JP2010117297A - Differential pressure type flowmeter and flow measuring method using the same - Google Patents

Differential pressure type flowmeter and flow measuring method using the same Download PDF

Info

Publication number
JP2010117297A
JP2010117297A JP2008291926A JP2008291926A JP2010117297A JP 2010117297 A JP2010117297 A JP 2010117297A JP 2008291926 A JP2008291926 A JP 2008291926A JP 2008291926 A JP2008291926 A JP 2008291926A JP 2010117297 A JP2010117297 A JP 2010117297A
Authority
JP
Japan
Prior art keywords
pressure
molten salt
flow rate
pressure detection
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008291926A
Other languages
Japanese (ja)
Inventor
Toshimi Kawaguchi
聡美 川口
Katsunori Takeshita
勝則 岳下
Hiroyuki Fujii
裕之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2008291926A priority Critical patent/JP2010117297A/en
Publication of JP2010117297A publication Critical patent/JP2010117297A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential pressure type flowmeter and a flow measuring method using it for stably measuring a flow rate of non-electric conductive and high melting point fused salt. <P>SOLUTION: The differential pressure type flowmeter 1 includes: a throttling part 3 provided in main piping 2; pressure detection piping 5 connected to a pressure hole 4 provided in each of an upstream side and a downstream side of the throttling part 3 of the side face of the main piping 2 to a flow direction of the fused salt; and a pressure detector 6 connected to the pressure detection piping 5 and for detecting a difference between pressures applied on each of the pressure detection piping 5. The flowmeter measures a flow rate of the fused salt flowing in the main piping 2 on the basis of the difference between the pressures applied on the pressure detection piping 5 and has an opening and closing mechanism 8 for opening and closing the pressure hole 4. When measuring a flow rate by using it, the flowmeter closes the pressure hole 4 at a time point when the fused salt starts flow, and opens the pressure hole 4 when measuring the flow rate of the fused salt. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配管内に流れる高温の溶融塩の流量を安定して測定可能な差圧式流量計およびこれを用いた流量測定方法に関し、さらに詳しくは、圧力検知配管への溶融塩の過度の流入を抑制できる差圧式流量計およびこれを用いた流量測定方法に関する。   The present invention relates to a differential pressure type flow meter capable of stably measuring the flow rate of a high-temperature molten salt flowing in a pipe and a flow rate measuring method using the same, and more specifically, excessive flow of molten salt into a pressure detection pipe. The present invention relates to a differential pressure type flow meter that can suppress the flow and a flow rate measuring method using the same.

上下水道の給水、排水設備をはじめ、産業の多くの分野でポンプを用いた液体の移送が行われている。移送される液体は、多くの場合は水や油などであり、且つその温度は常温(外気温)、高くても100℃を下回ることが多く、その流量はさまざまな流量計を用いて測定されている。また、溶融金属や溶融塩など、高温の液体が移送されることもあり、その場合には流量検知手段の耐熱性等の問題から、使用できる流量計が限られる。   Liquid transport using pumps is carried out in many fields of industry, including water and sewage water supply and drainage facilities. In many cases, the liquid to be transferred is water, oil, etc., and its temperature is normal temperature (outside temperature), which is often below 100 ° C. at the highest, and its flow rate is measured using various flow meters. ing. In addition, a high-temperature liquid such as a molten metal or a molten salt may be transferred. In this case, the usable flow meters are limited due to problems such as heat resistance of the flow rate detection means.

移送される高温の液体が溶融金属の場合には、電気抵抗率が10-6〜10-7Ωcmのオーダーであり、電気伝導性を有するため、電磁流量計を用いることができる。また、移送される液体にセンサーを浸漬して流量を測定する渦流量計も用いることができると考えられる。 When the high-temperature liquid to be transferred is a molten metal, the electrical resistivity is on the order of 10 −6 to 10 −7 Ωcm, and since it has electrical conductivity, an electromagnetic flow meter can be used. It is also considered that a vortex flowmeter that measures the flow rate by immersing the sensor in the liquid to be transferred can be used.

高温の溶融塩を移送する例としては、特許文献1に記載のCa還元によるTiの製造方法が挙げられる。この方法は、融点が780℃と高温の溶融CaCl2に溶解した金属CaにTiCl4を反応させてTi粒を生成させる還元工程と、生成したTi粒を溶融CaCl2から分離する分離工程と、Ti粒の生成にともなってCa濃度が低下した溶融CaCl2を電気分解することにより溶融CaCl2中のCa濃度を高める電解工程とを含む。そして、この方法では、電解工程で生成したCaを還元工程でTiCl4の還元に用いるため、還元剤としての金属Caを循環利用して、操業を連続的に行うことができる。 As an example of transferring a high-temperature molten salt, a method for producing Ti by Ca reduction described in Patent Document 1 can be mentioned. This method includes a reduction step of causing TiCl 4 to react with metallic Ca dissolved in molten CaCl 2 having a melting point of 780 ° C. and a high temperature to generate Ti particles, a separation step of separating the generated Ti particles from molten CaCl 2 , An electrolysis step of increasing the Ca concentration in the molten CaCl 2 by electrolyzing the molten CaCl 2 having a reduced Ca concentration as the Ti grains are generated. Then, in this method, for using the Ca generated in the electrolytic process for the reduction of TiCl 4 in the reduction step, and recycling the metal Ca as a reducing agent, it is possible to perform operations continuously.

特許文献1に記載の方法では、金属Caが溶解した溶融CaCl2が、各工程の間を移送される。そして、例えば還元工程における、溶融CaCl2中へのTiCl4の供給量のように、各工程では、移送される溶融CaCl2の量にしたがって操業状態を調整するため、各工程間での溶融CaCl2の流量の測定は非常に重要である。 In the method described in Patent Document 1, molten CaCl 2 in which metal Ca is dissolved is transferred between the steps. And in each process, for example, the amount of TiCl 4 supplied into molten CaCl 2 in the reduction process, the operating state is adjusted according to the amount of molten CaCl 2 to be transferred. The measurement of the flow rate of 2 is very important.

上述のように、移送される高温の液体が溶融金属の場合には、流量の測定に電磁流量計を用いることができる。しかし、溶融CaCl2等の溶融塩は電気抵抗率が10-1Ωcmのオーダーであり、電気伝導性を有しないため、流量の測定に電磁流量計を用いることができない。また、上述の金属Caが溶解した溶融CaCl2の場合には、金属Caが電気伝導性を有するものの、溶融CaCl2中において、電磁流量計で流量を測定できるほどの含有量ではない。 As described above, when the high-temperature liquid to be transferred is a molten metal, an electromagnetic flow meter can be used for measuring the flow rate. However, a molten salt such as molten CaCl 2 has an electrical resistivity on the order of 10 −1 Ωcm and does not have electrical conductivity, so an electromagnetic flow meter cannot be used for measuring the flow rate. In the case of molten CaCl 2 in which the above-described metal Ca is dissolved, the metal Ca has electrical conductivity, but the content is not so high that the flow rate can be measured with an electromagnetic flow meter in the molten CaCl 2 .

また、渦流量計は、液体に浸漬するセンサーの保護具がセラミックス製であり、溶融塩が、金属Caが溶解した溶融CaCl2の場合には、金属Caによって当該保護具が侵食されるため、使用することができない。 Further, in the vortex flowmeter, the protective device of the sensor immersed in the liquid is made of ceramics, and when the molten salt is molten CaCl 2 in which the metallic Ca is dissolved, the protective device is eroded by the metallic Ca. Cannot be used.

本発明者らは、溶融塩の流量の測定について検討した結果、差圧式流量計を用いることに想到した。差圧式流量計は、配管に絞り部を設けて絞り部の上流側および下流側の圧力差に基づいて流量を測定するため、構造が比較的簡単であり、金属Caによって侵食されない材質を用いて構成することができる。差圧式流量計の一例として、絞り機構としてオリフィス板を用いた、特許文献2に記載のオリフィス流量計が挙げられる。   As a result of examining the measurement of the flow rate of the molten salt, the present inventors have come to the idea of using a differential pressure type flow meter. Since the differential pressure type flow meter measures the flow rate based on the pressure difference between the upstream side and the downstream side of the throttle part by providing a throttle part in the pipe, the structure is relatively simple and uses a material that is not eroded by metallic Ca. Can be configured. As an example of the differential pressure type flow meter, there is an orifice flow meter described in Patent Document 2 using an orifice plate as a throttle mechanism.

しかし、本発明者らが、溶融CaCl2の流量の測定に、差圧式流量計を用いたところ、絞り機構の上流側および下流側に設けられた2個の圧力検知配管が、侵入した溶融CaCl2の凝固物によって閉塞し、流量の測定を行うことができなかった。圧力検知配管をCaCl2の融点以上に保持すれば溶融塩の凝固を防ぐことができるものの、約800℃の高温にしなければならず、実際にこのような加熱をしながら流量測定を実施するのは困難である。 However, when the present inventors used a differential pressure type flow meter to measure the flow rate of the molten CaCl 2 , the two pressure detection pipes provided on the upstream side and the downstream side of the throttling mechanism are intruded into the molten CaCl 2. The clot was clogged with 2 and the flow rate could not be measured. Although the solidification of the molten salt can be prevented by maintaining the pressure detection pipe above the melting point of CaCl 2 , it must be at a high temperature of about 800 ° C., and the flow rate measurement is actually carried out with such heating. It is difficult.

特許文献3においても、セラミック等からなり、金属Caが溶解した溶融CaCl2でも流量測定できると考えられるオリフィス流量計が開示されている。このオリフィス流量計は、円筒形の容器の内部に、外壁に上下方向にオリフィス孔が複数設けられた円筒形のオリフィス管が配置されている。 Patent Document 3 also discloses an orifice flow meter made of ceramic or the like and considered to be able to measure the flow rate even with molten CaCl 2 in which metallic Ca is dissolved. In this orifice flow meter, a cylindrical orifice pipe in which a plurality of orifice holes are provided in the vertical direction on the outer wall is arranged inside a cylindrical container.

前記容器の底面に設けられた流体導入孔から導入された流体が、流量が少ないときには下側のオリフィス孔から流れ出し、流量が多くなると下側およびその直上のオリフィス孔からも流れ出すようになり、液面の高さとオリフィス孔の高さとの差、すなわち水頭差に基づいて流量の測定を行うことができる。したがって、このオリフィス流量計は、絞り機構の上流側および下流側の差圧から流量測定するものではなく、オリフィス管内に流体が完全に満ちた状態での流量を測定することができない。そのため、ポンプを用いる等、配管内を液体が満ちた状態で移送する場合には使用することができない。   The fluid introduced from the fluid introduction hole provided on the bottom surface of the container flows out from the lower orifice hole when the flow rate is small, and also flows out from the lower and upper orifice holes when the flow rate increases. The flow rate can be measured based on the difference between the height of the surface and the height of the orifice hole, that is, the water head difference. Therefore, this orifice flow meter does not measure the flow rate based on the differential pressure between the upstream side and the downstream side of the throttle mechanism, and cannot measure the flow rate when the fluid is completely filled in the orifice pipe. Therefore, it cannot be used when transporting the pipe in a state filled with liquid, such as using a pump.

特開2007−63585号公報JP 2007-63585 A 特開昭61−270616号公報JP-A-61-270616 特開平4−116422号公報JP-A-4-116422

上述の通り、金属Caが溶解した溶融CaCl2が配管内に満ちた状態で移送される場合には、従来の技術ではその流量を測定することができなかった。しかし、本発明者らは、差圧式流量計の欠点を解決すれば、この溶融塩の流量を測定できる可能性があると考えた。 As described above, when the molten CaCl 2 in which the metal Ca is dissolved is transferred in a state where the inside of the pipe is filled, the flow rate cannot be measured by the conventional technique. However, the present inventors thought that the flow rate of the molten salt could be measured if the drawbacks of the differential pressure type flow meter were solved.

そこで、本発明は、差圧式流量計を用いて、配管内に満ちた状態で流れる、金属Caを含有するCaCl2等の高温の溶融塩の流量を安定して測定可能とする方法、およびそのような差圧式流量計を提供することを目的とする。 Accordingly, the present invention provides a method for stably measuring the flow rate of a high-temperature molten salt such as CaCl 2 containing metal Ca, which flows in a state filled with piping, using a differential pressure type flow meter, and its An object of the present invention is to provide such a differential pressure type flow meter.

上記の課題を解決するために、本発明者らは、溶融塩が流れる主配管に配置された差圧式流量計の圧力検知配管が、溶融塩の凝固物によって閉塞する理由および状況について検討した。その結果、主配管が空の状態で流体の注入を開始した直後は、主配管内および圧力検知配管内での圧力変動が大きく、ゲージ圧で最大1.5気圧の圧力が加わるため、圧力検知配管の深部まで溶融塩が入り込み、そのまま凝固することがわかった。   In order to solve the above-mentioned problems, the present inventors have examined the reason and the situation where the pressure detection pipe of the differential pressure type flow meter arranged in the main pipe through which the molten salt flows is blocked by the solidified substance of the molten salt. As a result, immediately after starting the fluid injection with the main pipe empty, the pressure fluctuation in the main pipe and the pressure detection pipe is large, and a maximum pressure of 1.5 atm is applied as the gauge pressure. It was found that the molten salt entered the deep part of the pipe and solidified as it was.

本発明は、このような知見に基づいてなされたもので、その要旨は、下記(1)の流量測定方法、下記(2)の差圧式流量計および下記(3)のTiの製造方法にある。   The present invention has been made on the basis of such knowledge, and the gist of the present invention resides in the following (1) flow measurement method, the following (2) differential pressure flow meter, and the following (3) Ti production method. .

(1)溶融塩が流動可能な主配管に設けられた絞り部と、前記主配管の側面の、前記溶融塩の流動方向に対して前記絞り部の上流側および下流側のそれぞれに設けられた圧力孔に接続された圧力検知配管と、前記圧力検知配管に接続され、前記圧力検知配管のそれぞれにかかる圧力の差を検知する圧力検知器とを備え、前記圧力検知配管にかかる圧力の差に基づいて、前記主配管内を流動する溶融塩の流量を測定する差圧式流量計を用いた流量測定方法であって、前記圧力孔を開閉可能な開閉手段を用いて、前記溶融塩が流動を開始する時点において前記圧力孔を閉止し、前記溶融塩の流量を測定する際には前記圧力孔を開放することを特徴とする流量測定方法。 (1) Provided on the upstream side and downstream side of the throttle part with respect to the flow direction of the molten salt on the side surface of the main pipe and the throttle part provided on the main pipe through which the molten salt can flow A pressure detection pipe connected to the pressure hole; and a pressure detector connected to the pressure detection pipe for detecting a pressure difference applied to each of the pressure detection pipes. And a flow rate measuring method using a differential pressure type flow meter for measuring a flow rate of the molten salt flowing in the main pipe, wherein the molten salt flows by using an opening / closing means capable of opening and closing the pressure hole. The flow rate measuring method, wherein the pressure hole is closed at a start time, and the pressure hole is opened when the flow rate of the molten salt is measured.

(2)溶融塩が流動可能な主配管に設けられた絞り部と、前記主配管の側面の、前記溶融塩の流動方向に対して前記絞り部の上流側および下流側のそれぞれに設けられた圧力孔に接続された圧力検知配管と、前記圧力検知配管に接続され、前記圧力検知配管のそれぞれにかかる圧力の差を検知する圧力検知器とを備え、前記圧力検知配管にかかる圧力の差に基づいて、前記主配管内を流動する溶融塩の流量を測定する差圧式流量計であって、前記圧力孔の開閉機構を備えることを特徴とする差圧式流量計。 (2) Provided on the upstream side and downstream side of the throttle part with respect to the flow direction of the molten salt on the side surface of the main pipe and the throttle part provided on the main pipe through which the molten salt can flow A pressure detection pipe connected to the pressure hole; and a pressure detector connected to the pressure detection pipe for detecting a pressure difference applied to each of the pressure detection pipes. A differential pressure type flow meter for measuring the flow rate of the molten salt flowing in the main pipe based on the pressure hole opening and closing mechanism.

(3)CaCl2を含み且つCaが溶解した溶融塩中のCaによってTiCl4を還元させて前記溶融塩中にTi粒を発生させる還元工程と、前記溶融塩中に生成されたTi粒を前記溶融塩から分離する分離工程と、Ti粒の生成にともなってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程とを含み、電解工程でCa濃度が高められた溶融塩を還元工程でTiCl4の還元に用いるTiの製造方法であって、電解工程から還元工程へ移送される溶融塩の流量の測定に前記(1)に記載の流量測定方法を使用し、電解工程から供給される溶融塩中のCa濃度および、前記差圧式流量計を用いて測定した前記溶融塩の流量に基づいて、還元工程におけるTiCl4の供給量を決定することを特徴とするTiの製造方法。 (3) A reduction step of reducing TiCl 4 with Ca in molten salt containing CaCl 2 and dissolving Ca to generate Ti particles in the molten salt; and Ti particles generated in the molten salt A separation step for separating from the molten salt, and an electrolysis step for increasing the Ca concentration by electrolyzing the molten salt having a reduced Ca concentration as the Ti particles are produced. A method for producing Ti used for reducing TiCl 4 in a reduction step, wherein the flow rate measurement method described in (1) above is used to measure the flow rate of the molten salt transferred from the electrolysis step to the reduction step, and from the electrolysis step A method for producing Ti, comprising: determining a supply amount of TiCl 4 in a reduction step based on a Ca concentration in a supplied molten salt and a flow rate of the molten salt measured using the differential pressure type flow meter .

前記(1)に記載の流量測定方法および前記(2)に記載の差圧式流量計において、前記圧力孔の開閉手段または開閉機構として、前記圧力検知配管内に配置された棒状の閉止部材を用いることができ、前記閉止部材を前記圧力検知配管内を進退可能とすることにより、容易に前記圧力孔を開閉することができる。そして、前記閉止部材の外径が、本体部では前記圧力孔の内径より大きく、前記圧力孔側の端部に移行するにしたがって漸次小さくなっており、先端部では前記圧力孔の内径よりも小さくすることにより、前記圧力孔を強固に閉止することができる。   In the flow rate measuring method according to (1) and the differential pressure type flow meter according to (2), a rod-shaped closing member disposed in the pressure detection pipe is used as an opening / closing means or an opening / closing mechanism for the pressure hole. The pressure hole can be easily opened and closed by allowing the closing member to advance and retract within the pressure detection pipe. The outer diameter of the closing member is larger than the inner diameter of the pressure hole in the main body, and gradually decreases as it moves to the end on the pressure hole side, and is smaller than the inner diameter of the pressure hole at the tip. By doing so, the pressure hole can be firmly closed.

また、不活性ガスによって、前記圧力検知配管内に、前記主配管を流れる溶融塩の圧力よりも高い圧力を加えることを可能とし、前記主配管における前記溶融塩の流量を測定していない状態、つまり、前記開閉手段により前記圧力孔が閉止された状態において、前記圧力検知配管内の前記圧力孔と前記圧力検知器との間に、前記主配管を流れる溶融塩に起因する圧力よりも高い圧力を加えることが望ましい。これにより、前記開閉手段による前記圧力孔の閉止が不十分であっても、前記溶融塩が前記圧力検知配管内に侵入するのを抑制することができる。不活性ガスとしては、He、Ar、Ne等の希ガスや、N2ガスを用いることができる。ただし、主配管を流れる溶融塩がTi粒を含む場合には、Ti粒が窒化されるおそれがあるため、希ガスを用いることが望ましい。 In addition, it is possible to apply a pressure higher than the pressure of the molten salt flowing through the main pipe to the pressure detection pipe by the inert gas, and the flow rate of the molten salt in the main pipe is not measured, In other words, in a state where the pressure hole is closed by the opening / closing means, a pressure higher than the pressure caused by the molten salt flowing through the main pipe between the pressure hole in the pressure detection pipe and the pressure detector. It is desirable to add. Thereby, even if the pressure hole is not sufficiently closed by the opening / closing means, the molten salt can be prevented from entering the pressure detection pipe. As the inert gas, a rare gas such as He, Ar, Ne, or N 2 gas can be used. However, when the molten salt flowing through the main pipe contains Ti particles, it is desirable to use a rare gas because the Ti particles may be nitrided.

本発明の流量測定方法および差圧式流量計によれば、溶融塩の圧力検知配管の深部への侵入および侵入した溶融塩の凝固物による圧力検知配管の閉塞を抑制することができるため、圧力検知配管に侵入した場合に凝固しやすい高融点の溶融塩でも流量を安定して測定することが可能となる。そして、流量計が差圧式であるので、電気伝導性を有しない溶融塩でも流量を測定することができる。   According to the flow rate measuring method and the differential pressure type flow meter of the present invention, it is possible to suppress the penetration of the molten salt into the depth of the pressure detection pipe and the blockage of the pressure detection pipe due to the intruded molten salt coagulum. It is possible to stably measure the flow rate even with a high-melting-point molten salt that easily solidifies when entering a pipe. And since a flowmeter is a differential pressure type, even if it is a molten salt which does not have electrical conductivity, a flow volume can be measured.

また、本発明のTiの製造方法によれば、電解工程から供給される溶融塩の流量の変動を逐次検知しながら、溶融塩とともに供給されるCaの供給量の変動に対応して、還元工程において適切な量のTiCl4を供給することができるため、原料の無駄を減少させ、効率良く金属Tiを製造することができる。 Further, according to the Ti production method of the present invention, the reduction process corresponding to the fluctuation in the amount of Ca supplied together with the molten salt while sequentially detecting the fluctuation in the flow rate of the molten salt supplied from the electrolysis process. Since an appropriate amount of TiCl 4 can be supplied, the waste of raw materials can be reduced and metal Ti can be produced efficiently.

最初に、前記(1)に記載の本発明の流量測定方法および(2)に記載の本発明の差圧式流量計について説明する。   First, the flow rate measuring method of the present invention described in (1) and the differential pressure type flow meter of the present invention described in (2) will be described.

図1は、本発明の実施形態にかかる流量測定方法に用いる差圧式流量計の構成例を示す図である。図1に示すように、溶融塩が流動可能な主配管2の途中に、絞り部3を構成するオリフィス3aが配置されており、主配管2の周面の、溶融塩の流動方向に対して絞り部3の上流側および下流側にはそれぞれ圧力孔4a、4bが設けられている。図1の主配管2内に記された矢印は、溶融塩の流通方向を示す。絞り部3は、ベンチュリやVコーンによって構成されるものであってもよい。   FIG. 1 is a diagram illustrating a configuration example of a differential pressure type flow meter used in a flow rate measuring method according to an embodiment of the present invention. As shown in FIG. 1, an orifice 3 a constituting the throttle portion 3 is arranged in the middle of the main pipe 2 through which the molten salt can flow, and the flow direction of the molten salt on the peripheral surface of the main pipe 2 Pressure holes 4a and 4b are provided on the upstream side and the downstream side of the throttle part 3, respectively. The arrows marked in the main pipe 2 in FIG. 1 indicate the flow direction of the molten salt. The throttle unit 3 may be constituted by a venturi or a V cone.

圧力孔4a、4bには、それぞれ圧力検知配管5a、5bが接続されており、圧力検知配管5a、5bの周面には圧力検知器6が枝管7を介して接続されている。以下、圧力孔4aおよび4bをまとめて圧力孔4とも表し、圧力検知配管5aおよび5bをまとめて圧力検知配管5とも表すこととする。   Pressure detection pipes 5a and 5b are connected to the pressure holes 4a and 4b, respectively. A pressure detector 6 is connected to the peripheral surfaces of the pressure detection pipes 5a and 5b via branch pipes 7. Hereinafter, the pressure holes 4a and 4b are collectively referred to as the pressure hole 4, and the pressure detection pipes 5a and 5b are collectively referred to as the pressure detection pipe 5.

差圧式流量計1は、これらの絞り部3、圧力孔4、圧力検知配管5および圧力検知器6を備えるものであり、圧力検知器6で検知した圧力検知配管5aおよび5bにかかる圧力の差に基づいて、主配管2内を流通する溶融塩の流量を算出することができる。   The differential pressure type flow meter 1 includes the throttle portion 3, the pressure hole 4, the pressure detection pipe 5 and the pressure detector 6, and the difference in pressure applied to the pressure detection pipes 5 a and 5 b detected by the pressure detector 6. Based on the above, the flow rate of the molten salt flowing through the main pipe 2 can be calculated.

本実施形態にかかる差圧式流量計1は、圧力孔4に開閉機構8が設けられており、圧力孔4の開閉が可能である。本実施形態において、開閉機構8は、圧力検知配管5aおよび5bの内部に進退可能に配置された棒状の閉止部材9を備え、閉止部材9の端部を圧力孔4に接触させることにより圧力孔4を閉止する。閉止部材9の進退は、手動により行ってもよいし、モーター等を利用して自動的に行ってもよい。圧力検知配管5の圧力孔4とは反対側の端部には、閉止部材9が摺動可能なOリング等の封止部材10が設けられており、主配管2の内部に溶融塩が満ちた状態では、閉止部材9が進退しても圧力検知配管5内の気密が保持される。   In the differential pressure type flow meter 1 according to the present embodiment, an opening / closing mechanism 8 is provided in the pressure hole 4, and the pressure hole 4 can be opened / closed. In the present embodiment, the opening / closing mechanism 8 includes a rod-shaped closing member 9 disposed inside the pressure detection pipes 5 a and 5 b so as to be able to advance and retreat, and the end of the closing member 9 is brought into contact with the pressure hole 4 to make the pressure hole 4 is closed. The closing member 9 may be advanced or retracted manually or automatically using a motor or the like. A sealing member 10 such as an O-ring on which the closing member 9 is slidable is provided at the end of the pressure detection pipe 5 opposite to the pressure hole 4, and the main pipe 2 is filled with molten salt. In this state, even if the closing member 9 advances and retracts, the airtightness in the pressure detection pipe 5 is maintained.

開閉機構8は、閉止部材9の外径を、本体部では圧力孔4の内径よりも大きく、圧力孔4側の端部に移行するにしたがって漸次小さくなり、先端部では圧力孔4の内径よりも小さくするとともに、圧力孔4の内径を、主配管2の外側から内側に移行するにしたがって漸次小さくすることにより、閉止部材9の先端の周面と圧力孔4の内面とを摺り合うように接触させ、圧力孔4を強固に閉止することができる。   The opening / closing mechanism 8 has an outer diameter of the closing member 9 that is larger than the inner diameter of the pressure hole 4 in the main body and gradually decreases as it moves to the end on the pressure hole 4 side, and is smaller than the inner diameter of the pressure hole 4 at the tip. In addition, the inner diameter of the pressure hole 4 is gradually decreased from the outer side to the inner side of the main pipe 2, so that the peripheral surface of the tip of the closing member 9 and the inner surface of the pressure hole 4 slide against each other. The pressure holes 4 can be firmly closed by contacting them.

さらに、圧力検知配管5の内径を、本体部では一定とし、圧力孔4側の端部に移行するにしたがって漸次小さくし、先端部では圧力孔4の内径と一致させることにより、圧力検知配管5の内部における閉止部材9の占める部分の割合を高め、圧力検知配管5内に侵入する溶融塩を減少させることができる。   Further, the inner diameter of the pressure detection pipe 5 is constant in the main body, gradually decreases as it moves to the end on the pressure hole 4 side, and coincides with the inner diameter of the pressure hole 4 at the tip, thereby allowing the pressure detection pipe 5 It is possible to increase the proportion of the portion occupied by the closing member 9 and reduce the molten salt that enters the pressure detection pipe 5.

このような閉止部材9、圧力孔4および圧力検知配管5の形状の例としては、図1に示すようなテーパー状が挙げられる。圧力孔4および圧力検知配管5よりも閉止部材9のテーパー角を小さく構成すると、圧力孔4の内面と閉止部材9の先端周面との接触面積を増大させることができ、圧力孔4の閉止を強固にできるのでより好ましい。   Examples of the shape of the closing member 9, the pressure hole 4, and the pressure detection pipe 5 include a tapered shape as shown in FIG. 1. If the taper angle of the closing member 9 is made smaller than that of the pressure hole 4 and the pressure detection pipe 5, the contact area between the inner surface of the pressure hole 4 and the front peripheral surface of the closing member 9 can be increased. Is more preferable.

また、圧力検知配管5の内径を一定とし、圧力孔4の内径を圧力検知配管5の内径よりも小さくしてもよい。この場合には、閉止部材9の外径を、圧力孔4の内径よりも大きくすることにより、圧力孔4を閉止することができる。さらに、閉止部材9の外径を、本体部では圧力孔4の内径よりも大きく、圧力孔4側の端部に移行するにしたがって漸次小さくし、先端部では圧力孔4の内径よりも小さくして、閉止部材9の先端部を圧力孔4の内部に挿入可能とすることにより、圧力孔4をより強固に閉止することができる。   Further, the inner diameter of the pressure detection pipe 5 may be constant, and the inner diameter of the pressure hole 4 may be smaller than the inner diameter of the pressure detection pipe 5. In this case, the pressure hole 4 can be closed by making the outer diameter of the closing member 9 larger than the inner diameter of the pressure hole 4. Furthermore, the outer diameter of the closing member 9 is larger than the inner diameter of the pressure hole 4 in the main body, gradually decreases as it moves to the end on the pressure hole 4 side, and smaller than the inner diameter of the pressure hole 4 at the tip. Thus, by allowing the distal end portion of the closing member 9 to be inserted into the pressure hole 4, the pressure hole 4 can be closed more firmly.

このように、開閉機構8を設け、圧力孔4を開閉可能とすることにより、溶融塩の流動開始直後における、圧力検知配管5内の圧力変動が大きいときに、圧力検知配管5の深部まで溶融塩が侵入して凝固し、圧力検知配管5が閉塞して流量の測定ができなくなることを、容易に防止することが可能となる。   As described above, the opening / closing mechanism 8 is provided so that the pressure hole 4 can be opened and closed, so that when the pressure fluctuation in the pressure detection pipe 5 is large immediately after the start of the flow of the molten salt, the pressure detection pipe 5 is melted to the deep part. It is possible to easily prevent the salt from entering and solidifying, and the pressure detection pipe 5 from being blocked, making it impossible to measure the flow rate.

また、本実施形態にかかる差圧式流量計1は、圧力検知配管5内にArガスを供給することができる。Arガスは、図1に示すように、圧力検知配管5と圧力検知器6とを接続する枝管7の途中に接続されたガス供給管11から供給され、圧力検知配管5には封止部材10が設けられているため、圧力検知配管5および枝管7の内部を加圧することができる。圧力孔4を閉止した状態での圧力検知配管5内部では、空間の大部分を閉止部材9が占めているので、Arの供給量がわずかであっても十分に加圧することができる。   Further, the differential pressure type flow meter 1 according to the present embodiment can supply Ar gas into the pressure detection pipe 5. As shown in FIG. 1, the Ar gas is supplied from a gas supply pipe 11 connected in the middle of a branch pipe 7 that connects the pressure detection pipe 5 and the pressure detector 6. Since 10 is provided, the inside of the pressure detection pipe 5 and the branch pipe 7 can be pressurized. Since the closure member 9 occupies most of the space inside the pressure detection pipe 5 with the pressure hole 4 closed, the pressure can be sufficiently pressurized even if the supply amount of Ar is small.

圧力検知配管5および枝管7の内部を加圧することにより、圧力孔4と開閉機構8の閉止部材9とに歪みが発生する等で隙間が生じた場合であっても、圧力検知配管5内への溶融塩の侵入を抑制することができる。   Even if there is a gap between the pressure hole 4 and the closing member 9 of the opening / closing mechanism 8 by pressurizing the insides of the pressure detection pipe 5 and the branch pipe 7, Intrusion of the molten salt into the can be suppressed.

図2は、本実施形態にかかる差圧式流量計の他の構成例を示す図である。図2に示すように、圧力検知配管5は、端部を主配管2の周面に設けた挿入孔12から一定の長さ挿入した状態で配置してもよい。この場合には、圧力検知配管5の先端に設けた孔が圧力孔4として機能する。   FIG. 2 is a diagram illustrating another configuration example of the differential pressure type flow meter according to the present embodiment. As shown in FIG. 2, the pressure detection pipe 5 may be arranged in a state in which an end is inserted from the insertion hole 12 provided on the peripheral surface of the main pipe 2 by a certain length. In this case, the hole provided at the tip of the pressure detection pipe 5 functions as the pressure hole 4.

前記(2)の本発明にかかる流量測定方法について説明する。本発明にかかる流量測定方法では、上記構成の差圧式流量計を用いることができる。   The flow rate measuring method according to the present invention (2) will be described. In the flow rate measuring method according to the present invention, the differential pressure type flow meter having the above configuration can be used.

主配管2が空の状態で溶融塩の注入を開始した後、主配管2内を溶融塩が満たし、安定した流動状態となると、差圧式流量計を用いて溶融塩の流量の測定が可能な状態となる。本発明にかかる流量測定方法では、少なくとも、主配管2が空の状態から、主配管2内を溶融塩が満たして安定した流動状態となるまでの間は、開閉機構8を用いて圧力孔4を閉止する。そして、溶融塩が安定した流動状態となった後、圧力孔4を開放し、圧力検知配管5に、流動する溶融塩に起因する圧力が加わる状態にして、差圧式流量計1を用いて溶融塩の流量を測定する。   After starting the injection of molten salt with the main pipe 2 empty, when the molten salt fills the main pipe 2 and enters a stable flow state, the flow rate of the molten salt can be measured using a differential pressure flow meter. It becomes a state. In the flow rate measuring method according to the present invention, at least from the state in which the main pipe 2 is empty until the molten salt is filled in the main pipe 2 and becomes a stable flow state, the pressure hole 4 is used by using the opening / closing mechanism 8. Close. Then, after the molten salt is in a stable flow state, the pressure hole 4 is opened, and the pressure due to the flowing molten salt is applied to the pressure detection pipe 5 and melted using the differential pressure flow meter 1. Measure the salt flow rate.

このように、主配管2内の圧力が大きく変動する溶融塩の流動開始時において、圧力孔4を閉止することによって、圧力検知配管5の深部まで溶融塩が侵入することおよび侵入した溶融塩の凝固物によって圧力検知配管5が閉塞するのを抑制することができる。そのため、差圧式流量計を用いて溶融塩の流量を確実に測定することができる。   In this way, at the start of the flow of the molten salt in which the pressure in the main pipe 2 greatly fluctuates, by closing the pressure hole 4, the molten salt penetrates deep into the pressure detection pipe 5 and the molten salt that has entered It can suppress that the pressure detection piping 5 is obstruct | occluded with a solidified substance. Therefore, the flow rate of the molten salt can be reliably measured using a differential pressure type flow meter.

また、圧力孔4を閉止している間、圧力検知配管5内をArガスによって加圧してもよい。これにより、圧力孔4と開閉機構8の閉止部材9との間に歪みが発生する等の理由で隙間が生じた場合であっても、圧力検知配管5内への溶融塩の侵入および溶融塩の凝固物による圧力検知配管5の閉塞を抑制することができ、差圧式流量計を用いてさらに確実に溶融塩の流量を測定することができる。   Further, while the pressure hole 4 is closed, the pressure detection pipe 5 may be pressurized with Ar gas. As a result, even if a gap is generated between the pressure hole 4 and the closing member 9 of the opening / closing mechanism 8 due to distortion or the like, the intrusion of the molten salt into the pressure detection pipe 5 and the molten salt The blockage of the pressure detection pipe 5 due to the solidified product can be suppressed, and the flow rate of the molten salt can be measured more reliably using a differential pressure type flow meter.

前記(3)の本発明にかかるTiの製造方法について説明する。本発明にかかるTiの製造方法は、上述の流量測定方法を用いて行うことができる。   The method for producing Ti according to the present invention (3) will be described. The manufacturing method of Ti concerning this invention can be performed using the above-mentioned flow measuring method.

図3は、前掲の特許文献1に記載されるTiの製造方法を実施する際の工程例を示す図である。同図には、還元工程と分離工程と電解工程とが含まれたTiの製造工程が記載されている。   FIG. 3 is a diagram showing a process example when the Ti manufacturing method described in Patent Document 1 described above is performed. In the figure, a Ti manufacturing process including a reduction process, a separation process, and an electrolysis process is described.

還元工程は、CaCl2を含み且つCaが溶解した溶融塩Y1中のCaに、TiCl4を反応させて溶融塩Y1中にTi粒を生成させる工程である。分離工程は、還元工程から移送された、Ti粒を含む溶融塩Y2からTi粒を分離する工程である。分離工程で分離されたTi粒は、Tiインゴット20として回収される。そして、電解工程は、分離工程から移送された、Ti粒の生成にともなってCa濃度が低下した溶融塩Y3を電気分解することにより、Ca濃度を高める工程である。 The reduction step is a step of causing TiCl 4 to react with Ca in molten salt Y 1 containing CaCl 2 and dissolving Ca to produce Ti particles in molten salt Y 1 . The separation step is a step of separating Ti particles from the molten salt Y 2 containing Ti particles transferred from the reduction step. Ti particles separated in the separation step are recovered as a Ti ingot 20. The electrolytic process was transferred from the separation step, by which the Ca concentration in association with formation of Ti particles electrolysis of the molten salt Y 3 was reduced, a process to increase the Ca concentration.

電解工程でCa濃度が高められた溶融塩Y1は、還元工程に移送される。このように、このTi製造工程においては、溶融CaCl2を工程間で移送し、工程全体で循環させている。工程間は、配管により接続され、この配管による溶融CaCl2の移送にはポンプが用いられる。 The molten salt Y 1 whose Ca concentration has been increased in the electrolysis process is transferred to the reduction process. Thus, in this Ti manufacturing process, molten CaCl 2 is transferred between processes and circulated throughout the process. The processes are connected by piping, and a pump is used to transfer molten CaCl 2 through the piping.

なお、電解工程では、特許文献2に記載される電解槽17が組み込まれている。すなわち、この電解槽17は、一方向に長い電解槽容器17aと、電解槽容器17aの長手方向に沿って配置されたアノード18およびカソード19を有しており、溶融塩Y3をカソード19の表面近傍で一方向(この例では、上方から下方)に流しつつ、電気分解してCa濃度が高められた溶融塩Y1を得ることができる。 In the electrolysis process, an electrolytic cell 17 described in Patent Document 2 is incorporated. That is, the electrolytic bath 17, a long electrolyzer container 17a in one direction, has an anode 18 and a cathode 19 disposed along the longitudinal direction of the electrolytic cell container 17a, the molten salt Y 3 of the cathode 19 While flowing in one direction (in this example, from the top to the bottom) in the vicinity of the surface, the molten salt Y 1 having an increased Ca concentration by electrolysis can be obtained.

還元工程へ移送される溶融塩Y1、分離工程へ移送される溶融塩Y2、および電解工程へ移送される溶融塩Y3は、含有量の変動はあるものの、いずれも金属Caを含有する溶融CaCl2であり、その流量の測定には、金属Caに対する耐久性を有しない流量計は用いることができない。そのため、本実施形態において、移送される溶融塩Y1、Y2およびY3の流量の測定には、金属Caに対する耐久性を有する材質を用いて構成することのできる、本発明にかかる差圧式流量計および流量測定方法を好適に用いることができる。そして、測定した溶融塩の流量に基づいて、各工程での操業を効率良く制御することができる。 The molten salt Y 1 transferred to the reduction step, the molten salt Y 2 transferred to the separation step, and the molten salt Y 3 transferred to the electrolysis step all contain metal Ca, although their contents vary. A flowmeter that is molten CaCl 2 and has no durability against metallic Ca cannot be used to measure the flow rate. Therefore, in this embodiment, the measurement of the flow rate of the molten salt Y 1 , Y 2 and Y 3 to be transferred can be configured using a material having durability against the metal Ca, the differential pressure type according to the present invention. A flow meter and a flow rate measuring method can be preferably used. And based on the measured flow volume of molten salt, the operation in each process can be controlled efficiently.

前記図3に示す製造方法では、溶融塩Y1、Y2およびY3のうち、少なくとも電解工程から還元工程に供給される溶融塩Y1の流量を、本発明にかかる差圧式流量計および流量測定方法を用いて測定する。これにより、測定した溶融塩Y1の流量と別途測定する溶融塩中のCa濃度から、溶融塩Y1とともに還元工程に供給される金属Ca量に応じてTiCl4の供給量を適切に決定できるため、効率良くTi粒を生成させ、Tiインゴットを製造することができる。 In the manufacturing method shown in FIG. 3, among the molten salts Y 1 , Y 2, and Y 3 , at least the flow rate of the molten salt Y 1 supplied from the electrolysis step to the reduction step is changed to the differential pressure type flow meter and the flow rate according to the present invention. Measure using the measuring method. Thereby, the supply amount of TiCl 4 can be appropriately determined according to the amount of metallic Ca supplied to the reduction step together with the molten salt Y 1 from the measured flow rate of the molten salt Y 1 and the Ca concentration in the molten salt separately measured. Therefore, Ti grains can be generated efficiently and a Ti ingot can be manufactured.

本発明の差圧式流量計および流量測定方法の効果を確認するため、下記の流量測定実験を行い、その結果を評価した。   In order to confirm the effects of the differential pressure type flow meter and the flow rate measuring method of the present invention, the following flow rate measurement experiment was performed and the results were evaluated.

1.実験条件
図1に示す圧力孔の開閉機構を有する差圧式流量計を備えた主配管に、溶融CaCl2を流動させて実験を行った。空の状態の主配管に溶融CaCl2を注入し、溶融CaCl2が主配管を満たし、安定した流動状態となった状態で流量を測定した後、溶融CaCl2の注入を停止するまでを1回の測定とし、各条件において10回ずつ測定した。
1. Experimental conditions An experiment was conducted by flowing molten CaCl 2 through a main pipe having a differential pressure type flow meter having a pressure hole opening and closing mechanism shown in FIG. Once molten CaCl 2 is injected into the empty main pipe, the flow rate is measured in a state where the molten CaCl 2 fills the main pipe and is in a stable flow state, and then the injection of molten CaCl 2 is stopped once. The measurement was performed 10 times under each condition.

本発明例1では、空の状態の主配管に溶融CaCl2の注入を開始する時点から流量を測定する直前まで、開閉機構によって圧力孔を閉止し、Arによる圧力検知配管内の加圧は行わなかった。本発明例2では、空の状態の主配管に溶融CaCl2の注入を開始する時点から流量を測定する直前まで閉止部材によって圧力孔を閉止するとともに、Arによる圧力検知配管内の加圧も行った。 In Example 1 of the present invention, the pressure hole is closed by the opening / closing mechanism from the time when the injection of molten CaCl 2 into the empty main pipe is started to immediately before the flow rate is measured, and the pressure detection pipe is pressurized by Ar. There wasn't. In Example 2 of the present invention, the pressure hole is closed by the closing member from the time when the injection of molten CaCl 2 into the empty main pipe is started to immediately before the flow rate is measured, and the pressure detection pipe is also pressurized by Ar. It was.

比較例は、圧力孔の開閉機構を有しない差圧流量計を用いて主配管内の溶融CaCl2の流量を測定した。Arによる圧力検知配管内の加圧は行わなかった。 In the comparative example, the flow rate of the molten CaCl 2 in the main pipe was measured using a differential pressure flow meter having no pressure hole opening / closing mechanism. No pressure was applied in the pressure detection pipe with Ar.

2.実験結果
上記条件で行った溶融CaCl2の流量の測定について、表1に示すように圧力検知配管の溶融塩の凝固物による閉塞回数を指標として評価を行った。
2. Experimental Results As shown in Table 1, the measurement of the flow rate of molten CaCl 2 performed under the above conditions was evaluated using the number of times of clogging with solidified solids of the pressure detection pipe as an index.

Figure 2010117297
Figure 2010117297

表1に示すように、比較例では、10回の流量測定のうち、10回とも圧力検知配管が溶融塩の凝固物によって閉塞し、溶融CaCl2の流量を測定することができなかった。一方、本発明例1では、圧力孔を閉止することにより、圧力検知配管の閉塞回数を10回中2回と大幅に低減することができ、安定して溶融CaCl2の流量を測定することができた。本発明2では、圧力孔の閉止に加えてArガスによる加圧を行ったため、圧力検知配管の閉塞を完全に防止することができ、確実に溶融CaCl2の流量を測定することができた。 As shown in Table 1, in the comparative example, the pressure detection pipe was blocked by the molten salt coagulum in 10 times out of 10 flow rate measurements, and the flow rate of molten CaCl 2 could not be measured. On the other hand, in Example 1 of the present invention, by closing the pressure hole, the number of times the pressure detection pipe is closed can be greatly reduced to 2 out of 10 times, and the flow rate of molten CaCl 2 can be measured stably. did it. In the second aspect of the present invention, since pressure is applied with Ar gas in addition to closing the pressure hole, the pressure detection pipe can be completely blocked, and the flow rate of molten CaCl 2 can be reliably measured.

本発明の流量測定方法によれば、溶融塩の圧力検知配管の深部への侵入および侵入した溶融塩の凝固物による圧力検知配管の閉塞を抑制することができるため、圧力検知配管に侵入した場合に凝固しやすい高融点の溶融塩でも流量を安定して測定することが可能となる。そして、本発明の差圧式流量計は差圧式であるので、電気伝導性を有しない溶融塩でも流量を測定することができる。   According to the flow rate measuring method of the present invention, it is possible to suppress the penetration of the molten salt into the depth of the pressure detection pipe and the clogging of the pressure detection pipe due to the intruded molten salt coagulum. Even with a high melting point molten salt that easily solidifies, the flow rate can be measured stably. Since the differential pressure type flow meter of the present invention is a differential pressure type, the flow rate can be measured even with a molten salt having no electrical conductivity.

また、本発明のTiの製造方法によれば、電解工程から供給される溶融塩の流量の変動を逐次検知しながら、溶融塩とともに供給されるCaの供給量の変動に対応して、還元工程において適切な量のTiCl4を供給することができるため、原料の無駄を減少させ、効率良く金属Tiを製造することができる。したがって、本発明は高温の溶融塩を用いて行われる金属の精錬等の分野において有用な技術である。 Further, according to the Ti production method of the present invention, the reduction process corresponding to the fluctuation in the amount of Ca supplied together with the molten salt while sequentially detecting the fluctuation in the flow rate of the molten salt supplied from the electrolysis process. Since an appropriate amount of TiCl 4 can be supplied, the waste of raw materials can be reduced and metal Ti can be produced efficiently. Therefore, the present invention is a useful technique in the field of metal refining performed using a high-temperature molten salt.

本発明の実施形態にかかる差圧式流量計の構成例を示す図である。It is a figure which shows the structural example of the differential pressure type flow meter concerning embodiment of this invention. 本発明の実施形態にかかる差圧式流量計の他の構成例を示す図である。It is a figure which shows the other structural example of the differential pressure type flow meter concerning embodiment of this invention. 特許文献1に記載されるTiの製造方法を実施する際の工程例を示す図である。It is a figure which shows the example of a process at the time of implementing the manufacturing method of Ti described in patent document 1. FIG.

符号の説明Explanation of symbols

1 差圧式流量計
2 主配管
3 絞り部
3a オリフィス
4(a、b) 圧力孔
5(a、b) 圧力検知配管
6 圧力検知器
7 枝管
8 開閉機構
9 閉止部材
10 封止部材
11 ガス供給管
12 挿入孔
17 電解槽
17a 電解槽容器
18 アノード
19 カソード
20 Tiインゴット
DESCRIPTION OF SYMBOLS 1 Differential pressure type flow meter 2 Main piping 3 Restriction part 3a Orifice 4 (a, b) Pressure hole 5 (a, b) Pressure detection piping 6 Pressure detector 7 Branch pipe 8 Opening / closing mechanism 9 Closing member 10 Sealing member 11 Gas supply Tube 12 Insertion hole 17 Electrolysis tank 17a Electrolysis tank container 18 Anode 19 Cathode 20 Ti ingot

Claims (11)

溶融塩が流動可能な主配管に設けられた絞り部と、前記主配管の側面の、前記溶融塩の流動方向に対して前記絞り部の上流側および下流側のそれぞれに設けられた圧力孔に接続された圧力検知配管と、前記圧力検知配管に接続され、前記圧力検知配管のそれぞれにかかる圧力の差を検知する圧力検知器とを備え、前記圧力検知配管にかかる圧力の差に基づいて、前記主配管内を流動する溶融塩の流量を測定する差圧式流量計を用いた流量測定方法であって、
前記圧力孔を開閉可能な開閉手段を用いて、前記溶融塩が流動を開始する時点において前記圧力孔を閉止し、前記溶融塩の流量を測定する際には前記圧力孔を開放することを特徴とする流量測定方法。
In the pressure holes provided in the upstream side and the downstream side of the throttle part with respect to the flow direction of the molten salt on the side surface of the main pipe, the throttle part provided in the main pipe through which the molten salt can flow A pressure detection pipe connected to the pressure detection pipe and a pressure detector for detecting a pressure difference applied to each of the pressure detection pipes, and based on the pressure difference applied to the pressure detection pipe, A flow rate measuring method using a differential pressure type flow meter for measuring a flow rate of molten salt flowing in the main pipe,
Using the opening / closing means capable of opening and closing the pressure hole, the pressure hole is closed when the molten salt starts to flow, and the pressure hole is opened when the flow rate of the molten salt is measured. The flow measurement method.
前記圧力孔の開閉手段として、前記圧力検知配管内に配置された棒状の閉止部材を用いることを特徴とする請求項1に記載の流量測定方法。   The flow rate measuring method according to claim 1, wherein a rod-shaped closing member disposed in the pressure detection pipe is used as the opening / closing means for the pressure hole. 前記閉止部材が前記圧力検知配管内を進退可能であることを特徴とする請求項2に記載の流量測定方法。   The flow rate measuring method according to claim 2, wherein the closing member is capable of moving back and forth in the pressure detection pipe. 前記閉止部材の外径が、本体部では前記圧力孔の内径より大きく、前記圧力孔側の端部に移行するにしたがって漸次小さくなっており、先端部では前記圧力孔の内径よりも小さいことを特徴とする請求項4に記載の流量測定方法。   The outer diameter of the closing member is larger than the inner diameter of the pressure hole in the main body, and gradually decreases as it moves to the end on the pressure hole side, and the outer diameter of the closing member is smaller than the inner diameter of the pressure hole. The flow rate measuring method according to claim 4, wherein the flow rate is measured. 前記主配管における前記溶融塩の流量を測定していない状態において、不活性ガスによって、前記圧力検知配管内の前記圧力孔と前記圧力検知器との間に、前記主配管を流れる溶融塩の圧力よりも高い圧力を加えることを特徴とする請求項1〜5のいずれかに記載の流量測定方法。   In a state where the flow rate of the molten salt in the main pipe is not measured, the pressure of the molten salt flowing through the main pipe between the pressure hole in the pressure detection pipe and the pressure detector by an inert gas. The flow rate measuring method according to claim 1, wherein a higher pressure is applied. 溶融塩が流動可能な主配管に設けられた絞り部と、前記主配管の側面の、前記溶融塩の流動方向に対して前記絞り部の上流側および下流側のそれぞれに設けられた圧力孔に接続された圧力検知配管と、前記圧力検知配管に接続され、前記圧力検知配管のそれぞれにかかる圧力の差を検知する圧力検知器とを備え、前記圧力検知配管にかかる圧力の差に基づいて、前記主配管内を流動する溶融塩の流量を測定する差圧式流量計であって、
前記圧力孔の開閉機構を備えることを特徴とする差圧式流量計。
In the pressure holes provided in the upstream side and the downstream side of the throttle part with respect to the flow direction of the molten salt on the side surface of the main pipe, the throttle part provided in the main pipe through which the molten salt can flow A pressure detection pipe connected to the pressure detection pipe and a pressure detector for detecting a pressure difference applied to each of the pressure detection pipes, and based on the pressure difference applied to the pressure detection pipe, A differential pressure type flow meter for measuring the flow rate of the molten salt flowing in the main pipe,
A differential pressure type flow meter comprising an opening / closing mechanism for the pressure hole.
前記圧力孔の開閉機構が、前記圧力検知配管内に配置された棒状の閉止部材からなることを特徴とする請求項6に記載の差圧式流量計。   The differential pressure type flow meter according to claim 6, wherein the pressure hole opening / closing mechanism includes a rod-shaped closing member disposed in the pressure detection pipe. 前記閉止部材が前記圧力検知配管内を進退可能であることを特徴とする請求項7に記載の差圧式流量計。   The differential pressure type flow meter according to claim 7, wherein the closing member is capable of moving back and forth in the pressure detection pipe. 前記閉止部材の外径が、本体部では前記圧力孔の内径より大きく、前記圧力孔側の端部に移行するにしたがって漸次小さくなっており、先端部では前記圧力孔の内径よりも小さいことを特徴とする請求項7または8に記載の差圧式流量計。   The outer diameter of the closing member is larger than the inner diameter of the pressure hole in the main body, and gradually decreases as it moves to the end on the pressure hole side, and the outer diameter of the closing member is smaller than the inner diameter of the pressure hole. The differential pressure type flow meter according to claim 7 or 8, wherein 不活性ガスによって、前記圧力検知配管内の前記圧力孔と前記圧力検知器との間に、前記主配管を流れる溶融塩に起因する圧力よりも高い圧力を加えることが可能であることを特徴とする請求項6〜9のいずれかに記載の差圧式流量計。   The inert gas can apply a pressure higher than the pressure caused by the molten salt flowing through the main pipe between the pressure hole in the pressure detection pipe and the pressure detector. The differential pressure type flow meter according to any one of claims 6 to 9. CaCl2を含み且つCaが溶解した溶融塩中のCaによってTiCl4を還元させて前記溶融塩中にTi粒を発生させる還元工程と、前記溶融塩中に生成されたTi粒を前記溶融塩から分離する分離工程と、Ti粒の生成にともなってCa濃度が低下した溶融塩を電解することによりCa濃度を高める電解工程とを含み、電解工程でCa濃度が高められた溶融塩を還元工程でTiCl4の還元に用いるTiの製造方法であって、
電解工程から還元工程へ移送される溶融塩の流量の測定に請求項1〜5のいずれかに記載の流量測定方法を使用し、電解工程から供給される溶融塩中のCa濃度および、前記差圧式流量計を用いて測定した前記溶融塩の流量に基づいて、還元工程におけるTiCl4の供給量を決定することを特徴とするTiの製造方法。
A reduction step of reducing TiCl 4 with Ca in the molten salt containing CaCl 2 and dissolving Ca to generate Ti particles in the molten salt; and Ti particles generated in the molten salt from the molten salt A separation step of separating, and an electrolysis step of increasing the Ca concentration by electrolyzing the molten salt having a reduced Ca concentration as the Ti particles are produced, and the molten salt having an increased Ca concentration in the electrolysis step is reduced in the reduction step A method for producing Ti used for the reduction of TiCl 4 , comprising:
The flow rate measurement method according to any one of claims 1 to 5 is used to measure the flow rate of the molten salt transferred from the electrolysis step to the reduction step, and the Ca concentration in the molten salt supplied from the electrolysis step and the difference A method for producing Ti, comprising determining a supply amount of TiCl 4 in a reduction step based on a flow rate of the molten salt measured using a pressure flow meter.
JP2008291926A 2008-11-14 2008-11-14 Differential pressure type flowmeter and flow measuring method using the same Withdrawn JP2010117297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291926A JP2010117297A (en) 2008-11-14 2008-11-14 Differential pressure type flowmeter and flow measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291926A JP2010117297A (en) 2008-11-14 2008-11-14 Differential pressure type flowmeter and flow measuring method using the same

Publications (1)

Publication Number Publication Date
JP2010117297A true JP2010117297A (en) 2010-05-27

Family

ID=42305058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291926A Withdrawn JP2010117297A (en) 2008-11-14 2008-11-14 Differential pressure type flowmeter and flow measuring method using the same

Country Status (1)

Country Link
JP (1) JP2010117297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693107A (en) * 2019-03-12 2020-09-22 上海梅山钢铁股份有限公司 Multifunctional probe combination device of power bar flowmeter
CN113324598A (en) * 2021-04-20 2021-08-31 江元(天长)科技股份有限公司 Prevent stifled structure and flowmeter with clearance function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693107A (en) * 2019-03-12 2020-09-22 上海梅山钢铁股份有限公司 Multifunctional probe combination device of power bar flowmeter
CN113324598A (en) * 2021-04-20 2021-08-31 江元(天长)科技股份有限公司 Prevent stifled structure and flowmeter with clearance function

Similar Documents

Publication Publication Date Title
EP3102777B1 (en) Isolation devices having an anode matrix and a fiber cathode
TW434060B (en) Method and apparatus for manufacturing metallic parts of light metal alloy by fine die casting
TWI327180B (en)
US9777549B2 (en) Isolation device containing a dissolvable anode and electrolytic compound
EP3097254B1 (en) A tool cemented in a wellbore containing a port plug dissolved by galvanic corrosion
CA2939230A1 (en) Dissolvable isolation devices with an altered surface that delays dissolution of the devices
JP2010117297A (en) Differential pressure type flowmeter and flow measuring method using the same
KR102227944B1 (en) Manufacturing method and manufacturing apparatus of foamed molded article
KR20170028327A (en) Separation membrane and method for producing same
JP2008207250A (en) Continuous cast aluminum alloy rod
JP2017501037A (en) Molten steel processing apparatus and molten steel processing method
CA2930970C (en) Methods of removing a wellbore isolation device using galvanic corrosion of a metal alloy in solid solution
CN208322095U (en) Fire resisting stopper
CN106141157A (en) Anti-blocking immersion nozzle for molten steel water conservancy diversion
CN102260882A (en) Aluminum oxide blanking device clamping hanging block mounted aluminum electrolytic tank
RU2476292C2 (en) Submersible teeming barrel
KR102231224B1 (en) Manufacturing method and manufacturing apparatus of foamed molded article
CN202428121U (en) Vertical filling device for tinning line soldering flux
JP2009106959A (en) Method and apparatus for controlling molten metal surface in continuous casting
KR100979122B1 (en) Sampling device reinforced riser
CN203222624U (en) Aluminum oxide blanking device clamping hoist block
JP6997847B2 (en) Manufacturing method and manufacturing equipment for foam molded products
AU2017200304B2 (en) Isolation device containing a dissolvable anode and electrolytic compound
FR2580964A1 (en) METHOD FOR CASTING SACRIFICIAL MOBILE-BACKED LAGOONIC ANODES
JP2020059036A (en) Continuous casting method for slab

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Effective date: 20100512

Free format text: JAPANESE INTERMEDIATE CODE: A761