JP2010120796A - High toughness and translucent colored alumina sintered compact, method for producing the same and its use - Google Patents

High toughness and translucent colored alumina sintered compact, method for producing the same and its use Download PDF

Info

Publication number
JP2010120796A
JP2010120796A JP2008294499A JP2008294499A JP2010120796A JP 2010120796 A JP2010120796 A JP 2010120796A JP 2008294499 A JP2008294499 A JP 2008294499A JP 2008294499 A JP2008294499 A JP 2008294499A JP 2010120796 A JP2010120796 A JP 2010120796A
Authority
JP
Japan
Prior art keywords
sintered body
group
metal oxide
alumina sintered
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008294499A
Other languages
Japanese (ja)
Other versions
JP5458553B2 (en
Inventor
Isao Yamashita
勲 山下
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008294499A priority Critical patent/JP5458553B2/en
Priority to PCT/JP2009/069393 priority patent/WO2010058745A1/en
Priority to EP09827526.6A priority patent/EP2366675B1/en
Priority to US13/121,884 priority patent/US8481439B2/en
Priority to EP14173391.5A priority patent/EP2808313B1/en
Publication of JP2010120796A publication Critical patent/JP2010120796A/en
Application granted granted Critical
Publication of JP5458553B2 publication Critical patent/JP5458553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Prosthetics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, though a method where a transition metal oxide is added to alumina so as to produce colored translucent alumina has been known heretofore, owing to the low fracture toughness value of the sintered compact, it has not been suitable for use requiring high toughness value such as a dental member. <P>SOLUTION: The colored translucent alumina sintered compact comprises a transition metal oxide and at least one or more kinds of oxides selected from the group consisting of the group 1A alkali metal oxides, the group 2A alkaline earth metal oxides, SiO<SB>2</SB>, B<SB>2</SB>O<SB>3</SB>, P<SB>2</SB>O<SB>5</SB>and GeO<SB>2</SB>and has fracture toughness of ≥4.5 MPa×m<SP>0.5</SP>, and in which the maximum value of the total light transmission (sample thickness: 1 mm) to the wavelength of 300 to 800 nm is ≥60%. The sintered compact is composed of anisotropic grains, and preferably comprises the anisotropic grains with the major axis length of ≥10 μm and an aspect ratio of ≥1.5 by ≥20%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は靭性が高く、且つ透光性にも優れる着色アルミナ焼結体に関する。装飾品、宝飾品、工芸品用途のみならず、高い靭性値が要求される歯列矯正ブラケットや歯科修復用ミルブランク等の歯科材料に利用可能である。   The present invention relates to a colored alumina sintered body having high toughness and excellent translucency. It can be used for dental materials such as orthodontic brackets and dental restoration mill blanks that require high toughness as well as decorative, jewelry and craft applications.

近年、透光性アルミナ焼結体は装飾品、宝飾品、工芸品用途のみならず、歯科矯正用ブラケットや歯科修復用ミルブランク等の歯科材料としての利用が拡大している。歯科材料としての利用の拡大に従い、透光性に基づく審美性のみならず、破壊靭性等の機械的性質の向上が透光性アルミナ焼結体における重要な課題となっている。特に最近では、着色を特徴とする透光性セラミックスブラケットのニーズも高まっており、着色を特徴とする透光性アルミナ焼結体(以下、着色透光性アルミナ焼結体)の高靭性化が望まれている。   In recent years, translucent alumina sintered bodies have been used not only for decorative products, jewelry and crafts, but also as dental materials such as orthodontic brackets and dental restoration mill blanks. With the expansion of use as a dental material, not only aesthetic properties based on translucency but also improvement of mechanical properties such as fracture toughness are important issues in translucent alumina sintered bodies. In particular, recently, there is an increasing need for translucent ceramic brackets characterized by coloring, and the toughness of translucent alumina sintered bodies (hereinafter referred to as colored translucent alumina sintered bodies) characterized by coloring is increasing. It is desired.

着色透光性アルミナは、古くからルビー、サファイヤなどの人工宝石として、ベルヌーイ法、チョコラルスキー法等により製造されてきた。しかし、これらの製造法では単結晶が得られるため、実際の使用の際には単結晶を機械加工する手間が必要であった。   Colored translucent alumina has long been manufactured by Bernoulli method, chocolate lasky method, etc. as artificial gems such as ruby and sapphire. However, since these production methods can obtain a single crystal, it is necessary to machine the single crystal in actual use.

機械加工による手間を軽減するため、アルミナ粉末に酸化クロム、酸化コバルト、酸化鉄などの遷移金属酸化物を混合し、粉末を成形焼結させる方法が考案されてきた(特許文献1〜6)。例えば、特許文献1には、アルミナ粉末に酸化コバルト、酸化ニッケル、酸化クロム、酸化マンガンなどを混合し、水素、真空雰囲気で焼結する方法が開示されている。また、特許文献2には、酸化鉄、酸化チタン、酸化バナジウム、酸化ニッケル、酸化クロム、酸化コバルトなどの遷移金属を用いた熱間静水圧プレス(HIP)による着色透光性アルミナ焼結体の製法が開示されている。これらの方法により、青色、緑色、黄色、ピンクなどの着色透光性アルミナ焼結体が得られている。   In order to reduce the labor required for machining, methods have been devised in which transition metal oxides such as chromium oxide, cobalt oxide and iron oxide are mixed with alumina powder and the powder is molded and sintered (Patent Documents 1 to 6). For example, Patent Document 1 discloses a method in which alumina powder is mixed with cobalt oxide, nickel oxide, chromium oxide, manganese oxide or the like and sintered in a hydrogen or vacuum atmosphere. Patent Document 2 discloses a colored translucent alumina sintered body by hot isostatic pressing (HIP) using a transition metal such as iron oxide, titanium oxide, vanadium oxide, nickel oxide, chromium oxide, and cobalt oxide. A manufacturing method is disclosed. By these methods, colored translucent alumina sintered bodies such as blue, green, yellow, and pink are obtained.

しかし、これまでの着色透光性アルミナ焼結体の製法は、水素、真空雰囲気中で製造する方法(例えば、特許文献7)、もしくは、HIPを用いた方法(例えば、特許文献8)に準じた方法であり、これらの方法によって作製される着色透光性アルミナ焼結体の破壊靭性値は、3〜4MPa・m0.5程度(特許文献8)と低く、機械的性質が要求される用途で必要とされる高い破壊靱性値は得られていなかった。 However, the conventional method for producing a colored translucent alumina sintered body is in accordance with a method for producing hydrogen in a vacuum atmosphere (for example, Patent Document 7) or a method using HIP (for example, Patent Document 8). The fracture toughness value of the colored translucent alumina sintered body produced by these methods is as low as about 3 to 4 MPa · m 0.5 (Patent Document 8), and mechanical properties are required. The high fracture toughness value required for the application was not obtained.

アルミナ焼結体の高靭性化については、異相の導入(特許文献9、非特許文献1)及びアルミナ粒子の異方粒成長(特許文献10、特許文献11)等の報告がされている。しかし、高い破壊靱性値が得られているが、透光性が発現していない。これは、異相の導入が異相界面における光散乱の原因となり、従来の方法で形成された異方粒子を含む焼結体組織は透光性を低下するものであった(特許文献12)。   Regarding the increase in toughness of the alumina sintered body, reports have been made on the introduction of heterogeneous phases (Patent Document 9, Non-Patent Document 1) and anisotropic grain growth of alumina particles (Patent Document 10, Patent Document 11). However, although a high fracture toughness value is obtained, translucency is not expressed. This is because the introduction of a heterogeneous phase causes light scattering at the heterogeneous interface, and the sintered body structure containing anisotropic particles formed by a conventional method has a reduced translucency (Patent Document 12).

このように、これまでは高い破壊靭性と透光性を両立する着色透光性アルミナ焼結体は得られていなかった。   Thus, until now, a colored translucent alumina sintered body having both high fracture toughness and translucency has not been obtained.

特開昭59−169979号公報JP 59-169799 A 特開昭63−239154号公報JP 63-239154 A 特開平1−133973号公報Japanese Patent Laid-Open No. 1-133973 特開平4−193760号公報JP-A-4-193760 特開2002−12471号公報JP 2002-12471 A 特開2002−293613号公報JP 2002-293613 A 米国特許第3026210US Pat. No. 3,026,210 特開平3−261648号公報Japanese Patent Laid-Open No. 3-261648 特開昭64−87552号公報JP-A-64-87552 特開平11−1365号公報Japanese Patent Laid-Open No. 11-1365 特開平9−87008号公報JP-A-9-87008 特開2001−322866号公報JP 2001-322866 A American Ceramic Society Bulletin 第59巻、49頁(1976)American Ceramic Society Bulletin 59, 49 (1976)

本発明は、高い靭性と透光性を併せ持つ着色アルミナ焼結体およびその製造方法を提供するものである。   The present invention provides a colored alumina sintered body having both high toughness and translucency and a method for producing the same.

本発明者らは、アルミナ焼結体の着色、透光性及び破壊靭性の向上について鋭意検討を重ねた結果、遷移金属酸化物と1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上の酸化物を用いて異方性粒子を有する焼結粒子組織を有することにより、審美性に優れた着色を有し、透光性に優れ、なおかつ破壊靱性の高い焼結体が得られることを見出し、本発明を完成するに到ったものである。 As a result of intensive investigations on the improvement of coloring, translucency and fracture toughness of the alumina sintered body, the inventors have made transition metal oxides, Group 1A alkali metal oxides, Group 2A alkaline earth metal oxides, By having a sintered particle structure having anisotropic particles using at least one oxide selected from the group of SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , excellent aesthetics The present inventors have found that a sintered body having high coloring and excellent translucency and high fracture toughness can be obtained, and the present invention has been completed.

本発明の焼結体は、遷移金属酸化物、及び1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上の酸化物を含有し、且つ破壊靭性が4.5MPa・m0.5以上、波長300〜800nmの光に対する全光線透過率(試料厚さ1mm)の最大値が60%以上である高靭性の着色透光性アルミナ焼結体である。 The sintered body of the present invention is selected from the group consisting of transition metal oxides, group 1A alkali metal oxides, group 2A alkaline earth metal oxides, SiO 2 , B 2 O 3 , P 2 O 5 , and GeO 2. The maximum value of total light transmittance (sample thickness 1 mm) with respect to light containing at least one kind of oxide, fracture toughness of 4.5 MPa · m 0.5 or more, and wavelength of 300 to 800 nm is 60% or more. This is a high toughness colored translucent alumina sintered body.

本発明のアルミナ焼結体に含有する遷移金属酸化物は特に限定はなく、目的の発色をするものを用いることができ、例えば青色を発色する酸化コバルト、赤色を発色する酸化クロム等が例示できる。   The transition metal oxide contained in the alumina sintered body of the present invention is not particularly limited, and those that develop the desired color can be used. Examples thereof include cobalt oxide that develops blue color and chromium oxide that develops red color. .

本発明のアルミナ焼結体における遷移金属酸化物の含有量は、総量で100ppm〜3wt%の範囲が好ましく、特に300ppm〜1wt%が好ましい。100ppm未満では効果が薄れ、3wt%を超えると、固溶限界となり焼結体中に遷移金属酸化物粒子が析出し透光性が低下する。   The total content of transition metal oxides in the alumina sintered body of the present invention is preferably in the range of 100 ppm to 3 wt%, particularly preferably 300 ppm to 1 wt%. If it is less than 100 ppm, the effect is reduced, and if it exceeds 3 wt%, the solid solution limit is reached, and transition metal oxide particles are precipitated in the sintered body, resulting in a decrease in translucency.

本発明のアルミナ焼結体は、さらに1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上を総量で20〜1000ppmの範囲で含有する。NaO等の1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOはガラス相形成剤として働き、アルミナ粒子の異方成長を促進する。特にガラス相形成能力の高い酸化物はNaO、NaO+SiOである。 The alumina sintered body of the present invention is further at least one selected from the group consisting of group 1A alkali metal oxides, group 2A alkaline earth metal oxides, SiO 2 , B 2 O 3 , P 2 O 5 , and GeO 2. The above is contained in the range of 20 to 1000 ppm in total. 1A group alkali metal oxides such as Na 2 O, 2A group alkaline earth metal oxides, SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 act as glass phase forming agents, and anisotropic growth of alumina particles Promote. Particularly, oxides having a high glass phase forming ability are Na 2 O and Na 2 O + SiO 2 .

一方、MgOは2A族アルカリ土類金属酸化物であるが、MgOの添加効果は粒成長抑制剤として働くため、2A族アルカリ土類金属酸化物にMgOを用いる場合には、1A族アルカリ金属酸化物、MgO以外の2A族アルカリ土類金属酸化物、SiO、B、P及びGeOの群からさらに少なくとも1種以上の成分を添加することが必要であるため、MgO以外の2A族アルカリ土類金属酸化物を用いることが好ましい。 On the other hand, MgO is a group 2A alkaline earth metal oxide. However, since the effect of adding MgO works as a grain growth inhibitor, when MgO is used as the group 2A alkaline earth metal oxide, the group 1A alkali metal oxidation is performed. In addition, it is necessary to add at least one component from the group of 2A group alkaline earth metal oxides other than MgO, SiO 2 , B 2 O 3 , P 2 O 5 and GeO 2. It is preferable to use 2A group alkaline-earth metal oxides other than these.

本発明のアルミナ焼結体に含有するガラス相を形成する物質の含有量は総量で20〜1000ppmであることが好ましく、20ppm未満では効果が希薄であり、又1000ppmを超えると焼結を阻害する。   The content of the substance forming the glass phase contained in the alumina sintered body of the present invention is preferably 20 to 1000 ppm in total, and if it is less than 20 ppm, the effect is dilute, and if it exceeds 1000 ppm, the sintering is inhibited. .

なお酸化エルビウム、酸化ユーロピウム等の希土類酸化物はアルミナ焼結体を着色する効果があるが、焼結を阻害し、透光性及び破壊靱性を低下するため用いないことが好ましい。   Although rare earth oxides such as erbium oxide and europium oxide have the effect of coloring the alumina sintered body, it is preferable not to use it because it inhibits the sintering and lowers the translucency and fracture toughness.

本発明の焼結体の破壊靱性は4.5MPa・m0.5以上であり、特に5MPa・m0.5以上、さらには6MPa・m0.5以上であることが好ましい。 Fracture toughness of the sintered body of the present invention is 4.5 MPa · m 0.5 or more, in particular 5 MPa · m 0.5 or more, and further preferably not 6 MPa · m 0.5 or more.

本発明の焼結体の曲げ強度は特に規定されないが、350MPa以上であることが好ましい。破壊靱性、曲げ強度の評価方法はJISに規定される方法による。   The bending strength of the sintered body of the present invention is not particularly defined, but is preferably 350 MPa or more. Fracture toughness and bending strength are evaluated according to the methods specified in JIS.

本発明の焼結体は試料厚み1mmにおいて、波長300〜800nmにおける全光透過率の最高値が60%以上の高い透光性を有し、特に65%以上、さらには70%以上であることが好ましい。   The sintered body of the present invention has a high translucency with a maximum value of total light transmittance at a wavelength of 300 to 800 nm of 60% or more at a sample thickness of 1 mm, particularly 65% or more, more preferably 70% or more. Is preferred.

本発明のアルミナ焼結体は、焼結粒子として長軸長さが10μm以上、アスペクト比1.5以上の異方性粒子を含有することが好ましい。異方性粒子のアスペクト比は3以上であることが好ましい。異方性粒子のアスペクト比は大きいほど、破壊靭性は高まる。本発明のアルミナ焼結体を構成するアルミナ焼結粒子の代表例を図1に示す。   The alumina sintered body of the present invention preferably contains anisotropic particles having a major axis length of 10 μm or more and an aspect ratio of 1.5 or more as sintered particles. The aspect ratio of the anisotropic particles is preferably 3 or more. The larger the aspect ratio of the anisotropic particles, the higher the fracture toughness. A typical example of the alumina sintered particles constituting the alumina sintered body of the present invention is shown in FIG.

本発明のアルミナ焼結体中の異方性粒子の含有量は20vol%以上、さらには50vol%以上であることが好ましい。異方性粒子の含有量が増加するほど、焼結体の破壊靱性は増加する。一方、異方性粒子の含有量が100vol%近くになると、破壊靱性は10MPa・m0.5以上に達するが、曲げ強度が300MPa以下にまで低下しやすくなるため、異方性粒子の含有量が過度に増加する必要はない。 The content of anisotropic particles in the alumina sintered body of the present invention is preferably 20 vol% or more, more preferably 50 vol% or more. As the content of anisotropic particles increases, the fracture toughness of the sintered body increases. On the other hand, when the content of anisotropic particles is close to 100 vol%, the fracture toughness reaches 10 MPa · m 0.5 or more, but the bending strength tends to decrease to 300 MPa or less. Need not increase excessively.

本発明のアルミナ焼結体中の異方性粒子は、特に板状(異方性板状粒子)であることが好ましい。   The anisotropic particles in the alumina sintered body of the present invention are particularly preferably plate-shaped (anisotropic plate-shaped particles).

本発明のアルミナ焼結体の焼結組織は、異方性粒子以外は等軸形状粒子からなっており、異方性粒子が破壊靱性向上に寄与する一方、等軸形状粒子は異方性粒子間を結合する働きをし、強度維持に寄与する。   The sintered structure of the alumina sintered body of the present invention is composed of equiaxed particles other than anisotropic particles, and the anisotropic particles contribute to the improvement of fracture toughness, while the equiaxed particles are anisotropic particles. It works to connect the gaps and contributes to strength maintenance.

次に、本発明のアルミナ焼結体の製造法について説明する。   Next, the manufacturing method of the alumina sintered compact of this invention is demonstrated.

本発明の焼結体は、遷移金属酸化物を総量で100ppm〜3wt%、1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上を総量で20〜1000ppmの範囲含有するアルミナ粉末を成形後、常圧焼結した後、さらに熱間静水圧プレス(HIP)処理することによって製造することができる。 The sintered body of the present invention has a transition metal oxide in a total amount of 100 ppm to 3 wt%, a group 1A alkali metal oxide, a group 2A alkaline earth metal oxide, SiO 2 , B 2 O 3 , P 2 O 5 , GeO. After the alumina powder containing at least one kind selected from the group of 2 in a range of 20 to 1000 ppm in total is molded and then sintered under normal pressure, it is further manufactured by hot isostatic pressing (HIP) treatment Can do.

本発明の製造法において、上記の異種成分を添加する原料アルミナ粉末は、99.99%以上の純度を有する高純度アルミナ粉末で、比表面積5〜20m/g、1μm以下の微粒子比率90vol%以上の微細粒子からなるものが好ましい。出発原料に高純度のアルミナ粉末を用いることによって、異種成分含有量が均一となり、高品質な焼結体が得られる。アルミナ粉末の微粒子比率は重要であり、90vol%以下では焼結によって緻密化する温度が高温化するため好ましくない。 In the production method of the present invention, the raw material alumina powder to which the different components are added is a high-purity alumina powder having a purity of 99.99% or higher, and a specific surface area of 5 to 20 m 2 / g, a fine particle ratio of 1 vol. What consists of the above fine particle is preferable. By using high-purity alumina powder as a starting material, the content of different components becomes uniform and a high-quality sintered body can be obtained. The fine particle ratio of the alumina powder is important, and if it is 90 vol% or less, the temperature for densification increases due to sintering, which is not preferable.

本発明の製造法では遷移金属酸化物、NaO等の1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOをアルミナ粉末に添加し、混合・粉砕装置で分散させればよい。混合・粉砕方法は、水、エタノール等を用いた湿式法、また乾式でもよい。 In the production method of the present invention, transition metal oxide, 1A group alkali metal oxide such as Na 2 O, 2A group alkaline earth metal oxide, SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 are alumina powder. And may be dispersed by a mixing / pulverizing apparatus. The mixing / pulverization method may be a wet method using water, ethanol or the like, or a dry method.

上記の異種成分の酸化物は酸化物粉末として添加できるが、焼成によって酸化物になる前駆体を添加してもよい。またアルカリ金属酸化物の場合は、NaCl等の水溶性塩を用いることができる。これらの原料を所定量となるよう混合し、乾燥・焼成すればよい。   The oxides of the different components can be added as oxide powder, but a precursor that becomes an oxide by firing may be added. In the case of an alkali metal oxide, a water-soluble salt such as NaCl can be used. These raw materials may be mixed to a predetermined amount, dried and fired.

本発明の製造法における粉末の成形方法は特に限定はないが、例えば、金型プレス、ラバープレス、スリップキャスティング、射出成形等あらゆる方法が適用できる。   The method for forming the powder in the production method of the present invention is not particularly limited, and for example, any method such as a die press, rubber press, slip casting, injection molding and the like can be applied.

本発明の製造法では、上記の組成のアルミナ粉末の成型体を常圧焼成したのちに熱間静水圧(HIP)処理する。   In the production method of the present invention, an alumina powder molded body having the above composition is fired at normal pressure and then subjected to hot isostatic pressure (HIP) treatment.

本発明の製造法における常圧焼結は、大気、酸素、真空等の雰囲気中で、温度1250℃〜1450℃で行うことが好ましい。常圧焼結では、焼結体を次のHIP処理を施すに必要な密度(理論密度の約95%)まで緻密化する。常圧焼結後の密度が理論密度の95%以下では、HIP処理の圧力媒体ガスが焼結体内部に浸透し、気孔の除去が達成されない。   The atmospheric sintering in the production method of the present invention is preferably performed at a temperature of 1250 ° C. to 1450 ° C. in an atmosphere such as air, oxygen, or vacuum. In the normal pressure sintering, the sintered body is densified to the density necessary for the next HIP treatment (about 95% of the theoretical density). When the density after atmospheric pressure sintering is 95% or less of the theoretical density, the pressure medium gas of the HIP treatment penetrates into the sintered body and the removal of pores is not achieved.

常圧焼結では、焼結体中の残存気孔をHIP処理によって効率よく除かれるような形態とすることが好ましい。特に粒界気孔は粒内気孔に比べて除去されやすいので、常圧焼結の焼結温度が高すぎると、気孔が粒成長によって粒内に取り込まれる現象が生じやすく、このような気孔はHIP処理による除去が困難である。またHIP処理に供する一次焼結体の結晶粒子が微細であるほど、HIP処理後の焼結体の透光性が向上する。従って、理論密度の95%以上の密度を得ること、粒内気孔の生成抑止、及び微細結晶粒子を得るという観点から、常圧焼結は温度1250℃〜1450℃で行うことが好ましい。   In normal pressure sintering, it is preferable that the residual pores in the sintered body be efficiently removed by HIP treatment. In particular, grain boundary pores are easier to remove than intragranular pores. Therefore, if the sintering temperature of atmospheric sintering is too high, pores are likely to be taken into grains due to grain growth. Removal by processing is difficult. Moreover, the translucency of the sintered compact after HIP processing improves, so that the crystal grain of the primary sintered compact used for HIP processing is finer. Therefore, it is preferable to perform atmospheric pressure sintering at a temperature of 1250 ° C. to 1450 ° C. from the viewpoint of obtaining a density of 95% or more of the theoretical density, inhibiting the formation of intragranular pores, and obtaining fine crystal particles.

本発明の製造法のHIP処理は焼結体中の残留気孔を消滅させ、透光性を付与する目的でなされる。処理温度は1200℃以上、処理圧力50MPa以上が好ましく、特に温度1300〜1800℃、圧力100〜200MPaが好ましい。1300℃未満ではガラス相形成剤による異方粒子の成長が不十分であり、1800℃を超えると、異方粒子が粗大化し本発明の効果が得られ難い。処理温度は1350〜1750℃の温度が最も好ましい。   The HIP treatment in the production method of the present invention is performed for the purpose of eliminating residual pores in the sintered body and imparting translucency. The treatment temperature is preferably 1200 ° C. or more and the treatment pressure is 50 MPa or more, particularly preferably the temperature is 1300 to 1800 ° C. and the pressure is 100 to 200 MPa. If the temperature is lower than 1300 ° C., the growth of anisotropic particles by the glass phase forming agent is insufficient. If the temperature is higher than 1800 ° C., the anisotropic particles are coarsened and it is difficult to obtain the effects of the present invention. The treatment temperature is most preferably 1350-1750 ° C.

HIP処理の圧力媒体としては通常用いられるアルゴンガスを用いることができる。その他のガス、例えば窒素、酸素なども適用可能である。   As the pressure medium for the HIP process, a commonly used argon gas can be used. Other gases such as nitrogen and oxygen are also applicable.

本発明の組成及び処理条件では、異方性粒子の形成開始が高温から開始するために、常圧焼結において微細焼結粒子による緻密化を進行させることにより、透光性を阻害する粒内気孔を生成させずに緻密化を進行させる。さらにその後のHIP処理において本発明の焼結体に特徴的な異方性粒子の成長を促進させ、高い透光性を維持し、審美性の高い着色、且つ高い靭性のアルミナ焼結体が得られる。   In the composition and processing conditions of the present invention, since the formation of anisotropic particles starts from a high temperature, intragranularity that impedes translucency by advancing densification with fine sintered particles in atmospheric pressure sintering. Densification proceeds without generating pores. Furthermore, in the subsequent HIP treatment, the growth of anisotropic particles characteristic of the sintered body of the present invention is promoted, and high translucency is maintained, coloring with high aesthetics and high toughness alumina sintered body is obtained. It is done.

本発明の着色透光性アルミナ焼結体は、高靭性と透光性を兼ね備えており、従来の装飾品、宝飾品、工芸品用途のみならず、加工時に破壊しない高い靭性値とファッションとしての着色審美性が要求される歯列矯正ブラケットや歯科修復用ミルブランク等の歯科材料に好適である。   The colored translucent alumina sintered body of the present invention has both high toughness and translucency, and is used not only for conventional ornaments, jewelry and crafts, but also as a high toughness value and fashion that does not break during processing. It is suitable for dental materials such as orthodontic brackets and dental restoration mill blanks that require coloring aesthetics.

従来の着色透光性アルミナ焼結体は、靭性が低く、加工時の欠け、応力印加時の耐衝撃性に乏しいものであった。本発明のアルミナ焼結体は、透光性を有する着色アルミナ焼結体であり、なおかつ従来のものに比べ、1.5〜2倍の靭性を有しているため、特に高い靭性値が要求される歯科材料用途に適している。   The conventional colored translucent alumina sintered body has low toughness and lacks chipping during processing and impact resistance during stress application. The alumina sintered body of the present invention is a colored alumina sintered body having translucency, and has a toughness 1.5 to 2 times that of the conventional one, and therefore requires a particularly high toughness value. Suitable for dental material applications.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.

本発明の焼結体の評価方法を以下に説明する。
(1)破壊靭性
破壊靭性試験はJISR1607「ファインセラミックスの破壊靱性試験方法」に基づきSEPB法により測定した。5本の平均値を採用した。
(2)曲げ強度
曲げ試験はJISR1601「ファインセラミックスの曲げ強さ試験方法」に基づき3点曲げ試験により測定し、10本の平均値を採用した。
(3)全光線透過率
全光線透過率はJISK7105「プラスティックスの光学特性試験方法」およびJISK7361−1「プラスティック・透明材料の全光線透過率の試験方法」に基づき、ダブルビーム方式の分光光度計(日本分光株式会社製、V−650型)で測定した。測定試料は焼結体厚みを1mmに加工し表面粗さRa=0.02μm以下に両面鏡面研磨したものを用いた。光源(重水素ランプおよびハロゲンランプ)より発生した光を試料に透過および散乱させ積分球を用いて全光線透過量を測定した。測定波長領域は200〜800nmの領域で測定し、本件での全光線透過率は、波長300〜800nmにおける最大値とした。
(4)粒子の長軸長さ、アスペクト比、異方性粒子の割合
焼結体を鏡面研磨し、ケミカルエッチングにより粒界を際立たせ、金コーティングしたものを走査型電子顕微鏡或いは光学顕微鏡写真で観察し、この写真の画像解析より算出した。各粒子を矩形近似し、長辺を長軸長さ、短辺を短軸長さとして測定した。長軸長さを短軸長さで除した値をアスペクト比とした。長軸長さ10μm以上、アスペクト比1.5以上の粒子をピックアップし、その粒子が占める面積から体積比率を求めた。その際の測定粒子数は100個以上とした。なお、ケミカルエッチングは焼結体を80℃の過飽和ホウ酸ナトリウム溶液に浸して表面に付着させた後、900℃で0.5時間加熱し冷却後、塩酸溶液で洗浄する方法で行った。
(5)焼結体密度
焼結体の水中での重量を測定するアルキメデス法によって求めた。相対密度は理論密度を3.98g/cmとして計算した。
The method for evaluating the sintered body of the present invention will be described below.
(1) Fracture toughness The fracture toughness test was measured by the SEPB method based on JIS R1607 “Fracture toughness test method for fine ceramics”. An average value of 5 was adopted.
(2) Bending strength The bending test was measured by a three-point bending test based on JIS R1601 “Bending strength test method of fine ceramics”, and an average value of 10 pieces was adopted.
(3) Total light transmittance The total light transmittance is a double beam spectrophotometer based on JISK7105 “Testing method for optical properties of plastics” and JISK7361-1 “Testing method for total light transmittance of plastics and transparent materials”. (Measured by JASCO Corporation, V-650 type). The measurement sample was processed to have a sintered body thickness of 1 mm and mirror-polished to a surface roughness Ra = 0.02 μm or less. The light emitted from the light source (deuterium lamp and halogen lamp) was transmitted and scattered through the sample, and the total light transmission amount was measured using an integrating sphere. The measurement wavelength region was measured in the region of 200 to 800 nm, and the total light transmittance in this case was the maximum value at a wavelength of 300 to 800 nm.
(4) Long axis length of particles, aspect ratio, proportion of anisotropic particles The sintered body is mirror-polished, the grain boundary is made to stand out by chemical etching, and the gold coating is shown in a scanning electron microscope or optical micrograph. Observed and calculated from image analysis of this photograph. Each particle was approximated to a rectangle, and the long side was measured as the long axis length and the short side was measured as the short axis length. The aspect ratio was obtained by dividing the major axis length by the minor axis length. Particles having a major axis length of 10 μm or more and an aspect ratio of 1.5 or more were picked up, and the volume ratio was determined from the area occupied by the particles. The number of measured particles at that time was 100 or more. The chemical etching was performed by a method in which the sintered body was immersed in a supersaturated sodium borate solution at 80 ° C. and adhered to the surface, heated at 900 ° C. for 0.5 hours, cooled, and then washed with a hydrochloric acid solution.
(5) Density of sintered body The density was determined by Archimedes method for measuring the weight of the sintered body in water. The relative density was calculated with a theoretical density of 3.98 g / cm 3 .

実施例1
高純度アルミナ粉末(α−Al:大明化学工業製、純度99.99%以上)に、酸化コバルト(CoO:レアメタリック製、純度99.9%)、酸化クロム(Cr:レアメタリック、純度99.99%)、酸化マンガン(MnO:高純度化学、99.9%)、酸化バナジウム(V:和光純薬 一級試薬)、酸化ニッケル(NiO:レアメタリック、純度99.99%)及びメタケイ酸ナトリウム(NaO・SiO、ALDRICH社製)を添加、エタノール中でボールミル混合し、乾燥させたものを原料粉末とした。遷移金属酸化物およびメタケイ酸ナトリウムの添加量は、それぞれアルミナに対して500ppm、50ppmとした。
Example 1
High purity alumina powder (α-Al 2 O 3 : manufactured by Daimei Chemical Industries, purity 99.99% or more), cobalt oxide (CoO: manufactured by rare metal, purity 99.9%), chromium oxide (Cr 2 O 3 : Rare metallic, purity 99.99%), manganese oxide (MnO: high purity chemical, 99.9%), vanadium oxide (V 2 O 5: Wako pure chemical primary reagent), nickel oxide (NiO: Rare metallic, 99 .99%) and sodium metasilicate (Na 2 O.SiO 2 , manufactured by ALDRICH), ball milled in ethanol, and dried to obtain a raw material powder. The addition amounts of transition metal oxide and sodium metasilicate were 500 ppm and 50 ppm, respectively, with respect to alumina.

遷移金属酸化物の添加量は、それぞれアルミナに対して500ppmとした。原料に用いた高純度アルミナ粉末に含まれる不純物を表1に示した。これらの総量は20ppm以下であった。なお表1に記載していないものについては検出限界以下(<1ppm)であった。   The amount of transition metal oxide added was 500 ppm with respect to alumina. Table 1 shows impurities contained in the high-purity alumina powder used as a raw material. The total amount of these was 20 ppm or less. In addition, about what was not described in Table 1, it was below the detection limit (<1 ppm).

表2の組成の粉末を一軸プレス装置と金型を用い、圧力50MPaを加えて40mm×50mm、厚さ5mmの板状成形体とし、これをゴム型に入れ冷間静水圧プレス装置で圧力200MPaを加え固めた。これらを大気中1300℃で2時間焼結し一次焼結体を得た。一次焼結体をHIP装置によりアルゴンガス媒体中、温度1450〜1650℃、圧力150MPaで1時間処理した。このようにして得られた焼結体の長軸長さ10μm以上、アスペクト比1.5以上の異方性粒子割合、破壊靱性、曲げ強度、全光線透過率の測定をした。結果を表2に示す。   Using a uniaxial press device and a mold, the powder having the composition shown in Table 2 is applied to a plate-shaped product of 40 mm × 50 mm and 5 mm thickness by applying a pressure of 50 MPa. And hardened. These were sintered in the atmosphere at 1300 ° C. for 2 hours to obtain a primary sintered body. The primary sintered body was treated with an HIP apparatus in an argon gas medium at a temperature of 1450 to 1650 ° C. and a pressure of 150 MPa for 1 hour. The sintered body thus obtained was measured for the proportion of anisotropic particles having a major axis length of 10 μm or more and an aspect ratio of 1.5 or more, fracture toughness, bending strength, and total light transmittance. The results are shown in Table 2.

高い破壊靭性値と高い透光性を兼ね備えた着色透光性アルミナ焼結体が得られることが明らかとなった。   It was revealed that a colored translucent alumina sintered body having both high fracture toughness and high translucency can be obtained.

Figure 2010120796
Figure 2010120796

Figure 2010120796
Figure 2010120796

比較例1
実施例1記載の高純度アルミナ粉末を用い、酸化クロム、酸化コバルトのみを添加し、後は実施例1と同様の条件で焼結体を製造した。焼結体の着色、破壊靱性、曲げ強度、全光線透過率(試料厚み1mm、波長300〜800nmにおける最大値)の結果を表3に示す。異方性粒子は成長せず、低靭性の焼結体しか得られなかった。
Comparative Example 1
Using the high-purity alumina powder described in Example 1, only chromium oxide and cobalt oxide were added, and thereafter, a sintered body was produced under the same conditions as in Example 1. Table 3 shows the results of coloring, fracture toughness, bending strength, and total light transmittance (maximum value at a sample thickness of 1 mm and a wavelength of 300 to 800 nm) of the sintered body. The anisotropic particles did not grow, and only low-toughness sintered bodies were obtained.

Figure 2010120796
Figure 2010120796

本発明の焼結体組織(試料番号1−1)Sintered body structure of the present invention (Sample No. 1-1) 本発明の焼結体の全光線透過率(試料厚み1mm)Total light transmittance of the sintered body of the present invention (sample thickness 1 mm) 比較例の焼結体組織(比較例1 試料番号2−1)Sintered body structure of Comparative Example (Comparative Example 1 Sample No. 2-1)

Claims (10)

遷移金属酸化物、及び1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上の酸化物を含有し、且つ破壊靭性が4.5MPa・m0.5以上、波長300〜800nmの光に対する全光線透過率(試料厚さ1mm)の最大値が60%以上であるアルミナ焼結体。 Transition metal oxide, 1A group alkali metal oxide, 2A group alkaline earth metal oxide, at least one oxide selected from the group consisting of SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 In addition, an alumina sintered body having a fracture toughness of 4.5 MPa · m 0.5 or more and a maximum value of total light transmittance (sample thickness 1 mm) for light having a wavelength of 300 to 800 nm of 60% or more. 遷移金属酸化物を総量で100ppm〜3wt%の範囲、1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上を総量で20〜1000ppmの範囲含有する請求項1に記載のアルミナ焼結体。 The total amount of transition metal oxide is selected from the group of 100 ppm to 3 wt%, group 1A alkali metal oxide, group 2A alkaline earth metal oxide, SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 The alumina sintered body according to claim 1, wherein at least one of them is contained in a total amount of 20 to 1000 ppm. 焼結粒子に長軸長さが10μm以上、アスペクト比1.5以上の異方性粒子を含むことを特徴とする請求項1乃至2に記載のアルミナ焼結体。 3. The alumina sintered body according to claim 1, wherein the sintered particles include anisotropic particles having a major axis length of 10 μm or more and an aspect ratio of 1.5 or more. 長軸長さが10μm以上、アスペクト比1.5以上の異方性粒子の割合が20vol%以上であることを特徴とする請求項1乃至3に記載のアルミナ焼結体。 4. The alumina sintered body according to claim 1, wherein the proportion of anisotropic particles having a major axis length of 10 μm or more and an aspect ratio of 1.5 or more is 20 vol% or more. 遷移金属酸化物を100ppm〜3wt%、1A族アルカリ金属酸化物、2A族アルカリ土類金属酸化物、SiO、B、P、GeOの群から選ばれるうち少なくとも1種類以上を総量で20〜1000ppmの範囲含有するアルミナ粉末を成形後、常圧焼結した後、さらに熱間静水圧プレス(HIP)処理することを特徴とするアルミナ焼結体の製造方法。 100Ppm~3wt% transition metal oxides, 1A Group alkali metal oxides, 2A group alkaline earth metal oxide, at least one of selected from SiO 2, B 2 O 3, P 2 O 5, GeO 2 groups A method for producing an alumina sintered body, characterized in that after forming an alumina powder containing the above in the range of 20 to 1000 ppm in total and then sintering at normal pressure, it is further subjected to hot isostatic pressing (HIP) treatment. 比表面積5〜20m/gで、1μm以下の微粒子比率90vol%以上である高純度アルミナ粉末を用いる請求項5に記載の製造方法。 The production method according to claim 5, wherein high-purity alumina powder having a specific surface area of 5 to 20 m 2 / g and a fine particle ratio of 1 µm or less of 90 vol% or more is used. 常圧焼結を温度1250〜1450℃で行う請求項5乃至6に記載の製造方法。 The production method according to any one of claims 5 to 6, wherein the atmospheric pressure sintering is performed at a temperature of 1250 to 1450 ° C. 熱間静水圧プレス(HIP)処理が温度1350〜1750℃、圧力50MPa以上で行う請求項5乃至7に記載の製造方法。 The manufacturing method of Claim 5 thru | or 7 which performs a hot isostatic press (HIP) process at the temperature of 1350-1750 degreeC, and the pressure of 50 Mpa or more. 請求項1乃至4に記載のアルミナ焼結体を用いた歯科材料。 A dental material using the alumina sintered body according to claim 1. 歯列矯正ブラケット又は歯科修復用ミルブランクのいずれかである請求項9に記載の歯科材料。 The dental material according to claim 9, which is either an orthodontic bracket or a dental restoration mill blank.
JP2008294499A 2008-11-18 2008-11-18 Highly tough and translucent colored alumina sintered body, method for producing the same, and use Active JP5458553B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008294499A JP5458553B2 (en) 2008-11-18 2008-11-18 Highly tough and translucent colored alumina sintered body, method for producing the same, and use
PCT/JP2009/069393 WO2010058745A1 (en) 2008-11-18 2009-11-13 Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
EP09827526.6A EP2366675B1 (en) 2008-11-18 2009-11-13 Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
US13/121,884 US8481439B2 (en) 2008-11-18 2009-11-13 Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
EP14173391.5A EP2808313B1 (en) 2008-11-18 2009-11-13 Colored alumina sintered body of high toughness and high translucency, and its production method and its uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294499A JP5458553B2 (en) 2008-11-18 2008-11-18 Highly tough and translucent colored alumina sintered body, method for producing the same, and use

Publications (2)

Publication Number Publication Date
JP2010120796A true JP2010120796A (en) 2010-06-03
JP5458553B2 JP5458553B2 (en) 2014-04-02

Family

ID=42322472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294499A Active JP5458553B2 (en) 2008-11-18 2008-11-18 Highly tough and translucent colored alumina sintered body, method for producing the same, and use

Country Status (1)

Country Link
JP (1) JP5458553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036139A1 (en) * 2018-08-15 2020-02-20 Dic株式会社 Tabular alumina particles and method of producing tabular alumina particles
JP2022550984A (en) * 2019-10-09 2022-12-06 Dic株式会社 Composite particles and method for producing the composite particles

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239154A (en) * 1987-03-26 1988-10-05 東陶機器株式会社 Colored light-permeable polycrystal ceramics product and manufacture
JPH04193760A (en) * 1990-11-26 1992-07-13 Nkk Corp Colored light-transmissive alumina sintered body and its production
JPH1171168A (en) * 1997-06-26 1999-03-16 Ngk Spark Plug Co Ltd Alumina-based sintered ceramic material and its production
JP2000053463A (en) * 1998-08-06 2000-02-22 Kyocera Corp Jig for can manufacturing
JP2001322866A (en) * 1999-05-19 2001-11-20 Ngk Spark Plug Co Ltd Alumina sintered compact and method for manufacturing the same, sintered alumina member and light emitting tube
JP2005532977A (en) * 2002-07-10 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent polycrystalline aluminum oxide
US20070027026A1 (en) * 2004-10-01 2007-02-01 Ceranova Corporation Polycrystalline alumina articles and methods of manufacture
WO2007074298A2 (en) * 2005-12-22 2007-07-05 Saint-Gobain Centre De Recherches Et D'etudes Europeen Fritted alumina product transparent to infrared radiation and in the visible region
JP2007182348A (en) * 2006-01-06 2007-07-19 Tottori Univ Light-transmitting alumina sintered compact and optical filter
JP2008195581A (en) * 2007-02-14 2008-08-28 Tosoh Corp Translucent alumina sintered compact and its manufacturing method
JP5272658B2 (en) * 2008-10-31 2013-08-28 東ソー株式会社 High-toughness and translucent alumina sintered body, manufacturing method and use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239154A (en) * 1987-03-26 1988-10-05 東陶機器株式会社 Colored light-permeable polycrystal ceramics product and manufacture
JPH04193760A (en) * 1990-11-26 1992-07-13 Nkk Corp Colored light-transmissive alumina sintered body and its production
JPH1171168A (en) * 1997-06-26 1999-03-16 Ngk Spark Plug Co Ltd Alumina-based sintered ceramic material and its production
JP2000053463A (en) * 1998-08-06 2000-02-22 Kyocera Corp Jig for can manufacturing
JP2001322866A (en) * 1999-05-19 2001-11-20 Ngk Spark Plug Co Ltd Alumina sintered compact and method for manufacturing the same, sintered alumina member and light emitting tube
JP2005532977A (en) * 2002-07-10 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent polycrystalline aluminum oxide
US20070027026A1 (en) * 2004-10-01 2007-02-01 Ceranova Corporation Polycrystalline alumina articles and methods of manufacture
WO2007074298A2 (en) * 2005-12-22 2007-07-05 Saint-Gobain Centre De Recherches Et D'etudes Europeen Fritted alumina product transparent to infrared radiation and in the visible region
JP2007182348A (en) * 2006-01-06 2007-07-19 Tottori Univ Light-transmitting alumina sintered compact and optical filter
JP2008195581A (en) * 2007-02-14 2008-08-28 Tosoh Corp Translucent alumina sintered compact and its manufacturing method
JP5272658B2 (en) * 2008-10-31 2013-08-28 東ソー株式会社 High-toughness and translucent alumina sintered body, manufacturing method and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036139A1 (en) * 2018-08-15 2020-02-20 Dic株式会社 Tabular alumina particles and method of producing tabular alumina particles
JPWO2020036139A1 (en) * 2018-08-15 2021-04-01 Dic株式会社 Plate-shaped alumina particles and method for producing plate-shaped alumina particles
JP2022550984A (en) * 2019-10-09 2022-12-06 Dic株式会社 Composite particles and method for producing the composite particles

Also Published As

Publication number Publication date
JP5458553B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4429017B2 (en) Orthodontic appliance
JP5018142B2 (en) Translucent zirconia sintered body and method for producing the same
WO2010058745A1 (en) Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
CN108439979B (en) CeO for dental applications2Stabilized ZrO2Ceramic material
JP5458552B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
JP2009173502A (en) POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
JP2009107887A (en) High toughness translucent alumina sintered body, method of producing the same and its use
JP2010150063A (en) Light-transmitting zirconia sintered compact, method for producing the same and use thereof
JP2008195581A (en) Translucent alumina sintered compact and its manufacturing method
JP5272658B2 (en) High-toughness and translucent alumina sintered body, manufacturing method and use thereof
JP2024054228A (en) Zirconia workpiece for dental cutting and its manufacturing method
JP2005532977A (en) Transparent polycrystalline aluminum oxide
JP2019535630A (en) Translucent nanocrystalline glass ceramic
JP5458553B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
JP4806952B2 (en) Translucent ceramics
US20200331807A1 (en) High permeable zirconia blank capable of sintering at high speed
JP6464713B2 (en) White zirconia sintered body, method for producing the same, and use thereof
JP2007277034A (en) POLYCRYSTALLINE Al2O3 SINTERED COMPACT AND METHOD OF MANUFACTURING THE SAME
JP2023016927A (en) Purple zirconia sintered body and manufacturing method thereof
JP2001158660A (en) Optically transmitting rare earth-aluminum garnet sintered product and production method therefor
Theng et al. Development of translucent zirconia for dental crown applications
JP4894728B2 (en) Translucent alumina sintered body and method for producing the same
JP2006346188A (en) Orthodontics bracket and its production method
JP4883887B2 (en) Hollow body shaped decorative zirconia sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5458553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151