JP2010117340A - Magnetizer and magnetic particle testing device - Google Patents

Magnetizer and magnetic particle testing device Download PDF

Info

Publication number
JP2010117340A
JP2010117340A JP2009136656A JP2009136656A JP2010117340A JP 2010117340 A JP2010117340 A JP 2010117340A JP 2009136656 A JP2009136656 A JP 2009136656A JP 2009136656 A JP2009136656 A JP 2009136656A JP 2010117340 A JP2010117340 A JP 2010117340A
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
magnetizer
magnetic particle
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009136656A
Other languages
Japanese (ja)
Other versions
JP5399782B2 (en
Inventor
Mitsutaka Hori
充孝 堀
Banzragch Batsaikhan
バトサイハン・バンズラグチ
Mizuho Kasahara
瑞穂 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Denji Sokki Co Ltd
Original Assignee
Nihon Denji Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denji Sokki Co Ltd filed Critical Nihon Denji Sokki Co Ltd
Priority to JP2009136656A priority Critical patent/JP5399782B2/en
Publication of JP2010117340A publication Critical patent/JP2010117340A/en
Application granted granted Critical
Publication of JP5399782B2 publication Critical patent/JP5399782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect decline of a magnetomotive force of a magnetizer by a simple constitution, and to improve reliability and workability of measurement. <P>SOLUTION: The magnetizer 1 and a magnetic particle testing device 20 include: an excitation coil 4 wound around a magnetic core 2 positioned close to an inspection object 10, for generating a magnetic path in the magnetic core 2; a first winding coil 6 wound around the magnetic core 2; and a first light emitting part 12 connected to the first winding coil 6, for emitting a visible ray when the magnetomotive force of the excitation coil 4 is stronger than a prescribed value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄鋼材、鉄鋼部品等の被検査物の欠陥を磁粉探傷する際に使用される磁化器(ハンドマグナ)及び磁粉探傷装置に関する。   The present invention relates to a magnetizer (hand magna) and a magnetic particle flaw detection device used when magnetic particle flaw detection is performed on a defect of an inspection object such as a steel material or a steel part.

造船、航空、鉄道、原子力等の広い範囲の技術分野において、鉄鋼材、鉄鋼部品等の被検査物を検査する非破壊検査法として、磁粉探傷試験法が使用されている。磁粉探傷試験法は、被検査物を磁化し、欠陥部の漏洩磁束が発生する領域に磁粉液を散布し、紫外線を照射して磁粉模様を観察するものであり、微細な欠陥まで検出可能という特徴を有している。   In a wide range of technical fields such as shipbuilding, aviation, railways, and nuclear power, the magnetic particle testing method is used as a nondestructive inspection method for inspecting inspected objects such as steel materials and steel parts. The magnetic particle testing method is to magnetize the object to be inspected, spray the magnetic powder liquid onto the area where the leakage magnetic flux of the defect occurs, and observe the magnetic powder pattern by irradiating with ultraviolet rays. It has characteristics.

最近は、可搬式でバッテリー駆動の交流極間式磁粉探傷装置が開発されている。交流極間式磁粉探傷装置は、電源ケーブルを配線する必要が無いことから場所の制約を受けることなく、作業者は少ない労力でありながら短時間で磁粉探傷試験を行うことができる。
特許文献1には、交流極間式磁粉探傷装置の一例が開示される。
Recently, a portable battery-operated AC interpole magnetic particle flaw detector has been developed. The AC interpole type magnetic particle flaw detector does not require wiring of a power cable, so that the operator can perform a magnetic particle flaw detection test in a short time with little effort without being restricted by a place.
Patent Document 1 discloses an example of an AC interpole type magnetic particle flaw detector.

図8は、従来の磁粉探傷装置40の構成を示す図である。磁粉探傷装置40は、バッテリー電源42と、バッテリー電源42に接続されるインバータ回路44と、インバータ回路44に接続され、被検査物50の欠陥を検出する磁化器46と、を備える。また、磁粉探傷装置40は、バッテリー電源42の電圧の低下を検出する電源電圧検出回路48を備え、バッテリーの交換時期を知らせる。   FIG. 8 is a diagram showing a configuration of a conventional magnetic particle flaw detector 40. The magnetic particle flaw detector 40 includes a battery power source 42, an inverter circuit 44 connected to the battery power source 42, and a magnetizer 46 that is connected to the inverter circuit 44 and detects a defect of the inspection object 50. Further, the magnetic particle flaw detector 40 includes a power supply voltage detection circuit 48 that detects a decrease in the voltage of the battery power supply 42 and notifies the battery replacement time.

図9は、磁粉探傷装置40が備える電源電圧検出回路48の一例を示す。
電源電圧検出回路48は、比較器、論理回路、警報回路、発光ダイオード回路等を備える。従来の磁粉探傷装置は、磁粉に紫外線を照射する紫外線照射用発光ダイオード(LED:Light Emitting Diode)と、紫外線照射用発光ダイオードを発光させるための不図示の専用電源と、を備える。
FIG. 9 shows an example of the power supply voltage detection circuit 48 provided in the magnetic particle flaw detector 40.
The power supply voltage detection circuit 48 includes a comparator, a logic circuit, an alarm circuit, a light emitting diode circuit, and the like. A conventional magnetic particle flaw detector includes an ultraviolet light emitting diode (LED) that irradiates magnetic powder with ultraviolet light, and a dedicated power source (not shown) for causing the ultraviolet light emitting diode to emit light.

特開2007−33043号公報JP 2007-33043 A

一般に磁粉探傷装置40は、バッテリー電源42の電圧の低下にともなう起磁力の低下を検出する手段を備えていなかった。このため、磁化器46の起磁力が低下した状態で磁粉探傷試験を行う場合があり、測定精度と測定の信頼性が低下することがあった。
また、磁化器46に起磁力を測定するための専用外付回路を設ける場合もあった。しかし、磁化器46に専用外付回路を設けると、磁粉探傷装置40が複雑化かつ大型化していた。
In general, the magnetic particle flaw detector 40 does not include means for detecting a decrease in magnetomotive force due to a decrease in the voltage of the battery power source 42. For this reason, the magnetic particle flaw detection test may be performed in a state where the magnetomotive force of the magnetizer 46 is lowered, and the measurement accuracy and measurement reliability may be lowered.
In some cases, the magnetizer 46 is provided with a dedicated external circuit for measuring the magnetomotive force. However, if a dedicated external circuit is provided in the magnetizer 46, the magnetic particle flaw detector 40 becomes complicated and large.

本発明は、簡単な構成で起磁力の低下を検出し、測定の信頼性と作業性を向上することが可能な磁化器及び磁粉探傷装置を提供することを目的とする。   An object of the present invention is to provide a magnetizer and a magnetic particle flaw detector capable of detecting a decrease in magnetomotive force with a simple configuration and improving measurement reliability and workability.

上記目的を達成するために、本発明に係る磁化器は、被検査物に近接される磁心コアに巻き回され、磁心コアに磁路を発生させる励磁コイルと、磁心コアに巻き回される第1の巻き線コイルと、第1の巻き線コイルに接続され、励磁コイルの起磁力が所定の値以上である場合に、可視光線を発光する第1の発光部と、を備える。   In order to achieve the above object, a magnetizer according to the present invention is wound around a magnetic core close to an object to be inspected, an excitation coil for generating a magnetic path in the magnetic core, and a first coil wound around the magnetic core. 1 winding coil, and a first light emitting unit that is connected to the first winding coil and emits visible light when the magnetomotive force of the exciting coil is equal to or greater than a predetermined value.

また、本発明に係る磁粉探傷装置は、電源から供給される直流電力を交流電力に変換するインバータ回路と、インバータ回路に接続され、被検査物に近接される磁心コアに巻き回され、磁心コアに磁路を発生させる励磁コイルと、磁心コアに巻き回される第1の巻き線コイルと、第1の巻き線コイルに接続され、励磁コイルの起磁力が所定の値以上である場合に、可視光線を発光する第1の発光部と、を備える。   The magnetic particle flaw detector according to the present invention includes an inverter circuit that converts DC power supplied from a power source into AC power, and is wound around a magnetic core that is connected to the inverter circuit and is close to an object to be inspected. An excitation coil that generates a magnetic path, a first winding coil wound around a magnetic core, and a first winding coil connected to the first winding coil, and the magnetomotive force of the excitation coil is a predetermined value or more, A first light emitting unit that emits visible light.

本発明によれば、第1の巻き線コイルに可視光線を発光する第1の発光部を接続することによって、簡単な構成でありながら、バッテリーの交換時期を確実に検知することが可能となり、測定の信頼性と作業性を向上するという効果を奏する。   According to the present invention, by connecting the first light-emitting unit that emits visible light to the first winding coil, it is possible to reliably detect the battery replacement time with a simple configuration, It has the effect of improving measurement reliability and workability.

本発明の第1の実施形態に係る磁化器の構成例を示す外観斜視図である。It is an appearance perspective view showing an example of composition of a magnetizer concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る磁粉探傷装置の内部構成例を示すブロック図である。It is a block diagram which shows the example of an internal structure of the magnetic particle testing apparatus which concerns on the 1st Embodiment of this invention. 作業者が、本発明の第1の実施形態に係る磁粉探傷装置を携行場合の使用例を示す説明図である。It is explanatory drawing which shows the usage example in case an operator carries the magnetic particle testing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る4極交流極間磁化器の例を示す図である。It is a figure which shows the example of the 4 pole alternating current pole magnetizer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る4極交流極間磁化器の例を示す図である。It is a figure which shows the example of the 4 pole alternating current pole magnetizer which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る磁粉探傷装置の構成例を示す外観斜視図である。It is an external appearance perspective view which shows the structural example of the magnetic particle testing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る磁粉探傷装置の内部構成例を示すブロック図である。It is a block diagram which shows the example of an internal structure of the magnetic particle testing apparatus which concerns on the 2nd Embodiment of this invention. 従来の磁粉探傷装置の構成例を示す図である。It is a figure which shows the structural example of the conventional magnetic particle flaw detector. 従来の磁粉探傷装置が備える電源電圧検出回路の一例を示す図である。It is a figure which shows an example of the power supply voltage detection circuit with which the conventional magnetic particle testing apparatus is provided.

本発明の第1の実施形態について、図1〜図5を参照して説明する。なお、同一の構成要素には同一の参照符号を付して説明を省略する。   A first embodiment of the present invention will be described with reference to FIGS. In addition, the same referential mark is attached | subjected to the same component and description is abbreviate | omitted.

図1は、本発明の第1の実施形態に係る磁化器1の一例を示す図である。
磁化器1は、被検査物10に近接されるU字形状の磁心コア2に巻き回され、磁心コア2に磁路を発生させる励磁コイル4と、磁心コア2に巻き回される第1の巻き線コイル6と、第1の巻き線コイル6に接続され、励磁コイル4の起磁力が所定の値以上である場合に、可視光線を発光する第1の発光部12と、を備える。また、磁化器1は、磁心コア2に巻き回される第2の巻き線コイル8を備える。
FIG. 1 is a diagram illustrating an example of a magnetizer 1 according to the first embodiment of the present invention.
The magnetizer 1 is wound around a U-shaped magnetic core 2 close to the object to be inspected 10, an excitation coil 4 that generates a magnetic path in the magnetic core 2, and a first wound around the magnetic core 2. A winding coil 6 and a first light emitting unit 12 that emits visible light when the magnetomotive force of the exciting coil 4 is greater than or equal to a predetermined value are connected to the first winding coil 6. In addition, the magnetizer 1 includes a second winding coil 8 that is wound around the magnetic core 2.

第1の発光部12は、可視光線を発光することによって、起磁力(電源電圧)が所定の値以上あるか否かを作業者に表示する。第2の巻き線コイル8には、紫外線を発光する第2の発光部16が接続される。
本例では、第1の発光部12として可視発光ダイオードを用い、第2の発光部16として紫外線照射用発光ダイオードを用いる。
The 1st light emission part 12 displays to a worker whether a magnetomotive force (power supply voltage) is more than predetermined value by light-emitting visible light. A second light emitting unit 16 that emits ultraviolet rays is connected to the second winding coil 8.
In this example, a visible light emitting diode is used as the first light emitting unit 12, and an ultraviolet light emitting light emitting diode is used as the second light emitting unit 16.

磁心コア2は、基底部を被検査物10に近接又は接触させることによって、磁心コア2と被検査物10で磁気ループを形成する。磁心コア2は、作業者が携行できる大きさと重さで形成される。磁心コア2は、3%珪素鋼板により形成されるカットコアにより構成されても良い。作業者は、被検査物10の欠陥部の表面を磁粉液で浸すことにより被検査物10の欠陥を探傷することができる。   The magnetic core 2 forms a magnetic loop between the magnetic core 2 and the inspection object 10 by bringing the base portion close to or in contact with the inspection object 10. The magnetic core 2 is formed with a size and weight that can be carried by an operator. The magnetic core 2 may be constituted by a cut core formed of a 3% silicon steel plate. The operator can detect the defect of the inspection object 10 by immersing the surface of the defect portion of the inspection object 10 with the magnetic powder liquid.

図2は、磁化器1を備える磁粉探傷装置20の内部構成例を示すブロック図である。   FIG. 2 is a block diagram illustrating an internal configuration example of the magnetic particle flaw detector 20 including the magnetizer 1.

磁粉探傷装置20は、バッテリー電源22と、バッテリー電源22に接続されるインバータ回路24と、インバータ回路24に接続され、被検査物10の欠陥を検出する磁化器1とを備える。   The magnetic particle flaw detector 20 includes a battery power source 22, an inverter circuit 24 connected to the battery power source 22, and a magnetizer 1 connected to the inverter circuit 24 and detecting a defect of the inspection object 10.

バッテリー電源22の直流電力は、インバータ回路によって交流電力に変換され、電流の周波数と電流の大きさが制御される。電流の周波数と大きさを可変にできるので、磁化器1及び磁化器1を用いる磁粉探傷装置20により、被検査物10の磁化及び脱磁の両方を行うことができる。   The DC power of the battery power source 22 is converted into AC power by an inverter circuit, and the current frequency and current magnitude are controlled. Since the frequency and magnitude of the current can be made variable, both the magnetization and demagnetization of the inspection object 10 can be performed by the magnetizer 1 and the magnetic particle flaw detector 20 using the magnetizer 1.

鉛蓄電池は、環境に対する影響と、充放電の繰り返しに不向きであるという欠点を有する。このため、バッテリー電源22として、例えば、ニッケル水素電池が使用される。例えば、バッテリー電源22として、24Vのニッケル水素電池を昇圧して64Vでインバータ回路24を駆動し、10〜50Hzの交流磁化電流を励磁コイル4に通電する。これにより、磁心コア2に磁路が発生し、磁心コア2の両端部に近接する被検査物10が磁化される。   Lead-acid batteries have the disadvantages of being unsuitable for environmental impacts and repeated charge / discharge. For this reason, for example, a nickel metal hydride battery is used as the battery power source 22. For example, as the battery power source 22, a 24 V nickel-metal hydride battery is boosted and the inverter circuit 24 is driven at 64 V, and an AC magnetizing current of 10 to 50 Hz is supplied to the exciting coil 4. As a result, a magnetic path is generated in the magnetic core 2, and the object to be inspected 10 adjacent to both ends of the magnetic core 2 is magnetized.

磁粉探傷装置20は、商用周波数より低い周波数の交流電流を用いるので、インピーダンスを低く抑えることができ、低電圧で磁粉探傷検査が可能となる。また、商用周波数より低い周波数の交流電流を用いるので、電圧波形は、完全な正弦波とせずに、高調波成分を含む電圧波形を用いている。   Since the magnetic particle flaw detector 20 uses an alternating current having a frequency lower than the commercial frequency, the impedance can be kept low, and a magnetic particle flaw inspection can be performed at a low voltage. In addition, since an alternating current having a frequency lower than the commercial frequency is used, the voltage waveform is not a complete sine wave but a voltage waveform including a harmonic component.

ここで、第1の巻き線コイル6の巻き線数は、以下の条件に従って定められる。本例では、磁心コア2の有する起磁力が磁粉探傷検査に必要な所定の値以上である場合に、第1の発光部12が点灯するようにしている。   Here, the number of windings of the first winding coil 6 is determined according to the following conditions. In this example, when the magnetomotive force of the magnetic core 2 is greater than or equal to a predetermined value required for magnetic particle inspection, the first light emitting unit 12 is turned on.

例えば、第1の発光部12を点灯させるための巻き数は、dΦ/dt×N=1.5(Wb/m2)×0.02×0.02/0.008×N=1Vの関係式から、N=13ターンであることが求められる。   For example, the number of turns for turning on the first light emitting unit 12 is dΦ / dt × N = 1.5 (Wb / m 2) × 0.02 × 0.02 / 0.008 × N = 1V Therefore, it is required that N = 13 turns.

一方、第2の発光部16から発光された紫外線を、被検査物10の欠陥部に吹き付けられた磁粉に照射することによって、作業者は被検査物10の欠陥を検査できる。第2の発光部16は、不図示の収納容器に収納される。   On the other hand, the operator can inspect the defect of the inspection object 10 by irradiating the magnetic powder blown to the defect part of the inspection object 10 with the ultraviolet light emitted from the second light emitting unit 16. The 2nd light emission part 16 is accommodated in the storage container not shown.

例えば、第2の発光部16を点灯させるための巻き数は、dΦ/dt×N=1.5(Wb/m2)×0.02×0.02/0.008×N=5Vの関係式から求めると、N=67ターンである。第2の巻き線コイル8のターン数を、例えば、N=100ターン程度にすることにより、第2の発光部16は磁化器1から電力の供給を受けることが可能となる。   For example, the number of turns for turning on the second light emitting unit 16 is dΦ / dt × N = 1.5 (Wb / m 2) × 0.02 × 0.02 / 0.008 × N = 5V. From this, N = 67 turns. By setting the number of turns of the second winding coil 8 to, for example, about N = 100 turns, the second light emitting unit 16 can receive power from the magnetizer 1.

磁心コア2は、3%珪素鋼板により形成されるカットコアにより構成される。3%珪素鋼板により形成される磁心コア2は、珪素鋼板を積層して形成される磁心コアと比較して、透磁率を高くすることができ、一定の電圧に対して励磁電流を小さくすることができる。   The magnetic core 2 is composed of a cut core formed of a 3% silicon steel plate. The magnetic core 2 formed of 3% silicon steel sheet can increase the magnetic permeability compared to the magnetic core formed by laminating silicon steel sheets, and reduce the excitation current for a certain voltage. Can do.

これにより、磁心コア2の断面積と励磁コイル4の巻き線径を小さくし、磁化器1と磁粉探傷装置20を小型化し、軽量化することが可能となる。また、バッテリー電源22を使用する場合に、一回の充電により使用できる時間が長くなるので、作業者は検査範囲を拡大することが可能となる。   Thereby, the cross-sectional area of the magnetic core 2 and the winding diameter of the exciting coil 4 can be reduced, and the magnetizer 1 and the magnetic particle flaw detector 20 can be reduced in size and weight. In addition, when the battery power source 22 is used, since the time that can be used by one charge becomes long, the operator can expand the inspection range.

図3は、作業者が、磁粉探傷装置20,20′を携行した場合の使用例を示す。   FIG. 3 shows an example of use when the operator carries the magnetic particle flaw detectors 20 and 20 ′.

図3Aは、バッテリー電源22に接続された磁粉探傷装置20の使用例を示す。
作業者は、収納容器25に収納されたバッテリー電源22とインバータ回路24を、ベルトストラップ27又はショルダーストラップ28を用いて装着する。そして、作業者は、バッテリー電源22及びインバータ回路24に接続ケーブル26を介して接続される磁化器1を携行する。
FIG. 3A shows a usage example of the magnetic particle flaw detector 20 connected to the battery power source 22.
The worker wears the battery power source 22 and the inverter circuit 24 stored in the storage container 25 using the belt strap 27 or the shoulder strap 28. Then, the worker carries the magnetizer 1 connected to the battery power source 22 and the inverter circuit 24 via the connection cable 26.

磁粉探傷装置20において、商用交流電源に接続する電源ケーブルが不要となるので、ガスタンク、船底等の作業において、作業性が大幅に向上する。また、磁粉探傷装置20は、ベルトストラップ27又はショルダーストラップ28により装着することが可能なので、作業者が梯子を昇降したり、高所や狭所で作業したりする場合における作業性、安全性を大幅に向上することが可能である。   In the magnetic particle flaw detector 20, since a power cable connected to a commercial AC power supply is not required, workability is greatly improved in operations such as gas tanks and ship bottoms. Further, since the magnetic particle flaw detector 20 can be attached by the belt strap 27 or the shoulder strap 28, the workability and safety when the worker moves up and down the ladder or works in a high place or a narrow place are improved. It can be greatly improved.

図3Bは、商用電源から電力を取り込む磁粉探傷装置20′の使用例を示す。
磁粉探傷装置20′は、バッテリー電源22の代わりに交流電力を商用電源から供給する電源プラグ29を備えた点が磁粉探傷装置20と異なる。
このように磁粉探傷装置20′を構成すると、バッテリー電源22の分だけ磁粉探傷装置20′を軽量化することができる。
FIG. 3B shows a usage example of the magnetic particle flaw detector 20 ′ that takes in electric power from a commercial power source.
The magnetic particle flaw detector 20 ′ is different from the magnetic particle flaw detector 20 in that it includes a power plug 29 that supplies AC power from a commercial power source instead of the battery power source 22.
If the magnetic particle flaw detector 20 'is configured in this way, the magnetic particle flaw detector 20' can be reduced in weight by the amount of the battery power source 22.

図4A〜図4E、図5A,図5Bは、2極交流極間磁化器の電磁石を2個組み合わせて、4極交流極間磁化器を構成する場合の例を示す。
図4A〜図4E、図5A,図5Bは、それぞれ磁化器1、磁心コア2、及び励磁コイル4の配置関係の例を示している。すなわち、磁石を組み合わせる形態として、例えば、図4Aに示されるX型、図4Bに示されるH型、図4Cに示されるHL型、図4Dに示されるD型、図4Eに示されるC型、又は、図5A,図5Bに示されるR型を用いる。
4A to 4E, FIG. 5A, and FIG. 5B show an example in which two electromagnets of a two-pole AC interpole magnetizer are combined to form a four-pole AC interpole magnetizer.
4A to 4E, 5A, and 5B show examples of the arrangement relationship of the magnetizer 1, the magnetic core 2, and the exciting coil 4, respectively. That is, as a form of combining magnets, for example, the X type shown in FIG. 4A, the H type shown in FIG. 4B, the HL type shown in FIG. 4C, the D type shown in FIG. 4D, the C type shown in FIG. Alternatively, the R type shown in FIGS. 5A and 5B is used.

このような4極交流極間磁化器は、隣り合う磁極が異種となるように構成する。また、回転磁界を発生させるためには、2組の磁化電流の間に60〜120度の位相差を生じさせるように構成する。この回転磁界により、磁化器1の設置方向によらずに被検査物10を磁粉探傷することが可能となる。   Such a 4-pole AC interpole magnetizer is configured such that adjacent magnetic poles are different. In order to generate a rotating magnetic field, a phase difference of 60 to 120 degrees is generated between two sets of magnetizing currents. This rotating magnetic field makes it possible to perform a magnetic particle flaw detection on the inspection object 10 regardless of the installation direction of the magnetizer 1.

以上説明した第1の実施形態に係る磁化器1と磁粉探傷装置20によれば、第1の巻き線コイル6に第1の発光部12を接続することにより、起磁力の低下を表示するための専用回路を別途設けることなく、磁心コア2の起磁力低下を検出することが可能となる。これにより、磁化器1又は磁粉探傷装置20を使用する作業者は、バッテリー電源22を交換する時期を知ることができる。また、磁粉探傷装置20は、起磁力低下を表示する専用回路を備える磁粉探傷装置と比較して、小型化、低価格化を実現することができる。   According to the magnetizer 1 and the magnetic particle flaw detector 20 according to the first embodiment described above, a decrease in magnetomotive force is displayed by connecting the first light emitting unit 12 to the first winding coil 6. Therefore, it is possible to detect a decrease in magnetomotive force of the magnetic core 2 without separately providing a dedicated circuit. Thereby, the operator who uses the magnetizer 1 or the magnetic particle flaw detector 20 can know when to replace the battery power source 22. Further, the magnetic particle flaw detector 20 can be reduced in size and price as compared with a magnetic particle flaw detector provided with a dedicated circuit for displaying a magnetomotive force decrease.

また、磁心コア2に第2の発光部16が装着されるので、第2の発光部16を手に持って作業する必要が無くなり、作業者の作業性が向上するという効果がある。また、バッテリー電源22を携行しながら、磁化器1と、第2の発光部16を動作させることができる。このため、商用交流電源に接続するための交流電源ケーブルが不要となり作業性が向上するという効果がある。   In addition, since the second light emitting unit 16 is mounted on the magnetic core 2, it is not necessary to work with the second light emitting unit 16 in hand, thereby improving the workability of the operator. In addition, the magnetizer 1 and the second light emitting unit 16 can be operated while carrying the battery power source 22. This eliminates the need for an AC power cable for connection to a commercial AC power supply, thereby improving workability.

また、第2の発光部16に必要な電力は、第2の巻き線コイル8と励磁コイル4を介して、バッテリー電源22から供給される。これにより、第2の発光部16を発光させるための別電源が不要となり、磁化器1と磁粉探傷装置20を軽量化できるという効果がある。   In addition, the electric power necessary for the second light emitting unit 16 is supplied from the battery power source 22 via the second winding coil 8 and the excitation coil 4. This eliminates the need for a separate power source for causing the second light emitting unit 16 to emit light, and has the effect of reducing the weight of the magnetizer 1 and the magnetic particle flaw detector 20.

次に、本発明の第2の実施の形態に係る磁化器30と磁粉探傷装置36について説明する。以下の説明において、既に第1の実施の形態で説明した図1及び図2に対応する部分には同一符号を付し、詳細な説明を省略する。   Next, a magnetizer 30 and a magnetic particle flaw detector 36 according to a second embodiment of the present invention will be described. In the following description, parts corresponding to those in FIGS. 1 and 2 already described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6は、磁化器30の外部構成例を示す外観斜視図である。
磁化器30は、磁心コア2の一端に取り付けられる収納部材31と、収納部材31に収納される励磁コイル4,第2の巻き線コイル8及び整流器32を備える。収納部材31は、適宜磁心コア2から取り外し可能であり、作業者がメンテナンスをしやすい構成となっている。整流器32には、コンデンサ等の電子部品が組み込まれており、第2の発光部16に接続される。このため、第2の発光部16には、整流器32が交流電力を変換した直流電力が供給される。
FIG. 6 is an external perspective view showing an external configuration example of the magnetizer 30.
The magnetizer 30 includes a storage member 31 attached to one end of the magnetic core 2, an excitation coil 4 stored in the storage member 31, a second winding coil 8, and a rectifier 32. The storage member 31 can be removed from the magnetic core 2 as appropriate, and is configured to be easily maintained by an operator. The rectifier 32 incorporates an electronic component such as a capacitor and is connected to the second light emitting unit 16. For this reason, the second light emitting unit 16 is supplied with the DC power obtained by converting the AC power by the rectifier 32.

また、収納部材31は、第2の発光部16の照射方向を任意に変えるための支持部33を備える。支持部33によって、第2の発光部16の回転軸が支持されるため、被検査物10の任意の場所に紫外線を照射できる。   The storage member 31 includes a support portion 33 for arbitrarily changing the irradiation direction of the second light emitting portion 16. Since the rotating shaft of the second light emitting unit 16 is supported by the support unit 33, it is possible to irradiate ultraviolet rays to any place of the inspection object 10.

また、磁心コア2の下面には、作業者が被検査物10の磁化を行う際にオン/オフの切替えを行うスイッチ34が取り付けられ、磁心コア2の両端部には、先端部を折り曲げ可能なツメ部35が取り付けられる。ツメ部35は、磁心コア2から着脱可能としてあり、被検査物10の形状に合わせて任意の角度に折り曲げ、被検査物10を確実に磁化することが可能である。   Further, a switch 34 is mounted on the lower surface of the magnetic core 2 to switch on / off when the operator magnetizes the object 10 to be inspected. A claw portion 35 is attached. The claw portion 35 can be attached to and detached from the magnetic core 2 and can be bent at an arbitrary angle according to the shape of the inspection object 10 so that the inspection object 10 can be surely magnetized.

なお、本例では、収納部材31の下層に励磁コイル4を配置し、上層に第2の巻き線コイル8を配置する2層構造としている。絶縁コーティングされた励磁コイル4の上に第2の巻き線コイル8が巻き回されるため、励磁コイル4と第2の巻き線コイル8は短絡しない。また、第1の巻き線コイル6と第1の発光部12は、磁心コア2に埋め込まれており、図6に図示されないものの、作業者は磁化器30を上面から見た場合に、第1の発光部12の点灯又は消灯を確認できる。   In this example, the excitation coil 4 is arranged in the lower layer of the storage member 31 and the second winding coil 8 is arranged in the upper layer. Since the second winding coil 8 is wound on the insulating coating exciting coil 4, the exciting coil 4 and the second winding coil 8 are not short-circuited. In addition, the first winding coil 6 and the first light emitting unit 12 are embedded in the magnetic core 2 and are not shown in FIG. It can be confirmed whether the light emitting unit 12 is turned on or off.

図7は、磁粉探傷装置36の内部構成例を示すブロック図である。
磁粉探傷装置36は、磁化器30を備えており、基本的な構成は上述した磁粉探傷装置20と同様である。
FIG. 7 is a block diagram showing an example of the internal configuration of the magnetic particle inspection device 36.
The magnetic particle inspection device 36 includes a magnetizer 30 and the basic configuration is the same as that of the magnetic particle inspection device 20 described above.

以上説明した第2の実施形態に係る磁化器30と磁粉探傷装置36によれば、第2の巻線コイル8と第2の発光部16の間に、整流器32を備えるようにした。これにより、第2の発光部16は所定の光強度を維持しながら紫外線を被検査物10の検査部位に照射することができる。このため、紫外線の光強度が安定化し、検査の精度を高めることができるという効果がある。   According to the magnetizer 30 and the magnetic particle flaw detector 36 according to the second embodiment described above, the rectifier 32 is provided between the second winding coil 8 and the second light emitting unit 16. Thereby, the 2nd light emission part 16 can irradiate the test | inspection site | part of the to-be-inspected object 10 with an ultraviolet-ray, maintaining predetermined light intensity. For this reason, there is an effect that the light intensity of ultraviolet rays is stabilized and the accuracy of inspection can be increased.

1…磁化器、2…磁心コア、4…励磁コイル、6…第1の巻き線コイル、8…第2の巻き線コイル、10…被検査物、12…第1の発光部、16…第2の発光部、20…磁粉探傷装置、20′…磁粉探傷装置、22…バッテリー電源、24…インバータ回路、25…収納容器、26…接続ケーブル、27…ベルトストラップ、28…ショルダーストラップ、29…電源プラグ、30…磁化器、31…収納部材、32…整流器、33…支持部、34…スイッチ、35…ツメ部、36…磁粉探傷装置   DESCRIPTION OF SYMBOLS 1 ... Magnetizer, 2 ... Magnetic core, 4 ... Excitation coil, 6 ... 1st winding coil, 8 ... 2nd winding coil, 10 ... Test object, 12 ... 1st light emission part, 16 ... 1st 2 light emitting units, 20 ... magnetic particle flaw detector, 20 '... magnetic particle flaw detector, 22 ... battery power supply, 24 ... inverter circuit, 25 ... storage container, 26 ... connection cable, 27 ... belt strap, 28 ... shoulder strap, 29 ... Power plug, 30 ... Magnetizer, 31 ... Storage member, 32 ... Rectifier, 33 ... Supporting part, 34 ... Switch, 35 ... Claw part, 36 ... Magnetic particle flaw detector

Claims (6)

被検査物に近接される磁心コアに巻き回され、前記磁心コアに磁路を発生させる励磁コイルと、
前記磁心コアに巻き回される第1の巻き線コイルと、
前記第1の巻き線コイルに接続され、前記励磁コイルの起磁力が所定の値以上である場合に、可視光線を発光する第1の発光部と、を備える
磁化器。
An exciting coil that is wound around a magnetic core close to the object to be inspected and generates a magnetic path in the magnetic core;
A first winding coil wound around the magnetic core;
A first light emitting unit that is connected to the first winding coil and emits visible light when the magnetomotive force of the exciting coil is equal to or greater than a predetermined value.
前記磁心コアに巻き回される第2の巻き線コイルと、
前記第2の巻き線コイルに接続され、紫外線を発光する第2の発光部と、を備える
請求項1記載の磁化器。
A second winding coil wound around the magnetic core;
The magnetizer according to claim 1, further comprising: a second light emitting unit that is connected to the second coil and emits ultraviolet light.
前記第2の巻き線コイル及び前記第2の発光部の間に、前記第2の発光部に供給される交流電力を直流電力に変換する整流器を備える
請求項2記載の磁化器。
3. The magnetizer according to claim 2, further comprising a rectifier that converts AC power supplied to the second light emitting unit into DC power between the second winding coil and the second light emitting unit.
前記磁心コアがカットコアにより構成される
請求項1〜3のいずれか1項に記載の磁化器。
The magnetizer according to any one of claims 1 to 3, wherein the magnetic core is constituted by a cut core.
前記磁心コアと前記励磁コイルによって回転磁界が形成される
請求項1〜4のいずれか1項に記載の磁化器。
The magnetizer according to any one of claims 1 to 4, wherein a rotating magnetic field is formed by the magnetic core and the exciting coil.
電源から供給される直流電力を交流電力に変換するインバータ回路と、
前記インバータ回路に接続され、被検査物に近接される磁心コアに巻き回され、前記磁心コアに磁路を発生させる励磁コイルと、
前記磁心コアに巻き回される第1の巻き線コイルと、
前記第1の巻き線コイルに接続され、前記励磁コイルの起磁力が所定の値以上である場合に、可視光線を発光する第1の発光部と、を備える
磁粉探傷装置。
An inverter circuit for converting DC power supplied from a power source into AC power;
An excitation coil connected to the inverter circuit, wound around a magnetic core close to the object to be inspected, and generating a magnetic path in the magnetic core;
A first winding coil wound around the magnetic core;
A magnetic particle flaw detector comprising: a first light-emitting unit that is connected to the first winding coil and emits visible light when the magnetomotive force of the excitation coil is equal to or greater than a predetermined value.
JP2009136656A 2008-10-16 2009-06-05 Magnetizer and magnetic particle flaw detector Active JP5399782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136656A JP5399782B2 (en) 2008-10-16 2009-06-05 Magnetizer and magnetic particle flaw detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008267846 2008-10-16
JP2008267846 2008-10-16
JP2009136656A JP5399782B2 (en) 2008-10-16 2009-06-05 Magnetizer and magnetic particle flaw detector

Publications (2)

Publication Number Publication Date
JP2010117340A true JP2010117340A (en) 2010-05-27
JP5399782B2 JP5399782B2 (en) 2014-01-29

Family

ID=42305091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136656A Active JP5399782B2 (en) 2008-10-16 2009-06-05 Magnetizer and magnetic particle flaw detector

Country Status (1)

Country Link
JP (1) JP5399782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940900A (en) * 2013-12-09 2014-07-23 济宁鲁科检测器材有限公司 Portable reversible AC-DC magnetic field flaw detector
KR200492382Y1 (en) * 2020-06-11 2020-09-29 (주)아이텍기술 Dual Type Magnetic Particle Detection Inspection System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078582B1 (en) * 2018-04-20 2020-02-19 두산중공업 주식회사 Prod Apparatus Having Magnetic Type Tip For Magnetic Particle Testing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196451A (en) * 1984-10-17 1986-05-15 Maeda Kagaku Kk Portable magnetic particle flaw detector using yoke method
JPS61132745U (en) * 1985-02-08 1986-08-19
JPH11237368A (en) * 1998-02-24 1999-08-31 Toshiba Corp Magnetization device, ultraviolet irradiation device, detecting-liquid spraying device, and magnetic particle detecting and inspection apparatus
JP2006153539A (en) * 2004-11-26 2006-06-15 Nippon Denji Sokki Kk Magnetic powder type flaw detector
JP2007033043A (en) * 2005-07-22 2007-02-08 Nippon Denji Sokki Kk Portable-type magnetic particle flaw detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196451A (en) * 1984-10-17 1986-05-15 Maeda Kagaku Kk Portable magnetic particle flaw detector using yoke method
JPS61132745U (en) * 1985-02-08 1986-08-19
JPH11237368A (en) * 1998-02-24 1999-08-31 Toshiba Corp Magnetization device, ultraviolet irradiation device, detecting-liquid spraying device, and magnetic particle detecting and inspection apparatus
JP2006153539A (en) * 2004-11-26 2006-06-15 Nippon Denji Sokki Kk Magnetic powder type flaw detector
JP2007033043A (en) * 2005-07-22 2007-02-08 Nippon Denji Sokki Kk Portable-type magnetic particle flaw detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013047915; 堀充孝 他: 'バッテリー式ハンドマグナによる磁粉探傷の特性評価' 表面探傷・保守検査合同シンポジウム講演論文集 , 200803, p.33-34 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940900A (en) * 2013-12-09 2014-07-23 济宁鲁科检测器材有限公司 Portable reversible AC-DC magnetic field flaw detector
KR200492382Y1 (en) * 2020-06-11 2020-09-29 (주)아이텍기술 Dual Type Magnetic Particle Detection Inspection System

Also Published As

Publication number Publication date
JP5399782B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5399782B2 (en) Magnetizer and magnetic particle flaw detector
JPH07110343A (en) Direct current sensor
US8941970B2 (en) Method and apparatus for demagnetizing generator components prior to electromagnetic core imperfection testing or EL-CID testing
US11366185B2 (en) Online automatic measurement system for integral magnetic performance of claw pole
JP4749223B2 (en) Magnetic particle flaw detector for steel pipes
JPH11237368A (en) Magnetization device, ultraviolet irradiation device, detecting-liquid spraying device, and magnetic particle detecting and inspection apparatus
Petrun et al. Evaluation of iron core quality for resistance spot welding transformers using current controlled supply
JP2009247155A (en) Method and device for detecting high-resistance ground fault
CN103207233A (en) Magnetizer of large gear ring workpiece magnetic particle flaw detector
US20190391207A1 (en) Method for determining faults in a generator, and generator test system
GB2495357A (en) Portable MPI testing apparatus and method
JP5403828B2 (en) Magnetizing device for inspection object, magnetic particle flaw detector
US9304109B2 (en) Magnetizing apparatus for magnetic particle testing of a wheel using a conductor and auxiliary conductors for magnetization
CN208000287U (en) A kind of electromagnetic detection probe based on nuclear power station sheet plane T-type weld seam
CN203148895U (en) Magnetizing device of magnetic particle flaw detector for big gear ring workpieces
RU2274869C2 (en) Method for controlling electro-technical state of electric machines
CN202033328U (en) Time-sharing magnetization circuit
CN108428531A (en) A kind of parallel magnetization device filling inspection unification
CN110346627A (en) Weak current detection device
JP5465803B2 (en) Method for adjusting magnetizing device of object to be inspected
JP2005265447A (en) Surge detection device
JPH0425651Y2 (en)
JP2009186386A (en) Material discrimination device
JPH0993597A (en) Degaussing coil polarity test equipment
CN203587557U (en) Casting flaw detection lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5399782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250