JP2010118513A - Method of manufacturing semiconductor device and semiconductor device - Google Patents

Method of manufacturing semiconductor device and semiconductor device Download PDF

Info

Publication number
JP2010118513A
JP2010118513A JP2008290977A JP2008290977A JP2010118513A JP 2010118513 A JP2010118513 A JP 2010118513A JP 2008290977 A JP2008290977 A JP 2008290977A JP 2008290977 A JP2008290977 A JP 2008290977A JP 2010118513 A JP2010118513 A JP 2010118513A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
insulating film
conductive pattern
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008290977A
Other languages
Japanese (ja)
Other versions
JP5133852B2 (en
Inventor
Tatsuya Usami
達矢 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2008290977A priority Critical patent/JP5133852B2/en
Priority to US12/591,193 priority patent/US7956467B2/en
Publication of JP2010118513A publication Critical patent/JP2010118513A/en
Priority to US13/064,940 priority patent/US8293637B2/en
Application granted granted Critical
Publication of JP5133852B2 publication Critical patent/JP5133852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device that can suppress remaining of an oxide layer on a surface layer of a conductive pattern, suppresses an increase in dielectric constant of a surface layer of an insulating film, and also suppresses a decrease in adhesiveness between the insulating film and a diffusion preventive film when SiOH, SiCOH, or an organic polymer is used for the insulating film. <P>SOLUTION: The method of manufacturing the semiconductor device includes the steps of: burying the conductive pattern 200 in the insulating film 100 made of the SiOH, SiCOH, or organic polymer; processing surfaces of the insulating film 100 and conductive pattern 200 with plasma containing a hydrocarbon gas in a processing gas; and forming the diffusion preventive film 302 comprising an SiCH film, SiCHN film, SiCHO film, or SiCHON film on the insulating film 100 and conductive pattern 200 by carrying out plasma CVD by adding an Si-containing gas to the processing gas while increasing the addition amount gradually or in steps. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁膜及び導電パターン上に拡散防止膜を形成する半導体装置の製造方法及び半導体装置に関する。   The present invention relates to a semiconductor device manufacturing method and a semiconductor device in which a diffusion prevention film is formed on an insulating film and a conductive pattern.

近年、半導体装置の配線材料として銅が用いられるようになっている。銅配線は絶縁膜中に埋め込まれる形で形成される。半導体装置の配線材料として銅を用いる場合、銅が銅配線の上層に拡散することを抑制するために、銅配線上に拡散防止膜を設ける必要がある。拡散防止膜を銅配線上に設ける場合、銅配線と拡散防止膜の密着性、及び銅配線が埋め込まれている絶縁膜と拡散防止膜の密着性を確保する必要がある。   In recent years, copper has been used as a wiring material for semiconductor devices. The copper wiring is formed so as to be embedded in the insulating film. When copper is used as the wiring material of the semiconductor device, it is necessary to provide a diffusion preventing film on the copper wiring in order to suppress the diffusion of copper into the upper layer of the copper wiring. When the diffusion prevention film is provided on the copper wiring, it is necessary to ensure the adhesion between the copper wiring and the diffusion prevention film and the adhesion between the insulating film in which the copper wiring is embedded and the diffusion prevention film.

特許文献1には、銅の層上に無機バリア膜を形成する前に、銅の層を還元プラズマと炭素含有プラズマに暴露することが記載されている。これにより、無機バリア膜と銅の層との密着性が向上する、と記載されている。   Patent Document 1 describes that a copper layer is exposed to a reducing plasma and a carbon-containing plasma before forming an inorganic barrier film on the copper layer. This describes that the adhesion between the inorganic barrier film and the copper layer is improved.

また、半導体装置の微細化に伴い、配線間容量を低減させる必要が出てきている。配線間容量を低減させるためには、配線が埋め込まれる絶縁膜の比誘電率を下げることが効果的である。比誘電率の低い絶縁膜としては、SiOH膜、SiCOH膜、及び有機ポリマー膜がある。
特開2002−203899号公報
In addition, with the miniaturization of semiconductor devices, it is necessary to reduce the capacitance between wires. In order to reduce the inter-wiring capacitance, it is effective to lower the relative dielectric constant of the insulating film in which the wiring is embedded. Examples of the insulating film having a low relative dielectric constant include a SiOH film, a SiCOH film, and an organic polymer film.
JP 2002-203899 A

絶縁膜中に銅パターンなどの導電パターンを埋め込む工程には、化学的機械的研磨(Chemical Mechanical Polishing:CMP)工程が含まれる。CMP工程では導電パターンを酸化しつつ物理的に研磨するため、CMP後の導電パターンの表層には酸化層が残る。酸化層が残ると、導電パターンのエレクトロマイグレーション特性が劣化する。また、絶縁膜としてSiOH膜、SiCOH膜、及び有機ポリマー膜を用いた場合、絶縁膜の表層がCMP工程において酸化し、絶縁膜の表層の比誘電率が上昇してしまう。   The process of embedding a conductive pattern such as a copper pattern in the insulating film includes a chemical mechanical polishing (CMP) process. In the CMP process, since the conductive pattern is physically polished while being oxidized, an oxide layer remains on the surface layer of the conductive pattern after CMP. If the oxide layer remains, the electromigration characteristics of the conductive pattern deteriorate. Further, when a SiOH film, a SiCOH film, and an organic polymer film are used as the insulating film, the surface layer of the insulating film is oxidized in the CMP process, and the relative dielectric constant of the surface layer of the insulating film is increased.

導電パターンの表層の酸化層を除去する方法としては、銅パターンの表層を還元雰囲気に曝露することが考えられる。しかし、本発明者らが検討した結果、この方法を採用すると、絶縁膜の表層も還元雰囲気に曝露されてしまい、絶縁膜の表層の比誘電率がさらに上昇することが判明した。   As a method of removing the oxide layer on the surface layer of the conductive pattern, it is conceivable to expose the surface layer of the copper pattern to a reducing atmosphere. However, as a result of studies by the present inventors, it has been found that when this method is adopted, the surface layer of the insulating film is also exposed to the reducing atmosphere, and the relative dielectric constant of the surface layer of the insulating film is further increased.

また本発明者らが検討した結果、絶縁膜の表層の比誘電率が上昇した場合、絶縁膜の表層を炭素含有ガスのプラズマで処理すると、表層の比誘電率が低下することが判明した。しかし、絶縁膜の表層を炭素含有プラズマで処理すると、絶縁膜と拡散防止膜の密着性が低下することも判明した。   Further, as a result of investigations by the present inventors, it has been found that when the dielectric constant of the surface layer of the insulating film increases, the surface dielectric layer of the insulating film decreases when the surface layer of the insulating film is treated with plasma of a carbon-containing gas. However, it has also been found that when the surface layer of the insulating film is treated with carbon-containing plasma, the adhesion between the insulating film and the diffusion preventing film is lowered.

このように、SiOH、SiCOH、又は有機ポリマーを絶縁膜として使用した場合に、導電パターンの表層に酸化層が残ることを抑制し、絶縁膜の表層の比誘電率が上昇することを抑制し、かつ絶縁膜と拡散防止膜の密着性が低下することを抑制することは難しかった。   Thus, when SiOH, SiCOH, or an organic polymer is used as an insulating film, the oxide layer is prevented from remaining on the surface layer of the conductive pattern, and the relative dielectric constant of the surface layer of the insulating film is suppressed from increasing. In addition, it is difficult to suppress a decrease in the adhesion between the insulating film and the diffusion prevention film.

本発明によれば、SiOH、SiCOH、又は有機ポリマーからなる絶縁膜に、導電パターンを埋め込む埋込工程と、
前記絶縁膜及び前記導電パターンの表面を、炭化水素ガスを処理ガスに含むプラズマで処理する第1表面処理工程と、
前記処理ガスに、Si含有ガスを徐々に又は段階的に添加量を増大しながら添加してプラズマCVDを行うことにより、前記絶縁膜上及び前記導電パターン上に、SiCH膜、SiCHN膜、SiCHO膜、またはSiCHON膜からなる拡散防止膜を形成する膜形成工程と、
を備える半導体装置の製造方法が提供される。
According to the present invention, an embedding step of embedding a conductive pattern in an insulating film made of SiOH, SiCOH, or an organic polymer;
A first surface treatment step of treating the surfaces of the insulating film and the conductive pattern with plasma containing a hydrocarbon gas in a treatment gas;
By adding a Si-containing gas to the processing gas gradually or stepwise while increasing the addition amount, plasma CVD is performed, so that a SiCH film, a SiCHN film, a SiCHO film is formed on the insulating film and the conductive pattern. Or a film forming step of forming a diffusion prevention film made of a SiCHON film,
A method for manufacturing a semiconductor device is provided.

この半導体装置の製造方法によれば、第1表面処理工程において、導電パターンの表層に活性化した水素を供給することができる。従って、埋込工程において導電パターンの表層に酸化層が形成されている場合においても、第1表面処理工程において酸化層を還元することができる。また、第1表面処理工程において、絶縁膜の表層に形成された劣化層を、活性化した炭素により改質することができる。従って、埋込工程において絶縁膜の表層の比誘電率が上昇していた場合でも、絶縁膜の表層の比誘電率を低下させることができる。なお、この第1表面処理工程において、絶縁膜上及び導電パターン上にCH膜又はCHN膜が形成されることがある。   According to this method for manufacturing a semiconductor device, activated hydrogen can be supplied to the surface layer of the conductive pattern in the first surface treatment step. Therefore, even when an oxide layer is formed on the surface layer of the conductive pattern in the embedding process, the oxide layer can be reduced in the first surface treatment process. In the first surface treatment step, the deteriorated layer formed on the surface layer of the insulating film can be modified with activated carbon. Therefore, even when the relative dielectric constant of the surface layer of the insulating film is increased in the embedding process, the relative dielectric constant of the surface layer of the insulating film can be decreased. In the first surface treatment step, a CH film or a CHN film may be formed on the insulating film and the conductive pattern.

一方、膜形成工程において、炭化水素ガスを含む処理ガスに対してSi含有ガスを徐々に又は段階的に添加量を増大させる。このため、拡散防止膜は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる。従って、第1表面処理工程において絶縁膜上及び導電パターン上にCH膜又はCHN膜が形成されている場合であっても、CH膜又はCHN膜と拡散防止膜の密着性が低下することを抑制できる。   On the other hand, in the film forming step, the amount of Si-containing gas added is gradually or stepwise increased with respect to the processing gas containing hydrocarbon gas. For this reason, the concentration of Si increases gradually or stepwise in the diffusion prevention film as it goes upward. Therefore, even when the CH film or CHN film is formed on the insulating film and the conductive pattern in the first surface treatment step, it is possible to suppress a decrease in the adhesion between the CH film or CHN film and the diffusion prevention film. it can.

このように、本発明によれば、SiOH、SiCOH、又は有機ポリマーを絶縁膜として使用した場合に、導電パターンの表層に酸化層が残ることを抑制でき、絶縁膜の表層の比誘電率が上昇することを抑制でき、かつ絶縁膜と拡散防止膜の密着性が低下することを抑制できる。   As described above, according to the present invention, when SiOH, SiCOH, or an organic polymer is used as the insulating film, it is possible to suppress the oxide layer from remaining on the surface layer of the conductive pattern, and the relative dielectric constant of the surface layer of the insulating film increases. This can be suppressed, and a decrease in adhesion between the insulating film and the diffusion preventing film can be suppressed.

本発明によれば、SiOH、SiCOH、又は有機ポリマーからなる絶縁膜と、
前記絶縁膜に埋め込まれた導電パターンと、
前記絶縁膜上及び前記導電パターン上に位置し、SiCH膜、SiCHN膜、SiCHO膜、またはSiCHON膜からなる拡散防止膜と、
を備え、
前記拡散防止膜は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる半導体装置が提供される。
According to the present invention, an insulating film made of SiOH, SiCOH, or an organic polymer;
A conductive pattern embedded in the insulating film;
A diffusion prevention film located on the insulating film and the conductive pattern and made of a SiCH film, a SiCHN film, a SiCHO film, or a SiCHON film;
With
The diffusion preventing film is provided with a semiconductor device in which the Si concentration increases gradually or stepwise as it goes upward.

本発明によれば、SiOH、SiCOH、又は有機ポリマーを絶縁膜として使用した場合に、導電パターンの表層に酸化層が残ることを抑制でき、絶縁膜の表層の比誘電率が上昇することを抑制でき、かつ絶縁膜と拡散防止膜の密着性が低下することを抑制できる。   According to the present invention, when SiOH, SiCOH, or an organic polymer is used as an insulating film, it is possible to suppress an oxide layer from remaining on the surface layer of the conductive pattern, and to suppress an increase in the relative dielectric constant of the surface layer of the insulating film. It can suppress that the adhesiveness of an insulating film and a diffusion prevention film falls.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1及び図2の各図は、第1の実施形態にかかる半導体装置の製造方法を示す断面図である。この半導体装置の製造方法は、埋込工程、第1表面処理工程、及び膜形成工程を備える。埋込工程は、SiOH、SiCOH、又は有機ポリマーからなる絶縁膜100に、導電パターン200を埋め込む工程である。第1表面処理工程は、絶縁膜100及び導電パターン200の表面を、炭化水素ガスを処理ガスに含むプラズマで処理する工程である。膜形成工程は、上記した処理ガスに、Si含有ガスを徐々に又は段階的に添加量を増大しながら添加してプラズマCVDを行うことにより、絶縁膜100上及び導電パターン200上に、SiCH膜、SiCHN膜、SiCHO膜、またはSiCHON膜からなる拡散防止膜302を形成する工程である。以下、詳細に説明する。   1 and 2 are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the first embodiment. The method for manufacturing a semiconductor device includes an embedding process, a first surface treatment process, and a film forming process. The embedding process is a process of embedding the conductive pattern 200 in the insulating film 100 made of SiOH, SiCOH, or an organic polymer. The first surface treatment step is a step of treating the surfaces of the insulating film 100 and the conductive pattern 200 with plasma containing a hydrocarbon gas in the treatment gas. In the film formation step, the SiCH film is formed on the insulating film 100 and the conductive pattern 200 by performing plasma CVD by adding the Si-containing gas to the processing gas described above while gradually or gradually increasing the addition amount. , Forming a diffusion barrier film 302 made of a SiCHN film, a SiCHO film, or a SiCHON film. Details will be described below.

まず図1(a)に示すように、SiOH、SiCOH、又は有機ポリマーからなる絶縁膜100を形成する。絶縁膜100は、複数の空孔(直径は例えば10nm以下)を有するポーラス膜であってもよい。また絶縁膜の比誘電率は、2.7以下である。絶縁膜100を形成する有機ポリマーとしては、商品名「Silk」(ダウ・ケミカル社)を用いることができる。   First, as shown in FIG. 1A, an insulating film 100 made of SiOH, SiCOH, or an organic polymer is formed. The insulating film 100 may be a porous film having a plurality of holes (diameter is, for example, 10 nm or less). The dielectric constant of the insulating film is 2.7 or less. As an organic polymer for forming the insulating film 100, a trade name “Silk” (Dow Chemical Co.) can be used.

次いで、絶縁膜100上に酸化シリコン膜(図示せず)を形成し、酸化シリコン膜及び絶縁膜100を選択的にエッチングする。これにより、絶縁膜100には溝が形成される。   Next, a silicon oxide film (not shown) is formed over the insulating film 100, and the silicon oxide film and the insulating film 100 are selectively etched. As a result, a trench is formed in the insulating film 100.

次いで、この溝内及び絶縁膜100上の酸化シリコン膜上に、拡散防止膜204を例えばスパッタリング法により形成する。拡散防止膜204は、例えばタンタル膜である。次いで、拡散防止膜204上に導電膜を、例えばスパッタリング法によるシード膜(例えばCuシード膜)形成及び電界メッキをこの順に行うことにより形成し、さらに絶縁膜100上に位置する導電膜、拡散防止膜204、及び酸化シリコン膜をCMP法により除去する。これにより、絶縁膜100には拡散防止膜204及び導電パターン200が埋め込まれる。導電パターン200は、例えば銅配線である。導電パターン200が銅配線である場合、隣接する銅配線は、例えば相互間隔が75nm以下、中心間距離が150nm以下である。   Next, a diffusion prevention film 204 is formed in the trench and on the silicon oxide film on the insulating film 100 by, for example, a sputtering method. The diffusion prevention film 204 is a tantalum film, for example. Next, a conductive film is formed on the diffusion prevention film 204 by, for example, forming a seed film (for example, a Cu seed film) by sputtering and electroplating in this order, and further, a conductive film located on the insulating film 100, diffusion prevention The film 204 and the silicon oxide film are removed by a CMP method. As a result, the diffusion prevention film 204 and the conductive pattern 200 are embedded in the insulating film 100. The conductive pattern 200 is, for example, a copper wiring. When the conductive pattern 200 is a copper wiring, adjacent copper wirings have, for example, a mutual interval of 75 nm or less and a center-to-center distance of 150 nm or less.

このCMP工程において、導電パターン200の表層には酸化層202(例えばCuO層)が形成される。また絶縁膜100の表層もCMP法により削られるため、絶縁膜100の表層にも、比誘電率が高い劣化層102が形成される。絶縁膜100がSiCOH膜である場合、劣化層102は、例えば表層のメチル基が破壊されてSi−OH結合又はSiのダングリングボンド結合が生成することにより生じる。また絶縁膜100がSiOH層である場合、劣化層102は、例えばSiのダングリングボンド結合が生成することにより生じる。また絶縁膜100が有機ポリマー層である場合、劣化層102はほとんど昇華してしまうが、表層にCのダングリングボンド結合が残る。   In this CMP process, an oxide layer 202 (for example, a CuO layer) is formed on the surface layer of the conductive pattern 200. Further, since the surface layer of the insulating film 100 is also cut by the CMP method, the deteriorated layer 102 having a high relative dielectric constant is also formed on the surface layer of the insulating film 100. When the insulating film 100 is a SiCOH film, the deteriorated layer 102 is generated, for example, when a methyl group on the surface layer is destroyed and a Si—OH bond or a Si dangling bond bond is generated. When the insulating film 100 is a SiOH layer, the deteriorated layer 102 is generated by, for example, the generation of dangling bond of Si. Further, when the insulating film 100 is an organic polymer layer, the deteriorated layer 102 is almost sublimated, but C dangling bond bonding remains in the surface layer.

次いで、図1(b)に示すように、絶縁膜100の表面及び導電パターン200の表面を、炭化水素ガスを処理ガスに含むプラズマで処理する。炭化水素ガスは、たとえばエテン(エチレン)であるが、他の炭化水素ガス(例えばCH又はCなど)であってもよい。また処理ガスは、炭化水素ガス100%であってもよいし、炭化水素ガスのほかに、キャリアガスとしてのHeを50体積%以上99体積%以下含んでいても良い。 Next, as shown in FIG. 1B, the surface of the insulating film 100 and the surface of the conductive pattern 200 are processed with plasma containing a hydrocarbon gas in the processing gas. The hydrocarbon gas is, for example, ethene (ethylene), but may be other hydrocarbon gas (for example, CH 4 or C 2 H 4 ). The processing gas may be 100% hydrocarbon gas, or may contain 50% by volume to 99% by volume He as a carrier gas in addition to the hydrocarbon gas.

上記したプラズマには、活性化した水素(水素イオンや水素ラジカルなど)及び活性化した炭素(炭素イオンや炭素ラジカルなど)が含まれる。このため、導電パターン200の表層に形成された酸化層202は、活性化した水素によって還元され、また炭素が導入されるため、炭素含有Cu層206になる。また、絶縁膜100の表層に形成された劣化層102のSi−OH結合やSiダングリングボンド結合は、活性化した炭素及び水素によってSi−CH結合になり、劣化層102が改質される。   The plasma described above includes activated hydrogen (such as hydrogen ions and hydrogen radicals) and activated carbon (such as carbon ions and carbon radicals). For this reason, the oxide layer 202 formed on the surface layer of the conductive pattern 200 is reduced by the activated hydrogen and carbon is introduced, so that the carbon-containing Cu layer 206 is formed. Further, the Si—OH bond and Si dangling bond bond of the deteriorated layer 102 formed on the surface layer of the insulating film 100 become Si—CH bonds by activated carbon and hydrogen, and the deteriorated layer 102 is modified.

またこの処理において、絶縁膜100の表面及び導電パターン200の表面には、CH膜300が形成されることがある。CH膜300の厚さは、例えば1nm以上10nm以下である。CH膜300において、例えばCはHに対して原子数で25%以下である。また導電パターン200の表層にはCが導入される。   In this process, a CH film 300 may be formed on the surface of the insulating film 100 and the surface of the conductive pattern 200. The thickness of the CH film 300 is, for example, not less than 1 nm and not more than 10 nm. In the CH film 300, for example, C is 25% or less with respect to H. Further, C is introduced into the surface layer of the conductive pattern 200.

次いで図2(a)に示すように、上記した処理ガスにSi含有ガスを徐々に又は段階的に添加量を増大しながら添加してプラズマCVDを行う。Si含有ガスは、例えばトリメチルシランガスであるが、他のガス(例えばテトラメチルシラン、ジメチルシラン、モノメチルシラン、テトラビニルシラン、トリビニルモノメチルシラン、トリメチルシラン、ジビニルシラン、ジビニルジメチルシラン、モノビニルトリメチルシラン、モノビニルシラン、モノシラン、トリメチルフエニルシラン、ジメチルジフエニルシラン、フェニルシラン、ジフエノルジシランなど)であってもよい。またSi含有ガスの添加を開始するとき、プラズマを一度落としても良いが、プラズマを維持したままであってもよい。これにより、CH膜300上に、SiCH膜、SiCHN膜、SiCHO膜、またはSiCHON膜である拡散防止膜302が形成される。プラズマを維持したままSi含有ガスの添加を開始する場合、拡散防止膜302がCH膜300と連続するように形成される。拡散防止膜302の厚さは、例えば5nm以上50nm以下である。また拡散防止膜302は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる。なお、拡散防止膜302におけるSiの濃度は、例えば平均で5atomic%以上30atomic%以下である。   Next, as shown in FIG. 2A, plasma CVD is performed by adding the Si-containing gas to the above-described processing gas gradually or stepwise while increasing the addition amount. The Si-containing gas is, for example, trimethylsilane gas, but other gases (for example, tetramethylsilane, dimethylsilane, monomethylsilane, tetravinylsilane, trivinylmonomethylsilane, trimethylsilane, divinylsilane, divinyldimethylsilane, monovinyltrimethylsilane, mono Vinyl silane, monosilane, trimethylphenylsilane, dimethyldiphenylsilane, phenylsilane, diphenyldisilane, etc.). Further, when the addition of the Si-containing gas is started, the plasma may be dropped once, but the plasma may be maintained. As a result, a diffusion prevention film 302 that is a SiCH film, a SiCHN film, a SiCHO film, or a SiCHON film is formed on the CH film 300. When the addition of the Si-containing gas is started while the plasma is maintained, the diffusion prevention film 302 is formed so as to be continuous with the CH film 300. The thickness of the diffusion preventing film 302 is, for example, not less than 5 nm and not more than 50 nm. Further, the diffusion preventing film 302 increases in Si concentration gradually or stepwise as it goes upward. Note that the Si concentration in the diffusion preventing film 302 is, for example, 5 atomic% or more and 30 atomic% or less on average.

次いで図2(b)に示すように、拡散防止膜302の上に、絶縁膜104を形成する。絶縁膜104は、例えば層間絶縁膜であり、例えばSiOH、SiCOH、又は有機ポリマーからなる。絶縁膜104はポーラス膜であってもよく、また比誘電率が2.7以下であってもよい。   Next, as shown in FIG. 2B, the insulating film 104 is formed on the diffusion prevention film 302. The insulating film 104 is an interlayer insulating film, for example, and is made of, for example, SiOH, SiCOH, or an organic polymer. The insulating film 104 may be a porous film and may have a relative dielectric constant of 2.7 or less.

このようにして形成される半導体装置は、絶縁膜100、導電パターン200、及び拡散防止膜302を有する。導電パターン200は絶縁膜100に埋め込まれており、拡散防止膜302は絶縁膜100上及び導電パターン200上に位置する。拡散防止膜302は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる。また、絶縁膜100及び導電パターン200と、拡散防止膜302の間には、CH膜300が位置する。   The semiconductor device formed in this way has an insulating film 100, a conductive pattern 200, and a diffusion prevention film 302. The conductive pattern 200 is embedded in the insulating film 100, and the diffusion prevention film 302 is located on the insulating film 100 and the conductive pattern 200. In the diffusion prevention film 302, the Si concentration increases gradually or stepwise as it goes upward. In addition, the CH film 300 is located between the insulating film 100 and the conductive pattern 200 and the diffusion prevention film 302.

図3は、CH膜300と拡散防止膜302の積層膜(又は連続膜)におけるSi濃度の膜厚方向依存を模式的に示す図である。CH膜300にはSiは含まれていない。また拡散防止膜302は、CH膜300との界面においてはSiがほとんど含まれていない。そして拡散防止膜302は、CH膜300との界面から離れるに従って(膜厚方向の位置が正の方向に大きくなるに従って)、徐々にまたは段階的にSiの濃度が高くなる。   FIG. 3 is a diagram schematically showing the dependence of the Si concentration on the film thickness direction in the laminated film (or continuous film) of the CH film 300 and the diffusion prevention film 302. The CH film 300 does not contain Si. Further, the diffusion preventing film 302 contains almost no Si at the interface with the CH film 300. The diffusion prevention film 302 increases in Si concentration gradually or stepwise as the distance from the interface with the CH film 300 increases (as the position in the film thickness direction increases in the positive direction).

次に、本実施形態の作用及び効果について説明する。本実施形態は、絶縁膜100及び導電パターン200の表面を、炭化水素ガスを処理ガスに含むプラズマで処理する工程を有する。このため、導電パターン200の表層に形成された酸化層202は、活性化した水素によって還元される。   Next, the operation and effect of this embodiment will be described. The present embodiment includes a step of processing the surfaces of the insulating film 100 and the conductive pattern 200 with plasma containing a hydrocarbon gas in a processing gas. For this reason, the oxide layer 202 formed on the surface layer of the conductive pattern 200 is reduced by the activated hydrogen.

また絶縁膜100の表層に形成された劣化層102のSi−OH結合やSiダングリングボンド結合は、活性化した炭素及び水素によってSi−CH結合になる。これにより、劣化層102が改質される。従って、絶縁膜100の表層の比誘電率が上昇することを抑制できる。また、絶縁膜100に複数の導電パターン200が形成されている場合において、これら導電パターン200相互間におけるTDDB(Time Dependent Dielectric Breakdown)特性が劣化することを抑制できる。   Further, the Si—OH bond and the Si dangling bond bond of the deteriorated layer 102 formed on the surface layer of the insulating film 100 become Si—CH bonds by activated carbon and hydrogen. Thereby, the deteriorated layer 102 is modified. Therefore, an increase in the relative dielectric constant of the surface layer of the insulating film 100 can be suppressed. Further, when a plurality of conductive patterns 200 are formed on the insulating film 100, it is possible to suppress deterioration of TDDB (Time Dependent Dielectric Breakdown) characteristics between the conductive patterns 200.

また、拡散防止膜302を形成する工程において、上記した炭化水素ガスを含む処理ガスに、Si含有ガスを徐々に又は段階的に添加量を増大しながら添加している。このため、拡散防止膜302は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる。従って、絶縁膜100及び導電パターン200の表面にCH膜300が形成されていても、絶縁膜100と拡散防止膜302の密着性が低下することを抑制できる。   Further, in the step of forming the diffusion prevention film 302, the Si-containing gas is added to the processing gas containing the hydrocarbon gas while increasing the addition amount gradually or stepwise. For this reason, the concentration of Si in the diffusion prevention film 302 increases gradually or stepwise as it goes upward. Therefore, even if the CH film 300 is formed on the surfaces of the insulating film 100 and the conductive pattern 200, it is possible to suppress a decrease in the adhesion between the insulating film 100 and the diffusion prevention film 302.

このように、本実施形態によれば、SiOH、SiCOH、又は有機ポリマーを絶縁膜100として使用した場合に、導電パターン200の表層に酸化層が残ることを抑制でき、絶縁膜100の表層の比誘電率が上昇することを抑制でき、かつ絶縁膜100と拡散防止膜302の密着性が低下することを抑制できる。従って、半導体装置の信頼性が向上する。この効果は、拡散防止膜302をCH膜300と連続するように形成した場合、特に顕著になる。   Thus, according to the present embodiment, when SiOH, SiCOH, or an organic polymer is used as the insulating film 100, it is possible to suppress the oxide layer from remaining on the surface layer of the conductive pattern 200, and the ratio of the surface layer of the insulating film 100 can be reduced. An increase in the dielectric constant can be suppressed, and a decrease in adhesion between the insulating film 100 and the diffusion prevention film 302 can be suppressed. Therefore, the reliability of the semiconductor device is improved. This effect is particularly remarkable when the diffusion prevention film 302 is formed so as to be continuous with the CH film 300.

また絶縁膜100と拡散防止膜302の密着性が低下すると、絶縁膜100と拡散防止膜302の隙間から水分が浸入することがある。絶縁膜100がポーラス膜である場合、絶縁膜100がこの水分を吸着し、絶縁膜100の耐圧が下がり、かつ絶縁膜100と同層における配線間容量が増大してしまう。本実施形態によれば、上記したように、絶縁膜100と拡散防止膜302の密着性が低下することを抑制できるため、このような問題が生じることを抑制できる。   In addition, when the adhesion between the insulating film 100 and the diffusion prevention film 302 is lowered, moisture may enter from the gap between the insulation film 100 and the diffusion prevention film 302. In the case where the insulating film 100 is a porous film, the insulating film 100 adsorbs this moisture, the withstand voltage of the insulating film 100 decreases, and the capacitance between wirings in the same layer as the insulating film 100 increases. According to the present embodiment, as described above, it is possible to suppress a decrease in the adhesion between the insulating film 100 and the diffusion prevention film 302, and thus it is possible to suppress the occurrence of such a problem.

また、導電パターン200の表層にCが導入されているため、導電パターン200の表面に酸素が拡散してきても、この酸素は優先的に炭素と反応するため、導電パターン200の表層に酸化層が形成されることを抑制できる。このため、導電パターン200のエレクトロマイグレーション特性が向上する。   In addition, since C is introduced into the surface layer of the conductive pattern 200, even if oxygen diffuses on the surface of the conductive pattern 200, this oxygen preferentially reacts with carbon, so that an oxide layer is formed on the surface layer of the conductive pattern 200. It can suppress forming. For this reason, the electromigration characteristics of the conductive pattern 200 are improved.

図4は、第2の実施形態に係る半導体装置の製造方法を示す断面図である。本実施形態に係る半導体装置の製造方法は、絶縁膜100に、導電パターン200を埋め込む埋込工程と、絶縁膜100及び導電パターン200の表面を、炭化水素ガスを処理ガスに含むプラズマで処理する第1表面処理工程の間に、第2表面処理工程を備える点を除いて、第1の実施形態と同様である。第2表面処理工程は、絶縁膜100及び導電パターン200の表面を還元プラズマで処理する工程である。還元プラズマは、例えばアンモニアを処理ガスに含むプラズマであるが、水素を処理ガスに含むプラズマであってもよい。   FIG. 4 is a cross-sectional view illustrating the method for manufacturing the semiconductor device according to the second embodiment. In the method for manufacturing a semiconductor device according to the present embodiment, a process of embedding the conductive pattern 200 in the insulating film 100, and processing the surfaces of the insulating film 100 and the conductive pattern 200 with plasma containing a hydrocarbon gas as a processing gas. It is the same as that of 1st Embodiment except for a point provided with a 2nd surface treatment process between 1st surface treatment processes. The second surface treatment step is a step of treating the surfaces of the insulating film 100 and the conductive pattern 200 with reducing plasma. The reducing plasma is, for example, plasma containing ammonia in the processing gas, but may be plasma containing hydrogen in the processing gas.

本実施形態によっても第1の実施形態と同様の効果を得ることができる。また、第2表面処理工程において、導電パターン200の表層に形成された酸化層202を短い時間で還元することができる、また第2表面処理工程において絶縁膜100の表層の劣化層102の比誘電率がさらに上昇しても、第1表面処理工程において劣化層102を改質して、絶縁膜100の表層の比誘電率が上昇することを抑制できる。   According to this embodiment, the same effect as that of the first embodiment can be obtained. Further, in the second surface treatment step, the oxide layer 202 formed on the surface layer of the conductive pattern 200 can be reduced in a short time, and in the second surface treatment step, the relative dielectric constant of the deteriorated layer 102 on the surface layer of the insulating film 100 is obtained. Even if the rate further increases, it is possible to suppress an increase in the relative dielectric constant of the surface layer of the insulating film 100 by modifying the deteriorated layer 102 in the first surface treatment step.

図5は、第3の実施形態に係る半導体装置の構成を示す断面図である。この半導体装置は、トランジスタ20が形成された基板10上に、層間絶縁膜30及び絶縁層110を形成し、さらに絶縁層120,130,140,150をこの順に積層させた構成である。   FIG. 5 is a cross-sectional view illustrating a configuration of a semiconductor device according to the third embodiment. This semiconductor device has a structure in which an interlayer insulating film 30 and an insulating layer 110 are formed on a substrate 10 on which a transistor 20 is formed, and insulating layers 120, 130, 140, and 150 are stacked in this order.

絶縁層110は、例えば酸化シリコン膜であるが、第1の実施形態又は第2の実施形態における絶縁膜100と同様の構成であってもよい。絶縁層110には、導電パターン210が埋め込まれている。導電パターン210の構成は、第1の実施形態又は第2の実施形態における導電パターン200と同様の構成である。導電パターン210は、例えば層間絶縁膜30に埋め込まれたコンタクトを介して、トランジスタ20に接続している。   The insulating layer 110 is, for example, a silicon oxide film, but may have a configuration similar to that of the insulating film 100 in the first embodiment or the second embodiment. A conductive pattern 210 is embedded in the insulating layer 110. The configuration of the conductive pattern 210 is the same as that of the conductive pattern 200 in the first embodiment or the second embodiment. The conductive pattern 210 is connected to the transistor 20 through, for example, a contact embedded in the interlayer insulating film 30.

絶縁層120,130,140は、第1の実施形態又は第2の実施形態における絶縁膜100と同様の構成であり、それぞれ導電パターン220,230,240が埋め込まれている。導電パターン220,230,240の構成は、第1の実施形態又は第2の実施形態における導電パターン200の構成と同様であり、導電パターン200と同様脳方法により形成される。なお導電パターン220,230,240と絶縁層120,130,140の間には、第1の実施形態における拡散防止膜204と同様の構成を有する拡散防止膜(図示せず)が設けられている。   The insulating layers 120, 130, and 140 have the same configuration as that of the insulating film 100 in the first embodiment or the second embodiment, and conductive patterns 220, 230, and 240 are embedded therein, respectively. The configuration of the conductive patterns 220, 230, and 240 is the same as the configuration of the conductive pattern 200 in the first embodiment or the second embodiment, and is formed by the brain method similar to the conductive pattern 200. A diffusion prevention film (not shown) having the same configuration as that of the diffusion prevention film 204 in the first embodiment is provided between the conductive patterns 220, 230, and 240 and the insulating layers 120, 130, and 140. .

また絶縁層110と絶縁層120の間には、CH膜310と拡散防止膜312がこの順に積層している。同様に、絶縁層120と絶縁層130の間、絶縁層130と絶縁層140の間、及び絶縁層140と絶縁層150の間にも、それぞれCH膜320と拡散防止膜322、CH膜330と拡散防止膜332、CH膜340と拡散防止膜342が積層している。これらの積層膜の構成は、第1の実施形態におけるCH膜300と拡散防止膜302の積層膜の構成と同様であり、また形成方法も、CH膜300と拡散防止膜302の積層膜の形成方法と同様である。   Further, a CH film 310 and a diffusion prevention film 312 are laminated in this order between the insulating layer 110 and the insulating layer 120. Similarly, between the insulating layer 120 and the insulating layer 130, between the insulating layer 130 and the insulating layer 140, and between the insulating layer 140 and the insulating layer 150, the CH film 320, the diffusion prevention film 322, and the CH film 330, respectively. The diffusion prevention film 332, the CH film 340, and the diffusion prevention film 342 are stacked. The configuration of these stacked films is the same as the configuration of the stacked film of the CH film 300 and the diffusion prevention film 302 in the first embodiment, and the formation method is also the formation of the stacked film of the CH film 300 and the diffusion prevention film 302. It is the same as the method.

本実施形態によっても、第1の実施形態又は第2の実施形態と同様の効果を得ることができる。   According to this embodiment, the same effect as that of the first embodiment or the second embodiment can be obtained.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば上記した各実施形態において、絶縁膜100及び導電パターン200と拡散防止膜302の間にCH膜300を形成したが、CH膜300を形成しなくても良い。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable. For example, in each of the embodiments described above, the CH film 300 is formed between the insulating film 100 and the conductive pattern 200 and the diffusion prevention film 302. However, the CH film 300 may not be formed.

また、図1(b)に示した工程において、処理ガスに窒素含有ガス(例えばNHやNなど)を添加しても良い。この場合、絶縁膜100の表面及び導電パターン200の表面には、CH膜300の代わりにCHN膜が形成される。この場合においても、上記した効果を得ることができる。また、CHN膜の耐圧はCH膜300より高いため、上下に位置する配線間の耐圧が高くなる。 In the step shown in FIG. 1B, a nitrogen-containing gas (eg, NH 3 or N 2 ) may be added to the processing gas. In this case, a CHN film is formed on the surface of the insulating film 100 and the surface of the conductive pattern 200 instead of the CH film 300. Even in this case, the above-described effects can be obtained. Further, since the breakdown voltage of the CHN film is higher than that of the CH film 300, the breakdown voltage between the upper and lower wirings becomes higher.

第1の実施形態にかかる半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device concerning 1st Embodiment. 第1の実施形態にかかる半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device concerning 1st Embodiment. CH膜と拡散防止膜の積層膜(又は連続膜)におけるSi濃度の膜厚方向依存を模式的に示す図である。It is a figure which shows typically the film thickness direction dependence of Si density | concentration in the laminated film (or continuous film) of CH film | membrane and a diffusion prevention film. 第2の実施形態にかかる半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device concerning 2nd Embodiment. 第3の実施形態にかかる半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device concerning 3rd Embodiment.

符号の説明Explanation of symbols

10 基板
20 トランジスタ
30 層間絶縁膜
100 絶縁膜
102 劣化層
104 絶縁膜
110 絶縁層
120 絶縁層
130 絶縁層
140 絶縁層
150 絶縁層
200 導電パターン
202 酸化層
204 拡散防止膜
206 炭素含有Cu層
210 導電パターン
240 導電パターン
300 CH膜
302 拡散防止膜
310 CH膜
312 拡散防止膜
320 CH膜
322 拡散防止膜
330 CH膜
332 拡散防止膜
340 CH膜
342 拡散防止膜
10 substrate 20 transistor 30 interlayer insulating film 100 insulating film 102 deteriorated layer 104 insulating film 110 insulating layer 120 insulating layer 130 insulating layer 140 insulating layer 150 insulating layer 200 conductive pattern 202 oxide layer 204 diffusion prevention film 206 carbon-containing Cu layer 210 conductive pattern 240 Conductive Pattern 300 CH Film 302 Diffusion Prevention Film 310 CH Film 312 Diffusion Prevention Film 320 CH Film 322 Diffusion Prevention Film 330 CH Film 332 Diffusion Prevention Film 340 CH Film 342 Diffusion Prevention Film

Claims (13)

SiOH、SiCOH、又は有機ポリマーからなる絶縁膜に、導電パターンを埋め込む埋込工程と、
前記絶縁膜及び前記導電パターンの表面を、炭化水素ガスを処理ガスに含むプラズマで処理する第1表面処理工程と、
前記処理ガスに、Si含有ガスを徐々に又は段階的に添加量を増大しながら添加してプラズマCVDを行うことにより、前記絶縁膜上及び前記導電パターン上に、SiCH膜、SiCHN膜、SiCHO膜、またはSiCHON膜からなる拡散防止膜を形成する膜形成工程と、
を備える半導体装置の製造方法。
An embedding step of embedding a conductive pattern in an insulating film made of SiOH, SiCOH, or an organic polymer;
A first surface treatment step of treating the surfaces of the insulating film and the conductive pattern with plasma containing a hydrocarbon gas in a treatment gas;
By adding a Si-containing gas to the processing gas gradually or stepwise while increasing the addition amount, plasma CVD is performed, so that a SiCH film, a SiCHN film, a SiCHO film is formed on the insulating film and the conductive pattern. Or a film forming step of forming a diffusion prevention film made of a SiCHON film,
A method for manufacturing a semiconductor device comprising:
請求項1に記載の半導体装置の製造方法において、
前記絶縁膜は複数の空孔を有するポーラス膜である半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
The method of manufacturing a semiconductor device, wherein the insulating film is a porous film having a plurality of holes.
請求項1または2に記載の半導体装置の製造方法において、
前記絶縁膜の比誘電率は2.7以下である半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1 or 2,
A method of manufacturing a semiconductor device, wherein the dielectric film has a relative dielectric constant of 2.7 or less.
請求項1〜3のいずれか一つに記載の半導体装置の製造方法において、
前記第1表面処理工程において、前記絶縁膜及び前記導電パターンの表面にCH膜又はCHN膜が形成される半導体装置の製造方法。
In the manufacturing method of the semiconductor device as described in any one of Claims 1-3,
A method of manufacturing a semiconductor device, wherein a CH film or a CHN film is formed on a surface of the insulating film and the conductive pattern in the first surface treatment step.
請求項4に記載の半導体装置の製造方法において、
前記膜形成工程において、前記拡散防止膜を前記CH膜又はCHN膜と連続するように形成する半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
A method of manufacturing a semiconductor device, wherein, in the film formation step, the diffusion prevention film is formed so as to be continuous with the CH film or the CHN film.
請求項5に記載の半導体装置の製造方法において、
前記膜形成工程は、前記第1表面処理工程における前記プラズマを維持したまま前記Si含有ガスの添加を開始することにより行われる半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 5,
The film forming step is a method for manufacturing a semiconductor device, which is performed by starting the addition of the Si-containing gas while maintaining the plasma in the first surface treatment step.
請求項1〜6のいずれか一つに記載の半導体装置の製造方法において、
前記拡散防止膜は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる半導体装置の製造方法。
In the manufacturing method of the semiconductor device as described in any one of Claims 1-6,
The diffusion prevention film is a method of manufacturing a semiconductor device in which the Si concentration increases gradually or stepwise as going upward.
請求項1〜7のいずれか一つに記載の半導体装置の製造方法において、
前記埋込工程と、前記第1表面処理工程の間に、前記絶縁膜及び前記導電パターンの表面を還元プラズマで処理する第2表面処理工程を備える半導体装置の製造方法。
In the manufacturing method of the semiconductor device as described in any one of Claims 1-7,
A method for manufacturing a semiconductor device, comprising: a second surface treatment step of treating the surfaces of the insulating film and the conductive pattern with reducing plasma between the embedding step and the first surface treatment step.
SiOH、SiCOH、又は有機ポリマーからなる絶縁膜と、
前記絶縁膜に埋め込まれた導電パターンと、
前記絶縁膜上及び前記導電パターン上に位置し、SiCH膜、SiCHN膜、SiCHO膜、またはSiCHON膜からなる拡散防止膜と、
を備え、
前記拡散防止膜は、上に行くに従って、徐々にまたは段階的にSiの濃度が高くなる半導体装置。
An insulating film made of SiOH, SiCOH, or an organic polymer;
A conductive pattern embedded in the insulating film;
A diffusion prevention film located on the insulating film and the conductive pattern and made of a SiCH film, a SiCHN film, a SiCHO film, or a SiCHON film;
With
The diffusion preventing film is a semiconductor device in which the concentration of Si increases gradually or stepwise as it goes upward.
請求項9に記載の半導体装置において、
前記絶縁膜及び前記導電パターンと、前記拡散防止膜の間に、CH膜又はCHN膜を備える半導体装置。
The semiconductor device according to claim 9.
A semiconductor device comprising a CH film or a CHN film between the insulating film and the conductive pattern and the diffusion prevention film.
請求項9又は10に記載の半導体装置において、
前記絶縁膜は複数の空孔を有するポーラス膜である半導体装置。
The semiconductor device according to claim 9 or 10,
The semiconductor device, wherein the insulating film is a porous film having a plurality of holes.
請求項9〜11のいずれか一つに記載の半導体装置において、
前記絶縁膜は比誘電率が2.7以下である半導体装置。
The semiconductor device according to any one of claims 9 to 11,
The insulating film has a relative dielectric constant of 2.7 or less.
請求項9〜12のいずれか一つに記載の半導体装置において、
前記導電パターンは、表層にCを含有する半導体装置。
The semiconductor device according to any one of claims 9 to 12,
The conductive pattern is a semiconductor device containing C in a surface layer.
JP2008290977A 2008-11-13 2008-11-13 Semiconductor device manufacturing method and semiconductor device Active JP5133852B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008290977A JP5133852B2 (en) 2008-11-13 2008-11-13 Semiconductor device manufacturing method and semiconductor device
US12/591,193 US7956467B2 (en) 2008-11-13 2009-11-12 Semiconductor device and method of manufacturing the same
US13/064,940 US8293637B2 (en) 2008-11-13 2011-04-27 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290977A JP5133852B2 (en) 2008-11-13 2008-11-13 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010118513A true JP2010118513A (en) 2010-05-27
JP5133852B2 JP5133852B2 (en) 2013-01-30

Family

ID=42164450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290977A Active JP5133852B2 (en) 2008-11-13 2008-11-13 Semiconductor device manufacturing method and semiconductor device

Country Status (2)

Country Link
US (2) US7956467B2 (en)
JP (1) JP5133852B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133852B2 (en) * 2008-11-13 2013-01-30 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method and semiconductor device
US8435830B2 (en) * 2009-03-18 2013-05-07 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor devices
CN103035564B (en) * 2011-09-29 2015-03-11 中芯国际集成电路制造(上海)有限公司 Semiconductor device and production method thereof
TWI680535B (en) 2016-06-14 2019-12-21 美商應用材料股份有限公司 Oxidative volumetric expansion of metals and metal containing compounds
TWI719262B (en) 2016-11-03 2021-02-21 美商應用材料股份有限公司 Deposition and treatment of films for patterning
JP2020501344A (en) 2016-11-08 2020-01-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shape control of bottom-up pillars for patterning applications
US10770349B2 (en) 2017-02-22 2020-09-08 Applied Materials, Inc. Critical dimension control for self-aligned contact patterning
US10636659B2 (en) 2017-04-25 2020-04-28 Applied Materials, Inc. Selective deposition for simplified process flow of pillar formation
US10840186B2 (en) 2017-06-10 2020-11-17 Applied Materials, Inc. Methods of forming self-aligned vias and air gaps
TW201906035A (en) 2017-06-24 2019-02-01 美商微材料有限責任公司 Method of producing fully self-aligned vias and contacts
US10510602B2 (en) 2017-08-31 2019-12-17 Mirocmaterials LLC Methods of producing self-aligned vias
US10573555B2 (en) 2017-08-31 2020-02-25 Micromaterials Llc Methods of producing self-aligned grown via
TWI778118B (en) * 2017-09-05 2022-09-21 美商應用材料股份有限公司 Self-aligned structures from sub-oxides
US10600688B2 (en) 2017-09-06 2020-03-24 Micromaterials Llc Methods of producing self-aligned vias
JP2019106538A (en) 2017-12-07 2019-06-27 マイクロマテリアルズ エルエルシー Methods for controllable metal and barrier-liner recess
EP3499557A1 (en) 2017-12-15 2019-06-19 Micromaterials LLC Selectively etched self-aligned via processes
KR20190104902A (en) 2018-03-02 2019-09-11 마이크로머티어리얼즈 엘엘씨 Methods for removing metal oxides
US10790191B2 (en) 2018-05-08 2020-09-29 Micromaterials Llc Selective removal process to create high aspect ratio fully self-aligned via
TW202011547A (en) 2018-05-16 2020-03-16 美商微材料有限責任公司 A method for creating a fully self-aligned via
WO2019236350A1 (en) 2018-06-08 2019-12-12 Micromaterials Llc A method for creating a fully self-aligned via
US11164938B2 (en) 2019-03-26 2021-11-02 Micromaterials Llc DRAM capacitor module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264648A (en) * 1995-03-23 1996-10-11 Nec Corp Semiconductor device
JP2002203899A (en) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd Method for forming copper interconnection structure
JP2003031580A (en) * 2001-07-18 2003-01-31 Toshiba Corp Method of manufacturing semiconductor device
JP2003142580A (en) * 2001-08-24 2003-05-16 Canon Sales Co Inc Method for manufacturing semiconductor device
JP2004146682A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JP2005223012A (en) * 2004-02-03 2005-08-18 Nec Electronics Corp Semiconductor device
JP2008511758A (en) * 2004-09-01 2008-04-17 アプライド マテリアルズ インコーポレイテッド Functionally graded dielectric layer deposition method by chemical vapor deposition using viscous precursors
JP2008182174A (en) * 2006-12-28 2008-08-07 Tokyo Electron Ltd Semiconductor device and method for manufacturing the same
WO2008118729A1 (en) * 2007-03-23 2008-10-02 International Business Machines Corporation Structure and method for sicoh interfaces with increased mechanical strength
JP2008235480A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Method of manufacturing semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066332B2 (en) * 2002-10-10 2008-03-26 日本エー・エス・エム株式会社 Method for manufacturing silicon carbide film
US6991959B2 (en) * 2002-10-10 2006-01-31 Asm Japan K.K. Method of manufacturing silicon carbide film
JP5133852B2 (en) * 2008-11-13 2013-01-30 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264648A (en) * 1995-03-23 1996-10-11 Nec Corp Semiconductor device
JP2002203899A (en) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd Method for forming copper interconnection structure
JP2003031580A (en) * 2001-07-18 2003-01-31 Toshiba Corp Method of manufacturing semiconductor device
JP2003142580A (en) * 2001-08-24 2003-05-16 Canon Sales Co Inc Method for manufacturing semiconductor device
JP2004146682A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JP2005223012A (en) * 2004-02-03 2005-08-18 Nec Electronics Corp Semiconductor device
JP2008511758A (en) * 2004-09-01 2008-04-17 アプライド マテリアルズ インコーポレイテッド Functionally graded dielectric layer deposition method by chemical vapor deposition using viscous precursors
JP2008182174A (en) * 2006-12-28 2008-08-07 Tokyo Electron Ltd Semiconductor device and method for manufacturing the same
JP2008235480A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Method of manufacturing semiconductor device
WO2008118729A1 (en) * 2007-03-23 2008-10-02 International Business Machines Corporation Structure and method for sicoh interfaces with increased mechanical strength

Also Published As

Publication number Publication date
US20100117234A1 (en) 2010-05-13
US7956467B2 (en) 2011-06-07
JP5133852B2 (en) 2013-01-30
US8293637B2 (en) 2012-10-23
US20110207318A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5133852B2 (en) Semiconductor device manufacturing method and semiconductor device
US9355955B2 (en) Semiconductor device
JP4068072B2 (en) Semiconductor device and manufacturing method thereof
US20050020074A1 (en) Sealing porous dielectrics with silane coupling reagents
WO2004107434A1 (en) Wiring structure and method for producing same
JP2012038961A (en) Semiconductor device and method of manufacturing the same
JP4675258B2 (en) Semiconductor device manufacturing method and semiconductor device
WO2007091574A1 (en) Multilayer wiring structure, and method for fabricating multilayer wiring
JP2001223269A (en) Semiconductor device and manufacturing method therefor
JP2008147644A (en) Method of minimizing wet etch undercuts and carrying out pore-sealing to super-low k (k&lt;2.5) dielectrics
JP2004095865A (en) Semiconductor device and manufacturing method therefor
JP2004235548A (en) Semiconductor device and its fabricating method
JP2006128575A (en) Semiconductor device and manufacturing method thereof
JP2009164471A (en) High-reliability copper wiring and method of manufacturing the same
JP2006024641A (en) Semiconductor device and its manufacturing method
JP4335932B2 (en) Semiconductor device manufacturing and manufacturing method thereof
JP4698813B2 (en) Semiconductor device and manufacturing method thereof
KR101152203B1 (en) Semiconductor device and manufacturing method therefor
JP2009164354A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2010080607A (en) Method of manufacturing semiconductor device
JP2005183766A (en) Semiconductor device and its manufacturing method
JP2009188101A (en) Semiconductor device, and manufacturing method thereof
JP2006319116A (en) Semiconductor device and its manufacturing method
TW200523993A (en) Method for fabricating semiconductor device
WO2010010668A1 (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350