JP2010119957A - Apparatus and method for concentrating slurry - Google Patents

Apparatus and method for concentrating slurry Download PDF

Info

Publication number
JP2010119957A
JP2010119957A JP2008296207A JP2008296207A JP2010119957A JP 2010119957 A JP2010119957 A JP 2010119957A JP 2008296207 A JP2008296207 A JP 2008296207A JP 2008296207 A JP2008296207 A JP 2008296207A JP 2010119957 A JP2010119957 A JP 2010119957A
Authority
JP
Japan
Prior art keywords
slurry
filtration
piston
cylinder
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008296207A
Other languages
Japanese (ja)
Other versions
JP4856158B2 (en
Inventor
Michiya Itayama
倫也 板山
Hiroyuki Kato
宏行 加藤
Takao Hagino
隆生 萩野
Shoichi Goda
昭一 郷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Ebara Engineering Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Engineering Service Co Ltd filed Critical Ebara Engineering Service Co Ltd
Priority to JP2008296207A priority Critical patent/JP4856158B2/en
Publication of JP2010119957A publication Critical patent/JP2010119957A/en
Application granted granted Critical
Publication of JP4856158B2 publication Critical patent/JP4856158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for concentrating slurry which can be operated continuously since a moving medium can be actuated under low pressure and which is suitable for obtaining low-concentration slurry and to provide a method for concentrating slurry. <P>SOLUTION: The apparatus for concentrating slurry in which one or more filtration cylinders 2 each consisting of a filter medium are arranged and the slurry is fed forcibly to the inside of the filtration cylinder 2 to perform filtration/concentration, includes: a guide rod 11 fixed/arranged along the axial center of the filtration cylinder 2; a piston 12 which is inserted into the filtration cylinders to be slid on the guide rod 11, has the outer peripheral surface of the diameter smaller than the inside diameter of the filtration cylinder 2 and is reciprocated from one end of the filtration cylinder 2 to the other end thereof; and a slurry supply unit for forcibly feeding the slurry to the inside of the filtration cylinder 2. Both ends of the filtration cylinder 2 are connected respectively to side pipes 3a, 3b for performing introduction and discharge of the slurry and each of the side pipes 3a, 3b is connected to the slurry supply unit while interposing a changeover valve between them. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、浄水場、下水処理場等の排水処理設備のスラリーの濃縮処理に係り、特に、近年問題になりつつある浄水場における低濃度のスラリー濃縮処理に最適なスラリー濃縮装置と濃縮方法に関する。   The present invention relates to a slurry concentration process for wastewater treatment facilities such as a water purification plant and a sewage treatment plant, and more particularly to a slurry concentration apparatus and a concentration method optimal for a low concentration slurry concentration process in a water purification plant that is becoming a problem in recent years. .

ろ過筒の内部で往復移動を行う移動体をスラリーの圧入圧力により移動させ、ろ過材表面のケーキ層を掻き取りながら連続的にろ過濃縮を行う方式は、特開昭57−65309号公報、特開昭60−31806号公報、特開平8−290018号公報で提案されている。
これらの方式は、ろ過面のケーキ層全体の更新を行うため、ろ過材表面を移動体もしくは移動体に装着したリング等で接触しながらケーキ層を掻き取る構造であった。
ろ過材にスラリーを圧入してろ過濃縮を行う場合、ろ過時間に伴ない、ろ過材表面にはケーキ層が形成され、成長する。ケーキ層はろ液を清澄にする効果があるが、ケーキ層厚が厚くなるほど著しくろ液の排出抵抗が大きくなるので、ろ過速度はろ過時間に伴ない低下していく。そこで、移動媒体によってケーキ層を除去することで、高いろ過速度を維持できるが、ろ過面に接触しながらケーキ層を掻き取る方式には次のような問題点があった。
A method of continuously performing filtration and concentration while moving the moving body that reciprocates inside the filter cylinder by the press-fitting pressure of the slurry and scraping the cake layer on the surface of the filter medium is disclosed in JP-A-57-65309. This is proposed in Japanese Unexamined Patent Publication No. 60-31806 and Japanese Unexamined Patent Publication No. 8-290018.
In these systems, in order to update the entire cake layer on the filtration surface, the cake layer was scraped while contacting the filter medium surface with a moving body or a ring attached to the moving body.
When the slurry is press-fitted into the filter medium and concentrated by filtration, a cake layer is formed on the surface of the filter medium and grows along with the filtration time. The cake layer has the effect of clarifying the filtrate, but as the cake layer thickness increases, the filtrate discharge resistance increases remarkably, so the filtration rate decreases with the filtration time. Thus, although the high filtration rate can be maintained by removing the cake layer with a moving medium, the method of scraping the cake layer while contacting the filtration surface has the following problems.

(1) ろ過材表面のケーキ層を、ろ過材とそのろ過材の内径と同等以上の外径を有するピストン等の移動体を接触させて掻き取るため、ろ過材や移動体表面が摩耗するので、頻繁にピストンを移動させることができない。
(2) ろ過材表面のケーキ層を全て掻き取ると、ろ過開始当初のろ液はろ過材からの目漏れにより清澄性を失うため、頻繁にピストンを移動させることができない。また、ろ液の清澄性を維持するために、ろ過材の目を細かくすると、ろ過材は早期に目詰まりを起こす。
(3) ろ過材と移動体が密着すると、移動体の移動に大きな移動推力が必要となる。また、運転休止時にろ過材と移動体が固着する恐れがある。
(4) ろ過筒の真円度が悪いと移動体が円滑に移動しない。高い真円度を要求すると、製作が困難で、高価になる。
(5) 移動体の移動推力は、移動体を境にしてスラリーを流入する打ち込み側と排出側とで発生する圧力差であるため、ろ過材及びサイドパイプ内の圧力が等しくなって、圧力差がないろ過工程中には移動体によるろ過面の更新が行えない。
(1) Since the cake layer on the surface of the filter medium is scraped by contacting the filter medium with a moving body such as a piston having an outer diameter equal to or larger than the inner diameter of the filter medium, the surface of the filter medium or the moving body is worn. Can not move the piston frequently.
(2) If all cake layers on the surface of the filter medium are scraped off, the filtrate at the beginning of filtration loses its clarity due to leakage from the filter medium, so that the piston cannot be moved frequently. Further, if the filter medium is made finer in order to maintain the clarity of the filtrate, the filter medium will be clogged early.
(3) When the filter medium and the moving body are in close contact with each other, a large moving thrust is required to move the moving body. Moreover, there is a possibility that the filter medium and the moving body may stick during operation stop.
(4) If the roundness of the filtration cylinder is poor, the moving body will not move smoothly. If high roundness is required, it is difficult to manufacture and expensive.
(5) Since the moving thrust of the moving body is a pressure difference generated between the driving side and the discharging side where the slurry flows in from the moving body, the pressure in the filter medium and the side pipe becomes equal. The filtration surface cannot be renewed by the moving body during the filtration process without any.

(6) ろ過材内部のスラリー濃度が高くなり、ろ過材内部に高濃度の濃縮汚泥が充満すると、移動体の移動抵抗が大きくなり、排出が困難になるため、濃縮汚泥を低濃度のうちに排出するか、高圧力で運転する必要があった。
(7) ろ過材の長さが長くなると、移動体で押し出す濃縮汚泥量が多くなり、移動体の移動抵抗が大きくなり、排出が困難になるため、ろ過材全長を短くするか、濃縮汚泥を低濃度のうちに排出するか、高圧力で運転する必要があった。
(8) 高圧力でろ過を行うと、運転に必要なエネルギーが多くなる。また、ろ過材表面に密度が高い強固なケーキ層が形成されるため、移動体の移動抵抗が高くなる。
特開昭57−65309号公報 特開昭60−31806号公報 特開平8−290018号公報
(6) If the slurry concentration inside the filter medium becomes high and the filter medium is filled with high-concentration concentrated sludge, the moving resistance of the moving body increases, making it difficult to discharge. It had to be discharged or operated at high pressure.
(7) If the length of the filter medium is increased, the amount of concentrated sludge pushed out by the moving body will increase, the moving resistance of the moving body will increase, and it will become difficult to discharge. It was necessary to discharge at low concentrations or to operate at high pressure.
(8) When filtration is performed at high pressure, the energy required for operation increases. Moreover, since a strong cake layer with high density is formed on the surface of the filter medium, the movement resistance of the moving body is increased.
JP 57-65309 A JP-A-60-31806 JP-A-8-290018

本発明は、上記従来技術の問題点を解消し、移動体の作動のために、高圧力を必要とせず、移動体を低圧で移動でき連続運動が可能で、低濃度のスラリーに好適なスラリー濃縮装置と方法を提供することを課題とする。     The present invention eliminates the above-mentioned problems of the prior art, does not require high pressure for the operation of the moving body, can move the moving body at a low pressure and can be continuously moved, and is suitable for low-concentration slurry. It is an object to provide a concentrating device and method.

上記課題を解決するために、本発明では、ろ過材からなるろ過筒が1以上設けられ該ろ過筒の内側にスラリーを圧入することでろ過濃縮を行うスラリー濃縮装置において、該ろ過筒の軸芯に沿って固定設置されたガイドロッドと、該ガイドロッドに摺動可能に挿入され、前記ろ過筒の内径より小径の外周面を有し、該ろ過筒の一端から他端へ往復移動するピストンと、前記ろ過筒の内側にスラリーを圧入するスラリー供給装置とを具備したことを特徴とするスラリー濃縮装置としたものである。   In order to solve the above-mentioned problems, in the present invention, in a slurry concentrating apparatus in which one or more filter cylinders made of a filter medium are provided and the slurry is concentrated by press-fitting the slurry inside the filter cylinder, the shaft core of the filter cylinder A guide rod that is fixedly installed along the guide rod, and a piston that is slidably inserted into the guide rod, has an outer peripheral surface that is smaller in diameter than the inner diameter of the filtration cylinder, and reciprocates from one end to the other end of the filtration cylinder; A slurry concentrating device comprising a slurry supply device for press-fitting slurry inside the filtration cylinder.

前記スラリー濃縮装置において、ろ過筒は、ろ過材の外周に補強材を設置したものが使用でき、また、前記ろ過筒は、両端がスラリーの流入及び排出を行うサイドパイプに接続され、該サイドパイプが切替弁を介して前記スラリー供給装置に接続されており、該スラリー供給装置は、スラリーを圧入することができるスラリーポンプ又は圧縮空気が注入されるスラリー貯留槽とすることができる。
また、前記スラリー濃縮装置において、ろ過筒は、両端がスラリーの流入及び排出を行うサイドパイプに接続され、該両端のサイドパイプは、弁を介して、スラリー循環配管に接続され、該スラリー循環配管には、前記ろ過筒の内側にスラリーを両端のサイドパイプから交互に導入して循環流を形成させるスラリー循環装置を接続することができ、前記スラリー循環装置は、前記ろ過筒に両端のサイドパイプから交互にスラリーを導入して循環できるスラリー循環ポンプ又は圧縮空気を注入・排出できるスラリー貯留槽とすることができる。
In the slurry concentrating device, the filter cylinder can be one in which a reinforcing material is installed on the outer periphery of the filter medium, and both ends of the filter cylinder are connected to a side pipe for inflow and discharge of slurry, and the side pipe Is connected to the slurry supply device via a switching valve, and the slurry supply device can be a slurry pump capable of press-fitting slurry or a slurry storage tank into which compressed air is injected.
Further, in the slurry concentrator, the filtration cylinder is connected to a side pipe for both inflow and discharge of the slurry at both ends, and the side pipes at both ends are connected to a slurry circulation pipe via a valve. Can be connected to a slurry circulation device for alternately introducing slurry from the side pipes at both ends into the inside of the filtration cylinder to form a circulation flow, and the slurry circulation apparatus is connected to the filtration pipe at the side pipes at both ends. From the above, a slurry circulation pump capable of alternately introducing and circulating the slurry or a slurry storage tank capable of injecting and discharging compressed air can be provided.

また、本発明では、ろ過材からなる1以上のろ過筒の内側にスラリーを圧入することでろ過濃縮を行うスラリー濃縮方法において、前記ろ過筒の内径より小径であり、ろ過濃縮過程で前記ろ過筒の内側に形成されるケーキ層を削り取るための該ろ過筒の一端から他端へ往復移動するピストンを、該ピストンの往復移動時に案内するガイドロッドに挿入し、該ガイドロッドに沿って前記ピストンを往復移動させ、前記ろ過筒のろ過面に薄いケーキ膜を残して、該ろ過筒の内側にスラリーを圧入することでろ過濃縮を行うことを特徴とするスラリー濃縮方法としたものである。
前記スラリー濃縮方法において、ろ過濃縮を行って排出される濃縮汚泥を、さらにろ過筒の内側に循環させてろ過濃縮し、高倍率濃縮を行うことができる。
Further, in the present invention, in the slurry concentration method for performing filtration concentration by press-fitting slurry into one or more filter cylinders made of a filter medium, the diameter of the filter cylinder is smaller than the inner diameter of the filter cylinder, and the filter cylinder in the filtration concentration process A piston that reciprocates from one end of the filtration cylinder to scrape the cake layer formed inside the tube is inserted into a guide rod that is guided when the piston reciprocates, and the piston is moved along the guide rod. The slurry concentrating method is characterized in that filtration is concentrated by reciprocating, leaving a thin cake film on the filtration surface of the filtration cylinder, and pressing the slurry into the inside of the filtration cylinder.
In the slurry concentration method, the concentrated sludge discharged by filtration concentration can be further circulated inside the filter cylinder and concentrated by filtration to perform high-magnification concentration.

本発明によれば、次のような効果を奏することができる。
(1) ガイドロッドの設置とピストン外径をろ過材内径より小さくしたことで、ろ過材とピストンが非接触になり、ろ過材や移動媒体表面の磨耗を防止する。なお、「非接触」とは、ろ過材の内周面とピストンの外周面が寸法上非接触である状態を指し、以下同じである。また、ろ過材を円筒状に成形した際の継ぎ目(ろ布の場合、ミシン目、金属ろ材の場合、溶接部)の破損を防止できる。そのため、必要に応じた頻度でピストンを移動することが可能になり、高いろ過速度を維持できる。
(2) ピストンとろ過材が非接触であるため、ろ過材表面のケーキ層をピストンで直接削り取るだけでなく、ピストン移動時のスラリー打込み圧力により、ろ過材とピストンとの間隙から噴出するスラリーで、ろ過材表面の柔らかく比較的高含水率のケーキ層を吹き飛ばし、ろ過面を更新することで、ろ過速度の低下を防止するが、ろ過材表面の薄い低含水率のケーキ膜は剥がれないで残るので、清澄性を維持してろ液を得ることができる。
According to the present invention, the following effects can be achieved.
(1) By installing the guide rod and making the outer diameter of the piston smaller than the inner diameter of the filter medium, the filter medium and the piston are brought into non-contact, thereby preventing the surface of the filter medium and the moving medium from being worn. “Non-contact” refers to a state in which the inner peripheral surface of the filter medium and the outer peripheral surface of the piston are non-contact in dimension, and the same applies hereinafter. In addition, it is possible to prevent damage to the seam (perforation in the case of a filter cloth, welded portion in the case of a metal filter medium) when the filter medium is formed into a cylindrical shape. Therefore, it becomes possible to move a piston with the frequency as needed, and a high filtration rate can be maintained.
(2) Since the piston and the filter medium are not in contact with each other, not only the cake layer on the surface of the filter medium is scraped directly with the piston, but also the slurry ejected from the gap between the filter medium and the piston due to the slurry driving pressure when the piston moves. By blowing off the soft and relatively high moisture content cake layer on the filter medium surface and renewing the filtration surface, the filtration rate is prevented from decreasing, but the thin low moisture content cake film on the filter medium surface remains without peeling. Therefore, a filtrate can be obtained while maintaining clarity.

(3)ピストンとろ過材が非接触であるため、ピストンの移動に必要な推力が低く、ろ過材内の水流程度でも移動が可能となったため、低いスラリーの供給圧力で運転が可能である。低いろ過圧力にすることで、ろ過材表面のケーキ層は密度が低く、除去しやすい。また、ろ過開始当初のろ過材からの目漏れも防止できる。その上、スラリーの供給圧力が低い場合、濃縮装置より高い位置にスラリー供給装置を設置することにより、水頭圧力でのろ過濃縮運転が可能になり、省エネルギー効果もある。
(4) ピストンとろ過材が非接触であるため、ろ過筒の真円度の要求精度が低く、製作が容易であるため、安価な設備となる。
(5) ピストンとろ過材が非接触で、ろ過面表層には薄いケーキ膜が保持されるため、スラリーの打込み当初や、ピストンの移動直後でも清澄なろ液が確保できる。そのため、頻繁にピストンを移動させることが可能になる。また、前述のように、スラリー供給圧力が低く、ケーキ膜によるケーキろ過でスラリーの目漏れを防止するため、ろ過材の目開きを大きくできるので、ろ過材の目詰まりを防止できる。
(3) Since the piston and the filter medium are not in contact with each other, the thrust required for the movement of the piston is low, and it is possible to move even with a water flow in the filter medium, so that it can be operated with a low slurry supply pressure. By making the filtration pressure low, the cake layer on the surface of the filter medium has a low density and is easy to remove. Moreover, the leakage from the filter medium at the beginning of filtration can be prevented. In addition, when the supply pressure of the slurry is low, by installing the slurry supply device at a position higher than the concentration device, it is possible to perform the filtration and concentration operation at the water head pressure, and there is also an energy saving effect.
(4) Since the piston and the filter medium are not in contact with each other, the required accuracy of the roundness of the filter cylinder is low and the manufacture is easy, so that the equipment is inexpensive.
(5) Since the piston and the filter medium are not in contact with each other and a thin cake film is held on the surface of the filtration surface, a clear filtrate can be secured even at the initial stage of slurry injection or immediately after the movement of the piston. Therefore, it becomes possible to move the piston frequently. Further, as described above, since the slurry supply pressure is low and the slurry is prevented from being leaked by cake filtration using a cake film, the opening of the filter medium can be increased, so that the filter medium can be prevented from being clogged.

(6) ろ過材の中心にガイドロッドを設置することで、ろ過面積に対してろ過材内容量を少なくできるので、ろ過時間が短縮される。
(7) ろ過材内部に循環流を発生させる動力源を持つことで循環濃縮することができ、ろ過工程中にもピストンによるろ過面の更新が可能となり、頻繁にピストンを移動させることで、ろ過速度がろ過開始初期の高いろ過速度のまま維持されることと高倍率の濃縮をすることが可能となる。
(8) 循環ポンプの吸い込み圧力により、ろ過材内側を負圧にすることで、ろ過材外側から空気を吸い込むため、逆洗効果がある。
以上のように、低い圧力で運転が可能で、循環濃縮することで、高いろ過速度で高濃縮汚泥を排出でき、ピストンやろ過材の目詰まりや磨耗等による消耗部品交換の維持管理労力が少ない濃縮装置である。
(6) By installing the guide rod at the center of the filter medium, the volume of the filter medium can be reduced with respect to the filtration area, so the filtration time is shortened.
(7) By having a power source that generates a circulating flow inside the filter medium, it can be circulated and concentrated, and the filtration surface can be renewed by the piston during the filtration process. It becomes possible to maintain the high filtration rate at the beginning of filtration and to concentrate at a high magnification.
(8) By making the inner side of the filter medium negative by the suction pressure of the circulation pump, air is sucked in from the outer side of the filter medium, so there is a backwashing effect.
As described above, it is possible to operate at low pressure, and by circulating and concentrating, highly concentrated sludge can be discharged at a high filtration rate, and maintenance work for replacing consumable parts due to clogging or wear of pistons or filter media is small. Concentrator.

以下に、本発明を実施するための詳細な構成要件を詳述する。
本発明で用いるスラリーのろ過濃縮を行うろ過筒に用いるろ過材は、金属製の多孔板や、樹脂製ろ布等、スラリーに応じて適切に選定されるが、ろ布を使用する場合は、ろ布の外周に補強材を設置するのがよい。ろ過材の形状は、ガイドロッドと相関する。ガイドロッドが小径である場合や長尺の場合、ガイドロッドが自重で撓むため、ピストンの円滑な移動の妨げとなり、大径の場合、ろ過面積に対して装置が大きくなる。ろ過材が短尺の場合、ろ過材本数が多くなり、製作コストが高くなる。そのためろ過材の直径は6〜15cmとなるのに対して、ガイドロッドの直径はろ過材よりも2〜10cm程度小さくすることが好ましく、ろ過材の長さは100〜200cm程度が好適である。また、ろ過筒の断面形状は円形だけでなく、楕円形や角型も可能である。
Hereinafter, detailed configuration requirements for carrying out the present invention will be described in detail.
The filter medium used in the filter cylinder for performing filtration and concentration of the slurry used in the present invention is appropriately selected according to the slurry, such as a metal perforated plate or a resin filter cloth, but when using a filter cloth, It is better to install a reinforcing material on the outer periphery of the filter cloth. The shape of the filter medium correlates with the guide rod. When the guide rod has a small diameter or is long, the guide rod bends by its own weight, which hinders the smooth movement of the piston. When the guide rod has a large diameter, the apparatus becomes larger with respect to the filtration area. When the filter medium is short, the number of filter mediums increases and the manufacturing cost increases. Therefore, the diameter of the filter medium is 6 to 15 cm, while the diameter of the guide rod is preferably about 2 to 10 cm smaller than the filter medium, and the length of the filter medium is preferably about 100 to 200 cm. Moreover, the cross-sectional shape of the filtration cylinder is not limited to a circle, but may be an ellipse or a square.

ろ過筒の内側で往復移動するピストンとろ過材との間隙が小さい場合は、ピストンとろ過材が互いに強く接触して往復移動の妨げとなり、間隙が大きい場合はこのような接触はないものの、ろ過材表面に残るケーキ層が厚くなるため、ろ過速度を著しく低下させるので、ピストンとろ過材との間隙は、0.5〜2mm程度であり、ピストンの長さは6〜15cmがよく、材質は樹脂製など軽量の素材が好ましい。
前記ろ過筒の両端には、スラリーの流入兼排出を行うサイドパイプを設置する。該ろ過筒が複数の場合、サイドパイプは複数のろ過材を接続するヘッダ管となる。
該サイドパイプ形状は、円筒パイプだけでなく、角型や半円型も可能である。
If the gap between the piston and the filter medium that reciprocates inside the filter cylinder is small, the piston and filter medium come into strong contact with each other, preventing reciprocation. If the gap is large, there is no such contact, Since the cake layer remaining on the surface of the material becomes thick, the filtration speed is significantly reduced. Therefore, the gap between the piston and the filter material is about 0.5 to 2 mm, the length of the piston is preferably 6 to 15 cm, and the material is A lightweight material such as resin is preferable.
Side pipes for inflow and discharge of slurry are installed at both ends of the filter cylinder. When there are a plurality of the filtration cylinders, the side pipe is a header pipe connecting a plurality of filtration media.
The side pipe shape may be not only a cylindrical pipe but also a square shape or a semicircular shape.

また、本発明では、前記ピストンを保持するために、前記ろ過筒と平行に延び、該ろ過筒の軸芯に配置される中実棒又は中空パイプのガイドロッドが配備され、該ガイドロッドを保持する保持器を前記サイドパイプ内に持つ。
それにより、ピストンの中心部はガイドロッドに貫かれ、ピストンはガイドロッドに沿って往復運動を行うが、ピストン外径はろ過材内径より小さいので、該ピストンと前記ろ過筒は寸法上は接触しない。前記ガイドロッドは、一つのろ過筒内に複数本設置することが可能で、その場合、ろ過筒の中芯軸に対称に配置される。前記ガイドロッドの保持器は、ピストンの移動終端となるストッパを兼ねる。
前記サイドパイプには、スラリー供給装置からのスラリー供給、停止を行うスラリー流入弁と、濃縮汚泥槽への濃縮汚泥の排出を行う汚泥排出弁を持つ。
前記スラリー供給装置は、スラリーポンプや、貯留槽にスラリーを貯留し、該貯留槽内に圧縮空気を注入することでスラリーを圧送する方式がある。
Further, in the present invention, in order to hold the piston, a solid rod or a hollow pipe guide rod that extends parallel to the filtration cylinder and is arranged at the axial center of the filtration cylinder is provided to hold the guide rod. A retainer is provided in the side pipe.
Thereby, the central part of the piston is penetrated by the guide rod, and the piston reciprocates along the guide rod. However, since the piston outer diameter is smaller than the filter medium inner diameter, the piston and the filter cylinder do not contact in dimension. . A plurality of the guide rods can be installed in one filtration cylinder, and in that case, the guide rods are arranged symmetrically with respect to the central axis of the filtration cylinder. The guide rod retainer also serves as a stopper serving as the end of movement of the piston.
The side pipe has a slurry inflow valve that supplies and stops slurry from the slurry supply device, and a sludge discharge valve that discharges the concentrated sludge to the concentrated sludge tank.
The slurry supply device includes a slurry pump or a method of storing slurry in a storage tank and pumping the slurry by injecting compressed air into the storage tank.

次に、本発明の濃縮装置の作動について説明すると、スラリー供給装置を稼働させ、片側のサイドパイプの汚泥排出弁を閉じ、スラリー流入弁を開けると、ろ過材内部にスラリーが供給される。スラリー供給圧により、ろ過材内部のピストンは押し動かされる。この状態で、もう一端のサイドパイプの汚泥排出弁、スラリー流入弁を閉じて、ろ過濃縮を行う。ろ過濃縮を終了すると、スラリー供給側のサイドパイプのスラリー流入弁を閉じ、汚泥排出弁を開ける。それと同時、又は所定量の濃縮汚泥を排出した後に、もう一端のサイドパイプのスラリー流入弁を開けて、これまでとは逆方向からスラリーを圧入すると、ピストンはスラリーの圧入圧力に押し動かされる。ピストンの移動によって、ろ過材のろ過面に薄いケーキ膜を残してろ過材内部の濃縮汚泥は排出される。同様の操作を繰り返すことで、サイドパイプではスラリー供給側と排出側に切り替わりながら運転が行われる。   Next, the operation of the concentration device of the present invention will be described. When the slurry supply device is operated, the sludge discharge valve of the side pipe on one side is closed, and the slurry inflow valve is opened, the slurry is supplied into the filter medium. The piston inside the filter medium is pushed by the slurry supply pressure. In this state, the sludge discharge valve and the slurry inflow valve of the other side pipe are closed, and filtration concentration is performed. When the filtration concentration is completed, the slurry inflow valve of the side pipe on the slurry supply side is closed and the sludge discharge valve is opened. At the same time or after discharging a predetermined amount of concentrated sludge, when the slurry inflow valve of the other side pipe is opened and the slurry is pressed in from the opposite direction, the piston is pushed to the pressure of the slurry. By moving the piston, the concentrated sludge inside the filter medium is discharged leaving a thin cake membrane on the filter surface of the filter medium. By repeating the same operation, the side pipe is operated while switching between the slurry supply side and the discharge side.

なお、濃縮汚泥を排出してろ過材内のスラリーが排出されると、柔軟なろ布の場合、ろ布が部分的に撓むことがある。ろ過濃縮装置運転前にはピストンとろ布の間隙が非接触であったとしても、ろ布の撓んだ部分とピストンが接触することもありうる。しかし、この接触は部分的であり、接触時の圧力が低く、ろ布が容易に変形できる間隙があるため、ピストン移動時の抵抗は少なく、ろ布内面のケーキ膜を大きく損なうこともない。
本発明では、処理できるスラリー濃度は0.5〜3%、濃縮倍率は1.5〜6倍程度で任意に設定することができるが、有益な条件として、ろ過材内に圧入するスラリーの圧力は、0.02〜0.1Mpa位でよく、また、濃縮倍率は1.5〜3倍がよい。
In addition, when the sludge is discharged | emitted and the slurry in a filter medium is discharged | emitted, in the case of a flexible filter cloth, a filter cloth may bend partially. Even if the gap between the piston and the filter cloth is not in contact before the filtration and concentration apparatus is operated, the bent part of the filter cloth may come into contact with the piston. However, this contact is partial, the pressure at the time of contact is low, and there is a gap in which the filter cloth can be easily deformed. Therefore, the resistance when moving the piston is low, and the cake film on the inner surface of the filter cloth is not greatly damaged.
In the present invention, the concentration of slurry that can be treated is 0.5 to 3%, and the concentration ratio can be arbitrarily set at about 1.5 to 6 times, but as a useful condition, the pressure of the slurry to be pressed into the filter medium May be about 0.02 to 0.1 Mpa, and the concentration factor is preferably 1.5 to 3 times.

次に、本発明における高倍率濃縮について説明する。高倍率濃縮では、サイドパイプには、スラリー供給と濃縮汚泥排出とは別に、ろ過材両端を連通させるようなスラリー循環配管を設置する。
該スラリー循環配管は、希薄なスラリーをろ過材内部に送り込むように、サイドパイプの上方に接続することが好ましい。
また、スラリー循環配管には、スラリー循環弁と循環流を発生させるためのスラリー循環ポンプを持つか、又は、圧縮空気を注入・排出できるスラリー貯留槽を接続することができる。
Next, the high magnification concentration in the present invention will be described. In the high-magnification concentration, apart from the slurry supply and concentrated sludge discharge, the side pipe is provided with a slurry circulation pipe that allows both ends of the filter medium to communicate with each other.
The slurry circulation pipe is preferably connected to the upper side of the side pipe so as to feed the diluted slurry into the filter medium.
In addition, the slurry circulation pipe may have a slurry circulation valve and a slurry circulation pump for generating a circulation flow, or a slurry storage tank capable of injecting and discharging compressed air.

スラリー循環ポンプをスラリー循環配管に接続した場合を説明すると、ろ過濃縮工程の間にスラリー供給側のスラリー循環弁をスラリー循環ポンプの吸い込み側に、もう一方のサイドパイプのスラリー循環弁をスラリー循環ポンプの吐出側に接続されるようにそれぞれ切り替えることによって、それまでのスラリーの供給側と排出側を切り替え、スラリー循環ポンプを稼働すると、スラリーの循環流によってピストンは移動しながら濃縮汚泥をピストンの前進方向のサイドパイプへ排出し、ろ過材の内部には、それまでサイドパイプ内に滞留していた未濃縮のスラリーが充填される。
その際、スラリー循環ポンプに正逆運転可能な一軸ねじポンプを使用すると、スラリー循環ポンプの正逆運転で供給側と排出側が切り替えられるので、前項の弁の切り替え操作が不要となる。
When the slurry circulation pump is connected to the slurry circulation pipe, the slurry circulation valve on the slurry supply side is placed on the suction side of the slurry circulation pump and the slurry circulation valve on the other side pipe is placed on the slurry circulation pump during the filtration and concentration process. By switching each so that it is connected to the discharge side of the slurry, the supply side and the discharge side of the previous slurry are switched, and when the slurry circulation pump is operated, the piston is moved by the circulating flow of the slurry and the concentrated sludge is moved forward. The filter medium is discharged to the side pipe, and the inside of the filter medium is filled with the unconcentrated slurry that has remained in the side pipe.
At this time, if a single screw pump capable of forward / reverse operation is used for the slurry circulation pump, the supply side and the discharge side are switched by the forward / reverse operation of the slurry circulation pump, so that the valve switching operation described in the previous section becomes unnecessary.

この工程を繰り返すことで、ろ過面に形成されるケーキ層は、薄いケーキ膜を残しながら掻き取られるため、ろ液の清澄性は維持されつつ、ろ過速度も維持されながら、系内のスラリー濃度は高くなり、より効率的に高倍率濃縮が可能になる。
次に、圧縮空気を注入・排出できるスラリー貯留槽(圧力槽)を接続した場合を説明すると、サイドパイプにろ過材内容量と同等以上の圧力槽を設置し、片側一方の圧力槽にスラリーを充填し、圧力槽に圧縮空気を注入すると、圧力槽内のスラリーはもう一方のサイドパイプに設置された圧力槽へ移動する。その移動時の流れによってピストンが移動することで、循環ポンプを使用せずに前記のような効率的な高倍率濃縮が可能になる。
By repeating this process, the cake layer formed on the filtration surface is scraped off while leaving a thin cake film, so that the slurry concentration in the system is maintained while maintaining the clarification of the filtrate and the filtration rate. Becomes higher, and high-magnification concentration becomes more efficient.
Next, the case where a slurry storage tank (pressure tank) capable of injecting and discharging compressed air is connected will be described. A pressure tank equal to or greater than the filter medium capacity is installed in the side pipe, and the slurry is placed in one pressure tank on one side. When filling and injecting compressed air into the pressure tank, the slurry in the pressure tank moves to the pressure tank installed in the other side pipe. By moving the piston by the flow at the time of the movement, the above-described efficient high magnification concentration can be performed without using a circulation pump.

本発明では、ガイドロッドと小径ピストンにより、ろ過材とピストンが非接触であり、ろ過材やピストン表面の磨耗を防止する。一般にろ過が進行するにつれて、ろ過材表面に近い部分のケーキからケーキの含水率が低くなり、次第にこの低含水率のケーキの厚みが増して固いケーキ層が形成されていく。しかし、本発明ではピストンの移動により掻き取られて残った低含水率のケーキ層がそれ以上厚くならず、ピストンで掻き取った後に掻き取り面から新たに短時間で形成される含水率のより高い柔らかなケーキを周期的にピストンによって掻き取る。よって、掻き取る周期を一定にするか徐々に短くしていればピストンの移動抵抗も大きくなることはない。また、ケーキ層はピストン移動時のスラリー打込み圧力により、ろ過材とピストンとの間隙から噴出すスラリーで、ケーキ層を吹き飛ばすことも可能である。
また、ピストンとろ過材を非接触としたことで、ピストンの移動に必要な推力が低く、ろ過材内の水流で移動が可能となったので、ろ過工程中にもピストンによるろ過面の更新が可能となり、ろ過速度が向上できると共に、ろ過筒の真円度の要求精度が低くなり、製作が容易になった。
In the present invention, the filter medium and the piston are not in contact with each other by the guide rod and the small diameter piston, and wear of the filter medium and the piston surface is prevented. In general, as the filtration proceeds, the moisture content of the cake decreases from the portion of the cake close to the surface of the filter medium, and the thickness of the cake with the low moisture content gradually increases to form a hard cake layer. However, in the present invention, the cake layer having a low water content remaining after being scraped by the movement of the piston does not become thick any more, and the water content newly formed in a short time from the scraping surface after scraping with the piston. A high soft cake is periodically scraped by the piston. Therefore, if the scraping cycle is made constant or gradually shortened, the movement resistance of the piston will not increase. Further, the cake layer can be blown off by slurry ejected from the gap between the filter medium and the piston by the slurry driving pressure when the piston moves.
In addition, since the piston and the filter medium are not in contact, the thrust required to move the piston is low, and it is possible to move with the water flow in the filter medium. As a result, the filtration speed can be improved and the required accuracy of the roundness of the filtration cylinder has been lowered, making the production easier.

さらに、ピストンとろ過材を非接触としたことで、ろ過面表層には薄いケーキ膜が保持されるため、スラリーの打込み当初から清澄なろ液が確保できる。また、ケーキ膜によるケーキろ過でスラリーの目漏れを防止するため、ろ過材の目開きを大きくできるので、ろ過材の目詰まりを防止できる。
以上のように、ろ過工程中にピストンを移動させることで、ろ過材内部で過度に濃縮する前に濃縮汚泥が排出できるので、ピストンの移動に高圧力が必要なく、ろ過材内部の濃縮汚泥量が少ない状態でピストンを移動できるので、ろ過材の長さを長くすることができ、これらをろ過工程中に任意に行うことができるので、必要な濃縮濃度になるまで、ろ過を行うことが可能になる。
Furthermore, since the thin cake film | membrane is hold | maintained on the filtration surface surface layer by making the piston and the filter medium non-contact, a clear filtrate can be ensured from the beginning of slurry injection. In addition, since the slurry is prevented from being leaked by cake filtration using a cake film, the opening of the filter medium can be increased, and therefore the filter medium can be prevented from being clogged.
As described above, by moving the piston during the filtration process, concentrated sludge can be discharged before it is excessively concentrated inside the filter medium, so there is no need for high pressure to move the piston, and the amount of concentrated sludge inside the filter medium. Since the piston can be moved in a state where there is little, the length of the filter medium can be increased, and these can be arbitrarily performed during the filtration process, so it is possible to perform filtration until the required concentration concentration is reached become.

次に、本発明を図面を用いて説明する。
図1は、本発明のスラリー濃縮装置の全体構成図であり、図2は、図1のスラリー濃縮部の部分構成図であり、図3は、ろ過筒の設置部分の拡大構成図である。
図1〜3において、1はスラリー濃縮装置のスラリー濃縮部、2はろ過筒、3a、3bはサイドパイプ、4a、4bはスラリー供給弁、5a、5bはスラリー排出弁、6はスラリー供給槽、7は空気槽、8は濃縮スラリー引抜ポンプ、9はスラリー循環配管、10はスラリー循環ポンプ、11はガイドロッド、12はピストン、13は補強パイプ、14はガイドロッド保持器、15はろ液受け、16はスラリー、17は圧縮空気、18はろ液、19は濃縮汚泥、20は仕切板、21a、21bはスラリー循環弁である。
Next, the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of the slurry concentrating device of the present invention, FIG. 2 is a partial configuration diagram of a slurry concentrating unit in FIG. 1, and FIG. 3 is an enlarged configuration diagram of an installation portion of a filter cylinder.
1-3, 1 is a slurry concentrating part of the slurry concentrating device, 2 is a filtration cylinder, 3a and 3b are side pipes, 4a and 4b are slurry supply valves, 5a and 5b are slurry discharge valves, 6 is a slurry supply tank, 7 is an air tank, 8 is a concentrated slurry extraction pump, 9 is a slurry circulation pipe, 10 is a slurry circulation pump, 11 is a guide rod, 12 is a piston, 13 is a reinforcing pipe, 14 is a guide rod holder, 15 is a filtrate receiver, 16 is slurry, 17 is compressed air, 18 is filtrate, 19 is concentrated sludge, 20 is a partition plate, and 21a and 21b are slurry circulation valves.

図1〜3を用いて、本発明のスラリー濃縮処理について説明する。
図1〜3において、スラリー16はスラリー供給槽6に導入され、圧縮空気17が空気槽7を介してスラリー供給槽6に導入される。スラリー濃縮部1のスラリー供給弁4aのみを開にするとスラリーは圧縮空気の圧力により、スラリー供給槽よりスラリー供給弁4a、サイドパイプ3aを通りろ過筒2内に導入され、それによりろ過材2内のピストン12は、サイドパイプ3b側に移動し、スラリーは濃縮処理される。ろ液18は、ろ液受け15を通り排出され、濃縮汚泥はろ過材上にケーキ層を形成する。
The slurry concentration process of the present invention will be described with reference to FIGS.
1 to 3, the slurry 16 is introduced into the slurry supply tank 6, and the compressed air 17 is introduced into the slurry supply tank 6 through the air tank 7. When only the slurry supply valve 4a of the slurry concentrating part 1 is opened, the slurry is introduced from the slurry supply tank into the filter cylinder 2 through the slurry supply valve 4a and the side pipe 3a by the pressure of the compressed air. The piston 12 moves to the side pipe 3b side, and the slurry is concentrated. The filtrate 18 is discharged through the filtrate receiver 15 and the concentrated sludge forms a cake layer on the filter medium.

所定時間濃縮処理を行った後、スラリー供給弁4aを閉にして、スラリー排出弁5aを開にし、スラリー供給弁4bを開にすると、スラリーは、圧縮空気の圧力によりサイドパイプ3b側からサイドパイプ3a側にピストン12を移動させながらろ過材2内に導入され、ピストンの移動により、ろ過材2内のケーキ層は、薄いケーキ膜を残して剥離され、サイドパイプ3aを介して濃縮汚泥19としてスラリー排出弁5aから排出される。なお、所定時間濃縮処理を行う場合は、所定の濃縮倍率に応じたろ液が排出されるまでの時間か、所定量のスラリーが供給されるまでの時間を目標にすることもできる。ピストン12がサイドパイプ3a側に移動し終ってからか、又は所定量の濃縮汚泥を排出してからの後、スラリー排出弁5aを閉にしてスラリー濃縮処理を行う。このように、スラリー濃縮処理は、スラリー供給弁4aと4b及びスラリー排出弁5aと5bをそれぞれ開と閉を繰り返して行うことにより継続的に行うことができる。   After performing the concentration treatment for a predetermined time, when the slurry supply valve 4a is closed, the slurry discharge valve 5a is opened, and the slurry supply valve 4b is opened, the slurry is supplied from the side pipe 3b side by the pressure of the compressed air. It is introduced into the filter medium 2 while moving the piston 12 to the 3a side, and the cake layer in the filter medium 2 is peeled off leaving a thin cake film by the movement of the piston, and as the concentrated sludge 19 through the side pipe 3a. It is discharged from the slurry discharge valve 5a. In the case where the concentration treatment is performed for a predetermined time, the time until the filtrate corresponding to the predetermined concentration ratio is discharged or the time until the predetermined amount of slurry is supplied can be set as a target. After the piston 12 has moved to the side pipe 3a side or after a predetermined amount of concentrated sludge has been discharged, the slurry discharge valve 5a is closed to perform the slurry concentration process. As described above, the slurry concentration process can be continuously performed by repeatedly opening and closing the slurry supply valves 4a and 4b and the slurry discharge valves 5a and 5b.

次に、図1を用いてスラリーの高倍率濃縮処理について説明する。
高倍率濃縮処理においては、スラリー供給弁4aのみを閉にするか、あるいは4a及び4bを閉にして、スラリー循環配管9のスラリー循環弁21a、21bを開にして、スラリー循環ポンプ10を稼動させる。スラリー循環弁21aの配管をスラリー循環ポンプ10の吸い込み側に、スラリー循環弁21bの配管をスラリー循環ポンプ10の吐出側に接続すると、スラリーの循環流によってピストンはサイドパイプ3b側から3a側に移動して濃縮汚泥をサイドパイプ3a側に移動し、ろ過材2の内部にはサイドパイプ3b内に滞留していた未濃縮のスラリーが充填されろ過濃縮される。この工程を、スラリー循環ポンプ10の正逆運転を切り換えながら繰り返すことにより、系内のスラリー濃度は高くなり、より高倍率濃縮が可能となる。
Next, the high-magnification concentration treatment of the slurry will be described with reference to FIG.
In the high-magnification concentration process, only the slurry supply valve 4a is closed, or 4a and 4b are closed, the slurry circulation valves 21a and 21b of the slurry circulation pipe 9 are opened, and the slurry circulation pump 10 is operated. . When the pipe of the slurry circulation valve 21a is connected to the suction side of the slurry circulation pump 10 and the pipe of the slurry circulation valve 21b is connected to the discharge side of the slurry circulation pump 10, the piston moves from the side pipe 3b side to the 3a side by the circulation flow of the slurry. Then, the concentrated sludge is moved to the side pipe 3a side, and the inside of the filter medium 2 is filled with unconcentrated slurry staying in the side pipe 3b and concentrated by filtration. By repeating this process while switching the forward / reverse operation of the slurry circulation pump 10, the slurry concentration in the system becomes higher, and higher-concentration concentration becomes possible.

なお、装置内のスラリー濃度が高くなるにつれ、ろ過速度は遅くなるので、濃縮が進むにつれて繰り返すろ過工程の時間を短くする運転を行うことができる。例えば、1回目のろ過工程を20分間行ってピストンを反対側の端部へ移動し、2回目のろ過工程を15分間行ってピストンを元の端部へ移動し、3回目10分間行ってピストンを反対側の端部へ移動することで、高いろ過速度を維持することができる。
以上は、濃縮倍率を高くする運転を述べた。これに対し、同様の処理方法で濃縮倍率を低くすれば、短時間に多くのスラリーを処理する高速処理をすることもできる。
In addition, since the filtration rate becomes slow as the slurry concentration in the apparatus increases, it is possible to perform an operation of shortening the time of the repeated filtration process as the concentration proceeds. For example, the first filtration step is performed for 20 minutes, the piston is moved to the opposite end, the second filtration step is performed for 15 minutes, the piston is moved to the original end, and the third filtration is performed for 10 minutes. By moving to the opposite end, a high filtration rate can be maintained.
The above describes the operation of increasing the concentration factor. On the other hand, if the concentration ratio is lowered by the same processing method, high-speed processing can be performed in which a large amount of slurry is processed in a short time.

以下に、本発明を実際に組み込んだ実験プラントによる運転結果の一例について詳細に説明する。なお、本発明はこの実施例により何等制限されるものではない。
本実施例では、A浄水場で発生する汚泥a、及びB浄水場で発生する汚泥bの2種類の汚泥に対して、本発明のスラリー濃縮装置を用いて濃縮処理を行った。
本装置の装置構成は、図1に図示した構成からなり、直径:100mm、長さ500mmのフィルターパイプ13内面にろ過筒2が配置されており、フィルターパイプ13内でガイドロット11にガイドされながら任意に移動可能なピストン12が存在する。ろ過筒2としては、厚みが0.6mmの比較的厚さの薄いフィルターを採用した。該スラリー濃縮装置は、該フィルターパイプ13が2本平行して設置されており、有効ろ過面積は0.3m2である。該ピストン12の外径は該ろ過筒2とのクリアランスが1.5mmとなるものを使用した。
Below, an example of the operation result by the experimental plant which actually incorporated this invention is demonstrated in detail. In addition, this invention is not restrict | limited at all by this Example.
In the present example, the two types of sludge, sludge a generated at the A water purification plant and sludge b generated at the B water purification plant, were concentrated using the slurry concentrating device of the present invention.
The apparatus configuration of this apparatus is the same as that shown in FIG. 1, and the filter cylinder 2 is arranged on the inner surface of the filter pipe 13 having a diameter of 100 mm and a length of 500 mm, and is guided by the guide lot 11 in the filter pipe 13. There is an arbitrarily movable piston 12. As the filter cylinder 2, a relatively thin filter having a thickness of 0.6 mm was employed. In the slurry concentrating device, two filter pipes 13 are installed in parallel, and an effective filtration area is 0.3 m 2 . The outer diameter of the piston 12 was such that the clearance with the filter cylinder 2 was 1.5 mm.

実施例1では、汚泥aを対象汚泥とし、実施例2では、汚泥bを対象汚泥として、いずれも循環配管を使用しない濃縮方法を採用した。実施例3では、汚泥bを対象汚泥とし、循環配管9を使用して所定の圧力下において循環ポンプ10を使用することで、5分間隔でピストン12を左右に移動させる高速処理の方式を採用した。
また、本実験プラントによる汚泥濃縮運転と平行して、従来方式による濃縮運転も併せて行った。従来方式の濃縮装置としては、本発明のスラリー濃縮装置のろ過材の内部にガイドロット11が存在せず、ろ過材内部には、フリーのピストン外径がろ過体内径と設計上、同寸法となるように設置されたこと以外は、全て本発明スラリー濃縮装置と同じ構成の汚泥濃縮機を使用した。
In Example 1, the sludge a was used as the target sludge, and in Example 2, the sludge b was used as the target sludge. In Example 3, a high-speed processing method is adopted in which the sludge b is the target sludge, and the circulation pump 10 is used under a predetermined pressure using the circulation pipe 9 to move the piston 12 left and right at intervals of 5 minutes. did.
In parallel with the sludge concentration operation by this experimental plant, the concentration operation by the conventional method was also performed. As a conventional concentrator, the guide lot 11 does not exist inside the filter medium of the slurry concentrator of the present invention, and the free piston outer diameter is the same in design as the filter inner diameter inside the filter medium. The sludge concentrator having the same configuration as that of the slurry concentrating device of the present invention was used except that it was installed as described above.

従来方式、実施例1、2、3の計4種類の方式による汚泥濃縮性能の評価方法としては、汚泥の濃縮倍率を2倍に設定し、各方式ごとに汚泥の打ち込み圧力を30、50、70、100、200kPaの5段階に変化させて濃縮処理を行うこととし、その結果、打ち込み圧力とピストン起動時圧力が低く、ろ過速度が高く、SS回収率が高い濃縮運転が可能であった方式を濃縮性能が優れていると判断する方法を採用した。
なお、汚泥の「打ち込み圧力」と「ピストン起動時圧力」の関係について補足説明すると、「打ち込み圧力」とは、濃縮運転中の「ろ過圧力」を意味し、汚泥供給ポンプにより供給された汚泥がフィルターパイプ内で発生させる圧力のことで、本実施例では、30〜200kPaの範囲であらかじめ設定された圧力のことである。「ピストン起動時圧力」とは、ピストンがフィルターパイプ内の一方の端から、もう一方の端まで移動する際の動き始める時に必要な圧力である。
As a method for evaluating the sludge concentration performance by the conventional method and the four types of methods of Examples 1, 2, and 3, the sludge concentration rate is set to 2 times, and the sludge driving pressure is set to 30, 50, Concentration treatment was performed by changing the process in five stages of 70, 100, and 200 kPa, and as a result, the concentration operation and the piston start-up pressure were low, the filtration speed was high, and the SS operation was possible. The method of judging that the concentration performance is excellent was adopted.
In addition, the supplementary explanation of the relationship between sludge "injection pressure" and "piston start-up pressure" means "injection pressure" means "filtration pressure" during the concentration operation, and the sludge supplied by the sludge supply pump In this embodiment, the pressure generated in the filter pipe is a pressure set in advance in the range of 30 to 200 kPa. “Piston start-up pressure” is the pressure required when the piston starts to move as it moves from one end in the filter pipe to the other end.

本実施例に使用した本発明のスラリー濃縮装置は、ピストン外径とフィルター内面とのクリアランスが製作寸法上で1.5mm存在するので、装置自体の摩擦はない。しかし、ろ過の進行に伴ってフィルター内面にケーキ層が生成され、その厚みがクリアランス以上になると、ピストンが移動する時にケーキ層の一部を剥離させながら移動することになる。この時のピストン起動時のケーキ層から受ける静摩擦抵抗を、上回るために必要な圧力を「ピストン起動時圧力」とした。「打ち込み圧力」>「ピストン起動時圧力」となる場合は、設定された「打ち込み圧力」において、スラリー供給弁4a、4bが切り替わる度にピストンが起動し、一方端から他方端に移動することができるが、ケーキ層から受ける静摩擦抵抗が大きく「打ち込み圧力」<「ピストン起動時圧力」となる場合は、ピストンを起動させるためにあらかじめ設定された「打ち込み圧力」以上に、一時的に圧力を上昇させる必要がある。このような処置が必要となることは、汚泥供給ポンプの動力として「打ち込み圧力」以上の圧力を発揮することができるレベルまで大きくする必要があり、デメリットとなる。   In the slurry concentrating device of the present invention used in this example, the clearance between the piston outer diameter and the filter inner surface is 1.5 mm in terms of manufacturing dimensions, so there is no friction of the device itself. However, if the cake layer is generated on the inner surface of the filter as the filtration progresses and the thickness exceeds the clearance, the cake layer moves while peeling off a part of the cake layer when the piston moves. The pressure required to exceed the static frictional resistance received from the cake layer at the time of piston activation at this time was defined as “piston activation pressure”. When “injection pressure”> “piston activation pressure”, the piston is activated every time the slurry supply valves 4a and 4b are switched at the set “injection pressure” and moved from one end to the other end. However, if the static frictional resistance received from the cake layer is large and "impulse pressure" <"piston activation pressure", the pressure is temporarily increased above the preset "impulse pressure" to activate the piston. It is necessary to let The necessity of such a treatment is disadvantageous because it is necessary to increase the sludge supply pump power to a level at which a pressure equal to or higher than the “driving pressure” can be exerted.

濃縮倍率を2倍に設定するために、あらかじめピストン移動1回(1バッチとする)あたりの濃縮汚泥排出量を汚泥排出バルブ制御により5Lに設定し、1バッチあたりのろ液排出量が5Lに達した時点(すなわち、「汚泥供給量≒ろ液排出量+濃縮汚泥排出量」なので1バッチあたりの汚泥供給量が10Lに達した時点)で1バッチが終了とし、その後、汚泥供給バルブを切り替えて、ピストンの逆側より汚泥供給を行うことでピストンを逆サイドに移動させ、次のバッチに移行することとした。1バッチごとに、常にピストンの片側から供給する汚泥量が10L、ろ液が5L、排出濃縮汚泥が5Lと設定することから、濃縮倍率は2倍とすることができるが、濃縮性能の違いにより、汚泥10Lを2倍濃縮するまでの時間(すなわち単位ろ過面積あたりの「ろ過速度」)に差が生じることから、本試験の場合この「ろ過速度」と、ろ液に含まれるSS量から求めるSS回収量と、打込み圧力、ピストン起動時圧力により濃縮性能を評価できることになる。
ろ過面近傍のケーキ含水率は、ピストン移動後に装置内部の未濃縮スラリーを流出させた後、ろ過面に残ったケーキを掻きとって測定した。
In order to set the concentration rate to 2 times, the concentrated sludge discharge amount per piston movement (one batch) is set to 5 L by sludge discharge valve control in advance, and the filtrate discharge amount per batch is set to 5 L. 1 batch is completed at the time of reaching (that is, “sludge supply amount ≒ filtrate discharge amount + concentrated sludge discharge amount”, so when the sludge supply amount per batch reaches 10L), then the sludge supply valve is switched. Then, by supplying the sludge from the opposite side of the piston, the piston was moved to the opposite side and moved to the next batch. For each batch, the amount of sludge supplied from one side of the piston is always set to 10L, the filtrate is 5L, and the discharge concentrated sludge is 5L, so the concentration factor can be doubled, but due to the difference in concentration performance Since a difference occurs in the time until 10 L of sludge is concentrated twice (that is, “filtration rate” per unit filtration area), in the case of this test, it is determined from this “filtration rate” and the amount of SS contained in the filtrate. The concentration performance can be evaluated based on the SS recovery amount, the driving pressure, and the piston starting pressure.
The moisture content of the cake in the vicinity of the filtration surface was measured by scraping the cake remaining on the filtration surface after allowing the unconcentrated slurry inside the apparatus to flow out after moving the piston.

実験は、各運転条件ごとに約50時間行った。試験結果を表1に示す。

Figure 2010119957
The experiment was conducted for about 50 hours for each operating condition. The test results are shown in Table 1.
Figure 2010119957

また、各方式による打ち込み圧力とろ過速度の関係を図4に、打ち込み圧力とピストン起動時必要圧力の関係を図5に、打つ込み圧力とろ過面近傍ケーキ含水率の関係を図6に、打ち込み圧力とSS回収率の関係を図7にそれぞれ示す。
試験結果を、前記表1及び図4〜図7に基づいて説明する。汚泥濃度が9g/lと比較的低濃度の汚泥aを使用した従来方式と実施例1の試験では、打ち込み圧力を30kPa〜200 kPaまで増加させるにつれて、従来方式と実施例1は、共にろ過速度が増加し、ろ過面近傍ケーキの含水率は低下し、それらはほぼ同等の値を示した。しかし、打ち込みバルブを切り替えて、ピストンを逆サイドに移動させるための起動圧力は、従来方式の方が高くする必要があり、一旦約100kPaまで上昇させて、ピストンの移動が完了した直後に、打ち込み圧力を所定の圧力まで低下させる方法をとらなければ、ピストンを移動することができなかった。
In addition, FIG. 4 shows the relationship between the driving pressure and the filtration speed in each method, FIG. 5 shows the relationship between the driving pressure and the required pressure at the start of the piston, and FIG. 6 shows the relationship between the driving pressure and the moisture content of the cake near the filtration surface. The relationship between the pressure and the SS recovery rate is shown in FIG.
A test result is demonstrated based on the said Table 1 and FIGS. In the conventional method using sludge a having a relatively low sludge concentration of 9 g / l and the test of Example 1, as the driving pressure was increased from 30 kPa to 200 kPa, both the conventional method and Example 1 were filtered. Increased, the moisture content of the cake near the filtration surface decreased, and they showed almost the same value. However, the starting pressure for moving the piston to the opposite side by switching the driving valve needs to be higher in the conventional method, and once it is raised to about 100 kPa, the driving is performed immediately after the movement of the piston is completed. The piston could not be moved without taking a method of reducing the pressure to a predetermined pressure.

また、この従来方式のピストン起動時圧力は、打ち込み圧力が高くなるほど大きくする必要があった。この原因としては、ろ過材内径の真円度により、部分的にピストンと強く接触する部分があり、移動を妨げていると考えられた。また、ろ過面近傍ケーキが打ち込み圧力の上昇に伴って固くなっており、従来方式は、ピストンとろ過筒のクリアランスがないので、この固くなったケーキを、ろ過筒から根こそぎ剥離させながらピストンが移動するため、ピストン移動抵抗が比較的高い点にあると考えられた。
一方、実施例1では常に1.5mmのクリアランスが存在するために、ピストン移動時は、ろ過面近傍のケーキ層を一部残しながら、ある程度含水率が高くやわらかいケーキ層のみを掻き取るので、ピストン起動時圧力は常に50kPa以下であった。
また、従来方式では、100kPa以上の汚泥打ち込み圧においては、SS回収率が86〜92%と比較的悪かった。これは、ピストンが移動するごとにろ過体近傍のケーキ層をほぼ全量かきとることから、ケーキろ過作用が小さくなり、100kPa以上の比較的高圧力下において、SSがリークしたと考えられる。この結果より、実施例1の方式は、従来方式よりも低動力設備による低動力運転が可能であり、SS回収率が高いという利点があることが実証できた。
Further, the pressure at the time of starting the piston according to the conventional method has to be increased as the driving pressure becomes higher. As a cause of this, it was considered that there was a part that was in strong contact with the piston due to the roundness of the inner diameter of the filter medium, preventing the movement. In addition, the cake near the filtration surface becomes harder as the driving pressure increases, and the conventional method has no clearance between the piston and the filter cylinder, so the piston moves while peeling the hardened cake from the filter cylinder. Therefore, it was considered that the piston movement resistance was relatively high.
On the other hand, in Example 1, since there is always a clearance of 1.5 mm, when moving the piston, only a cake layer having a high moisture content is scraped off while leaving a part of the cake layer in the vicinity of the filtration surface. The starting pressure was always 50 kPa or less.
Moreover, in the conventional system, the SS recovery rate was relatively poor at 86 to 92% at a sludge driving pressure of 100 kPa or more. This is because the cake filtration action is reduced because the cake layer in the vicinity of the filter body is scraped almost every time the piston moves, and it is considered that SS leaked under a relatively high pressure of 100 kPa or more. From this result, it was proved that the system of Example 1 has the advantage that the low power operation by the low power equipment is possible and the SS recovery rate is high as compared with the conventional system.

次に、23g/lの汚泥bを使用した実施例2、3では、先の汚泥aを使用した試験と同様に、打ち込み圧力を30kPa〜200kPaまで増加させるにつれて、実施例2、3は共にろ過速度が増加し、ろ過面近傍ケーキの含水率は低下し、実施例3の方が実施例2よりろ過速度が約2割大きく濃縮性能が向上した。また、ケーキ含水率、ピストン起動時圧力、及びSS回収率は共に大きな差は無かった。実施例3の濃縮性能が高かった理由としては、実施例3は循環方式を採用していることから、ろ過筒近傍で固くなり始めたケーキ層が、5分に1回の割合でスクレーピングされ、ケーキ層のろ過抵抗が高くなりすぎない状態を維持できることにあると考えられる。
以上の結果より、汚泥bを使用した濃縮試験においては、循環方式を採用する実施例3の方が標準方式を採用した実施例2よりも濃縮性能が高く循環方式の効果があったと判断できる。
Next, in Examples 2 and 3 using 23 g / l of sludge b, both the Examples 2 and 3 were filtered as the driving pressure was increased from 30 kPa to 200 kPa, as in the previous test using sludge a. The speed increased, the water content of the cake near the filtration surface decreased, and the filtration performance of Example 3 was about 20% larger than that of Example 2 and the concentration performance was improved. Moreover, there was no big difference in the cake moisture content, the piston starting pressure, and the SS recovery rate. The reason why the concentration performance of Example 3 was high is that Example 3 employs a circulation system, so the cake layer that began to harden in the vicinity of the filter cylinder was scraped at a rate of once every 5 minutes, It is considered that the filtration resistance of the cake layer can be maintained without being too high.
From the above results, in the concentration test using the sludge b, it can be determined that Example 3 adopting the circulation method has higher concentration performance and the effect of the circulation method than Example 2 adopting the standard method.

本発明の濃縮装置の一例を示す全体構成図。The whole block diagram which shows an example of the concentration apparatus of this invention. 図1のスラリー濃縮部の部分構成図。The partial block diagram of the slurry concentration part of FIG. 本発明の円筒状ろ過材の設置部分の拡大構成図。The expanded block diagram of the installation part of the cylindrical filter material of this invention. 各方式の打ち込み圧力とろ過速度の関係を示すグラフ。The graph which shows the relationship between the driving pressure of each system, and the filtration rate. 各方式の打ち込み圧力とピストン起動時必要圧力の関係を示すグラフ。The graph which shows the relationship between the driving pressure of each system, and the required pressure at the time of piston starting. 各方式の打ち込み圧力とろ過面近傍ケーキ含水率の関係を示すグラフ。The graph which shows the relationship between the implantation pressure of each system, and the moisture content of the cake near a filtration surface. 各方式の打ち込み圧力とSS回収率の関係を示すグラフ。The graph which shows the relationship between the implantation pressure of each system, and SS recovery rate.

符号の説明Explanation of symbols

1:スラリー濃縮部、2:ろ過筒、3a、3b:サイドパイプ、4a、4b:スラリー供給弁、5a、5b:スラリー排出弁、6:スラリー供給槽、7:空気槽、8:濃縮スラリー引抜ポンプ、9:スラリー循環配管、10:スラリー循環ポンプ、11:ガイドロッド、12:ピストン、13:補強パイプ、14:ガイドロッド保持器、15:ろ液受け、16:スラリー、17:圧縮空気、18:ろ液、19:濃縮汚泥、20:仕切板、21a、21b:スラリー循環弁   1: Slurry concentration section, 2: Filtration cylinder, 3a, 3b: Side pipe, 4a, 4b: Slurry supply valve, 5a, 5b: Slurry discharge valve, 6: Slurry supply tank, 7: Air tank, 8: Extraction of concentrated slurry Pump: 9: Slurry circulation pipe, 10: Slurry circulation pump, 11: Guide rod, 12: Piston, 13: Reinforcement pipe, 14: Guide rod holder, 15: Filtrate receiver, 16: Slurry, 17: Compressed air, 18: Filtrate, 19: Concentrated sludge, 20: Partition plate, 21a, 21b: Slurry circulation valve

Claims (8)

ろ過材からなるろ過筒が1以上設けられ該ろ過筒の内側にスラリーを圧入することでろ過濃縮を行うスラリー濃縮装置において、該ろ過筒の軸芯に沿って固定設置されたガイドロッドと、該ガイドロッドに摺動可能に挿入され、前記ろ過筒の内径より小径の外周面を有し、該ろ過筒の一端から他端へ往復移動するピストンと、前記ろ過筒の内側にスラリーを圧入するスラリー供給装置とを具備したことを特徴とするスラリー濃縮装置。   In a slurry concentrating device that is provided with one or more filter cylinders made of a filter medium and performs filtration concentration by press-fitting slurry inside the filter cylinder, a guide rod fixedly installed along the axis of the filter cylinder, A slurry that is slidably inserted into the guide rod, has an outer peripheral surface smaller in diameter than the inner diameter of the filter cylinder, and reciprocates from one end to the other end of the filter cylinder, and a slurry that press-fits slurry into the inner side of the filter cylinder A slurry concentrating device comprising a supply device. 前記ろ過筒は、ろ過材の外周に補強材を設置したものであることを特徴とする請求項1記載のスラリー濃縮装置。   The slurry concentrating apparatus according to claim 1, wherein the filter cylinder is provided with a reinforcing material on an outer periphery of the filter medium. 前記ろ過筒は、両端がスラリーの流入及び排出を行うサイドパイプに接続され、該サイドパイプが切替弁を介して前記スラリー供給装置に接続されていることを特徴とする請求項1又は2に記載のスラリー濃縮装置。   3. The filter cylinder according to claim 1, wherein both ends of the filtration cylinder are connected to a side pipe that performs inflow and discharge of slurry, and the side pipe is connected to the slurry supply device via a switching valve. Slurry concentrator. 前記スラリー供給装置は、スラリーを圧入することができるスラリーポンプ又は圧縮空気が注入されるスラリー貯留槽であることを特徴とする請求項1、2又は3記載のスラリー濃縮装置。   4. The slurry concentrating device according to claim 1, wherein the slurry supplying device is a slurry pump capable of press-fitting slurry or a slurry storage tank into which compressed air is injected. 前記ろ過筒は、両端がスラリーの流入及び排出を行うサイドパイプに接続され、該両端のサイドパイプは、弁を介してスラリー循環配管に接続され、該スラリー循環配管には、前記ろ過筒の内側にスラリーを両端のサイドパイプから交互に導入して循環流を形成させるスラリー循環装置を接続したことを特徴とする請求項1又は2に記載のスラリー濃縮装置。   Both ends of the filtration cylinder are connected to side pipes that allow the inflow and discharge of slurry, and the side pipes at both ends are connected to a slurry circulation pipe via a valve, and the slurry circulation pipe includes an inner side of the filtration cylinder. The slurry concentrating device according to claim 1 or 2, wherein a slurry circulating device for alternately introducing slurry from side pipes at both ends to form a circulating flow is connected to the slurry concentrating device. 前記スラリー循環装置は、前記ろ過筒の内側に両端のサイドパイプから交互にスラリーを導入して循環できるスラリー循環ポンプ又は圧縮空気を注入・排出できるスラリー貯留槽であることを特徴とする請求項5記載のスラリー濃縮装置。   6. The slurry circulation device is a slurry circulation pump capable of alternately introducing and circulating slurry from side pipes at both ends inside the filtration cylinder, or a slurry storage tank capable of injecting and discharging compressed air. The slurry concentrator described. ろ過材からなる1以上のろ過筒の内側にスラリーを圧入することでろ過濃縮を行うスラリー濃縮方法において、前記ろ過筒の内径より小径であり、ろ過濃縮過程で前記ろ過筒の内側に形成されるケーキ層を削り取るための該ろ過筒の一端から他端へ往復移動するピストンを、該ピストンの往復移動時に案内するガイドロッドに挿入し、該ガイドロッドに沿って前記ピストンを往復移動させ、前記ろ過筒のろ過面に薄いケーキ膜を残して、該ろ過筒の内側にスラリーを圧入することでろ過濃縮を行うことを特徴とするスラリー濃縮方法。   In a slurry concentration method in which filtration is concentrated by press-fitting slurry into one or more filter cylinders made of a filter medium, the diameter is smaller than the inner diameter of the filter cylinder, and is formed inside the filter cylinder in the filtration concentration process. A piston that reciprocates from one end to the other end of the filter cylinder for scraping the cake layer is inserted into a guide rod that is guided when the piston reciprocates, the piston is reciprocated along the guide rod, and the filtration A slurry concentration method comprising performing filtration and concentration by leaving a thin cake film on a filtration surface of a cylinder and press-fitting the slurry into the inside of the filtration cylinder. 請求項7記載のスラリー濃縮方法において、ろ過濃縮を行って排出される濃縮汚泥を、さらにろ過筒の内側に循環させてろ過濃縮し、高倍率濃縮を行うことを特徴とするスラリー濃縮方法。   8. The slurry concentration method according to claim 7, wherein the concentrated sludge discharged by filtration and concentration is further circulated inside the filter cylinder to be concentrated by filtration and concentrated at a high magnification.
JP2008296207A 2008-11-20 2008-11-20 Slurry concentrator and concentrating method Active JP4856158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296207A JP4856158B2 (en) 2008-11-20 2008-11-20 Slurry concentrator and concentrating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296207A JP4856158B2 (en) 2008-11-20 2008-11-20 Slurry concentrator and concentrating method

Publications (2)

Publication Number Publication Date
JP2010119957A true JP2010119957A (en) 2010-06-03
JP4856158B2 JP4856158B2 (en) 2012-01-18

Family

ID=42321771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296207A Active JP4856158B2 (en) 2008-11-20 2008-11-20 Slurry concentrator and concentrating method

Country Status (1)

Country Link
JP (1) JP4856158B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031806A (en) * 1983-07-29 1985-02-18 Japan Organo Co Ltd Sewage concentrating and dehydrating method
JPH03267101A (en) * 1990-03-15 1991-11-28 Osamu Baba Filtering and concentrating device utilizing piston
JPH08173997A (en) * 1994-12-27 1996-07-09 Takei Teruo Dewaterer
JPH08184799A (en) * 1994-12-22 1996-07-16 Pietro Fuerst Fonsein Wittgenstein Sunglasses with photoelectric filter
JPH08290018A (en) * 1995-04-21 1996-11-05 Mueller Wolfgang Partial dewatering device for raw slurry
JPH10272500A (en) * 1997-03-31 1998-10-13 Ebara Corp Sludge desalting device and method therefor
JPH1157796A (en) * 1997-08-26 1999-03-02 Ebara Corp Sludge dehydrator and sludge dehydrating method
JPH11290899A (en) * 1998-04-10 1999-10-26 Ebara Corp Filter pipe type dehydrator and dehydration method
JP2000176498A (en) * 1998-12-17 2000-06-27 Ebara Corp Displacement type sludge dehydrating device
JP2004160319A (en) * 2002-11-12 2004-06-10 Isao Matsushita Concentrator for slurry and concentration/filtration apparatus
JP2004337972A (en) * 2003-04-24 2004-12-02 Nachi Fujikoshi Corp Method for solidifying grinding or polishing waste and grinding or polishing waste briquette, and solidifying apparatus
JP2007075748A (en) * 2005-09-15 2007-03-29 Akio Aoki Solid-liquid separator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031806A (en) * 1983-07-29 1985-02-18 Japan Organo Co Ltd Sewage concentrating and dehydrating method
JPH03267101A (en) * 1990-03-15 1991-11-28 Osamu Baba Filtering and concentrating device utilizing piston
JPH08184799A (en) * 1994-12-22 1996-07-16 Pietro Fuerst Fonsein Wittgenstein Sunglasses with photoelectric filter
JPH08173997A (en) * 1994-12-27 1996-07-09 Takei Teruo Dewaterer
JPH08290018A (en) * 1995-04-21 1996-11-05 Mueller Wolfgang Partial dewatering device for raw slurry
JPH10272500A (en) * 1997-03-31 1998-10-13 Ebara Corp Sludge desalting device and method therefor
JPH1157796A (en) * 1997-08-26 1999-03-02 Ebara Corp Sludge dehydrator and sludge dehydrating method
JPH11290899A (en) * 1998-04-10 1999-10-26 Ebara Corp Filter pipe type dehydrator and dehydration method
JP2000176498A (en) * 1998-12-17 2000-06-27 Ebara Corp Displacement type sludge dehydrating device
JP2004160319A (en) * 2002-11-12 2004-06-10 Isao Matsushita Concentrator for slurry and concentration/filtration apparatus
JP2004337972A (en) * 2003-04-24 2004-12-02 Nachi Fujikoshi Corp Method for solidifying grinding or polishing waste and grinding or polishing waste briquette, and solidifying apparatus
JP2007075748A (en) * 2005-09-15 2007-03-29 Akio Aoki Solid-liquid separator

Also Published As

Publication number Publication date
JP4856158B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4846584B2 (en) Backwashing and cleaning methods
US6174437B1 (en) Water treatment system
EP0641246B1 (en) Concentration of solids in a suspension using hollow fibre membranes
CN1159769A (en) Cleaning of hollow fibre membranes
CN103492057B (en) Device for cleaning porous hollow fiber membrane
KR20060049233A (en) Filtering method and filtering device
CN108473341B (en) Method for purifying a liquid
WO2017149758A1 (en) Membrane filtration device, filtration membrane cleaning method, and method for manufacturing filtration membrane
RU2012101222A (en) SYSTEM AND METHOD FOR REMOVING MATERIAL, FOAM FORMING SYSTEM AND DEVICE FOR CONVERTING FOAM TO LIQUID
RU2477387C2 (en) Pump system to transfer first fluid be second fluid
JP4856158B2 (en) Slurry concentrator and concentrating method
TW201805056A (en) Cleaning method and filter device of external pressure type filter module having a plurality of hollow yarn membranes having an average effective length of 2 meters or more
AU733401B2 (en) Improved water treatment system
JP2008284464A (en) Filtering method and apparatus therefor with excellent intermittent backwashing
JPWO2020240666A1 (en) Membrane separation activated sludge system and membrane cleaning equipment
CN114804291A (en) Underground water circulation well system
JP6029904B2 (en) Membrane filtration system and operation control method thereof
CN105951219A (en) Degassing method in spinning bath for viscose fiber production
JP2010194390A (en) Method for removing sludge in crude oil
JP4605951B2 (en) Membrane filtration system and operation method thereof
JP2010047779A (en) Method and device for polishing metal tube
US20230092095A1 (en) Cleaning method of membrane filtration system and membrane filtration system
KR101531201B1 (en) Filter for ballast water of ship
JP3956671B2 (en) Pure water manufacturing equipment for semiconductor product manufacturing process
KR20030001776A (en) a back washing apparatus of ceramics membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4856158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250