置する型の湿分分離加熱器100においては、伝熱管107の管束の横幅Wが狭くなり、この管束の外側を通過するサイクル蒸気の流れが速くなるため、伝熱面積は小さくなるものの、伝熱管107の管束間を通過するサイクル蒸気の圧力損失が大きくなり、プラント効率を悪化させる要因となっている。   Further, in the moisture separation heater 100 of the type in which the heating steam header 106 is installed so as to protrude outside the end plate, the horizontal width W of the tube bundle of the heat transfer tubes 107 becomes narrow, and the flow of cycle steam passing outside the tube bundle is reduced. Although it becomes faster, the heat transfer area becomes smaller, but the pressure loss of the cycle steam passing between the bundles of the heat transfer tubes 107 becomes larger, which causes the plant efficiency to deteriorate.

尚、伝熱管107の管束の横幅Wを広くすると、加熱蒸気ヘッダ106の内径が大きくなり、この加熱蒸気ヘッダ106は内圧が高いので肉厚が厚くなり、この結果、湿分分離加熱器100の重量が増大してしまう。   If the width W of the bundle of heat transfer tubes 107 is increased, the inner diameter of the heating steam header 106 is increased, and the heating steam header 106 has a high internal pressure, so that the wall thickness is increased. As a result, the moisture separation heater 100 The weight will increase.

また、このサイクル蒸気を、鏡板に設置されたサイクル蒸気入口102から導入させる湿分分離加熱器100においては、蒸気流動の影響により、内部構造材(例えばサイクル蒸気入口102付近の図示しない蒸気整流板取付部材など)が損傷する場合もある。   Further, in the moisture separator / heater 100 in which the cycle steam is introduced from the cycle steam inlet 102 installed in the end plate, an internal structural material (for example, a steam rectifying plate (not shown) near the cycle steam inlet 102 is caused by the influence of the steam flow. The attachment member or the like may be damaged.

本発明の目的は、上述の事情を考慮してなされたものであり、胴体内を流れるサイクル蒸気の流量を低下させてその圧力損失を低減すること等により、プラント効率を向上できる湿分分離加熱器を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and is a moisture separation heating that can improve the plant efficiency by reducing the flow rate of cycle steam flowing through the fuselage and reducing its pressure loss. Is to provide a vessel.

また、本発明の他の目的は、系統構成を簡素化できる湿分分離加熱器を提供することにある。   Another object of the present invention is to provide a moisture separation heater that can simplify the system configuration.

本発明は、胴体と、この胴体の底部に設けられ、サイクル蒸気を前記胴体内に導入するサイクル蒸気入口と、前記胴体内の下部領域に傾斜配置され、サイクル蒸気中の湿分を分離する湿分分離エレメントと、前記胴体内の略中央領域に配置され、加熱蒸気を流動させる複数本の伝熱管、及びこれらの伝熱管に連通する単一の加熱蒸気ヘッダを備えた加熱器と、を有する1段再熱式の湿分分離加熱器であって、複数本の前記伝熱管における管束の横幅をW、高さをHとしたとき、管束サイズW/Hが、1.6<W/H<1.9に設定されると共に、前記加熱蒸気ヘッダが横置き円筒型に構成されたことを特徴とするものである。   The present invention provides a fuselage, a cycle steam inlet that is provided at the bottom of the fuselage and introduces cycle steam into the fuselage, and is disposed at an inclination in a lower region of the fuselage and separates moisture in the cycle steam. A separation element; and a heater having a plurality of heat transfer pipes arranged in a substantially central region in the fuselage for flowing the heating steam, and a single heating steam header communicating with the heat transfer pipes. This is a one-stage reheat type moisture separation heater, where the tube bundle size W / H is 1.6 <W / H, where W is the width of the tube bundle and H is the height of the plurality of heat transfer tubes. <1.9, and the heating steam header is configured in a horizontal cylinder shape.

本発明によれば、胴体の底部に設けられたサイクル蒸気入口からサイクル蒸気が流入して、胴体内の下部領域に配置されたMSエレメントへ導かれるので、胴体内の狭い領域をサイクル蒸気が流れることがなく、サイクル蒸気入口からMSエレメントへ至るまでのサイクル蒸気の流速を低下できる。また、加熱器が胴体内の略中央領域に配置されて、この加熱器における伝熱管の管束の横幅Wが高さHに対して大きくされ、管束サイズW/Hが1.6<W/H<1.9に設定されたので、複数の伝熱管の外側を通過するサイクル蒸気の流速を低下できる。これらの結果、サイクル蒸気入口から胴体内へ流入して、MSエレメント及び加熱器を順次流れるサイクル蒸気の圧力損失を低減でき、プラント効率を向上させることができる。   According to the present invention, the cycle steam flows from the cycle steam inlet provided at the bottom of the fuselage and is guided to the MS element disposed in the lower region of the fuselage, so that the cycle steam flows through a narrow region of the fuselage. In other words, the flow rate of the cycle steam from the cycle steam inlet to the MS element can be reduced. Further, the heater is arranged in a substantially central region in the fuselage, the horizontal width W of the tube bundle of the heat transfer tubes in the heater is increased with respect to the height H, and the tube bundle size W / H is 1.6 <W / H. Since it was set to <1.9, the flow velocity of the cycle steam that passes outside the plurality of heat transfer tubes can be reduced. As a result, the pressure loss of the cycle steam that flows from the cycle steam inlet into the fuselage and sequentially flows through the MS element and the heater can be reduced, and the plant efficiency can be improved.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施の形態に限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1の実施の形態(図1〜図10)
図1は、本発明に係る湿分分離加熱器における第1の実施の形態を配管系統と共に示す系統図である。図2は、図1の湿分分離加熱器を示す縦断面図である。
[A] First embodiment (FIGS. 1 to 10)
FIG. 1 is a system diagram showing a first embodiment of a moisture separation heater according to the present invention together with a piping system. FIG. 2 is a longitudinal sectional view showing the moisture separation heater of FIG.

図1に示すように、ボイラーや原子炉などの蒸気発生器10で発生した蒸気は、その大部分がサイクル蒸気として高圧蒸気タービン11へ導かれて仕事をした後、湿分分離加熱器12によって湿分が除去されると共に加熱されて低圧蒸気タービン13へ導かれ、この低圧蒸気タービン13で仕事をした後、復水器14へ至って凝縮されて水となり、図示しない復水ポンプ及び給水ポンプにより順次昇圧されて蒸気発生器10へ戻る。蒸気発生器10からの蒸気の一部は、湿分分離加熱器12の加熱蒸気ヘッダ32(後述)へ導かれる。   As shown in FIG. 1, most of the steam generated in a steam generator 10 such as a boiler or a nuclear reactor is led as cycle steam to a high-pressure steam turbine 11 to perform work. The moisture is removed and heated and guided to the low-pressure steam turbine 13, and after working in the low-pressure steam turbine 13, the water reaches the condenser 14 and is condensed into water, which is not shown by a condensate pump and a feed water pump (not shown). The pressure is increased in sequence and returns to the steam generator 10. A part of the steam from the steam generator 10 is guided to a heating steam header 32 (described later) of the moisture separation heater 12.

さて、湿分分離加熱器12は、図2に示すように、胴体17と、この胴体17の底部に設けられたサイクル蒸気入口18、第1MSドレン口19及び第2MSドレン口20と、胴体17内に配置されたMSエレメント21及び加熱器22と、胴体17の頂部に設けられたサイクル蒸気出口23と、を有して構成される。   As shown in FIG. 2, the moisture separator / heater 12 includes a body 17, a cycle steam inlet 18 provided at the bottom of the body 17, a first MS drain port 19, a second MS drain port 20, and a body 17. The MS element 21 and the heater 22 arranged inside, and a cycle steam outlet 23 provided at the top of the body 17 are configured.

胴体17は、円筒形状で、両端に椀形状の鏡板24が固着されて横置き型に構成される。サイクル蒸気入口18は、胴体17の底部に複数、例えば2個設置されて、高圧蒸気タービン11からのサイクル蒸気を胴体17内へ導入する。このサイクル蒸気入口18の直上に、図3にも示すように蒸気分配板25が設けられる。サイクル蒸気入口18から導入されたサイクル蒸気は蒸気分配板25によって、胴体17内の下部領域全体に広がるように案内される。   The body 17 has a cylindrical shape, and is configured in a horizontal type with a flange-shaped end plate 24 fixed to both ends. A plurality of, for example, two cycle steam inlets 18 are installed at the bottom of the body 17 to introduce the cycle steam from the high-pressure steam turbine 11 into the body 17. A steam distribution plate 25 is provided immediately above the cycle steam inlet 18 as shown in FIG. The cycle steam introduced from the cycle steam inlet 18 is guided by the steam distribution plate 25 so as to spread over the entire lower region in the body 17.

MSエレメント21は、胴体17内において、図2及び図3に示すように、この胴体17の横断面の下部領域に、胴体17の軸方向に沿って延在して一対配置される。それぞれのMSエレメント21は傾斜配置されて、サイクル蒸気が通過するための広い面積が確保されている。サイクル蒸気入口18から流入して蒸気分配板25により案内されたサイクル蒸気は、MSエレメント21を通過する前に、及びMSエレメント21を通過する間に湿分が分離される。   As shown in FIGS. 2 and 3, a pair of MS elements 21 are disposed in the body 17 so as to extend along the axial direction of the body 17 in the lower region of the cross section of the body 17. Each MS element 21 is inclined to ensure a large area for the cycle steam to pass through. The cycle steam flowing from the cycle steam inlet 18 and guided by the steam distribution plate 25 is separated from moisture before passing through the MS element 21 and while passing through the MS element 21.

MSエレメント21を通過する間に分離された湿分(水)は第1MSドレン口19へ流下し、第1MSドレン配管26を経てMSドレンタンク28へドレンとして排出され、更に給水加熱器29(図1)へ排出される。また、MSエレメント21を通過する前に分離された湿分(水)は前記第2MSドレン口20へ流下し、第2MSドレン配管27を通り、この第2MSドレン配管27に配設された圧力調整機構30を経て第1MSドレン配管26へ至り、MSドレンタンク28、給水加熱器29へドレンとして順次排出される。   Moisture (water) separated while passing through the MS element 21 flows down to the first MS drain port 19, is discharged as a drain to the MS drain tank 28 through the first MS drain pipe 26, and is further supplied to the feed water heater 29 (FIG. Discharged to 1). Further, moisture (water) separated before passing through the MS element 21 flows down to the second MS drain port 20, passes through the second MS drain pipe 27, and the pressure adjustment disposed in the second MS drain pipe 27. It reaches the first MS drain pipe 26 via the mechanism 30 and is sequentially discharged as drain to the MS drain tank 28 and the feed water heater 29.

圧力調整機構30は、第2MSドレン口20及び第2MSドレン配管27内の圧力が第1MSドレン口19及び第1MSドレン配管26内の圧力よりも若干高いため、この圧力差の存在下で、第2MSドレン配管27内のドレンを重力により、第1MSドレン配管26を経てMSドレンタンク28へ確実に排出させるものである。この圧力調整機構30は、例えばUシール(後述の第2実施形態において詳説する)が用いられる。   Since the pressure in the second MS drain port 20 and the second MS drain pipe 27 is slightly higher than the pressure in the first MS drain port 19 and the first MS drain pipe 26, the pressure adjustment mechanism 30 The drain in the 2MS drain pipe 27 is surely discharged to the MS drain tank 28 through the first MS drain pipe 26 by gravity. For example, a U seal (which will be described in detail in a second embodiment described later) is used as the pressure adjusting mechanism 30.

前記加熱器22は1段再熱式であり、図2及び図3に示すように、複数本のU字形状の伝熱管31と、これらの伝熱管31の両端が連通された単一の加熱蒸気ヘッダ32とを有して構成される。これらの伝熱管31及び加熱蒸気ヘッダ32は、胴体17内において、この胴体17の横断面の略中央領域に配置される。このうち伝熱管31は、胴体17の軸方向に延在し、加熱蒸気ヘッダ32を介して、図1に示す蒸気発生器10からの蒸気の一部が加熱蒸気として流入し流動する。図2及び図3に示すように、胴体17内においてMSエレメント21により湿分が除去されたサイクル蒸気は、複数本の伝熱管31の外側を流れる間に、伝熱管31の内側を流れる加熱蒸気と熱交換して過熱蒸気となる。この過熱蒸気となったサイクル蒸気は、サイクル蒸気出口23から流出し、図1に示すクロスオーバー管33を経て低圧蒸気タービン13へ導かれる。   The heater 22 is a one-stage reheat type, and as shown in FIGS. 2 and 3, a plurality of U-shaped heat transfer tubes 31 and a single heating in which both ends of these heat transfer tubes 31 are communicated with each other. And a steam header 32. The heat transfer tube 31 and the heating steam header 32 are arranged in a substantially central region of the cross section of the body 17 in the body 17. Among these, the heat transfer tube 31 extends in the axial direction of the body 17, and a part of the steam from the steam generator 10 shown in FIG. 1 flows and flows through the heating steam header 32 as heating steam. As shown in FIG. 2 and FIG. 3, the cycle steam from which moisture has been removed by the MS element 21 in the body 17 is heated steam that flows inside the heat transfer tubes 31 while flowing outside the plurality of heat transfer tubes 31. Exchanges heat with steam to form superheated steam. The cycle steam that has become the superheated steam flows out of the cycle steam outlet 23 and is led to the low-pressure steam turbine 13 through the crossover pipe 33 shown in FIG.

ところで、加熱器22の加熱蒸気ヘッダ32は、図4及び図7に示すように、円筒形状で、長軸を横向きに配置させた横置き円筒型に構成される。また、図3に示すように、複数本の伝熱管31の管束の横幅をW、高さをHとしたとき、管束サイズW/Hは、1.6<W/H<1.9に設定される。   By the way, as shown in FIG.4 and FIG.7, the heating steam header 32 of the heater 22 is cylindrical shape, and is comprised by the horizontal installation cylindrical shape which has arrange | positioned the long axis sideways. Also, as shown in FIG. 3, when the horizontal width of the tube bundle of the plurality of heat transfer tubes 31 is W and the height is H, the tube bundle size W / H is set to 1.6 <W / H <1.9. Is done.

図7に示すように、胴体17の胴体径をD、加熱蒸気ヘッダ32の加熱蒸気ヘッダ径をd、加熱蒸気ヘッダ長さをlとしたとき、加熱蒸気ヘッダ径比d/Dと管束サイズW/Hとの関係を図9に、加熱蒸気ヘッダ長さ比l/Dと管束サイズW/Hとの関係を図10にそれぞれ示す。MSエレメント21による蒸気の圧力損失を小さくするためには図3におけるMSエレメント21を高さ方向に長くとらなければならずdを小さくする必要がある。加熱蒸気ヘッダ径比d/Dが0.4程度より小さい場合に蒸気の圧力損失を小さくすることができることが分かった。このときW/H>1.6である。一方でlに関しては幅が大きいほうがよいが、l/Dが0.85程度より小さくないと設計上の構造が成り立たない。このときW/H<1.9である。よって、胴体径Dが一定であるとすると、加熱蒸気ヘッダ径比d/Dは、W/H>1.6で小さくなり、加熱蒸気ヘッダ長さ比l/DはW/H<1.9で小さくなる。複数本の伝熱管31の外側を流れるサイクル蒸気の圧力損失ΔPは、図8に示すように、管束サイズW/Hが小さいほど小さくなるので、管束サイズW/Hを1.6<W/H<1.9に設定することで、加熱器22を通過するサイクル蒸気の圧力損失が低く、且つ加熱蒸気ヘッダ32がコンパクトな湿分分離加熱器12となる。   As shown in FIG. 7, when the body diameter of the body 17 is D, the heating steam header diameter of the heating steam header 32 is d, and the heating steam header length is l, the heating steam header diameter ratio d / D and the tube bundle size W FIG. 9 shows the relationship between / H and FIG. 10 shows the relationship between the heated steam header length ratio 1 / D and the tube bundle size W / H. In order to reduce the steam pressure loss due to the MS element 21, the MS element 21 in FIG. 3 must be taken longer in the height direction, and d must be reduced. It was found that the steam pressure loss can be reduced when the heated steam header diameter ratio d / D is smaller than about 0.4. At this time, W / H> 1.6. On the other hand, for l, it is better that the width is large, but the design structure cannot be established unless l / D is smaller than about 0.85. At this time, W / H <1.9. Therefore, assuming that the body diameter D is constant, the heating steam header diameter ratio d / D becomes smaller at W / H> 1.6, and the heating steam header length ratio 1 / D becomes W / H <1.9. Becomes smaller. As shown in FIG. 8, the pressure loss ΔP of the cycle steam that flows outside the plurality of heat transfer tubes 31 decreases as the tube bundle size W / H decreases. Therefore, the tube bundle size W / H is set to 1.6 <W / H. By setting <1.9, the pressure loss of the cycle steam which passes the heater 22 is low, and the heating steam header 32 becomes the compact moisture separation heater 12.

また、図1に示すように、高圧蒸気タービン11と、湿分分離加熱器12の複数(例えば2個)のサイクル蒸気入口18とは、クロスアンダー管34によって接続されている。このクロスアンダー管34は、途中で複数本(例えば2本)に分岐されて分岐部34Aを備えた分岐管であり、この分岐部34の各端部がサイクル蒸気入口18に取り付けられる。従って、高圧蒸気タービン11から排出されたサイクル蒸気は、クロスアンダー管34を通って湿分分離加熱器12のサイクル蒸気入口18へ導かれるが、クロスアンダー管34の分岐部34Aでは流路断面積が増大するので、この分岐部34A内でサイクル蒸気の流速が低下し、圧力損失が低減された状態でサイクル蒸気入口18へ至る。   Further, as shown in FIG. 1, the high-pressure steam turbine 11 and the plurality of (for example, two) cycle steam inlets 18 of the moisture separation heater 12 are connected by a cross-under pipe 34. The cross-under pipe 34 is a branch pipe that is branched into a plurality of (for example, two) pipes on the way and includes a branch section 34 </ b> A. Each end of the branch section 34 is attached to the cycle steam inlet 18. Accordingly, the cycle steam discharged from the high-pressure steam turbine 11 is guided to the cycle steam inlet 18 of the moisture separator / heater 12 through the cross under pipe 34, but the flow path cross-sectional area at the branch portion 34 </ b> A of the cross under pipe 34. Therefore, the flow rate of the cycle steam is reduced in the branch part 34A, and the cycle steam inlet 18 is reached with the pressure loss reduced.

また、図4、図5及び図6に示すように、加熱器22の加熱蒸気ヘッダ32内は、隔壁部材35、36により入口室37、中間室38及び出口室39に区画される。入口室37に、蒸気発生器10からの蒸気を加熱蒸気として導入する加熱蒸気入口管40が接続される。中間室38に、後述の凝縮ドレンを排出する加熱器ドレン管41が接続される。出口室39に、後述の凝縮ドレン及びベント蒸気を排出するドレンベント出口管42が接続される。   As shown in FIGS. 4, 5, and 6, the inside of the heating steam header 32 of the heater 22 is divided into an inlet chamber 37, an intermediate chamber 38, and an outlet chamber 39 by partition members 35 and 36. A heating steam inlet pipe 40 that introduces steam from the steam generator 10 as heating steam is connected to the inlet chamber 37. A heater drain pipe 41 for discharging a condensed drain described later is connected to the intermediate chamber 38. The outlet chamber 39 is connected to a drain vent outlet pipe 42 for discharging condensed drain and vent steam described later.

更に、図2に示すように、加熱器22の複数本の伝熱管31は、両端が入口室37及び中間室38に連通された複数本の伝熱管31Aと、両端が中間室38及び出口室39に連通された複数本の伝熱管31Bとから構成される。従って、これらの伝熱管31A及び31B内を流れる加熱蒸気の流れが4パスに構成される。   Further, as shown in FIG. 2, the plurality of heat transfer tubes 31 of the heater 22 include a plurality of heat transfer tubes 31 </ b> A having both ends communicating with the inlet chamber 37 and the intermediate chamber 38, and both ends with the intermediate chamber 38 and the outlet chamber. And a plurality of heat transfer tubes 31 </ b> B communicated with 39. Therefore, the flow of the heating steam flowing through the heat transfer tubes 31A and 31B is configured in four passes.

つまり、入口室37から流出して伝熱管31Aの上側部分を流れる加熱蒸気の流れが第1パスA1となり、伝熱管31Aの下側部分を流れて中間室38へ流入する加熱蒸気の流れが第2パスA2となる。中間室38から流出して伝熱管31Bの上側部分を流れる加熱蒸気の流れが第3パスA3となり、伝熱管31Bの下側部分を流れて出口室39へ流入する加熱蒸気の流れが第4パスA4となる。   That is, the flow of the heating steam that flows out from the inlet chamber 37 and flows through the upper portion of the heat transfer tube 31A becomes the first path A1, and the flow of the heating steam that flows through the lower portion of the heat transfer tube 31A and flows into the intermediate chamber 38 is first. Two passes A2. The flow of the heating steam that flows out from the intermediate chamber 38 and flows through the upper portion of the heat transfer tube 31B becomes the third path A3, and the flow of the heating steam that flows through the lower portion of the heat transfer tube 31B and flows into the outlet chamber 39 is the fourth path. A4.

そして、図5に示すように、加熱蒸気の第2パスA2で発生した凝縮ドレン(水)は、加熱蒸気ヘッダ32の中間室38内へ流入した後、前記加熱器ドレン管41を経て器外へ、つまり図1に示すように、この加熱器ドレン管41が接続された加熱器ドレンタンク43へ排出される。この加熱器ドレンタンク43は給水加熱器44に接続され、加熱器ドレンタンク43内のドレンが給水加熱器44内へ導かれる。図5に示すように、加熱蒸気ヘッダ32の中間室38内で凝縮ドレンが除去された加熱蒸気は、この中間室38から伝熱管31Bの上流側部分へ流れ、加熱蒸気の第3パスA3となる。   Then, as shown in FIG. 5, the condensed drain (water) generated in the second path A2 of the heating steam flows into the intermediate chamber 38 of the heating steam header 32 and then passes through the heater drain pipe 41 to the outside. In other words, as shown in FIG. 1, the water is discharged to a heater drain tank 43 to which the heater drain pipe 41 is connected. The heater drain tank 43 is connected to the feed water heater 44, and the drain in the heater drain tank 43 is guided into the feed water heater 44. As shown in FIG. 5, the heated steam from which condensed drain has been removed in the intermediate chamber 38 of the heated steam header 32 flows from the intermediate chamber 38 to the upstream side portion of the heat transfer pipe 31B, and the third path A3 of the heated steam Become.

ここで、図1及び図5に示すように、前記加熱器ドレンタンク43は、バランス管45を介して加熱蒸気ヘッダ32の中間室38に連通される。このバランス管45は、中間室38と加熱器ドレンタンク43との圧力をバランスさせて、中間室38内の凝縮ドレンを加熱器ドレン管41を経て加熱器ドレンタンク43内へ、重力の作用でスムーズに排出させる機能を果たす。また、このバランス管45は、加熱蒸気ヘッダ32の中間室38内における端部に、上方へ延出して開口する短管46が設けられる。この短管46によって、中間室38内の凝縮ドレンがバランス管45内へ流入しないよう配慮されている。   Here, as shown in FIGS. 1 and 5, the heater drain tank 43 is communicated with the intermediate chamber 38 of the heating steam header 32 through a balance pipe 45. The balance pipe 45 balances the pressure in the intermediate chamber 38 and the heater drain tank 43, and the condensed drain in the intermediate chamber 38 is passed through the heater drain pipe 41 into the heater drain tank 43 by the action of gravity. It performs the function of discharging smoothly. Further, the balance pipe 45 is provided with a short pipe 46 that extends upward and opens at an end of the heating steam header 32 in the intermediate chamber 38. This short pipe 46 is designed to prevent the condensed drain in the intermediate chamber 38 from flowing into the balance pipe 45.

図1及び図6に示すように、加熱蒸気ヘッダ32の出口室39に接続される1本の前記ドレンベント出口管42は、伝熱管31B内を流れる加熱蒸気の第4パスA4から出口室39内へ流入したベント蒸気(不凝縮ガスを含む)及び凝縮ドレンを器外へ、つまりこのドレンベント出口管42に接続された給水加熱器44へ、流量調整機構としてのドレンオリフィス47を経て排出する。ドレンオリフィス47は、ドレンベント出口管42に配設される。湿分分離加熱器12の通常運転時には、加熱蒸気ヘッダ32内の圧力が給水加熱器44よりも高くなるので、ドレンオリフィス47のオリフィス径を狭めてベント蒸気及び凝縮ドレンの流量を制限することにより、出口室39内のベント蒸気及び凝縮ドレンが、給水加熱器44内へ大量に流れ過ぎないように最適な流出量に維持される。   As shown in FIGS. 1 and 6, the one drain vent outlet pipe 42 connected to the outlet chamber 39 of the heating steam header 32 is connected to the inside of the outlet chamber 39 from the fourth path A4 of the heating steam flowing in the heat transfer pipe 31B. Vent steam (including non-condensable gas) and condensed drain that flow into the outside are discharged to the outside of the apparatus, that is, to the feed water heater 44 connected to the drain vent outlet pipe 42 via a drain orifice 47 as a flow rate adjusting mechanism. The drain orifice 47 is disposed in the drain vent outlet pipe 42. During normal operation of the moisture separator / heater 12, the pressure in the heated steam header 32 is higher than that of the feed water heater 44. Therefore, by narrowing the orifice diameter of the drain orifice 47 and limiting the flow rates of the vent steam and condensed drain. The vent steam and the condensate drain in the outlet chamber 39 are maintained at an optimum outflow amount so as not to flow too much into the feed water heater 44.

更に、ドレンベント出口管42は復水器14に接続され、切換弁48及び49の作用で、給水加熱器44または復水器14に切換可能に接続される。湿分分離加熱器12の通常運転時には切換弁48が開弁され、切換弁49が閉弁されて、ドレンベント出口管42は、上述のように給水加熱器44に接続される。これに対し、湿分分離加熱器12の起動時には、切換弁48が閉弁され、切換弁49が開弁されることで、ドレンベント出口管42は復水器14に接続される。湿分分離加熱器12の起動時には、加熱蒸気ヘッダ32内の圧力が給水加熱器44内の圧力よりも低くなることがあるので、このときの加熱蒸気ヘッダ32内の圧力よりも低い圧力の復水器14にドレンベント出口管42を接続することで、加熱蒸気ヘッダ32の出口室39内のベント蒸気及び凝縮ドレンを復水器14へ確実に排出させる。   Further, the drain vent outlet pipe 42 is connected to the condenser 14, and is connected to the feed water heater 44 or the condenser 14 in a switchable manner by the action of the switching valves 48 and 49. During the normal operation of the moisture separator heater 12, the switching valve 48 is opened, the switching valve 49 is closed, and the drain vent outlet pipe 42 is connected to the feed water heater 44 as described above. On the other hand, when the moisture separator / heater 12 is started, the switching valve 48 is closed and the switching valve 49 is opened, so that the drain vent outlet pipe 42 is connected to the condenser 14. Since the pressure in the heating steam header 32 may be lower than the pressure in the feed water heater 44 when the moisture separator / heater 12 is started, the pressure lower than the pressure in the heating steam header 32 at this time is restored. By connecting the drain vent outlet pipe 42 to the water condenser 14, the vent steam and the condensed drain in the outlet chamber 39 of the heating steam header 32 are surely discharged to the condenser 14.

以上のように構成されたことから、本実施の形態によれば、次の効果(1)〜(8)を奏する。   With the configuration as described above, the following effects (1) to (8) are achieved according to the present embodiment.

(1)胴体17の底部に設けられたサイクル蒸気入口18からサイクル蒸気が流入して、胴体17内の下部領域に配置されたMSエレメント21へ導かれるので、胴体17内の狭い領域をサイクル蒸気が流れることがなく、サイクル蒸気入口18からMSエレメント21へ至るまでのサイクル蒸気の流速を低下できる。また、加熱器22が胴体17内の略中央領域に配置されて、この加熱器22における伝熱管31の管束の横幅Wが高さHに対して大きくされ、管束サイズW/Hが1.6<W/H<1.9に設定されたので、複数本の伝熱管31の外側を通過するサイクル蒸気の流速を低下できる。蒸気の圧力損失は、流速の二乗に比例するので、上述のようにサイクル蒸気の流速を低下させることで、サイクル蒸気入口18から胴体17内へ流入して、MSエレメント21及び加熱器22を順次流れるサイクル蒸気の圧力損失を大幅に低減することができる。   (1) Since the cycle steam flows in from the cycle steam inlet 18 provided at the bottom of the fuselage 17 and is led to the MS element 21 disposed in the lower region in the fuselage 17, the cycle steam is passed through the narrow region in the fuselage 17. , And the flow rate of the cycle steam from the cycle steam inlet 18 to the MS element 21 can be reduced. In addition, the heater 22 is disposed in a substantially central region in the body 17, and the horizontal width W of the tube bundle of the heat transfer tubes 31 in the heater 22 is increased with respect to the height H, and the tube bundle size W / H is 1.6. Since it was set to <W / H <1.9, the flow velocity of the cycle steam that passes outside the plurality of heat transfer tubes 31 can be reduced. Since the pressure loss of the steam is proportional to the square of the flow velocity, by reducing the flow velocity of the cycle steam as described above, the steam flows into the body 17 from the cycle steam inlet 18, and the MS element 21 and the heater 22 are sequentially turned on. The pressure loss of the flowing cycle steam can be greatly reduced.

特許文献2のような2段再熱式の湿分分離加熱器において、加熱蒸気ヘッダを胴体内に配置した例はあるが、胴体中央領域から離れた位置の伝熱管では、その管束の横幅が小さくなることがある。この場合には、この管束の各伝熱管の外側空間が必然的に狭くなるので、この空間を流れるサイクル蒸気の流速が上昇してしまい、圧力損失の低減に限界がある。これに対し、本実施の形態では、加熱器22の伝熱管31の管束サイズW/Hを1.6<W/H<1.9に設定することで、前述の如く、サイクル蒸気の圧力損失を大幅に低減できる結果、プラント効率を向上させることができる。   In the two-stage reheat type moisture separator and heater as in Patent Document 2, there is an example in which the heating steam header is arranged in the fuselage, but in the heat transfer tube at a position away from the fuselage central region, the width of the tube bundle is May be smaller. In this case, since the outer space of each heat transfer tube of this tube bundle is inevitably narrow, the flow rate of the cycle steam flowing through this space is increased, and there is a limit to the reduction of pressure loss. On the other hand, in this embodiment, by setting the tube bundle size W / H of the heat transfer tube 31 of the heater 22 to 1.6 <W / H <1.9, the pressure loss of the cycle steam as described above. As a result, the plant efficiency can be improved.

(2)湿分分離加熱器12のサイクル蒸気入口18と高圧蒸気タービン11とを接続してサイクル蒸気を複数のサイクル蒸気入口18へ導くクロスアンダー管34は、分岐部34Aを備えた分岐管であることから、この複数の分岐部34Aにおいて流路断面積が増大する。この結果、分岐部34Aを流れるサイクル蒸気の流速を低下させることができるので、高圧蒸気タービン11から湿分分離加熱器12のサイクル蒸気入口18へ至るまでのサイクル蒸気の圧力損失を大幅に低減できる。   (2) The cross-under pipe 34 that connects the cycle steam inlet 18 of the moisture separator / heater 12 and the high-pressure steam turbine 11 to guide the cycle steam to the plurality of cycle steam inlets 18 is a branch pipe having a branch portion 34A. For this reason, the flow path cross-sectional area increases at the plurality of branch portions 34A. As a result, since the flow velocity of the cycle steam flowing through the branch portion 34A can be reduced, the pressure loss of the cycle steam from the high-pressure steam turbine 11 to the cycle steam inlet 18 of the moisture separation heater 12 can be greatly reduced. .

(3)加熱器22における伝熱管31内を流れる加熱蒸気の流れが2パスの場合には、伝熱管31の外側を流れるサイクル蒸気の温度が低い伝熱管31の下側部分の内部において、この内部で発生した凝縮ドレンが過冷却(飽和蒸気温度よりも低い温度まで冷却されること)される傾向にある。   (3) When the flow of the heating steam flowing in the heat transfer tube 31 in the heater 22 is two-pass, in the lower portion of the heat transfer tube 31 where the temperature of the cycle steam flowing outside the heat transfer tube 31 is low, The condensed drain generated inside tends to be supercooled (cooled to a temperature lower than the saturated steam temperature).

これに対し、本実施の形態の如く、加熱器22における伝熱管31内を流れる加熱蒸気の流れが4パスに構成され、加熱蒸気の第2パスA2で発生した凝縮ドレンが、加熱蒸気ヘッダ32の中間室38から加熱器ドレン管41を経て器外へ排出されるので、その後に伝熱管31(31B)内を流れる加熱蒸気の蒸気量が確保され、飽和状態が保持される。この結果、特に加熱蒸気の第4パスA4において発生した凝縮ドレンの過冷却を抑制することができる。   On the other hand, as in the present embodiment, the flow of the heating steam flowing through the heat transfer tube 31 in the heater 22 is configured in four passes, and the condensed drain generated in the second pass A2 of the heating steam is the heating steam header 32. Since it is discharged | emitted from the intermediate | middle chamber 38 through the heater drain pipe | tube 41 outside the apparatus, the vapor | steam amount of the heating steam which flows the inside of the heat exchanger tube 31 (31B) after that is ensured, and a saturated state is hold | maintained. As a result, it is possible to suppress the overcooling of the condensed drain generated particularly in the fourth pass A4 of the heating steam.

(4)加熱器22における伝熱管31内で発生した凝縮ドレンの過冷却が抑制されるので、この過冷却低減のために、湿分分離加熱器12の加熱器22における伝熱管31内へ大量の蒸気を加熱蒸気として、蒸気発生器10から導入する必要がない。この結果、蒸気発生器10から加熱蒸気入口管40を経て加熱蒸気ヘッダ32の入口室39内へ導く蒸気量が少なくなり、蒸気発生器10で発生した蒸気を高圧蒸気タービン11へより多く導入できるので、その分プラント効率を向上させることができる。   (4) Since the supercooling of the condensed drain generated in the heat transfer tube 31 in the heater 22 is suppressed, a large amount of heat is introduced into the heat transfer tube 31 in the heater 22 of the moisture separation heater 12 in order to reduce this supercooling. It is not necessary to introduce the steam from the steam generator 10 as heating steam. As a result, the amount of steam guided from the steam generator 10 through the heating steam inlet pipe 40 into the inlet chamber 39 of the heating steam header 32 is reduced, and more steam generated by the steam generator 10 can be introduced into the high-pressure steam turbine 11. Therefore, the plant efficiency can be improved accordingly.

(5)加熱蒸気ヘッダ32の中間室38からの凝縮ドレンが加熱器ドレン管41を介して排出される加熱器ドレンタンク43と前記中間室38とは、バランス管45によって連通されている。このため、中間室38と加熱器ドレンタンク43との圧力がバランスして、中間室38内の凝縮ドレンを、加熱器ドレン管41を経て加熱器ドレンタンク43内へ重力の作用でスムーズに排出させることができる。   (5) The heater drain tank 43 from which the condensed drain from the intermediate chamber 38 of the heated steam header 32 is discharged via the heater drain pipe 41 and the intermediate chamber 38 are communicated by a balance pipe 45. Therefore, the pressure in the intermediate chamber 38 and the heater drain tank 43 is balanced, and the condensed drain in the intermediate chamber 38 is smoothly discharged through the heater drain pipe 41 into the heater drain tank 43 by the action of gravity. Can be made.

(6)加熱蒸気ヘッダ32の出口室39に1本のドレンベント出口管42が接続され、このドレンベント出口管42を経て伝熱管31から出口室39内に流入したベント蒸気及び凝縮ドレンが、給水加熱器44または復水器14へ排出されるので、ベント蒸気と凝縮ドレンとを別々の配管を用いて排出する場合に比べ、配管の系統構成を簡素化できる。   (6) One drain vent outlet pipe 42 is connected to the outlet chamber 39 of the heating steam header 32, and the vent steam and the condensed drain flowing into the outlet chamber 39 from the heat transfer pipe 31 through this drain vent outlet pipe 42 are heated by feed water. Since it is discharged to the condenser 44 or the condenser 14, the system configuration of the piping can be simplified as compared with the case where the vent steam and the condensed drain are discharged using separate piping.

(7)加熱蒸気ヘッダ32の出口室39に流入したベント蒸気及び凝縮ドレンがドレンオフィス47を介して給水加熱器44へ排出され、このドレンオフィス47がベント蒸気及び凝縮ドレンの排出流量を規定して制限するよう構成されている。このため、出口室39内のベント蒸気及び凝縮ドレンの給水加熱器44への排出流量を最適に維持できる。   (7) The vent steam and the condensed drain that have flowed into the outlet chamber 39 of the heating steam header 32 are discharged to the feed water heater 44 through the drain office 47, and the drain office 47 defines the discharge flow rate of the vent steam and the condensed drain. Configured to be restricted. For this reason, the discharge | emission flow volume to the feed water heater 44 of the vent vapor | steam in the exit chamber 39 and a condensed drain can be maintained optimally.

(8)加熱蒸気ヘッダ32の出口室39に接続されたドレンベント出口管42が給水加熱器44と復水器14とに切換可能に接続されたので、加熱蒸気ヘッダ32内の圧力が給水加熱器44内によりも低くなる湿分分離加熱器12の起動時に、ドレンベント出口管42を復水器14に接続することで、このときの加熱蒸気ヘッダ32内の圧力よりも低い復水器14内へ、出口室39内の不凝縮ガスを含むベント蒸気及び凝縮ドレンを確実に排出することができる。   (8) Since the drain vent outlet pipe 42 connected to the outlet chamber 39 of the heating steam header 32 is switchably connected to the feed water heater 44 and the condenser 14, the pressure in the heating steam header 32 is changed to the feed water heater. By connecting the drain vent outlet pipe 42 to the condenser 14 at the start of the moisture separation heater 12 that is lower than the inside of the condenser 44, the pressure in the heating steam header 32 at this time is lowered into the condenser 14. The vent vapor and the condensed drain containing the non-condensable gas in the outlet chamber 39 can be reliably discharged.

[B]第2の実施の形態(図11〜図13)
図11は、本発明に係る湿分分離加熱器における第2の実施の形態を示す縦断面図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIGS. 11 to 13)
FIG. 11 is a longitudinal sectional view showing a second embodiment of the moisture separation heater according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態の湿分分離加熱器50が前記実施の形態と異なる点は、胴体17の底部から第2MSドレン口20が省略されると共に、第1MSドレン口19に代えてMSドレン排出部51が胴体17の底部に設置され、更に、MSドレンタンク28と同様に機能するMSドレンタンク52が胴体17の底部に直接取り付けられた点である。   The difference between the moisture separation heater 50 of the present embodiment and the previous embodiment is that the second MS drain port 20 is omitted from the bottom of the body 17 and the MS drain discharge portion 51 is replaced with the first MS drain port 19. Is installed at the bottom of the body 17, and an MS drain tank 52 that functions in the same manner as the MS drain tank 28 is directly attached to the bottom of the body 17.

MSドレン排出部51は、胴体17の底部において、サイクル蒸気入口18を挟んでMSドレンタンク50によりも遠い位置に取り付けられる。このMSドレン排出部51は、図12及び図13に示すように、MSエレメント21を通過して分離された湿分(水)を、MSエレメント支持部材53内を通過させ、圧力調整機構としてのUシール54を経て、排出部本体55内へドレンとして導くと共に、MSエレメント21通過前に分離され、胴体17の底部に流下した湿分(水)を、排出部本体55へドレンとして直接導くものである。   The MS drain discharge part 51 is attached at a position farther than the MS drain tank 50 across the cycle steam inlet 18 at the bottom of the body 17. As shown in FIGS. 12 and 13, the MS drain discharge portion 51 allows moisture (water) separated by passing through the MS element 21 to pass through the MS element support member 53 to serve as a pressure adjustment mechanism. It is guided as drain into the discharge unit main body 55 through the U seal 54, and moisture (water) separated before passing through the MS element 21 and flowing down to the bottom of the body 17 is directly guided to the discharge unit main body 55 as drain. It is.

MSエレメント支持部材53内が胴体17内によりも圧力が若干低いため、前記Uシール54は、この圧力差を考慮して設置されたものであり、MSエレメント支持部材53内に連通する筒状部材56と、この筒状部材56の直下で排出部本体55内に配置された受け部材57とを備えてなる。筒状部材56の下部先端は、受け部材57の底面近傍に位置付けられる。MSエレメント21を通過して分離されMSエレメント支持部材53内を流下した湿分(ドレン)は、筒状部材56内を通り受け部材57に一旦貯留された後、この受け部材57の上縁から排出部本体55内へ溢水する。この受け部材57内に貯留されたドレン(水)によって、MSエレメント支持部材53内の圧力が排出部本体55内の圧力よりも低い場合であっても、MSエレメント支持部材53内のドレンを排出部本体55内へ導くことが可能となる。   Since the pressure in the MS element support member 53 is slightly lower than that in the body 17, the U-seal 54 is installed in consideration of this pressure difference, and the tubular member communicated with the MS element support member 53. 56 and a receiving member 57 disposed in the discharge portion main body 55 immediately below the cylindrical member 56. The lower end of the cylindrical member 56 is positioned near the bottom surface of the receiving member 57. Moisture (drain) separated through the MS element 21 and flowing down in the MS element support member 53 passes through the cylindrical member 56 and is temporarily stored in the receiving member 57, and then from the upper edge of the receiving member 57. The discharge body 55 overflows. The drain (water) stored in the receiving member 57 discharges the drain in the MS element support member 53 even when the pressure in the MS element support member 53 is lower than the pressure in the discharge portion main body 55. It is possible to guide the inside of the body 55.

一方、図11に示すように、MSドレンタンク52も内部にUシール54を備え、MSエレメント21を通過して分離された湿分を、Uシール54を経てMSドレンタンク52内へ排出すると共に、MSエレメント21通過前に分離された湿分を直接MSドレンタンク52内へ排出する。また、前記MSドレン排出部51の排出部本体55は、ドレン連通管58を用いてMSドレンタンク52に連通される。このため、排出部本体55内に導かれたドレンは、ドレン連通管58を経てMSドレンタンク52内へ排出される。   On the other hand, as shown in FIG. 11, the MS drain tank 52 is also provided with a U seal 54 inside, and moisture separated through the MS element 21 is discharged into the MS drain tank 52 through the U seal 54. The moisture separated before passing through the MS element 21 is directly discharged into the MS drain tank 52. Further, the discharge part main body 55 of the MS drain discharge part 51 is communicated with the MS drain tank 52 using a drain communication pipe 58. For this reason, the drain led into the discharge section main body 55 is discharged into the MS drain tank 52 through the drain communication pipe 58.

従って、本実施の形態によれば、前記実施の形態の効果(1)〜(8)と同様な効果を奏する他、次の効果(9)を奏する。   Therefore, according to the present embodiment, in addition to the same effects as the effects (1) to (8) of the above embodiment, the following effect (9) is achieved.

(9)MSドレンタンク52が胴体17の底部に直接取り付けられると共に、このMSドレンタンク52とMSドレン排出部51に圧力調整機構としてのUシール54がそれぞれ内蔵されている。従って、MSドレンタンク52の場合には、MSエレメント21を通過して分離された湿分をUシール54を経てMSドレンタンク52内へ排出すると共に、MSエレメント21通過前に分離された湿分を直接MSドレンタンク52内へ導く。また、MSドレン排出部51の場合には、MSエレメント21を通過して分離された湿分をUシール54を経て排出部本体55へ導くと共に、MSエレメント21通過前に分離された湿分を直接排出部本体55へ導き、この排出部本体55内の湿分(ドレン)を、ドレン連通管58にてMSドレンタンク52へ排出している。   (9) The MS drain tank 52 is directly attached to the bottom of the body 17, and the MS seal tank 52 and the MS drain discharge portion 51 each have a U seal 54 as a pressure adjusting mechanism. Therefore, in the case of the MS drain tank 52, the moisture separated through the MS element 21 is discharged into the MS drain tank 52 through the U seal 54, and the moisture separated before passing through the MS element 21 is discharged. Is directly introduced into the MS drain tank 52. In the case of the MS drain discharge part 51, the moisture separated through the MS element 21 is guided to the discharge part main body 55 through the U seal 54, and the moisture separated before passing through the MS element 21 is removed. Directly leading to the discharge unit main body 55, moisture (drain) in the discharge unit main body 55 is discharged to the MS drain tank 52 through the drain communication pipe 58.

このように、MSエレメント21を通過して分離された低圧力の湿分と、MSエレメント21通過前に分離された高圧力の湿分とを、配管を介することなくMSドレンタンク52へ排出でき、また、ドレン連通管58を経てMSドレン排出部51からMSドレンタンク52内へ排出できるので、湿分分離加熱器50及びその配管系統を簡素化できる。   Thus, the low-pressure moisture separated through the MS element 21 and the high-pressure moisture separated before passing through the MS element 21 can be discharged to the MS drain tank 52 without passing through the piping. Moreover, since it can discharge | emit into the MS drain tank 52 from the MS drain discharge part 51 via the drain communication pipe | tube 58, the moisture separation heater 50 and its piping system can be simplified.

本発明に係る湿分分離加熱器における第1の実施の形態を配管系統と共に示す系統図。The system diagram which shows 1st Embodiment in the moisture separation heater which concerns on this invention with a piping system. 図1の湿分分離加熱器を示す縦断面図。The longitudinal cross-sectional view which shows the moisture separation heater of FIG. 図2のIII−III線に沿う断面図。Sectional drawing which follows the III-III line | wire of FIG. 図2のIV斜視図。FIG. 4 is an IV perspective view of FIG. 2. 図4のV−V線に沿う断面図。Sectional drawing which follows the VV line of FIG. 図4のVI−VI線に沿う断面図。Sectional drawing which follows the VI-VI line of FIG. 図2の加熱蒸気ヘッダを胴体と共に示す正面図。The front view which shows the heating steam header of FIG. 2 with a fuselage | body. 図2の伝熱管の管束サイズW/Hと、伝熱管の外側を流れるサイクル蒸気の圧力損失ΔPとの関係を示すグラフ。The graph which shows the relationship between tube bundle size W / H of the heat exchanger tube of FIG. 2, and pressure loss (DELTA) P of the cycle steam which flows the outer side of a heat exchanger tube. 図7の加熱蒸気ヘッダ径比d/Dと伝熱管の管束サイズW/Hとの関係を示すグラフ。The graph which shows the relationship between the heating steam header diameter ratio d / D of FIG. 7, and the tube bundle size W / H of a heat exchanger tube. 図7の加熱蒸気ヘッダ長さ比l/Dと伝熱管の管束サイズW/Hとの関係を示すグラフ。The graph which shows the relationship between heating steam header length ratio 1 / D of FIG. 7, and the tube bundle size W / H of a heat exchanger tube. 本発明に係る湿分分離加熱器における第2の実施の形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment in the moisture separation heater which concerns on this invention. 図7のドレン排出部を示す断面図。Sectional drawing which shows the drain discharge part of FIG. 図12のXIII−XIII線に沿う断面図。Sectional drawing which follows the XIII-XIII line | wire of FIG. 従来の湿分分離加熱器を示す縦断面図。The longitudinal cross-sectional view which shows the conventional moisture separation heater. 図14のXV−XV線に沿う断面図。Sectional drawing which follows the XV-XV line | wire of FIG.

符号の説明Explanation of symbols

11 高圧蒸気タービン
12 湿分分離加熱器
17 胴体
18 サイクル蒸気入口
21 MSエレメント
22 加熱器
31 伝熱管
32 加熱蒸気ヘッダ
34 クロスアンダー管
34A 分岐部
37 出口室
38 中間室
39 出口室
40 加熱蒸気入口管
41 加熱器ドレン管
42 ドレンベント出口管
43 加熱器ドレンタンク
45 バランス管
47 ドレンオフィス
48、49 切換弁
50 湿分分離加熱器
51 MSドレン排出部
52 MSドレンタンク
54 Uシール(圧力調整機構)
58 ドレン連通管
A1 第1パス
A2 第2パス
A3 第3パス
A4 第4パス
W 横幅
H 高さ
W/H 管束サイズ
ΔP 圧力損失
DESCRIPTION OF SYMBOLS 11 High pressure steam turbine 12 Moisture separation heater 17 Body 18 Cycle steam inlet 21 MS element 22 Heater 31 Heat transfer pipe 32 Heated steam header 34 Cross under pipe 34A Branch part 37 Outlet room 38 Intermediate room 39 Outlet room 40 Heating steam inlet pipe 41 Heater drain pipe 42 Drain vent outlet pipe 43 Heater drain tank 45 Balance pipe 47 Drain office 48, 49 Switching valve 50 Moisture separation heater 51 MS drain discharge part 52 MS drain tank 54 U seal (pressure adjustment mechanism)
58 Drain communication pipe A1 1st pass A2 2nd pass A3 3rd pass A4 4th pass W Width H Height W / H Tube bundle size ΔP Pressure loss

Claims (10)

胴体と、
この胴体の底部に設けられ、サイクル蒸気を前記胴体内に導入するサイクル蒸気入口と、
前記胴体内の下部領域に傾斜配置され、サイクル蒸気中の湿分を分離する湿分分離エレメントと、
前記胴体内の略中央領域に配置され、加熱蒸気を流動させる複数本の伝熱管、及びこれらの伝熱管に連通する単一の加熱蒸気ヘッダを備えた加熱器と、を有する1段再熱式の湿分分離加熱器であって、
複数本の前記伝熱管における管束の横幅をW、高さをHとしたとき、管束サイズW/Hが、
[数1]
1.6<W/H<1.9
に設定されると共に、前記加熱蒸気ヘッダが横置き円筒型に構成されたことを特徴とする湿分分離加熱器。
The torso,
A cycle steam inlet provided at the bottom of the fuselage for introducing cycle steam into the fuselage;
A moisture separating element that is inclinedly disposed in a lower region within the fuselage and separates moisture in cycle steam;
A one-stage reheat type having a plurality of heat transfer tubes arranged in a substantially central region within the fuselage and flowing a heating steam, and a heater having a single heating steam header communicating with these heat transfer tubes. A moisture separator heater of
When the width of the tube bundle in the plurality of heat transfer tubes is W and the height is H, the tube bundle size W / H is
[Equation 1]
1.6 <W / H <1.9
The moisture separator heater is characterized in that the heating steam header is configured in a horizontally placed cylindrical shape.
前記伝熱管内を流れる加熱蒸気の流れが4パスに構成されると共に、加熱蒸気ヘッダ内が、加熱蒸気の第1パスが流出する入口室と、加熱蒸気の第2パスが流入し第3パスが流出する中間室と、加熱蒸気の第4パスが流入する出口室とに区画され、
加熱蒸気の第2パスで発生し前記中間室に流入した凝縮ドレンが、加熱器ドレン管を経て器外へ排出されるよう構成されたことを特徴とする請求項1に記載の湿分分離加熱器。
The flow of the heating steam flowing through the heat transfer pipe is configured in four passes, and the heating steam header has an inlet chamber through which the first path of heating steam flows out, and a second path of heating steam flows into the third path. Is divided into an intermediate chamber into which the gas flows out and an outlet chamber into which the fourth path of the heated steam flows,
2. The moisture separation heating according to claim 1, wherein the condensed drain that is generated in the second pass of the heated steam and flows into the intermediate chamber is discharged to the outside through the heater drain pipe. vessel.
前記加熱器ドレン管は、加熱器ドレンタンクに接続されると共に、この加熱器ドレンタンクがバランス管を介して、加熱蒸気ヘッダの中間室に連通されたことを特徴とする請求項2に記載の湿分分離加熱器。 The heater drain pipe is connected to a heater drain tank, and the heater drain tank communicates with an intermediate chamber of a heating steam header via a balance pipe. Moisture separator heater. 前記加熱蒸気ヘッダの出口室にドレンベント出口管が接続され、加熱蒸気の第4パスから前記出口室に流入したベント蒸気及び凝縮ドレンが、この出口室を経て前記ドレンベント出口管から器外へ排出されるよう構成されたことを特徴とする請求項2に記載の湿分分離加熱器。 A drain vent outlet pipe is connected to the outlet chamber of the heated steam header, and vent steam and condensed drain that have flowed into the outlet chamber from the fourth pass of the heated steam are discharged from the drain vent outlet pipe to the outside through the outlet chamber. The moisture separator / heater according to claim 2, wherein the moisture separator / heater is configured as described above. 前記サイクル蒸気入口は胴体の底部に複数設けられ、これらのサイクル蒸気入口に、分岐して構成されたクロスアンダー管が接続され、このクロスアンダー管を介して、高圧タービンからのサイクル蒸気が複数の前記サイクル蒸気入口へ導入されるよう構成されたことを特徴とする請求項1に記載の湿分分離加熱器。 A plurality of the cycle steam inlets are provided at the bottom of the fuselage, and a branch cross-under pipe is connected to these cycle steam inlets, and a plurality of cycle steams from the high-pressure turbine are passed through the cross-under pipe. The moisture separator heater according to claim 1, wherein the moisture separator heater is configured to be introduced into the cycle steam inlet. 前記ドレンベント出口管は、流量調整機構を介して給水加熱器に接続されたことを特徴とする請求項4に記載の湿分分離加熱器。 The moisture separation heater according to claim 4, wherein the drain vent outlet pipe is connected to a feed water heater via a flow rate adjusting mechanism. 前記ドレンベント出口管は、給水加熱器と復水器に切り換え可能に接続されたことを特徴とする請求項4に記載の湿分分離加熱器。 The moisture separator / heater according to claim 4, wherein the drain vent outlet pipe is switchably connected to a feed water heater and a condenser. 前記胴体の底部にドレンタンクが取り付けられ、湿分分離エレメント通過前に分離されたドレンが前記ドレンタンク内へ直接排出され、前記湿分分離エレメントを通過して分離されたドレンが、圧力調整機構を経て前記ドレンタンク内へ排出されるよう構成されたことを特徴とする請求項1に記載の湿分分離加熱器。 A drain tank is attached to the bottom of the fuselage, the drain separated before passing through the moisture separating element is directly discharged into the drain tank, and the drain separated through the moisture separating element is a pressure adjusting mechanism. The moisture separator / heater according to claim 1, wherein the moisture separator / heater is configured to be discharged into the drain tank. 前記胴体の底部にドレン排出部が取り付けられ、このドレン排出部は、ドレン連通管を経てドレンタンクへ連通すると共に圧力調整機構を備え、湿分分離エレメント通過前に分離されたドレンを、ドレン連通管を経て前記ドレンタンク内へ導き、前記湿分分離エレメントを通過して分離されたドレンを、圧力調整機構及びドレン連通管を経て前記ドレンタンク内へ導くよう構成されたことを特徴とする請求項8に記載の湿分分離加熱器。 A drain discharge portion is attached to the bottom of the body, and the drain discharge portion communicates with the drain tank through the drain communication pipe and has a pressure adjusting mechanism, and drains separated before passing through the moisture separation element are communicated with the drain. It is configured to guide the drain through the pipe into the drain tank and guide the drain separated through the moisture separation element into the drain tank through a pressure adjusting mechanism and a drain communication pipe. Item 9. The moisture separation heater according to Item 8. 前記圧力調整機構がUシールであることを特徴とする請求項8または9に記載の湿分分離加熱器。 The moisture separation heater according to claim 8 or 9, wherein the pressure adjusting mechanism is a U seal.
JP2008298512A 2008-11-21 2008-11-21 Moisture separator heater Active JP5198230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298512A JP5198230B2 (en) 2008-11-21 2008-11-21 Moisture separator heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298512A JP5198230B2 (en) 2008-11-21 2008-11-21 Moisture separator heater

Publications (2)

Publication Number Publication Date
JP2010121911A true JP2010121911A (en) 2010-06-03
JP5198230B2 JP5198230B2 (en) 2013-05-15

Family

ID=42323399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298512A Active JP5198230B2 (en) 2008-11-21 2008-11-21 Moisture separator heater

Country Status (1)

Country Link
JP (1) JP5198230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038864A1 (en) * 2011-09-16 2013-03-21 住友化学株式会社 Mist separation device and reaction system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563304A (en) * 1978-10-02 1980-05-13 Gen Electric Reheater
JPS5687704A (en) * 1979-12-12 1981-07-16 Gen Electric Drum and tube type heat exchanger
JPS5777607U (en) * 1975-11-21 1982-05-13
JPS6071889U (en) * 1976-12-29 1985-05-21 ウエスチングハウス エレクトリック コ−ポレ−ション Heat exchanger
JP2008175072A (en) * 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd Drain treatment device of moisture separating heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777607U (en) * 1975-11-21 1982-05-13
JPS6071889U (en) * 1976-12-29 1985-05-21 ウエスチングハウス エレクトリック コ−ポレ−ション Heat exchanger
JPS5563304A (en) * 1978-10-02 1980-05-13 Gen Electric Reheater
JPS5687704A (en) * 1979-12-12 1981-07-16 Gen Electric Drum and tube type heat exchanger
JP2008175072A (en) * 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd Drain treatment device of moisture separating heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038864A1 (en) * 2011-09-16 2013-03-21 住友化学株式会社 Mist separation device and reaction system

Also Published As

Publication number Publication date
JP5198230B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
KR101745746B1 (en) Cascading once through evaporator
US6092490A (en) Heat recovery steam generator
JPH0245765B2 (en)
KR101710229B1 (en) Heat recovery steam generator and multidrum evaporator
JPS5825925B2 (en) Shell and tube heat exchanger
CN107606974B (en) Integrated combination heat exchanger
CN101120207B (en) Continuous steam generator
TWI529350B (en) Once through evaporator
EP3204691B1 (en) Once-through vertical tubed supercritical evaporator coil for an hrsg
US7882809B2 (en) Heat exchanger having a counterflow evaporator
US9273865B2 (en) Once-through vertical evaporators for wide range of operating temperatures
JP2009531646A (en) Condenser with a two-pipe tube structure
CN103534549A (en) Steam generator tube lane flow buffer
JP5198230B2 (en) Moisture separator heater
US8381770B2 (en) Blowoff tank
US3991720A (en) J tube discharge or feedwater header
US4679529A (en) Steam generator feed water heater
CN210688169U (en) Steam generating equipment
JPH06137501A (en) Supercritical variable pressure operating steam generator
JP4125683B2 (en) Moisture separator heater
JP2021076315A (en) Multi-tube condenser
US8851023B2 (en) Continuous steam generator
JP3916784B2 (en) Boiler structure
JP2001507436A (en) Method and system for operating a once-through steam generator
RU2047045C1 (en) Surface desuperheater

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5198230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3