JP2010121514A - Exhaust emission control system and exhaust emission control method - Google Patents

Exhaust emission control system and exhaust emission control method Download PDF

Info

Publication number
JP2010121514A
JP2010121514A JP2008295666A JP2008295666A JP2010121514A JP 2010121514 A JP2010121514 A JP 2010121514A JP 2008295666 A JP2008295666 A JP 2008295666A JP 2008295666 A JP2008295666 A JP 2008295666A JP 2010121514 A JP2010121514 A JP 2010121514A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purification
amount
injection
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008295666A
Other languages
Japanese (ja)
Other versions
JP5228829B2 (en
Inventor
Taiji Nagaoka
大治 長岡
Hiroyuki Yuza
裕之 遊座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008295666A priority Critical patent/JP5228829B2/en
Publication of JP2010121514A publication Critical patent/JP2010121514A/en
Application granted granted Critical
Publication of JP5228829B2 publication Critical patent/JP5228829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control method and an exhaust emission control system, adjusting an actual injection estimation amount to a target injection amount in an exhaust pipe direct fuel injection with respect to deterioration of a fuel injection valve of an exhaust pipe direct fuel injection device caused by clogging or the like, and prolonging a time to replace a fuel injection valve. <P>SOLUTION: While the exhaust pipe direct fuel injection is performed, when an air excessive ratio error Δλ as a difference between a calculation value λc of an air excess ratio λ on an outlet side of an exhaust emission control device and a measurement value λm exceeds a threshold Δλc set in advance, or a temperature error ΔTd as a difference between a calculation value ΔTc of a temperature difference ΔT between an inlet side and the outlet side of the exhaust emission control device and a measurement value ΔTm exceeds a threshold ΔTc set in advance, a deviation ΔF between an injection estimation value Fr estimated that fuel of the injection estimation amount Fr is actually injected in the exhaust pipe direct fuel injection and a target injection amount Ft is calculated. An injection instruction amount Fc of the exhaust pipe direct fuel injection is corrected based on the calculated deviation ΔF. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えた排気ガス浄化システムにおいて、排気管内直接燃料噴射装置の燃料噴射弁の目詰まり等による劣化に対して、排気管内直接燃料噴射における実際の噴射推定量を目標噴射量に合せることができる排気ガス浄化システムと排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purification system having an exhaust pipe direct fuel injection device upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine, which is caused by clogging of a fuel injection valve of the exhaust pipe direct fuel injection device. The present invention relates to an exhaust gas purification system and an exhaust gas purification method that can match an actual injection estimated amount in direct exhaust fuel injection in an exhaust pipe with a target injection amount against deterioration.

車両搭載等の内燃機関の排気ガスの浄化に際しては、内燃機関の排気通路に酸化触媒やNOx吸蔵還元型触媒や触媒付きフィルタ等で構成される排気ガス浄化装置を設けて、この排気ガス浄化装置を通過する排気ガスを浄化している。このような排気ガス浄化装置を備えた排気ガス浄化システムにおいては、触媒付きフィルタの再生の昇温のためやNOx吸蔵還元型触媒のリッチ還元のために、排気通路に直接燃料を噴射する排気管内直接燃料噴射が用いられている。この排気管内直接燃料噴射では、シリンダ内に燃料噴射するポスト噴射に比べてオイル希釈の問題が生じないので、このオイル希釈に起因するエンジンの耐久性上のトラブルが発生せず、また、ポスト噴射のように噴射の一部がシリンダ内壁に付着をする事により、触媒の昇温効率が低下するようなことも無いので、この排気管内直接燃料噴射は、排気ガスの昇温に対する燃費効率も良い方法となっている。   When purifying the exhaust gas of an internal combustion engine mounted on a vehicle or the like, an exhaust gas purification device including an oxidation catalyst, a NOx occlusion reduction catalyst, a filter with a catalyst, and the like is provided in the exhaust passage of the internal combustion engine, The exhaust gas that passes through is purified. In an exhaust gas purification system equipped with such an exhaust gas purification device, in the exhaust pipe for directly injecting fuel into the exhaust passage for the purpose of raising the temperature of regeneration of the filter with catalyst or for the rich reduction of the NOx storage reduction catalyst Direct fuel injection is used. In this exhaust pipe direct fuel injection, there is no problem of oil dilution compared to post injection in which fuel is injected into the cylinder, so there is no problem with engine durability due to this oil dilution and post injection. In this way, since a part of the injection adheres to the inner wall of the cylinder, the temperature raising efficiency of the catalyst does not decrease. Therefore, the direct fuel injection in the exhaust pipe has a good fuel efficiency with respect to the temperature rise of the exhaust gas. It has become a method.

しかしながら、この排気管内への直接燃料噴射では燃料噴射弁が目詰まり(コーキング)するという問題がある。この目詰まりは、無噴射時に燃料噴射弁と噴口の隙間から微小の軽油等の燃料が漏れて炭化し、燃料噴射弁を目詰まりさせてしまう症状であり、目詰まりの程度が酷くなると、特に小流量噴射時に大幅に噴射量が減少することがある。この排気管内への直接燃料噴射において燃料の噴射量が制御目標量にならないと目標温度に到達しなかったり、NOx吸蔵還元型触媒に対する直接燃料噴射の場合には、還元剤としての燃料が不足してNOx浄化率が低下したりする。   However, the direct fuel injection into the exhaust pipe has a problem that the fuel injection valve is clogged (coking). This clogging is a symptom that fuel such as micro diesel oil leaks from the gap between the fuel injection valve and the injection nozzle during no injection and carbonizes, causing clogging of the fuel injection valve. The injection amount may be significantly reduced during low flow injection. In the direct fuel injection into the exhaust pipe, the target temperature is not reached unless the fuel injection amount reaches the control target amount, or in the case of direct fuel injection to the NOx storage reduction type catalyst, the fuel as the reducing agent is insufficient. As a result, the NOx purification rate decreases.

これに関連して、DPF(ディーゼルパティキュレートフィルタ)の上流側に燃料添加弁を備え、DPF再生時に排気通路内に燃料添加する排気浄化装置において、燃料添加弁とDPFとの間に排気圧センサを設け、燃料添加弁から添加された燃料がDPFに到達する推定時期におけるこの排気圧センサの検出圧力に基づいて、燃料添加弁を診断する内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照)。   In this regard, in an exhaust purification device that includes a fuel addition valve upstream of a DPF (diesel particulate filter) and adds fuel into the exhaust passage during DPF regeneration, an exhaust pressure sensor is provided between the fuel addition valve and the DPF. There has been proposed an exhaust purification device for an internal combustion engine that diagnoses the fuel addition valve based on the detected pressure of the exhaust pressure sensor at the estimated time when the fuel added from the fuel addition valve reaches the DPF (for example, Patent Document 1).

また、排気浄化触媒の上流側に還元剤添加ノズルを設け、還元剤添加ノズルに還元剤を供給する還元剤供給通路の通路開閉弁の下流側に設けられた圧力検出手段で、通路開閉弁の開弁期間中と開弁期間の前後において検出した圧力に基づいて、通路開閉弁の開弁中は開弁前の第1の圧力より高い第2の圧力となり、閉弁後は、第1の圧力未満まで低下している場合に還元剤ノズルの閉弁不良が生じているとし、開弁期間中及び開弁期間の前後に検出された圧力が、同一である場合は通路開閉弁が異常であるとし、第1の圧力より高い場合は、通路開閉弁が開弁状態で動作不良に陥っているとし、第2の圧力より低い場合は、通路開閉弁が閉弁状態で動作不良に陥っていると判定する内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照)。   Further, a reducing agent addition nozzle is provided on the upstream side of the exhaust purification catalyst, and pressure detecting means provided on the downstream side of the passage opening / closing valve of the reducing agent supply passage for supplying the reducing agent to the reducing agent addition nozzle includes a passage opening / closing valve. Based on the pressure detected during the valve opening period and before and after the valve opening period, the second pressure is higher than the first pressure before the passage opening / closing valve is opened, and after the valve is closed, the first pressure is increased. If the pressure of the reducing agent nozzle is poor when the pressure drops below the pressure, and the pressure detected during the valve opening period and before and after the valve opening period is the same, the passage on / off valve is abnormal. If it is higher than the first pressure, it is assumed that the passage on-off valve is open and malfunctioning. If it is lower than the second pressure, the passage on-off valve is closed and malfunctioning. An exhaust gas purification device for an internal combustion engine that is judged to be present has been proposed (for example, patent documents) Reference 1).

しかしながら、これらの内燃機関の排気浄化装置では、燃料添加弁(燃料噴射弁)の目詰まり等の故障を診断するが、目詰まりの程度に対応して、燃料の実際の噴射推定量を目標噴射量に一致させることについては触れられていない。   However, in these internal combustion engine exhaust gas purification apparatuses, a failure such as clogging of the fuel addition valve (fuel injection valve) is diagnosed, but the actual injection estimated amount of the fuel is determined based on the degree of clogging. There is no mention of matching the quantity.

なお、これらの排気管内直接燃料噴射において、燃料噴射量が変化すると目標温度に到達しないので、排気ガス浄化装置の下流側の排気ガス温度センサの検出値を用いて、目標温度になるように燃料噴射指示量を変化させるフードバック制御をしたり、また、燃料噴射量が変化すると還元剤が不足してNOx浄化率が低下するので、排気ガス浄化装置の下流側の空気過剰率センサ(λセンサ)の検出値を用いて、目標空気過剰率になるように燃料噴射指示量を変化させるフードバック制御をしたりすることも考えられている。   In the direct fuel injection in these exhaust pipes, the target temperature is not reached when the fuel injection amount changes. Therefore, the fuel temperature is adjusted to the target temperature by using the detected value of the exhaust gas temperature sensor on the downstream side of the exhaust gas purification device. When the fuel injection amount is changed or when the fuel injection amount is changed, the reducing agent is insufficient and the NOx purification rate is lowered. Therefore, the excess air ratio sensor (λ sensor) on the downstream side of the exhaust gas purification device It is also conceivable to use the detected value of) to perform a hoodback control that changes the fuel injection instruction amount so that the target excess air ratio is obtained.

しかしながら、これのフィードバック制御の補正だけでは限界があるという問題がある。例えば、補正量には通常上下限値が設定されており、それ以上の補正はしないように構成されている。また、実際の燃料噴射量と噴射指示量とが合っていることが、フィードバック制御における補正の前提であるので、ずれが大きいときは、予想より多め又は少なめの補正をすることになり、狙い通りのフィードバックに収斂しない場合が生じる。そのため、フィードバック制御の前提として、実際の燃料噴射量と噴射指示量とを整合させることが重要となる。
特開2008−2309公報 特開2002−129945公報
However, there is a problem that there is a limit only by correcting the feedback control. For example, an upper and lower limit value is normally set for the correction amount, and no further correction is performed. In addition, since it is a precondition for correction in feedback control that the actual fuel injection amount matches the injection command amount, if the deviation is large, the correction will be more or less than expected and as intended. May not converge to the feedback. Therefore, as a premise of feedback control, it is important to match the actual fuel injection amount with the injection instruction amount.
JP 2008-2309 A JP 2002-129945 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えた排気ガス浄化システムにおいて、排気管内直接燃料噴射装置の燃料噴射弁の目詰まり等による劣化に対して、排気管内直接燃料噴射における実際の噴射推定量を目標噴射量に合せることができて、燃料噴射弁を交換するまでの期間を延長することができる排気ガス浄化方法と排気ガス浄化システムを提供することにある。   The present invention has been made in view of the above situation, and an object thereof is an exhaust gas purification system including an exhaust pipe direct fuel injection device upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine. Until the fuel injection valve is exchanged, the actual injection estimated amount in the direct fuel injection in the exhaust pipe can be matched with the target injection amount against deterioration due to clogging of the fuel injection valve of the direct fuel injection device in the exhaust pipe. It is an object of the present invention to provide an exhaust gas purification method and an exhaust gas purification system capable of extending the period.

上記のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムにおいて、排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設けると共に、前記制御装置が、排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときに、又は、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内直接燃料噴射の噴射指示量を補正するように構成される。   An exhaust gas purification system for achieving the above object includes a direct fuel injection device in an exhaust pipe upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine, and purification or regeneration of the exhaust gas purification device. In the exhaust gas purification system including the control device for the exhaust gas purification device, a first temperature sensor is provided on the inlet side of the exhaust gas purification device, a second temperature sensor and an excess air ratio sensor are provided on the outlet side of the exhaust gas purification device, and While the control device performs direct fuel injection in the exhaust pipe, it calculates an excess air ratio error, which is the difference between the measured value and the calculated excess air ratio at the outlet side of the exhaust gas purification device. When a temperature exceeds a preset threshold value, or a temperature error that is a difference between a calculated value and a measured value of a temperature difference between the inlet side and the outlet side of the exhaust gas purification device is calculated, and the temperature error is calculated in advance. When the determined threshold value is exceeded, a deviation amount between the estimated injection amount estimated to have been actually injected by direct fuel injection in the exhaust pipe and the target injection amount is calculated, and based on the calculated deviation amount, It is configured to correct the injection command amount for direct fuel injection in the exhaust pipe.

あるいは、上記のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムにおいて、排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設けると共に、前記制御装置が、排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときで、且つ、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内直接燃料噴射の噴射指示量を補正するように構成される。   Alternatively, an exhaust gas purification system for achieving the object as described above includes an exhaust pipe direct fuel injection device on the upstream side of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine, and purification of the exhaust gas purification device. Alternatively, in the exhaust gas purification system provided with the control device for regeneration, the first temperature sensor is provided on the inlet side of the exhaust gas purification device, and the second temperature sensor and the excess air ratio sensor are provided on the outlet side of the exhaust gas purification device. The control device calculates an excess air ratio error, which is a difference between the calculated value of the excess air ratio on the outlet side of the exhaust gas purification device and the measured value, while performing direct fuel injection in the exhaust pipe. When the rate error exceeds a preset threshold value, a temperature error that is a difference between a measured value and a calculated value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device is calculated, and this temperature is calculated. When the difference exceeds a preset threshold, a deviation amount between the estimated injection amount estimated to be actually injected by direct fuel injection in the exhaust pipe and the target injection amount is calculated, and the calculated deviation amount is calculated. Based on this, it is configured to correct the injection command amount of the direct fuel injection in the exhaust pipe.

この空気過剰率誤差Δλは、吸入空気量センサ(MAFセンサ)で計測した吸入空気量Amと筒内(シリンダ内)燃料噴射量Fiと排気管内直接燃料噴射の目標噴射量Ftの和である総燃料噴射量(Fa=Fi+Ft)から算出した空気過剰率λcと、触媒後の空気過剰率センサ(λセンサ)の計測値λmとの差Δλ(=λc−λm)として算出される。   This excess air ratio error Δλ is the sum of the intake air amount Am measured by the intake air amount sensor (MAF sensor), the in-cylinder (in-cylinder) fuel injection amount Fi, and the target injection amount Ft of direct fuel injection in the exhaust pipe. It is calculated as the difference Δλ (= λc−λm) between the excess air ratio λc calculated from the fuel injection amount (Fa = Fi + Ft) and the measured value λm of the excess air ratio sensor (λ sensor) after the catalyst.

また、温度差の算出値ΔTcは、触媒入口温度センサの検出値T1と、排気管内への燃料噴射指示値Fcと吸入空気量センサで検出した空気量Amとから求めた排気ガス量と発熱量から算出された触媒出口算出温度Toとの差(T1−To)によって求めることができる。また、温度差の計測値ΔTmは、触媒入口温度センサによる検出値T1と触媒出口温度センサによる検出値T2との差(T1−T2)によって求めることができる。   The calculated value ΔTc of the temperature difference is the exhaust gas amount and the calorific value obtained from the detected value T1 of the catalyst inlet temperature sensor, the fuel injection instruction value Fc into the exhaust pipe, and the air amount Am detected by the intake air amount sensor. From the difference (T1−To) calculated from the catalyst outlet calculated temperature To. Further, the measured value ΔTm of the temperature difference can be obtained from the difference (T1−T2) between the detection value T1 detected by the catalyst inlet temperature sensor and the detection value T2 detected by the catalyst outlet temperature sensor.

また、排気ガス浄化装置の上流側における空気過剰率の算出値λcと下流側の空気過剰率センサの計測値λmとの差Δλから、排気管内への燃料直接噴射で実際に噴射されたと推定される噴射推定量Frと目標噴射量Ftの差ΔF(=Fr−Ft)をずれ量として算出する。このずれ量ΔFを目標噴射量Ftの補正量として、この補正量ΔFで目標噴射量Ftを補正してこの補正し目標噴射量Ftに対応させて噴射指示量Fcを設定する。実際には、ずれ量ΔFによって、BPWマップ(目標噴射量と開弁時間のマップデータ)を補正し、補正後の噴射指示量Fcを算出する。これにより、燃料噴射弁の開弁時間が同じでも、燃料噴射弁の噴口の目詰まり程度により実際の噴射量とされる噴射推定量Frが変化するので、補正して、補正後の噴射指示量Fcを算出する。   Further, from the difference Δλ between the calculated value λc of the excess air ratio on the upstream side of the exhaust gas purification device and the measured value λm of the excess air ratio sensor on the downstream side, it is estimated that the fuel was actually injected by direct fuel injection into the exhaust pipe. The difference ΔF (= Fr−Ft) between the estimated injection amount Fr and the target injection amount Ft is calculated as a deviation amount. The deviation amount ΔF is used as a correction amount for the target injection amount Ft, the target injection amount Ft is corrected with the correction amount ΔF, and this correction is performed to set the injection instruction amount Fc corresponding to the target injection amount Ft. Actually, the BPW map (map data of the target injection amount and the valve opening time) is corrected by the deviation amount ΔF, and the corrected injection instruction amount Fc is calculated. Thereby, even if the valve opening time of the fuel injection valve is the same, the estimated injection amount Fr that is the actual injection amount changes depending on the degree of clogging of the injection port of the fuel injection valve. Calculate Fc.

なお、目標噴射量Ftを算出するためのマップデータ等のデータ自体を補正した場合には、ずれ量ΔFが小さくなる補正となる。一方、目標噴射量Ftから噴射指示量Fcを算出するBPWマップを補正した場合には、ずれ量ΔFは補正されないままとなる。   When the data itself such as map data for calculating the target injection amount Ft is corrected, the deviation amount ΔF is corrected to be small. On the other hand, when the BPW map for calculating the injection instruction amount Fc from the target injection amount Ft is corrected, the deviation amount ΔF remains uncorrected.

上記の排気ガス浄化システムにおいて、前記制御装置が、前記目標噴射量のずれ量又は補正量が、予め設定された下限値と上限値の間から外れたときには、警告を発生するように構成する。   In the exhaust gas purification system, the control device is configured to generate a warning when the deviation amount or the correction amount of the target injection amount deviates from between a preset lower limit value and upper limit value.

つまり、補正量ΔFが過大となった場合にはエラー判定して故障診断(OBD)システム等にその旨を表示して、ドライバー等の使用者に警告をして、この警告により故障の修理又は交換を促す。なお、排気管内直接燃料噴射装置の噴射弁を修理又は交換した後では、補正量ΔFもリセットする。   In other words, when the correction amount ΔF becomes excessive, an error is judged and displayed on a failure diagnosis (OBD) system or the like, and a warning is given to a user such as a driver. Encourage exchange. Note that the correction amount ΔF is also reset after the injection valve of the direct fuel injection device in the exhaust pipe is repaired or replaced.

そして、上記のような目的を達成するための排気ガス浄化方法は、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムの排気ガス浄化方法において、排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設け、排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときに、又は、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内直接燃料噴射の噴射指示量を補正することを特徴とする方法である。   An exhaust gas purification method for achieving the above object includes a direct fuel injection device in the exhaust pipe upstream of the exhaust gas purification device provided in the exhaust passage of the internal combustion engine, and purification of the exhaust gas purification device. Alternatively, in the exhaust gas purification method of the exhaust gas purification system provided with the control device for regeneration, the first temperature sensor is provided on the inlet side of the exhaust gas purification device, and the second temperature sensor and excess air are provided on the outlet side of the exhaust gas purification device. In the state where a fuel ratio sensor is provided and direct fuel injection is performed in the exhaust pipe, an excess air ratio error, which is the difference between the calculated value of the excess air ratio on the outlet side of the exhaust gas purification device and the measured value, is calculated. When the error exceeds a preset threshold value, or a temperature error that is a difference between a calculated value and a measured value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device is calculated, the temperature error is calculated in advance. Setting When the calculated threshold value is exceeded, the deviation amount between the estimated injection amount estimated to be actually injected by direct fuel injection in the exhaust pipe and the target injection amount is calculated, and the exhaust amount is calculated based on the calculated deviation amount. This is a method characterized by correcting the injection command amount of direct in-pipe fuel injection.

あるいは、上記のような目的を達成するための排気ガス浄化方法は、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムの排気ガス浄化方法において、排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設け、排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときで、且つ、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内直接燃料噴射の噴射指示量を補正することを特徴とする方法である。   Alternatively, an exhaust gas purification method for achieving the above object includes a direct fuel injection device in the exhaust pipe on the upstream side of the exhaust gas purification device provided in the exhaust passage of the internal combustion engine, and purification of the exhaust gas purification device. Alternatively, in the exhaust gas purification method of the exhaust gas purification system provided with the control device for regeneration, the first temperature sensor is provided on the inlet side of the exhaust gas purification device, and the second temperature sensor and excess air are provided on the outlet side of the exhaust gas purification device. In the state where a fuel ratio sensor is provided and direct fuel injection is performed in the exhaust pipe, an excess air ratio error, which is the difference between the calculated value of the excess air ratio on the outlet side of the exhaust gas purification device and the measured value, is calculated. When the error exceeds a preset threshold value, a temperature error that is a difference between the calculated value and the calculated value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device is calculated. When the determined threshold value is exceeded, a deviation amount between the estimated injection amount estimated to have been actually injected by direct fuel injection in the exhaust pipe and the target injection amount is calculated, and based on the calculated deviation amount, This is a method characterized by correcting the injection command amount of direct fuel injection in the exhaust pipe.

また、上記の排気ガス浄化方法において、前記目標噴射量のずれ量又は補正量が、予め設定された下限値と上限値の間から外れたときには、警告を発生する。   In the above exhaust gas purification method, a warning is generated when the deviation amount or the correction amount of the target injection amount deviates from between a preset lower limit value and upper limit value.

これらの排気ガス浄化方法によれば、それぞれ上記の排気ガス浄化システムによる作用効果と同様な作用効果を奏することができる。   According to these exhaust gas purification methods, the same operational effects as those of the exhaust gas purification system described above can be obtained.

本発明に係る排気ガス浄化方法及び排気ガス浄化システムによれば、内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内直接燃料噴射装置を備えた排気ガス浄化システムにおいて、排気管内直接燃料噴射装置の燃料噴射弁の目詰まり等による劣化に対して、排気管内直接燃料噴射における実際の噴射推定量を目標噴射量に合せることができて、燃料噴射弁を交換するまでの期間を延長することができる。また、常時、噴射指示量と実際の噴射推定量との間の相関関係が得られるので、目標制御量に対する噴射指示量のフィードバック制御も正常に行うことができる。   According to the exhaust gas purification method and the exhaust gas purification system of the present invention, in the exhaust gas purification system provided with the direct fuel injection device in the exhaust pipe upstream of the exhaust gas purification device provided in the exhaust passage of the internal combustion engine, The actual injection estimated amount in the direct fuel injection in the exhaust pipe can be matched with the target injection amount against deterioration due to clogging of the fuel injection valve of the direct fuel injection device, and the period until the fuel injection valve is replaced can be increased. Can be extended. In addition, since a correlation between the injection instruction amount and the actual injection estimation amount is always obtained, feedback control of the injection instruction amount with respect to the target control amount can be normally performed.

以下、本発明に係る実施の形態の排気ガス浄化方法及び排気ガス浄化システムについて、図面を参照しながら説明する。図1に、本発明に係る実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)10の排気通路16に排気ガス浄化装置18を備えて構成される。   Hereinafter, an exhaust gas purification method and an exhaust gas purification system according to embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention. The exhaust gas purification system 1 includes an exhaust gas purification device 18 in an exhaust passage 16 of an engine (internal combustion engine) 10.

この排気ガス浄化システム1のエンジン10は、吸気マニホールド10aに接続される吸気通路11に吸入吸気量センサ12(MAFセンサ)とターボチャージャ13のコンプレッサ13bとインタークーラ14と吸気弁(インテークスロットル)15を備えている。さらに、排気マニホールド10bに接続される排気通路16に、ターボチャージャ13のタービン13bと、燃料等を噴射するための燃料噴射装置17と排気ガス浄化装置18を備えている。更に、排気マニホールド10bと吸気マニホールド10aを接続するEGR通路19には、EGRクーラー20とEGR弁21を備えている。   The engine 10 of the exhaust gas purification system 1 includes an intake air amount sensor 12 (MAF sensor), a compressor 13b of a turbocharger 13, an intercooler 14, and an intake valve (intake throttle) 15 in an intake passage 11 connected to an intake manifold 10a. It has. Further, the exhaust passage 16 connected to the exhaust manifold 10b includes a turbine 13b of the turbocharger 13, a fuel injection device 17 for injecting fuel and the like, and an exhaust gas purification device 18. Further, the EGR passage 19 connecting the exhaust manifold 10b and the intake manifold 10a is provided with an EGR cooler 20 and an EGR valve 21.

排気ガス浄化装置18では、排気ガスGの浄化性能を維持するために、担持している触媒の温度を触媒活性化温度以上のある程度の温度まで上昇させる必要がある。この排気ガス浄化装置18は、図1の構成では、酸化触媒装置(DOC)18a、NOx吸蔵還元型触媒装置(LNT)18b、触媒付きフィルタ装置(CSF)18cで構成されている。   In the exhaust gas purification device 18, in order to maintain the purification performance of the exhaust gas G, it is necessary to raise the temperature of the supported catalyst to a certain temperature equal to or higher than the catalyst activation temperature. In the configuration of FIG. 1, the exhaust gas purifying device 18 includes an oxidation catalyst device (DOC) 18a, a NOx occlusion reduction type catalyst device (LNT) 18b, and a filter device with catalyst (CSF) 18c.

酸化触媒装置18aは、多孔質のセラミックのハニカム構造の担持体に、白金等の酸化触媒を担持させて形成される。この酸化触媒は、排気ガス中のHCやCOを酸化して排気ガスを浄化する役割と、NOx吸蔵還元型触媒3のNOx吸蔵能力を回復するためのNOx再生の際にNOxの還元剤として供給されるHCの一部を酸化して排気ガスの温度を昇温する役割とを持っている。   The oxidation catalyst device 18a is formed by supporting an oxidation catalyst such as platinum on a porous ceramic honeycomb structure support. This oxidation catalyst serves to oxidize HC and CO in the exhaust gas to purify the exhaust gas, and is supplied as a NOx reducing agent during NOx regeneration for restoring the NOx storage capacity of the NOx storage reduction catalyst 3 It functions to oxidize part of the HC and raise the temperature of the exhaust gas.

NOx吸蔵還元型触媒装置18bは、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して形成され、酸素過剰な排気ガス中のNOを酸化して硝酸塩として触媒上に吸着させて、NOxを浄化する。このNOx吸蔵還元型触媒は、排気ガスがリーン空燃比では、NOxを吸蔵し、リッチ空燃比では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。   The NOx occlusion reduction type catalyst device 18b is formed by supporting an alkali metal or an alkaline earth metal together with a noble metal, and oxidizes NO in exhaust gas containing excess oxygen and adsorbs it as a nitrate on the catalyst to purify NOx. . The NOx occlusion reduction type catalyst stores NOx when the exhaust gas is lean, and releases the stored NOx when the exhaust gas is rich, and reduces the released NOx in a reducing atmosphere to reduce NOx. To reduce.

触媒付フィルタ装置18cは、排気ガス中の粒子状物質(PM)を捕集するためのディーゼルパティキュレートフィルタ(DPF)を備えた触媒付きDPFで構成される。この触媒付DPFは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成される。このフィルタの部分に白金や酸化セリウム等の触媒を担持する。   The catalyst-equipped filter device 18c is composed of a DPF with a catalyst provided with a diesel particulate filter (DPF) for collecting particulate matter (PM) in the exhaust gas. The catalyst-attached DPF is formed of a monolith honeycomb wall flow type filter or the like in which the inlet and outlet of a porous ceramic honeycomb channel are alternately plugged. A catalyst such as platinum or cerium oxide is supported on the filter.

この触媒付きDPFにより、排気ガス中のPMは、多孔質のセラミックの壁で捕集される。このPMの捕集量が増加した場合には、排気ガス中に燃料を噴射して、この燃料を酸化触媒により酸化して排気ガスの温度を高めて、この高温の排気ガスにより触媒付きDPFをPMの燃焼開始温度まで上昇させて、捕集されたPMを強制的に燃焼除去して、触媒付きDPFのPM再生を行う。   By this DPF with catalyst, PM in the exhaust gas is collected by the porous ceramic wall. When the amount of collected PM increases, fuel is injected into the exhaust gas, the fuel is oxidized by an oxidation catalyst to raise the temperature of the exhaust gas, and the DPF with the catalyst is made up by the hot exhaust gas. The PM is increased to the combustion start temperature of PM, and the collected PM is forcibly burned and removed to perform PM regeneration of the DPF with catalyst.

更に、排気ガスGの温度を測定するために、排気ガス浄化装置18の入口に第1温度センサ22が、排気ガス浄化装置18の出口に第2温度センサ23とλ(空気過剰率)センサ24が配設される。   Further, in order to measure the temperature of the exhaust gas G, a first temperature sensor 22 is provided at the inlet of the exhaust gas purification device 18, and a second temperature sensor 23 and a λ (excess air ratio) sensor 24 are provided at the outlet of the exhaust gas purification device 18. Is disposed.

これらのセンサ22、23、24等の測定値とエンジン10の運転制御に必要なデータを入力してエンジンの運転状態と排気ガス浄化システム1の排気ガス浄化制御や再生制御を行う制御装置(図示しない)が設けられている。この制御装置はECU(エンジンコントロールユニット)と呼ばれる制御装置であり、本発明の排気ガス浄化方法に関する制御では、エンジン10からのデータと吸入空気量センサ12等の検出値に基づいて、吸気弁15、排気管内直接燃料噴射装置17、EGR弁22等を制御する。   A control device (illustrated) that inputs measurement values of these sensors 22, 23, 24, etc. and data necessary for operation control of the engine 10 to perform engine operation state, exhaust gas purification control and regeneration control of the exhaust gas purification system 1 Not). This control device is a control device called an ECU (engine control unit). In the control relating to the exhaust gas purification method of the present invention, the intake valve 15 is based on the data from the engine 10 and the detected value of the intake air amount sensor 12 or the like. The exhaust pipe direct fuel injection device 17, the EGR valve 22 and the like are controlled.

次に、本発明の第1の実施の形態の排気ガス浄化方法について、図2の排気管内直接燃料噴射の噴射量の劣化に対する補正制御のための制御フローを参照しながら説明する。この図2の制御フローは、エンジン10の運転が開始され、制御装置(ECU)が、排気管内直接燃料噴射を行っている状態になると、上級のエンジンの制御フローにより繰り返し呼ばれる。   Next, the exhaust gas purification method of the first embodiment of the present invention will be described with reference to a control flow for correction control for the deterioration of the injection amount of the direct fuel injection in the exhaust pipe of FIG. The control flow of FIG. 2 is repeatedly called by the control flow of the advanced engine when the operation of the engine 10 is started and the control unit (ECU) is in a state in which fuel is directly injected into the exhaust pipe.

この図2の制御フローがスタートすると、ステップS11で、排気ガス浄化装置の出口側における空気過剰率の算出値λcと計測値λmの差である空気過剰率誤差Δλ(=λc−λm)を算出する。この空気過剰率誤差Δλは、吸入空気量センサ(MAFセンサ)で計測した吸入空気量Amと筒内(シリンダ内)燃料噴射量Fiと排気管内直接燃料噴射の燃料噴射量Fの目標噴射量Ftの和である総燃料噴射量(Fa=Fi+Ft)から算出した空気過剰率λcと、λセンサ(空気過剰率センサ)24で検出された計測値λmとの差(Δλ=λc−λm)として算出される。   When the control flow of FIG. 2 starts, in step S11, an excess air ratio error Δλ (= λc−λm), which is the difference between the calculated value λc of the excess air ratio on the outlet side of the exhaust gas purification device and the measured value λm, is calculated. To do. This excess air ratio error Δλ is the target injection amount Ft of the intake air amount Am measured by the intake air amount sensor (MAF sensor), the in-cylinder (in-cylinder) fuel injection amount Fi, and the fuel injection amount F of the direct fuel injection in the exhaust pipe. Calculated as the difference (Δλ = λc−λm) between the excess air ratio λc calculated from the total fuel injection amount (Fa = Fi + Ft), which is the sum of the above, and the measured value λm detected by the λ sensor (excess air ratio sensor) 24 Is done.

次のステップS12では、空気過剰率誤差Δλのチェックを行い、この空気過剰率誤差λの絶対値│Δλ│が補正用空気過剰率閾値Δλc以上か否かを判定する。このステップS12の判定で、空気過剰率誤差Δλの絶対値│Δλ│が補正用空気過剰率閾値Δλcよりも小さい場合(NO)は、ステップS13に行く。また、ステップS12の判定で、空気過剰率誤差Δλの絶対値│Δλ│が予め設定される補正用空気過剰率閾値Δλc以上の場合(YES)は、ステップS15に行く。なお、必ずしも絶対値の評価でなく、下限閾値と上限閾値を設けて、空気過剰率誤差Δλがこの下限閾値と上限閾値の間にないか(YES)あるか(NO)で判定してもよい。   In the next step S12, the excess air ratio error Δλ is checked, and it is determined whether or not the absolute value | Δλ | of the excess air ratio error λ is equal to or greater than the correction excess air ratio threshold value Δλc. If the absolute value | Δλ | of the excess air ratio error Δλ is smaller than the correction excess air ratio threshold value Δλc (NO) in step S12, the process goes to step S13. If the absolute value | Δλ | of the excess air ratio error Δλ is greater than or equal to the preset correction excess air ratio threshold value Δλc (YES) in step S12, the process goes to step S15. It is not necessarily an absolute value evaluation, and a lower limit threshold value and an upper limit threshold value are provided, and it may be determined whether the excess air ratio error Δλ is between the lower limit threshold value and the upper limit threshold value (YES) (NO). .

ステップS13では、排気ガス浄化装置18の入口側と出口側の温度差ΔTの算出値ΔTcと計測値の差ΔTmである温度誤差ΔTdを算出する。この温度差ΔTの算出値の差ΔTcは、排気管内直接燃料噴射による昇温後の出口側の温度Toを吸入空気量Amと排気管内直接燃料噴射の総燃料噴射量Fの目標噴射量Ftから発熱量を算出でき、吸入空気量Amと筒内燃料噴射量Fiと排気管内直接燃料噴射の燃料噴射量Fの目標噴射量Ftとから出口側の排気ガス量を算出できる。この発熱量と排気ガス量とから、出口側での排気ガスの温度の上昇分、即ち、入口側と出口側の温度差ΔTの算出値ΔTcを算出することができる。なお、必要に応じて、この温度の上昇分である算出値ΔTcを、排気ガス浄化装置18の熱容量や排気ガス浄化装置への熱伝達量を考慮して補正する。   In step S13, a temperature error ΔTd that is a difference ΔTm between the calculated value ΔTc of the temperature difference ΔT between the inlet side and the outlet side of the exhaust gas purification device 18 and the measured value is calculated. The difference ΔTc between the calculated values of the temperature difference ΔT is obtained by calculating the outlet side temperature To after the temperature rise by direct fuel injection in the exhaust pipe from the target injection amount Ft of the intake air amount Am and the total fuel injection amount F of the direct fuel injection in the exhaust pipe. The amount of heat generated can be calculated, and the exhaust gas amount on the outlet side can be calculated from the intake air amount Am, the in-cylinder fuel injection amount Fi, and the target injection amount Ft of the fuel injection amount F of the direct fuel injection in the exhaust pipe. From the amount of heat generated and the amount of exhaust gas, it is possible to calculate the increase in the temperature of the exhaust gas on the outlet side, that is, the calculated value ΔTc of the temperature difference ΔT between the inlet side and the outlet side. If necessary, the calculated value ΔTc, which is an increase in temperature, is corrected in consideration of the heat capacity of the exhaust gas purification device 18 and the heat transfer amount to the exhaust gas purification device.

一方、この温度差ΔTの計測値の差ΔTmは第1温度センサ22の計測値T1と第2温度センサ2計測値T2との差(T1−T2)で算出することができる。従って、温度誤差ΔTdは、ΔTd=ΔTc−ΔTmで算出できる。   On the other hand, the difference ΔTm in the measured value of the temperature difference ΔT can be calculated by the difference (T1−T2) between the measured value T1 of the first temperature sensor 22 and the measured value T2 of the second temperature sensor 2. Therefore, the temperature error ΔTd can be calculated by ΔTd = ΔTc−ΔTm.

言い換えれば、この温度差ΔTの算出値ΔTcは、排気ガス浄化装置18の入口の第1温度センサ22の検出値T1と、噴射指示量Fcと吸入空気量センサ12で検出した吸入空気量Amとから求めた排気ガス量と発熱量から算出された、排気ガス浄化装置18の出口側の排気ガス温度Toとの差ΔTc=T1−Toによって求めることができる。また、温度差ΔTの計測値ΔTmは、排気ガス浄化装置18の入口の第1温度センサ22の検出値T1と、触排気ガス浄化装置18の出口の第2温度センサ23の検出値T2の差ΔTm=T1−T2によって求めることができる。   In other words, the calculated value ΔTc of the temperature difference ΔT includes the detected value T1 of the first temperature sensor 22 at the inlet of the exhaust gas purification device 18, the injection instruction amount Fc, and the intake air amount Am detected by the intake air amount sensor 12. The difference ΔTc = T1-To between the exhaust gas temperature To on the outlet side of the exhaust gas purification device 18 calculated from the exhaust gas amount and the calorific value obtained from the above can be obtained. The measured value ΔTm of the temperature difference ΔT is the difference between the detection value T1 of the first temperature sensor 22 at the inlet of the exhaust gas purification device 18 and the detection value T2 of the second temperature sensor 23 at the outlet of the catalytic exhaust gas purification device 18. It can obtain | require by (DELTA) Tm = T1-T2.

次のステップS14では、温度誤差ΔTdのチェックを行い、この温度誤差ΔTdの絶対値│ΔTd│が補正用温度誤差閾値ΔTd1以上か否かを判定する。このステップS14の判定で、温度誤差ΔTdの絶対値│ΔTd│が補正用温度誤差閾値ΔTd1よりも小さい場合(NO)は、ステップS11に戻る。また、ステップS14の判定で、温度誤差ΔTdの絶対値│ΔTd│が予め設定される補正用温度誤差閾値ΔTd1以上の場合(YES)は、ステップS15に行く。なお、必ずしも絶対値の評価でなく、下限閾値と上限閾値を設けて、温度誤差ΔTdがこの下限閾値と上限閾値の間にないか(YES)あるか(NO)で判定してもよい。   In the next step S14, the temperature error ΔTd is checked, and it is determined whether or not the absolute value | ΔTd | of the temperature error ΔTd is equal to or greater than the correction temperature error threshold ΔTd1. If it is determined in step S14 that the absolute value | ΔTd | of the temperature error ΔTd is smaller than the correction temperature error threshold ΔTd1 (NO), the process returns to step S11. If the absolute value | ΔTd | of the temperature error ΔTd is greater than or equal to the preset correction temperature error threshold ΔTd1 (YES) in step S14, the process goes to step S15. Note that the lower limit threshold value and the upper limit threshold value are not necessarily evaluated, and it may be determined whether the temperature error ΔTd is not between the lower limit threshold value and the upper limit threshold value (YES) (NO).

ステップS15では、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量Frと目標噴射量Ftとのずれ量ΔFを算出する。この実際の噴射推定量Frの算出には、筒内燃料噴射量Fiと排気管内直接燃料噴射の燃料噴射量Fの和である総燃料噴射量(Fa=Fi+Fr)と空気過剰率λの関係を用いる。   In step S15, a deviation amount ΔF between the estimated injection amount Fr estimated to be actually injected by direct fuel injection in the exhaust pipe and the target injection amount Ft is calculated. This actual injection estimation amount Fr is calculated by calculating the relationship between the total fuel injection amount (Fa = Fi + Fr), which is the sum of the in-cylinder fuel injection amount Fi and the fuel injection amount F of the direct fuel injection in the exhaust pipe, and the excess air ratio λ. Use.

総燃料噴射量Faに理論空気量Aaが比例(Aa=Ka×Fa)するので、総燃料噴射量Faに対する理論空気量Aaを算出することができ、また、空気過剰率λは、総燃料噴射量Faと供給空気量Aiとの比である空燃比(Ai/Fa)と理論空燃比(Aa/Fa)との比率〔(Ai/Fa)/(Aa/Fa)〕であるので、λ=Ai/Aa=Ai/(Ka×Fa)となる。従って、Fa=Ai/(Ka×λa)となる。この式を基に、排気管内直接燃料噴射における実際の噴射推定量Frは、吸入空気量センサ12で検出した吸入空気量Amとλセンサ24で検出した空気過剰率λの測定値λmと筒内燃料噴射量Fiとから、Fr=Ai/(Ka×λm)−Fiで算出される。なお、筒内燃料噴射量Fiはエンジン10の運転状態(例えば、エンジン回転数、負荷等)と排気ガス浄化方法(例えば、浄化制御、再生制御等)によって決まる。この筒内燃料噴射量Fiの決定には周知又は公知の技術が用いられる。   Since the theoretical air amount Aa is proportional to the total fuel injection amount Fa (Aa = Ka × Fa), the theoretical air amount Aa with respect to the total fuel injection amount Fa can be calculated. Since the ratio [(Ai / Fa) / (Aa / Fa)] between the air / fuel ratio (Ai / Fa) and the stoichiometric air / fuel ratio (Aa / Fa), which is the ratio of the amount Fa and the supply air amount Ai, λ = Ai / Aa = Ai / (Ka × Fa). Therefore, Fa = Ai / (Ka × λa). Based on this equation, the actual estimated injection amount Fr in the direct fuel injection in the exhaust pipe is calculated based on the intake air amount Am detected by the intake air amount sensor 12, the measured value λm of the excess air ratio λ detected by the λ sensor 24, and the in-cylinder From the fuel injection amount Fi, it is calculated as Fr = Ai / (Ka × λm) −Fi. The in-cylinder fuel injection amount Fi is determined by the operating state of the engine 10 (for example, engine speed, load, etc.) and the exhaust gas purification method (for example, purification control, regeneration control, etc.). A known or well-known technique is used to determine the in-cylinder fuel injection amount Fi.

一方、目標噴射量Ftは、排気ガス浄化装置18における排気ガスの浄化や排気ガス浄化装置18の再生のための制御で決められる。この浄化のための制御や再生のための制御における目標噴射量Ftの決定には周知又は公知の技術を用いることができる。上記で算出された排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量Frとこの目標噴射量Ftとからこれらのずれ量ΔFを算出する。   On the other hand, the target injection amount Ft is determined by control for purification of exhaust gas in the exhaust gas purification device 18 and regeneration for the exhaust gas purification device 18. A known or publicly known technique can be used to determine the target injection amount Ft in the control for purification or the control for regeneration. The deviation amount ΔF is calculated from the estimated injection amount Fr estimated to be actually injected by the direct fuel injection in the exhaust pipe calculated above and the target injection amount Ft.

次のステップS16では、この算出されたずれ量ΔFに基づいて、排気管内直接燃料噴射の噴射指示量Fcを補正する。つまり、このずれ量ΔFを目標噴射量Ftの補正量ΔFtとして、この補正量ΔFtで目標噴射量Ftを補正して(Ft=Ft+ΔFt)、噴射量指示量Fcとする。この噴射指示量Fcの補正は、目標噴射量Ftを算出するためのマップデータ等のデータ自体を補正する。又は、目標噴射量Ftから噴射指示量Fcを算出するBPWマップ(目標噴射量と開弁時間のマップデータ)を補正する。つまり、目標噴射量Ftは補正せずに、この目標噴射量Ftに対する排気管内直接燃料噴射装置17の開弁時間(駆動時間)を補正する。この補正は、すれ量ΔFの値を補正する必要はなく、例えば、このずれ量ΔFの1/100程度の補正を行う。これらの補正後は、補正された後の目標噴射量のデータやBPWマップデータを使用して、排気管内直接燃料噴射の噴射指示量Fcを算出することになる。つまり、ずれ量ΔFの1/100程度の補正量を順次積算する積算補正を行う。   In the next step S16, the injection instruction amount Fc for direct fuel injection in the exhaust pipe is corrected based on the calculated deviation amount ΔF. That is, the deviation amount ΔF is used as the correction amount ΔFt of the target injection amount Ft, and the target injection amount Ft is corrected by this correction amount ΔFt (Ft = Ft + ΔFt) to obtain the injection amount instruction amount Fc. The correction of the injection instruction amount Fc corrects data itself such as map data for calculating the target injection amount Ft. Alternatively, the BPW map (map data of target injection amount and valve opening time) for calculating the injection instruction amount Fc from the target injection amount Ft is corrected. That is, without correcting the target injection amount Ft, the valve opening time (driving time) of the exhaust pipe direct fuel injection device 17 with respect to the target injection amount Ft is corrected. For this correction, it is not necessary to correct the value of the slip amount ΔF. For example, the correction is performed to about 1/100 of the shift amount ΔF. After these corrections, the injection instruction amount Fc for direct fuel injection in the exhaust pipe is calculated using the corrected target injection amount data and BPW map data. That is, integration correction is performed in which a correction amount about 1/100 of the deviation amount ΔF is sequentially integrated.

次のステップS17では、このずれ量ΔFが警告用噴射量ずれ量下限閾値ΔFcdと警告用噴射量ずれ量上限閾値ΔFcuの間にあるか否かを判定する。このずれ量ΔFが警告用噴射量ずれ量下限閾値ΔFcdと警告用噴射量ずれ量上限閾値ΔFcuの間にある場合には(YES)、リターンに行き、このずれ量ΔFが警告用噴射量ずれ量下限閾値ΔFcdと警告用噴射量ずれ量上限閾値ΔFcuの間にない場合には(NO)、ステップS18に行く。   In the next step S17, it is determined whether or not the deviation amount ΔF is between the warning injection amount deviation lower limit threshold ΔFcd and the warning injection amount deviation upper limit threshold ΔFcu. When the deviation amount ΔF is between the warning injection amount deviation lower limit threshold value ΔFcd and the warning injection amount deviation upper limit threshold value ΔFcu (YES), a return is made, and this deviation amount ΔF is the warning injection amount deviation amount. If it is not between the lower limit threshold ΔFcd and the warning injection amount deviation upper limit threshold ΔFcu (NO), the process goes to step S18.

ステップS18では、ずれ量ΔFが警告用噴射量ずれ量下限閾値ΔFcdと警告用噴射量ずれ量上限閾値ΔFcuの間にないので、エラー判定出力を故障診断(OBD:On-Board Diagnostics)システムに表示する等してドライバー等の使用者に警告し、排気管内直接燃料噴射装置17の交換を促す。つまり、ずれ量が過大となった場合にはエラー判定して故障診断システムに出力して、ドライバー等の使用者に警告をして排気管内直接燃料噴射装置17の故障の修理や交換を促す。このステップS18の後はリターンする。この排気管内直接燃料噴射装置の噴射弁を修理したり交換したりした後では、目標噴射量Ft又は噴射指示量Fcの補正量もリセットする。   In step S18, since the deviation amount ΔF is not between the warning injection amount deviation lower limit threshold ΔFcd and the warning injection amount deviation upper limit threshold ΔFcu, an error determination output is displayed on the fault diagnosis (OBD: On-Board Diagnostics) system. In such a case, a user such as a driver is warned to prompt replacement of the direct fuel injection device 17 in the exhaust pipe. That is, when the deviation amount becomes excessive, an error is determined and output to the failure diagnosis system, and a warning is given to a user such as a driver to prompt repair or replacement of the failure of the direct fuel injection device 17 in the exhaust pipe. After this step S18, the process returns. After repairing or replacing the injection valve of the direct fuel injection device in the exhaust pipe, the correction amount of the target injection amount Ft or the injection instruction amount Fc is also reset.

なお、ステップS16で目標噴射量Ftを算出するためのマップデータ等のデータ自体を補正した場合には、ずれ量ΔFが小さくなる補正となるので、ステップS17における判定は、このずれ量が前回の補正時と倉寝て警告用噴射量ずれ量閾値ΔFc以上になったときに警告をすることになる。一方、ステップS16で目標噴射量Ftから噴射指示量Fcを算出するBPWマップ(目標噴射量と開弁時間のマップデータ)を補正した場合には、ずれ量ΔFは補正されないままとなるので、ステップS17における判定は、このずれ量が、排気管内直接燃料噴射装置17の修理若しくは交換時又は新品の時と比べて警告用噴射量ずれ量閾値ΔFc以上になったときに警告をすることになる。   Note that when the data itself such as map data for calculating the target injection amount Ft is corrected in step S16, the shift amount ΔF is corrected to be small. Therefore, the determination in step S17 determines that the shift amount is the previous time. A warning is issued when the correction is over and the warning injection amount deviation threshold ΔFc is exceeded. On the other hand, when the BPW map (map data of the target injection amount and the valve opening time) for calculating the injection instruction amount Fc from the target injection amount Ft is corrected in step S16, the deviation amount ΔF remains uncorrected. The determination in S17 gives a warning when the amount of deviation becomes equal to or greater than the warning injection amount deviation amount threshold value ΔFc when the exhaust pipe direct fuel injection device 17 is repaired or replaced or when it is new.

上記の図2の制御フローはリターンした後、再度、排気管内直接燃料噴射を行っている状態になると、上級のエンジンの制御フローにより呼ばれて、エンジン10の運転が停止されるまで、繰り返し実行される。   When the control flow of FIG. 2 returns to the state where direct fuel injection in the exhaust pipe is performed again, it is called by the control flow of the advanced engine and is repeatedly executed until the operation of the engine 10 is stopped. Is done.

上記の排気ガス浄化システム1の制御装置(ECU)による第1の実施の形態の排気ガス浄化方法の制御により、次のような制御を行うことができる。   The following control can be performed by the control of the exhaust gas purification method of the first embodiment by the control device (ECU) of the exhaust gas purification system 1 described above.

排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置18の出口側における空気過剰率λの算出値λcと計測値λmの差である空気過剰率誤差Δλを算出し、この空気過剰率誤差Δλが予め設定された閾値Δλcを超えたときに、又は、排気ガス浄化装置18の入口側と出口側の温度差ΔTの算出値ΔTcと計測値ΔTmの差である温度誤差ΔTdを算出し、この温度誤差ΔTdが予め設定された閾値ΔTcを超えたときに、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量Frと目標噴射量Ftとのずれ量ΔFを算出して、この算出されたずれ量ΔFに基づいて、排気管内直接燃料噴射の噴射指示量Fcを補正することができる。   While performing direct fuel injection in the exhaust pipe, an excess air ratio error Δλ, which is the difference between the calculated value λc of the excess air ratio λ on the outlet side of the exhaust gas purification device 18 and the measured value λm, is calculated. When the error Δλ exceeds a preset threshold value Δλc, or the temperature error ΔTd, which is the difference between the calculated value ΔTc of the temperature difference ΔT between the inlet side and the outlet side of the exhaust gas purification device 18 and the measured value ΔTm, is calculated. When the temperature error ΔTd exceeds a preset threshold value ΔTc, a deviation amount ΔF between the estimated injection amount Fr estimated to be actually injected by direct fuel injection in the exhaust pipe and the target injection amount Ft is calculated. The injection instruction amount Fc for direct fuel injection in the exhaust pipe can be corrected based on the calculated deviation amount ΔF.

次に、本発明の第2の実施の形態の排気ガス浄化方法について、図3の排気管内直接燃料噴射の噴射量の劣化に対する補正制御のための制御フローを参照しながら説明する。この図3の制御フローは、ステップS12の判定で、空気過剰率誤差Δλのチェックを行って、この空気過剰率誤差Δλの絶対値│Δλ│が補正用空気過剰率閾値Δλc以上の場合(YES)に、ステップS15ではなく、ステップS13に行く。また、そうでない場合(NO)に、ステップS13ではなく、ステップS11に行く。その他の構成は、図2の制御フローと同じである。   Next, an exhaust gas purification method according to a second embodiment of the present invention will be described with reference to a control flow for correction control for the deterioration of the injection amount of direct fuel injection in the exhaust pipe in FIG. The control flow of FIG. 3 checks the excess air ratio error Δλ in the determination of step S12, and if the absolute value | Δλ | of the excess air ratio error Δλ is equal to or larger than the correction excess air ratio threshold Δλc (YES) ) Go to step S13 instead of step S15. Otherwise (NO), go to step S11 instead of step S13. The other configuration is the same as the control flow of FIG.

上記の排気ガス浄化システム1の制御装置(ECU)による第2の実施の形態の排気ガス浄化方法の制御により、次のような制御を行うことができる。   The following control can be performed by controlling the exhaust gas purification method of the second embodiment by the control device (ECU) of the exhaust gas purification system 1 described above.

排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置18の出口側における空気過剰率λの算出値λcと計測値λmの差である空気過剰率誤差Δλを算出し、この空気過剰率誤差Δλが予め設定された閾値Δλcを超えたときで、且つ、排気ガス浄化装置18の入口側と出口側の温度差ΔTの算出値ΔTcと計測値ΔTmの差である温度誤差ΔTdを算出し、この温度誤差ΔTdが予め設定された閾値ΔTcを超えたときに、排気管内直接燃料噴射で実際に噴射されたと推定される噴射推定量Frと目標噴射量Ftとのずれ量ΔFを算出して、この算出されたずれ量ΔFに基づいて、排気管内直接燃料噴射の噴射指示量Fcを補正することができる。   While performing direct fuel injection in the exhaust pipe, an excess air ratio error Δλ, which is the difference between the calculated value λc of the excess air ratio λ on the outlet side of the exhaust gas purification device 18 and the measured value λm, is calculated. When the error Δλ exceeds a preset threshold value Δλc, a temperature error ΔTd, which is the difference between the calculated value ΔTc of the temperature difference ΔT between the inlet side and the outlet side of the exhaust gas purification device 18 and the measured value ΔTm, is calculated. When the temperature error ΔTd exceeds a preset threshold value ΔTc, a deviation amount ΔF between the estimated injection amount Fr estimated to be actually injected by direct fuel injection in the exhaust pipe and the target injection amount Ft is calculated. The injection instruction amount Fc for direct fuel injection in the exhaust pipe can be corrected based on the calculated deviation amount ΔF.

従って、上記の排気ガス浄化システム1及び排気ガス浄化方法によれば、エンジン10の排気通路16に設けた排気ガス浄化装置18の上流側に排気管内直接燃料噴射装置17を備えた排気ガス浄化システム1において、排気管内直接燃料噴射装置17の燃料噴射弁の目詰まり等による劣化に対して、排気管内直接燃料噴射における実際の噴射推定量Frを目標噴射量Ftに合せることができて、排気管内直接燃料噴射装置17の燃料噴射弁を交換するまでの期間を延長することができる。また、常時、噴射指示量Fcと実際の噴射推定量Frとの間の相関関係が得られるので、目標制御量Ftに対する噴射指示量Fcのフィードバック制御も正常に行うことができる。   Therefore, according to the exhaust gas purification system 1 and the exhaust gas purification method described above, the exhaust gas purification system including the exhaust pipe direct fuel injection device 17 on the upstream side of the exhaust gas purification device 18 provided in the exhaust passage 16 of the engine 10. 1, the actual injection estimated amount Fr in the direct fuel injection in the exhaust pipe can be matched with the target injection amount Ft against the deterioration due to clogging of the fuel injection valve of the direct fuel injection device 17 in the exhaust pipe. The period until the fuel injection valve of the direct fuel injection device 17 is replaced can be extended. Further, since the correlation between the injection instruction amount Fc and the actual injection estimation amount Fr is always obtained, the feedback control of the injection instruction amount Fc with respect to the target control amount Ft can be normally performed.

本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of embodiment which concerns on this invention. 排気管内直接燃料噴射の噴射量の劣化に対する補正制御のための第1の実施の形態の制御フローを示す図である。It is a figure which shows the control flow of 1st Embodiment for correction | amendment control with respect to deterioration of the injection quantity of direct fuel injection in an exhaust pipe. 排気管内直接燃料噴射の噴射量の劣化に対する補正制御のための第2の実施の形態の制御フローを示す図である。It is a figure which shows the control flow of 2nd Embodiment for correction | amendment control with respect to deterioration of the injection quantity of direct fuel injection in an exhaust pipe.

符号の説明Explanation of symbols

1 排気ガス浄化システム
10 エンジン(内燃機関)
11 吸気通路
12 吸入吸気量センサ(MAFセンサ)
16 排気通路
17 排気管内直接燃料噴射装置
18 排気ガス浄化装置
22 第1温度センサ
23 第2温度センサ
24 λ(空気過剰率)センサ
1 Exhaust gas purification system 10 Engine (internal combustion engine)
11 Intake passage 12 Intake intake air amount sensor (MAF sensor)
16 Exhaust passage 17 Direct fuel injection device in exhaust pipe 18 Exhaust gas purification device 22 First temperature sensor 23 Second temperature sensor 24 λ (excess air ratio) sensor

Claims (4)

内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内燃料直接噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムにおいて、
排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設けると共に、
前記制御装置が、
排気管内直接燃料噴射を行っている状態で、排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときに、
又は、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、
排気管内燃料直接噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内燃料直接噴射の噴射指示量を補正することを特徴とする排気ガス浄化システム。
In an exhaust gas purification system comprising an exhaust pipe fuel direct injection device upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine and a control device for purification or regeneration of the exhaust gas purification device,
A first temperature sensor is provided on the inlet side of the exhaust gas purification device, a second temperature sensor and an excess air ratio sensor are provided on the outlet side of the exhaust gas purification device, and
The control device is
While direct fuel injection in the exhaust pipe is being performed, an excess air ratio error that is the difference between the calculated value and the excess air ratio at the outlet side of the exhaust gas purification device is calculated, and this excess air ratio error is preset. When the threshold is exceeded,
Alternatively, when a temperature error that is a difference between a measured value and a calculated value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device is calculated, and when the temperature error exceeds a preset threshold value,
The deviation amount between the estimated injection amount estimated to be actually injected by the direct fuel injection in the exhaust pipe and the target injection amount is calculated, and the injection instruction amount of the direct injection in the exhaust pipe is calculated based on the calculated deviation amount. An exhaust gas purification system characterized by correcting.
内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内燃料直接噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムにおいて、
排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設けると共に、
前記制御装置が、
排気管内直接燃料噴射を行っている状態で、
排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときで、
且つ、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、
排気管内燃料直接噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内燃料直接噴射の噴射指示量を補正することを特徴とする排気ガス浄化システム。
In an exhaust gas purification system comprising an exhaust pipe fuel direct injection device upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine and a control device for purification or regeneration of the exhaust gas purification device,
A first temperature sensor is provided on the inlet side of the exhaust gas purification device, a second temperature sensor and an excess air ratio sensor are provided on the outlet side of the exhaust gas purification device, and
The control device is
With direct fuel injection in the exhaust pipe,
When calculating the excess air ratio error, which is the difference between the calculated value and the excess air ratio at the outlet side of the exhaust gas purification device, and when this excess air ratio error exceeds a preset threshold,
And when calculating the temperature error which is the difference between the calculated value and the measured value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device, when this temperature error exceeds a preset threshold,
The deviation amount between the estimated injection amount estimated to be actually injected by the direct fuel injection in the exhaust pipe and the target injection amount is calculated, and the injection instruction amount of the direct injection in the exhaust pipe is calculated based on the calculated deviation amount. An exhaust gas purification system characterized by correcting.
内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内燃料直接噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムの排気ガス浄化方法において、
排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設け、
排気管内直接燃料噴射を行っている状態で、
排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときに、
又は、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、
排気管内燃料直接噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内燃料直接噴射の噴射指示量を補正することを特徴とする排気ガス浄化方法。
Exhaust gas purification of an exhaust gas purification system having an exhaust pipe fuel direct injection device upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine and a control device for purification or regeneration of the exhaust gas purification device In the method
A first temperature sensor is provided on the inlet side of the exhaust gas purification device, a second temperature sensor and an excess air ratio sensor are provided on the outlet side of the exhaust gas purification device,
With direct fuel injection in the exhaust pipe,
When calculating the excess air ratio error which is the difference between the calculated value and the excess air ratio at the outlet side of the exhaust gas purification device, and when this excess air ratio error exceeds a preset threshold,
Alternatively, when a temperature error that is a difference between a measured value and a calculated value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device is calculated, and when the temperature error exceeds a preset threshold value,
The deviation amount between the estimated injection amount estimated to be actually injected by the direct fuel injection in the exhaust pipe and the target injection amount is calculated, and the injection instruction amount of the direct injection in the exhaust pipe is calculated based on the calculated deviation amount. An exhaust gas purification method comprising correcting the exhaust gas.
内燃機関の排気通路に設けた排気ガス浄化装置の上流側に排気管内燃料直接噴射装置を備えると共にこの排気ガス浄化装置の浄化又は再生のための制御装置を備えた排気ガス浄化システムの排気ガス浄化方法において、
排気ガス浄化装置の入口側に第1温度センサを、排気ガス浄化装置の出口側に第2温度センサと空気過剰率センサを設け、
排気管内直接燃料噴射を行っている状態で、
排気ガス浄化装置の出口側における空気過剰率の算出値と計測値の差である空気過剰率誤差を算出し、この空気過剰率誤差が予め設定された閾値を超えたときで、
且つ、前記排気ガス浄化装置の入口側と出口側の温度差の算出値と計測値の差である温度誤差を算出し、この温度誤差が予め設定された閾値を超えたときに、
排気管内燃料直接噴射で実際に噴射されたと推定される噴射推定量と目標噴射量とのずれ量を算出して、この算出されたずれ量に基づいて、排気管内燃料直接噴射の噴射指示量を補正することを特徴とする排気ガス浄化方法。
Exhaust gas purification of an exhaust gas purification system having an exhaust pipe fuel direct injection device upstream of an exhaust gas purification device provided in an exhaust passage of an internal combustion engine and a control device for purification or regeneration of the exhaust gas purification device In the method
A first temperature sensor is provided on the inlet side of the exhaust gas purification device, a second temperature sensor and an excess air ratio sensor are provided on the outlet side of the exhaust gas purification device,
With direct fuel injection in the exhaust pipe,
When calculating the excess air ratio error, which is the difference between the calculated value and the excess air ratio at the outlet side of the exhaust gas purification device, and when this excess air ratio error exceeds a preset threshold,
And when calculating the temperature error which is the difference between the calculated value and the measured value of the temperature difference between the inlet side and the outlet side of the exhaust gas purification device, when this temperature error exceeds a preset threshold,
The deviation amount between the estimated injection amount estimated to be actually injected by the direct fuel injection in the exhaust pipe and the target injection amount is calculated, and the injection instruction amount of the direct injection in the exhaust pipe is calculated based on the calculated deviation amount. An exhaust gas purification method comprising correcting the exhaust gas.
JP2008295666A 2008-11-19 2008-11-19 Exhaust gas purification system and exhaust gas purification method Expired - Fee Related JP5228829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295666A JP5228829B2 (en) 2008-11-19 2008-11-19 Exhaust gas purification system and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295666A JP5228829B2 (en) 2008-11-19 2008-11-19 Exhaust gas purification system and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2010121514A true JP2010121514A (en) 2010-06-03
JP5228829B2 JP5228829B2 (en) 2013-07-03

Family

ID=42323061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295666A Expired - Fee Related JP5228829B2 (en) 2008-11-19 2008-11-19 Exhaust gas purification system and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP5228829B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081463A1 (en) 2010-12-16 2012-06-21 いすゞ自動車株式会社 Dpf system
JP2013108402A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Failure determination method for combustion injection of internal combustion engine, and internal combustion engine
JP2019113049A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Abnormality diagnosis device of addition valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484223B1 (en) * 2013-07-10 2015-01-16 현대자동차 주식회사 Regeneration system and method for diesel particulate filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336518A (en) * 2002-05-20 2003-11-28 Toyota Motor Corp Emission control device of internal combustion engine
JP2004239081A (en) * 2003-02-03 2004-08-26 Toyota Motor Corp Exhaust emission control device of internal combustion engine and control system
JP2006194183A (en) * 2005-01-14 2006-07-27 Toyota Motor Corp Exhaust emission cleaning device for internal combustion engine
JP2007040130A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007100575A (en) * 2005-10-04 2007-04-19 Toyota Motor Corp Control device of internal combustion engine
JP2008057365A (en) * 2006-08-30 2008-03-13 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009299597A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Exhaust emission control device for vehicular internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336518A (en) * 2002-05-20 2003-11-28 Toyota Motor Corp Emission control device of internal combustion engine
JP2004239081A (en) * 2003-02-03 2004-08-26 Toyota Motor Corp Exhaust emission control device of internal combustion engine and control system
JP2006194183A (en) * 2005-01-14 2006-07-27 Toyota Motor Corp Exhaust emission cleaning device for internal combustion engine
JP2007040130A (en) * 2005-08-01 2007-02-15 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007100575A (en) * 2005-10-04 2007-04-19 Toyota Motor Corp Control device of internal combustion engine
JP2008057365A (en) * 2006-08-30 2008-03-13 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009299597A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Exhaust emission control device for vehicular internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081463A1 (en) 2010-12-16 2012-06-21 いすゞ自動車株式会社 Dpf system
CN103261597A (en) * 2010-12-16 2013-08-21 五十铃自动车株式会社 Dpf system
US8973430B2 (en) 2010-12-16 2015-03-10 Isuzu Motors Limited Diesel particulate filter system
JP2013108402A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Failure determination method for combustion injection of internal combustion engine, and internal combustion engine
JP2019113049A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Abnormality diagnosis device of addition valve

Also Published As

Publication number Publication date
JP5228829B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5155979B2 (en) diesel engine
EP2318677B1 (en) Catalyst deterioration diagnosis system and method for internal combustion engine
JP5720230B2 (en) Particulate filter system
JP4673226B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
US20080264037A1 (en) Apparatus for deterioration diagnosis of an oxidizing catalyst
JP6582409B2 (en) Exhaust purification system
JP2002371827A (en) Exhaust emission control device for engine
JP2010150936A (en) Method for diagnosing regeneration failure of exhaust emission control device
WO2011129358A1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2008133780A (en) Device and method for diagnosing abnormality of nox sensor
JP4363289B2 (en) Exhaust gas purification device for internal combustion engine
JP4692436B2 (en) Exhaust gas purification system for internal combustion engine
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP4640318B2 (en) Control device for internal combustion engine
JP5228829B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5034864B2 (en) Exhaust gas purification device for internal combustion engine
JP4311071B2 (en) Defect determination method of exhaust purification system
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP4702557B2 (en) Exhaust purification device
JP4605101B2 (en) Exhaust gas purification device for internal combustion engine
JP7384114B2 (en) Filter condition detection device
JP4534959B2 (en) Exhaust gas purification device for internal combustion engine
JP4506978B2 (en) Exhaust purification device
JP6424618B2 (en) Exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees