JP2010117272A - Method for discriminating silicone foreign substance - Google Patents

Method for discriminating silicone foreign substance Download PDF

Info

Publication number
JP2010117272A
JP2010117272A JP2008291403A JP2008291403A JP2010117272A JP 2010117272 A JP2010117272 A JP 2010117272A JP 2008291403 A JP2008291403 A JP 2008291403A JP 2008291403 A JP2008291403 A JP 2008291403A JP 2010117272 A JP2010117272 A JP 2010117272A
Authority
JP
Japan
Prior art keywords
silicone
absorption spectrum
infrared absorption
area
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008291403A
Other languages
Japanese (ja)
Inventor
Kazunari Miwakeichi
和成 三分一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008291403A priority Critical patent/JP2010117272A/en
Publication of JP2010117272A publication Critical patent/JP2010117272A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for discriminating a silicone foreign matter mixed inside or attached to a surface of a raw material resin for molding and a molded resin article. <P>SOLUTION: The method for discriminating a silicone foreign matter includes the steps of: obtaining area ratios S1-S4 of the following infrared absorption spectrum, by measuring the infrared absorption spectrum of the silicone foreign matter (A) mixed inside or attached to the surface of a raw material resin for molding and a molded resin article; and checking the ratios S1-S4 of the silicone foreign matter (A) and ratios S1-S4 obtained by measuring the infrared absorption spectrum of silicone foreign matter (B) present in ambient surroundings of the manufacturing process of the raw material for molding or the molding process of the resin article to be molded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成形用原料樹脂や樹脂成形品の内部に混入または表面に付着したシリコーン異物を判別するための判別方法に関する。   The present invention relates to a discrimination method for discriminating silicone foreign matter mixed in or adhering to the surface of a molding raw resin or a resin molded product.

原料樹脂を溶融成形して得られる製品は、容器類、筐体類、被覆部品類、導光体類など日用品から工業用に至るまでさまざまな用途に幅広く使用されている。多くの場合、それらの製品には、原料樹脂を製造する段階や樹脂を成形する段階で内部に混入または表面に付着した種々の異物が含まれている。   Products obtained by melt-molding raw material resins are widely used in various applications ranging from daily necessities to industrial uses such as containers, casings, coated parts, and light guides. In many cases, these products contain various foreign matters mixed inside or adhering to the surface at the stage of manufacturing the raw resin or molding the resin.

上記の異物の種類は、原料樹脂の製造や樹脂を成形する環境によって異なるが、例えば、生産ラインに構造部材として使用される各種金属材料や樹脂材料の破片類、作業者の衣類に由来する各種繊維類や生体組織(例えば、髪の毛や皮膚の一部)、生産活動に不可欠な製品の一部(例えば、紙製品類)などがある。   The types of foreign substances described above vary depending on the production of the raw material resin and the environment in which the resin is molded. For example, various metal materials and resin material fragments used as structural members in the production line, various types of clothes derived from workers' clothing There are fibers, living tissues (for example, a part of hair and skin), and some products (for example, paper products) indispensable for production activities.

それら異物の混入や付着の頻度の許容範囲は、樹脂成形品の用途によって大きく異なるが、例えば、ノートパソコンなどのディスプレイ画面に用いられる液晶表示装置用の導光体や携帯電話の面板などの液晶パネルの被覆体などでは、視認できるレベルのものは、一製品中に一つも許されないほどの厳しい品質管理が求められる場合がある。従って、それらの異物を低減するためには、当該異物が何の物質であるかを特定することが不可欠である。   The allowable range of the frequency of contamination and adhesion of these foreign substances varies greatly depending on the application of the resin molded product. For example, liquid crystal such as a light guide for a liquid crystal display device used for a display screen of a notebook computer or a face plate of a mobile phone In the case of a panel covering or the like, there is a case where strict quality control that is not allowed in one product is required for a visible level. Therefore, in order to reduce these foreign substances, it is indispensable to specify what kind of substance the foreign substances are.

成形用原料樹脂や樹脂成形品の内部に混入または表面に付着する異物は、数十μm以下の大きさしかないものも稀ではないため、それらを定性分析する手段が限定されることも少なくない。例えば、上記のケースに該当する異物には、シリコーン異物がある。シリコーン異物の発生源となるシリコーン物質は、潤滑油やパッキン類をはじめとして、成形用原料樹脂や樹脂成形品の製造工程に多く用いられる物質であるため、成形用原料樹脂や樹脂成形品の内部に混入または表面に付着しやすい。   Foreign materials mixed in or adhering to the surface of a molding raw resin or resin molded product are not limited to those having a size of several tens of μm or less. Therefore, means for qualitative analysis of them is often limited. . For example, the foreign matter corresponding to the above case includes a silicone foreign matter. Silicone substances that are the source of silicone foreign matter are substances that are often used in the manufacturing process of raw material resins for molding and resin molded products, including lubricants and packings. It is easy to mix in or adhere to the surface.

このような異物の識別方法として、例えば、特許文献1では、リサイクルプラスチックの表面に付着した異物の全反射赤外吸収スペクトルを測定し、特定の波数範囲に吸収を有するかどうかで、それらの異物が何の物質であるかを識別する方法が提案されている
特開2003−227793号公報
As a method for identifying such foreign matter, for example, in Patent Document 1, a total reflection infrared absorption spectrum of foreign matter attached to the surface of recycled plastic is measured, and whether or not the foreign matter has absorption in a specific wave number range is determined. A method to identify what substance is
JP 2003-227793 A

しかしながら、シリコーン物質には、赤外吸収スペクトルの類似したものが多いため、シリコーン異物と、その異物の発生源の可能性のあるシリコーン物質の当該スペクトルを目視で単純比較しただけでは、両者の同一性を特定することが困難な場合が多い。   However, since many of the silicone materials have similar infrared absorption spectra, a simple visual comparison between the silicone foreign substance and the silicone substance that may be the source of the foreign substance is identical. It is often difficult to identify gender.

本発明はこれらの問題点を解決し、成形用原料樹脂や樹脂成形品の内部に混入または表面に付着したシリコーン異物を判別する方法を提供することにある。   An object of the present invention is to solve these problems and to provide a method of discriminating silicone foreign matter mixed in or adhering to the surface of a molding raw resin or a resin molded product.

本発明の要旨は、成形用原料樹脂もしくは樹脂成形品の内部に混入または表面に付着したシリコーン異物(A)の赤外吸収スペクトルを測定し、下記の赤外吸収スペクトルの面積比S1〜S4を得る工程と、
前記シリコーン異物(A)のS1〜S4と、成形用原料樹脂の製造工程もしくは樹脂成形品の成形工程の周辺環境に存在するシリコーン物質(B)の赤外吸収スペクトルを測定して得られたS1〜S4の照合を行う工程を含むシリコーン異物の判別方法にある。
S1=波数3000〜2920cm−1の赤外吸収スペクトルの面積/波数8 50〜740cm−1の赤外吸収スペクトルの面積
S2=波数1300〜1240cm−1の赤外吸収スペクトルの面積/波数8 50〜740cm−1の赤外吸収スペクトルの面積
S3=波数3000〜2920cm−1の赤外吸収スペクトルの面積/波数1 240〜940cm−1の赤外吸収スペクトルの面積
S4=波数1300〜1240cm−1の赤外吸収スペクトルの面積/波 数1240〜940cm−1の赤外吸収スペクトルの面積
The gist of the present invention is to measure the infrared absorption spectrum of the silicone foreign matter (A) mixed in or adhering to the inside of the molding raw resin or resin molded product, and the following infrared absorption spectrum area ratios S1 to S4 are determined. Obtaining a step;
S1 obtained by measuring S1 to S4 of the silicone foreign matter (A) and the infrared absorption spectrum of the silicone substance (B) present in the surrounding environment of the manufacturing process of the raw material resin for molding or the molding process of the resin molded product ˜S4 in the method for discriminating silicone foreign matter including the step of collating.
S1 = infrared infrared area / wave number 8 50 of the absorption spectrum of the absorption spectrum of the area / wave number 8 area of the infrared absorption spectrum of 50~740cm -1 S2 = wavenumber 1300~1240Cm -1 wavenumber 3000~2920Cm -1 red 740 cm -1 in the infrared absorption spectrum of the area S3 = area of the infrared absorption spectrum of wave numbers 3000~2920cm infrared absorption spectrum of -1 area / wavenumber 1 240~940cm -1 S4 = wavenumber 1300~1240Cm -1 Area of outer absorption spectrum / area of infrared absorption spectrum of wave number 1240-940 cm −1

本発明によれば、成形用原料樹脂や樹脂成形品の内部に混入または表面に付着したシリコーン異物とその発生源の可能性のあるシリコーン物質とを判別でき、シリコーン異物の発生源を排除できるため、液晶表示装置用の導光体のような高いクリーン度を求められる製品の品質を向上することができる。   According to the present invention, it is possible to discriminate between silicone foreign substances mixed in or adhering to the surface of a molding raw resin or resin molded product and a silicone substance that may be a source of the silicone foreign substances, and the source of silicone foreign substances can be eliminated. Thus, the quality of a product that requires a high degree of cleanness, such as a light guide for a liquid crystal display device, can be improved.

本発明の成形用原料樹脂としては、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリカーボネート、ポリフッ化ビニリデン、ポリスチレン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフェニレンスルフィドなどの単独重合体やそれらの単量体単位を含む共重合体、および、それらのブレンド体などが挙げられる。   As the raw material resin for molding of the present invention, homopolymers such as polymethyl methacrylate, polyethylene terephthalate, polyvinyl chloride, polycarbonate, polyvinylidene fluoride, polystyrene, polyethylene, polypropylene, polytetrafluoroethylene, polyphenylene sulfide, and their single amounts Examples thereof include copolymers containing body units and blends thereof.

これらの中で、ポリメチルメタクリレート単量体単位を含む共重合体は、前述の導光体用もしくは面板用の成形用原料樹脂として好適である。   Among these, a copolymer containing a polymethyl methacrylate monomer unit is suitable as a molding raw material resin for the above-mentioned light guide or face plate.

また本発明において樹脂成形品とは、例えば、成形用原料樹脂を金型射出法、シート押出法、もしくは溶融紡糸法することなどによって得られる成形品が挙げられる。   In the present invention, examples of the resin molded product include a molded product obtained by subjecting a molding material resin to a mold injection method, a sheet extrusion method, or a melt spinning method.

これらの中で、前述の液晶表示装置に用いられる導光体や液晶パネルの面板などが好適なものとして挙げられる。上記の液晶表示装置としては、例えば、ノートパソコンなどのディスプレイ画面に用いられるものが挙げられる。液晶表示装置の構成例としては、反射シート、導光体、プリズムシート、拡散シート、液晶パネルなどからなるユニットが挙げられる。   Among these, a light guide used in the above-described liquid crystal display device, a face plate of a liquid crystal panel, and the like are preferable. As said liquid crystal display device, what is used for display screens, such as a notebook personal computer, is mentioned, for example. Examples of the configuration of the liquid crystal display device include a unit including a reflection sheet, a light guide, a prism sheet, a diffusion sheet, a liquid crystal panel, and the like.

本発明では、成形用原料樹脂もしくは樹脂成形品の内部に混入または表面に付着したシリコーン異物(A)の赤外吸収スペクトルを測定する。   In the present invention, the infrared absorption spectrum of the silicone foreign matter (A) mixed in or adhering to the inside of the molding raw resin or resin molded product is measured.

シリコーン異物(A)は、上記の成形用原料樹脂を製造する段階で内部に混入または表面に付着したり、樹脂成形品を製造する段階で樹脂成形品の内部に混入または表面に付着するシリコーンからなる異物が挙げられる。   Silicone foreign matter (A) is mixed in or adhered to the surface at the stage of manufacturing the above-described molding raw resin, or from silicone that is mixed in or adhered to the surface of the resin molded article at the stage of manufacturing the resin molded product. The foreign material which becomes.

該シリコーン異物(A)の発生源となる、成形用原料樹脂の製造工程もしくは樹脂成形品の成形工程の周辺環境に存在するシリコーン物質(B)としては、
例えば、成形用原料樹脂や樹脂成形品の製造工程に使用されている潤滑油、離型剤、パッキン類、シール材、電気絶縁材などのシリコーンからなる物質が挙げられる。
As a silicone substance (B) present in the surrounding environment of the production process of the raw material resin for molding or the molding process of the resin molded product, which is a source of the silicone foreign matter (A)
For example, a material made of silicone such as a lubricating oil, a release agent, packings, a sealing material, and an electrical insulating material used in a manufacturing process of a raw material resin for molding or a resin molded product can be used.

上記のシリコーン異物(A)およびシリコーン物質(B)は、分子骨格が、主としてシロキサン結合からなり、1官能型(RSiO0.5)、2官能型(R2SiO)、3官能型(RSiO1.5)、4官能基(SiO)などの基本構成単位からなるシリコーン化合物で、その分子構造は主として、−CH3、≡Si−O−、≡Si−C≡などの結合から構成される。(Rは、水素原子、水酸基、メチル基、フェニル基、長鎖アルキル基、トリフルオロプロピル基、ビニル基などや、それ以外の官能基であってもよく、分子鎖が架橋した構造であってもよい。)
該シリコーン化合物の赤外吸収スペクトルにおいては、通常、波数3000〜2920cm−1の範囲に−CH3に由来するCHの吸収を示し、波数1300〜1240cm−1の範囲に≡Si−CH3に由来するCH3の吸収を示し、波数1240〜940cm−1の範囲に≡Si−O−Si≡に由来する吸収を示し、波数850〜740cm−1の範囲に≡Si−(CH3)2に由来する≡Si−C≡およびCH3の吸収を示す。
The silicone foreign substance (A) and the silicone substance (B) have a molecular skeleton mainly composed of a siloxane bond, a monofunctional type (R 3 SiO 0.5 ), a bifunctional type (R 2 SiO), a trifunctional type ( RSiO 1.5 ) is a silicone compound composed of basic structural units such as tetrafunctional groups (SiO 2 ), and its molecular structure is mainly composed of bonds such as —CH 3, ≡Si—O—, ≡Si—C≡. The (R may be a hydrogen atom, a hydroxyl group, a methyl group, a phenyl group, a long-chain alkyl group, a trifluoropropyl group, a vinyl group, or other functional groups, and has a structure in which molecular chains are crosslinked. May be good.)
In the infrared absorption spectrum of the silicone compound, the absorption of CH derived from -CH3 is usually shown in the range of wave numbers 3000 to 2920 cm-1, and CH3 derived from ≡Si-CH3 in the range of wave numbers 1300 to 1240 cm-1. The absorption derived from ≡Si—O—Si≡ in the range of wave numbers 1240 to 940 cm −1 and the ≡Si— derived from ≡Si— (CH 3) 2 in the range of wave numbers 850 to 740 cm −1. Absorption of C≡ and CH 3 is shown.

本発明では、シリコーン異物(A)の赤外吸収スペクトルの面積を測定し、下記の赤外吸収スペクトルの面積比S1〜S4を得る。
S1=波数3000〜2920cm−1の赤外吸収スペクトルの面積/波数850〜740cm−1の赤外吸収スペクトルの面積
S2=波数1300〜1240cm−1の赤外吸収スペクトルの面積/波数850〜740cm−1の赤外吸収スペクトルの面積
S3=波数3000〜2920cm−1の赤外吸収スペクトルの面積/波数1240〜940cm−1の赤外吸収スペクトルの面積
S4=波数1300〜1240cm−1の赤外吸収スペクトルの面積/波数1240〜940cm−1の赤外吸収スペクトルの面積
次に、該シリコーン異物(A)のS1〜S4と、別途測定したシリコーン物質(B)のS1〜S4の照合を行う。4種類の面積比のうち、1種類しか同一でないか、または、全てが異なる場合、両者を異なるシリコーン化合物と判定する。該シリコーン異物(A)とシリコーン物質(B)を照合することにより、発生源を特定することができ、成形用原料樹脂や樹脂成形品の内部への混入または表面への付着を低減することが可能となる。
In the present invention, the area of the infrared absorption spectrum of the silicone foreign matter (A) is measured, and the following infrared absorption spectrum area ratios S1 to S4 are obtained.
S1 = wave number 3000~2920Cm -1 in the infrared absorption spectrum of the area / wavenumber 850~740Cm -1 in the infrared absorption spectrum of the area S2 = wavenumber 1300~1240Cm -1 infrared absorption spectrum of the area / wavenumber 850~740Cm - infrared absorption spectrum of the first area of the infrared absorption spectrum of the infrared absorption spectrum of the area / wavenumber 1240~940Cm -1 in the infrared absorption spectrum of the area S3 = wavenumber 3000~2920cm -1 S4 = wavenumber 1300~1240Cm -1 area of the infrared absorption spectrum of the area / wavenumber 1240~940Cm -1 of Next, the S1~S4 of the silicone foreign substance (a), the S1~S4 matching the measured separately silicone material (B). When only one type is the same among the four types of area ratios or when all are different, both are determined as different silicone compounds. By collating the silicone foreign substance (A) with the silicone substance (B), the generation source can be specified, and mixing into the raw material resin for molding or resin molded product or adhesion to the surface can be reduced. It becomes possible.

なお、面積比が同一かどうかの判断は、シリコーン物質(B)の赤外吸収スペクトルの測定を複数回実施し、各面積比の平均値と標準偏差を求め、該平均値に該標準偏差を加えた値(上限値)から、該平均値から該標準偏差を差し引いた値(下限値)の範囲であることが好ましく、シリコーン異物(A)のS1〜S4のうち2種類以上が、シリコーン物質(B)の対応するS1〜S4の上限値と下限値の範囲内にある場合に同一であると判断する。   The determination of whether the area ratio is the same is carried out by measuring the infrared absorption spectrum of the silicone substance (B) a plurality of times, obtaining the average value and standard deviation of each area ratio, and adding the standard deviation to the average value. It is preferable that the value (lower limit value) is a range obtained by subtracting the standard deviation from the average value (upper limit value), and two or more of S1 to S4 of the silicone foreign matter (A) are silicone substances. It is determined that they are the same when they are within the range of the corresponding upper limit value and lower limit value of S1 to S4 in (B).

なお、シリコーン物質(B)が複数存在する場合は、それぞれのシリコーン物質の4種類の面積比と比較し、より多く一致したものを同一のシリコーン物質と判定する。   In addition, when two or more silicone substances (B) exist, it compares with four types of area ratios of each silicone substance, and the thing which matched more is determined to be the same silicone substance.

また、面積比で比較することにより、例えば、シリコーン異物(A)またはシリコーン物質(B)が、ケイ素化合物(例えば、シリカなど)を充填材として含んでいた場合でも正確に判別が可能となる。   Further, by comparing the area ratio, for example, even when the silicone foreign matter (A) or the silicone substance (B) contains a silicon compound (for example, silica or the like) as a filler, it is possible to accurately discriminate.

本発明の赤外吸収スペクトルの測定では、成形用樹脂原料や樹脂成形品の表面に付着したシリコーン異物(A)は、成形用樹脂原料や樹脂成形品から分離して、シリコーン異物単独の赤外吸収スペクトルを得ることが好ましい。   In the measurement of the infrared absorption spectrum of the present invention, the silicone foreign matter (A) adhering to the surface of the molding resin raw material or resin molded product is separated from the molding resin raw material or resin molded product, and the infrared of the silicone foreign matter alone is separated. It is preferable to obtain an absorption spectrum.

シリコーン異物(A)を成形用樹脂原料や樹脂成形品から分離する方法は、特に限定されないが、検査対象となる成形用樹脂原料や樹脂成形品を光学顕微鏡で確認しながら針やピンセットを用いて、手作業で採取してもよいし、市販のマニュピレータ付き顕微鏡を利用してもよい。   The method for separating the silicone foreign substance (A) from the molding resin raw material or the resin molded product is not particularly limited, but using a needle or tweezers while checking the molding resin raw material or the resin molded product to be inspected with an optical microscope. The sample may be collected manually or a commercially available microscope with a manipulator may be used.

成形用原料樹脂や樹脂成形品の内部からシリコーン異物(A)を分離する方法の一つとして、成形用原料樹脂や樹脂成形品を溶解する溶剤中に浸漬して溶解することにより分離する方法が挙げられる。   As one of the methods for separating the silicone foreign substance (A) from the inside of the molding raw resin or resin molded product, there is a method of separating by immersing and dissolving in the solvent for dissolving the molding raw resin or resin molded product. Can be mentioned.

上記の溶剤としては、シリコーン異物(A)を溶解するものでなければ特に限定されず、例えば、クロロホルム、アセトン、テトラヒドロフランなどが挙げられる。   The solvent is not particularly limited as long as it does not dissolve the silicone foreign substance (A), and examples thereof include chloroform, acetone, and tetrahydrofuran.

シリコーン異物(A)が成形用原料樹脂や樹脂成形品の内部にあり、成形用原料樹脂や樹脂成形品を溶解する適当な溶剤がない場合は、例えば、ミクロトーム装置を用いて、シリコーン異物(A)が成形用原料樹脂や樹脂成形品の表面に露出するまで成形用原料樹脂や樹脂成形品を削り出し、樹脂のマトリックス中にシリコーン異物(A)が存在するような薄片状の試験体を用いて赤外吸収スペクトルの測定を行うことができる。   If the silicone foreign material (A) is inside the molding raw resin or resin molded product and there is no suitable solvent for dissolving the molding raw resin or resin molded product, for example, using a microtome device, the silicone foreign material (A ) Is used to scrape the raw material resin or resin molded product until it is exposed on the surface of the raw material resin or resin molded product, and use a flaky specimen that contains silicone foreign matter (A) in the resin matrix. Infrared absorption spectrum can be measured.

赤外吸収スペクトルの測定は測定サンプルが小さいため、顕微赤外吸収スペクトル(顕微IRスペクトル)を測定することが好ましい。顕微IRスペクトルを得るための測定装置としては、特に限定されず、市販の製品を広く使用することができる。なお、別途スペクトルの補正を必要としないなどの理由から、透過測定によるものが好ましい。   Since the measurement sample of infrared absorption spectrum is small, it is preferable to measure the microscopic infrared absorption spectrum (microscopic IR spectrum). A measuring apparatus for obtaining a microscopic IR spectrum is not particularly limited, and commercially available products can be widely used. Note that transmission measurement is preferred because it does not require additional spectrum correction.

上記の測定は、同一サンプルにおいて、より多くの異なる箇所を測定する(複数回測定する)ことが、判別精度を向上させる上で好ましいが、シリコーン異物には微小なものが多いため、測定箇所に制限がある場合が多いので、1サンプルについて1箇所以上とする。   In the above measurement, it is preferable to measure more different locations (measurement multiple times) in the same sample in order to improve the discrimination accuracy. Since there are many cases where there are restrictions, one sample or more should be used for one sample.

一方、その比較対象とするシリコーン物質(B)は、顕微IRスペクトルの測定用として、ある程度まとまったサンプル量を確保できる場合が多いので、同一サンプルについて、異なる箇所をより多く測定することが望ましいが、判別の精度と効率化を考慮した場合、10〜20箇所が好ましい。   On the other hand, the silicone substance (B) to be compared is often able to secure a certain amount of sample for measurement of the microscopic IR spectrum, so it is desirable to measure more different locations for the same sample. Considering the accuracy and efficiency of discrimination, 10 to 20 locations are preferable.

なお、赤外吸収スペクトルの面積は、例えば、3000〜2920cm−1の赤外吸収スペクトルの面積の場合、波数3000cm−1の位置を示す縦軸の罫線とスペクトルが交差する点と波数2920cm−1の位置を示す縦軸の罫線とスペクトルが交差する点を結んだ直線と吸収曲線に囲まれた範囲の面積とする。他の範囲についても、同様に、各波数の位置を示す縦軸の罫線とスペクトルが交差する点を結んだ直線と吸収曲線に囲まれた範囲の面積とする。 The area of the infrared absorption spectrum is, for example, in the case of an area of 3000 to 2920 cm −1 , the point where the spectrum intersects with the vertical ruled line indicating the position of the wave number 3000 cm −1 and the wave number 2920 cm −1. The area of the range surrounded by the straight line and the absorption curve connecting the points where the ruled line of the vertical axis indicating the position of the line intersects the spectrum. Similarly, for the other ranges, the area of the range surrounded by a straight line connecting the points where the spectrum intersects with the vertical ruled line indicating the position of each wave number and the absorption curve is used.

(分析サンプル)
シリコーン異物(A)
樹脂成形品(ポリメチルメタクリレート系導光体)内部からクロロホルム溶剤で溶かし出したシリコーン異物
シリコーン物質(B1〉
上記樹脂成形品の成形用原料樹脂の製造工程おいて、当該樹脂が流れる配管のフランジ部に使用されていた、シリコーン製シール(シリカ充填剤を含むα,ωジヒドロキシジメチルポリシロキサン系縮合1液型液状シリコーンゴム)
シリコーン物質(B2〉
上記樹脂成形品を成形する射出成形機において、上記成形用原料樹脂を投入したホッパーから当該成形機に当該樹脂を送る途中配管の接続部に使用されていたシリコーン製パッキン(シリカ充填剤を含むメチルビニル系ミラブル型シリコーンゴム)
(シリコーン異物(A)の顕微IRスペクトル測定)
顕微FT−IR装置(日本分光(株)製FT/IR420赤外分光光度計付属のMICRO20顕微赤外分光光度計)を用いて、シリコーン異物(A)の一部を顕微IRスペクトル測定専用のダイヤモンドセル(住友電工(株)製Diamond EX’Press)により、得られる顕微IRスペクトルが飽和しないような適度な厚さまでつぶして透過法により測定した。
(Analysis sample)
Silicone foreign matter (A)
Silicone foreign substance (B1) that is melted with chloroform solvent from resin molded product (polymethylmethacrylate light guide)
Silicone seal (α, ω dihydroxydimethylpolysiloxane-based condensation one-component type containing silica filler) used in the flange part of the pipe through which the resin flows in the manufacturing process of the resin for molding the resin molded product Liquid silicone rubber)
Silicone substance (B2)
In the injection molding machine for molding the resin molded product, a silicone packing (methyl containing silica filler) used for a connecting portion of a pipe on the way to send the resin from the hopper charged with the molding material resin to the molding machine. Vinyl millable silicone rubber)
(Micro IR spectrum measurement of silicone foreign matter (A))
Using a microscopic FT-IR device (MICRO20 microinfrared spectrophotometer attached to JASCO Corporation FT / IR420 infrared spectrophotometer), a part of silicone foreign material (A) is a diamond dedicated to micro IR spectrum measurement. Using a cell (Diamond EX'Press manufactured by Sumitomo Electric Co., Ltd.), the obtained micro IR spectrum was crushed to an appropriate thickness so as not to saturate and measured by the transmission method.

測定条件は、測定範囲を波数4000〜650cm−1、積算回数を256回、分解を8cm−1とした。また、アパーチャーは、サンプル全体をカバーできる任意の大きさとした。   The measurement conditions were such that the measurement range was a wave number of 4000 to 650 cm-1, the number of integrations was 256, and the decomposition was 8 cm-1. The aperture was arbitrarily large enough to cover the entire sample.

シリコーン異物(A)は、数十μmの大きさしかなかったため、1回(1箇所)のみの測定とした。図1に上記の測定で得られたシリコーン異物(A)の顕微IRスペクトル(吸光度表示)を示す。得られた顕微IRスペクトルからS1〜S4を求めた結果を表1に示す。   Since the silicone foreign substance (A) had a size of only several tens of μm, it was measured only once (one place). FIG. 1 shows a microscopic IR spectrum (absorbance display) of the silicone foreign substance (A) obtained by the above measurement. Table 1 shows the results of obtaining S1 to S4 from the obtained microscopic IR spectrum.

(シリコーン物質(B1)、(B2)の顕微IRスペクトル測定)
シリコーン異物(A)と同様の条件で顕微IRスペクトル測定を行った。なお、シリコーン物質(B1)、(B2)は分析に必要な十分な量を確保できたため、それぞれ同一サンプルの異なる10箇所からサンプリングして測定した。
(Microscopic IR spectrum measurement of silicone substances (B1) and (B2))
Microscopic IR spectrum measurement was performed under the same conditions as those for the silicone foreign matter (A). In addition, since the silicone substances (B1) and (B2) were able to secure a sufficient amount necessary for the analysis, they were sampled and measured from 10 different places of the same sample.

また、上記の測定で得られたシリコーン物質(B1)の10点の顕微IRスペクトルの内、1点を代表として図2に示し、シリコーン物質(B2)の10点の顕微IRスペクトルの内、1点を代表として図3に示す。   Further, one of the 10 points of the microscopic IR spectrum of the silicone material (B1) obtained by the above measurement is shown in FIG. A point is shown in FIG. 3 as a representative.

得られたシリコーン物質(B1)、(B2)の各10点の顕微IRスペクトルから各スペクトルのS1〜S4を求めた。各シリコーン物質の10点のS1〜S4の平均値と標準偏差、および、それら平均値に標準偏差を加えた上限値、ならびに、それら平均値から標準偏差を差し引いた下限値を求めた。表1にシリコーン物質(B1)、(B2)のS1〜S4の上限値と下限値の範囲を示す。   S1 to S4 of each spectrum were determined from the microscopic IR spectra of 10 points of the obtained silicone substances (B1) and (B2). The average value and standard deviation of 10 points S1 to S4 of each silicone substance, the upper limit value obtained by adding the standard deviation to the average value, and the lower limit value obtained by subtracting the standard deviation from the average value were obtained. Table 1 shows the range of the upper limit value and the lower limit value of S1 to S4 of the silicone substances (B1) and (B2).

(シリコーン異物(A)とシリコーン物質(B1)、(B2)の照合)
表1から、シリコーン異物(A)のS1〜S4の値は、いずれもシリコーン物質(B1)のS1〜S4の上限値と下限値の範囲から外れており、この異物の発生源が、シリコーン物質(B1)ではないと判別できた。
(Verification of silicone foreign substance (A) and silicone substance (B1), (B2))
From Table 1, the values of S1 to S4 of the silicone foreign substance (A) are all out of the range of the upper limit value and the lower limit value of S1 to S4 of the silicone substance (B1). It was determined that it was not (B1).

一方、シリコーン異物(A)のS1、S2,S3の値は、それぞれシリコーン物質(B2)のS1、S2,S3の上限値と下限値の範囲内にあり、他にシリコーン異物の発生源の可能性のあるシリコーン物質が存在しなかったため、この異物の発生源が、シリコーン物質(B2)であると判別できた。   On the other hand, the values of S1, S2, and S3 of the silicone foreign substance (A) are within the upper limit and lower limit values of S1, S2, and S3 of the silicone substance (B2), respectively. Since there was no compatible silicone substance, it was determined that the source of this foreign substance was the silicone substance (B2).

判別結果に基づきシリコーン物質(B2)を排除した結果、前記樹脂成形品にシリコーン異物が混入することがなくなった。   As a result of eliminating the silicone substance (B2) based on the discrimination result, silicone foreign matter is not mixed into the resin molded product.

Figure 2010117272
Figure 2010117272

シリコーン異物(A)の顕微IRスペクトルMicroscopic IR spectrum of silicone foreign matter (A) シリコーン物質(B1)の顕微IRスペクトルMicroscopic IR spectrum of silicone material (B1) シリコーン物質(B2)の顕微IRスペクトルMicroscopic IR spectrum of silicone material (B2)

Claims (4)

成形用原料樹脂もしくは樹脂成形品の内部に混入または表面に付着したシリコーン異物(A)の赤外吸収スペクトルを測定し、下記の赤外吸収スペクトルの面積比S1〜S4を得る工程と、
前記シリコーン異物(A)のS1〜S4と、成形用原料樹脂の製造工程もしくは樹脂成形品の成形工程の周辺環境に存在するシリコーン物質(B)の赤外吸収スペクトルを測定して得られたS1〜S4の照合を行う工程を含むシリコーン異物の判別方法。
S1=波数3000〜2920cm−1の赤外吸収スペクトルの面積/波数8
50〜740cm−1の赤外吸収スペクトルの面積
S2=波数1300〜1240cm−1の赤外吸収スペクトルの面積/波数8
50〜740cm−1の赤外吸収スペクトルの面積
S3=波数3000〜2920cm−1の赤外吸収スペクトルの面積/波数1
240〜940cm−1の赤外吸収スペクトルの面積
S4=波数1300〜1240cm−1の赤外吸収スペクトルの面積/波
数1240〜940cm−1の赤外吸収スペクトルの面積
A step of measuring the infrared absorption spectrum of the silicone foreign matter (A) mixed in or adhering to the inside of the molding resin or resin molded product, and obtaining the following infrared absorption spectrum area ratios S1 to S4;
S1 obtained by measuring S1 to S4 of the silicone foreign matter (A) and the infrared absorption spectrum of the silicone substance (B) present in the surrounding environment of the manufacturing process of the raw material resin for molding or the molding process of the resin molded product A method for discriminating silicone foreign matter, including the step of collating S4.
S1 = area of infrared absorption spectrum of wave number 3000 to 2920 cm −1 / wave number 8
Area of the infrared absorption spectrum of the area of the infrared absorption spectrum of 50~740cm -1 S2 = wavenumber 1300~1240cm -1 / wave number 8
Area of the infrared absorption spectrum of 50~740Cm -1 in the infrared absorption spectrum of the area S3 = wave number 3000~2920cm -1 / wavenumber 1
Area / wave infrared absorption spectrum of the infrared absorption spectrum of the area S4 = wavenumber 1300~1240Cm -1 of 240~940Cm -1
Area of infrared absorption spectrum of several 1240 to 940 cm −1
シリコーン物質(B)のS1〜S4が、赤外吸収スペクトルの測定を複数回実施し各面積比の平均値と標準偏差を求め、該平均値に該標準偏差を加えた値(上限値)から、該平均値から該標準偏差を差し引いた値(下限値)の範囲である請求項1記載のシリコーン異物の判別方法。   From S1 to S4 of the silicone substance (B), the average value and standard deviation of each area ratio are obtained by measuring the infrared absorption spectrum a plurality of times, and the value obtained by adding the standard deviation to the average value (upper limit value). 2. The method for discriminating silicone foreign matter according to claim 1, which is in a range of a value (lower limit value) obtained by subtracting the standard deviation from the average value. シリコーン異物(A)のS1〜S4のうち2種類以上が、シリコーン物質(B)の対応するS1〜S4の上限値と下限値の範囲内にあるか否かを照合する工程を含む請求項2記載のシリコーン異物の判別方法。   The process of collating whether two or more types among S1-S4 of a silicone foreign substance (A) are in the range of the upper limit value and lower limit value of S1-S4 corresponding to a silicone substance (B). The method for discriminating silicone foreign matter as described. 樹脂成形品が液晶表示装置用の導光体または液晶パネルの被覆体である請求項1〜3のいずれかに記載のシリコーン異物の判別方法。   The method for discriminating a silicone foreign substance according to any one of claims 1 to 3, wherein the resin molded product is a light guide for a liquid crystal display device or a cover for a liquid crystal panel.
JP2008291403A 2008-11-13 2008-11-13 Method for discriminating silicone foreign substance Pending JP2010117272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291403A JP2010117272A (en) 2008-11-13 2008-11-13 Method for discriminating silicone foreign substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291403A JP2010117272A (en) 2008-11-13 2008-11-13 Method for discriminating silicone foreign substance

Publications (1)

Publication Number Publication Date
JP2010117272A true JP2010117272A (en) 2010-05-27

Family

ID=42305033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291403A Pending JP2010117272A (en) 2008-11-13 2008-11-13 Method for discriminating silicone foreign substance

Country Status (1)

Country Link
JP (1) JP2010117272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539865A (en) * 2010-10-13 2013-10-28 ザ・ボーイング・カンパニー Apparatus and method for non-contact measurement of surface chemistry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539865A (en) * 2010-10-13 2013-10-28 ザ・ボーイング・カンパニー Apparatus and method for non-contact measurement of surface chemistry
JP2016224063A (en) * 2010-10-13 2016-12-28 ザ・ボーイング・カンパニーThe Boeing Company Non-contact surface chemistry measurement apparatus and method

Similar Documents

Publication Publication Date Title
Zhang et al. Chemical and rheological evaluation of aged lignin-modified bitumen
Koenig Infrared and Raman spectroscopy of polymers
Wang et al. Microfluidic CARS cytometry
Wang et al. Preparation of a fast water-based UV cured polyurethane-acrylate wood coating and the effect of coating amount on the surface properties of oak (Quercus alba L.)
Liu et al. Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer
DeLeo et al. Morphology and rheology of compatibilized polymer blends: Diblock compatibilizers vs crosslinked reactive compatibilizers
Brant et al. Surface composition of amorphous and crystallizable polyethylene blends as measured by static SIMS
Gandin et al. Simple yet effective methods to probe hydrogel stiffness for mechanobiology
Bubmann et al. Transparent PC/PMMA blends with enhanced mechanical properties via reactive compounding of functionalized polymers
JP2019116562A (en) Resin composition, method of producing resin composition and electronic equipment
La Mantia et al. Compatibilization of polypropylene/polyamide 6 blend fibers using photo-oxidized polypropylene
Hettal et al. A new kinetic modeling approach for predicting the lifetime of ATH-filled silane cross-linked polyethylene in a nuclear environment
JP2010117272A (en) Method for discriminating silicone foreign substance
Liu et al. Nanomechanical mapping on the deformed poly (ε-caprolactone)
Nassr et al. An adhesion improvement of low-density polyethylene to aluminum through modification with functionalized polymers
Ostanin et al. Linear/ladder-like polysiloxane block copolymers with methyl-, trifluoropropyl-and phenyl-siloxane units for surface modification
Pöschl et al. Identifying the co-curing effect of an accelerated-sulfur/bismaleimide combination on natural rubber/halogenated rubber blends using a rubber process analyzer
Liu et al. Mechanism and influence factors of abrasion resistance of high-flow grade SEBS/PP blended thermoplastic elastomer
Slapnik et al. Relationships between the decomposition behaviour of renewable fibres and their reinforcing effect in composites processed at high temperatures
Quiñones-Pérez et al. Amphiphilic silicones to reduce the absorption of small hydrophobic molecules
Dong et al. Effect of the morphology on the anisotropic light scattering of polycarbonate (PC)/poly (styrene-co-acrylonitrile)(SAN)(70/30) blend
Srinivasaraghavan Govindarajan et al. Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing
Rogers et al. Frieze group analysis of asymmetric response to large-amplitude oscillatory shear
Hirai et al. Enhancement of the surface properties on polypropylene film using side-chain crystalline block copolymers
Tarantola et al. Liquid Foam-Ethyl Vinyl Acetate Adhesive Systems for Lining Process of Paintings: Prospects of a User-Friendly, Harmless Alternative to Conventional Products