JP2010116926A - Molecular pump - Google Patents

Molecular pump Download PDF

Info

Publication number
JP2010116926A
JP2010116926A JP2010046247A JP2010046247A JP2010116926A JP 2010116926 A JP2010116926 A JP 2010116926A JP 2010046247 A JP2010046247 A JP 2010046247A JP 2010046247 A JP2010046247 A JP 2010046247A JP 2010116926 A JP2010116926 A JP 2010116926A
Authority
JP
Japan
Prior art keywords
wire mesh
molecular pump
protective wire
suction port
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010046247A
Other languages
Japanese (ja)
Other versions
JP4892621B2 (en
Inventor
Mitsuru Sakurai
充 桜井
Soro Yoshida
素朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP2010046247A priority Critical patent/JP4892621B2/en
Publication of JP2010116926A publication Critical patent/JP2010116926A/en
Application granted granted Critical
Publication of JP4892621B2 publication Critical patent/JP4892621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a protective wire net arranged in a suction port for checking the inflow of foreign matter from causing a contact accident with a rotor and a moving blade by buckling caused by the thermal expansion by a temperature gradient, in a molecular pump having a structure for arranging the suction port of exhaust gas in close vicinity to the rotor. <P>SOLUTION: A tip part of a wire element 6a of the long side of adjacent rectangles is crossed at a right angle in a T shape with a central part of the wire element 6a of the long side of the respective rectangles composed of a large number of rectangular meshes 6c, The protective wire net 6 having a zigzag mesh pattern is formed by alternately continuously connecting these rectangles. The protective wire net 6 is arranged in a suction port part 5a of a turbo-molecular pump 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高速で回転するロータを有して中真空から超高真空にわたる圧力範囲で使用されるターボ分子ポンプや複合分子ポンプ等の分子ポンプの吸気口部に保護金網を設置した分子ポンプの構造に関する。   The present invention relates to a molecular pump having a protective wire mesh installed at the inlet of a molecular pump such as a turbo molecular pump or a composite molecular pump that has a rotor that rotates at high speed and is used in a pressure range from medium vacuum to ultra-high vacuum. Concerning structure.

従来の複合分子ポンプの一例の縦断面図を図9に示した。   A longitudinal sectional view of an example of a conventional complex molecular pump is shown in FIG.

図9において、複合分子ポンプaはターボ分子ポンプ部bとねじ溝真空ポンプ部cとからなり、dが吸入口、eが排気出口である。   In FIG. 9, the composite molecular pump a is composed of a turbo molecular pump part b and a thread groove vacuum pump part c, where d is an inlet and e is an exhaust outlet.

即ち、排気される装置側に吸入口dを接続し、ロータfが高速回転を行って吸入口dから排気ガスを吸入し、排気出口eから該排気ガスを排出する。   That is, the suction port d is connected to the exhausted device side, the rotor f rotates at high speed, the exhaust gas is sucked from the suction port d, and the exhaust gas is discharged from the exhaust port e.

吸入口dの部分には、異物の流入を阻止するための保護金網gを設置することがある。   A protective wire g for preventing the inflow of foreign matter may be installed at the portion of the suction port d.

これは、高速で回転するロータbの動翼部にボルト、ナットや金属片等の異物が飛来して衝突し、これら動翼部やロータbが破損するのを防止するためである。   This is to prevent foreign matter such as bolts, nuts and metal pieces from flying and colliding with the moving blade portion of the rotor b rotating at high speed, and damaging the moving blade portion and the rotor b.

従来のこの種の保護金網gは、厚さが0.3mm乃至1mm程度で、一辺の長さが1mm乃至5mm程度の角孔を多数有する図10に示す如き網目のものが用いられていた。   The conventional protective metal mesh g of this type has a mesh as shown in FIG. 10 having many square holes having a thickness of about 0.3 mm to 1 mm and a side length of about 1 mm to 5 mm.

尚、この網目の形成方法としては、ワイヤーの平織りによるもの、金属板にパンチングやエッチングによって孔を開けたもの等があり、平板状に形成されていた。   As a method for forming the mesh, there are a method using a plain weave of wires, a method in which a hole is formed in a metal plate by punching or etching, and the like, and it is formed in a flat plate shape.

このような保護金網を用いた例として、例えば特許文献1や特許文献2がある。   For example, Patent Document 1 and Patent Document 2 are examples of using such a protection wire mesh.

特開平11−330087号公報(第2図)Japanese Patent Laid-Open No. 11-330087 (FIG. 2) 特開平11−247790号公報(第3図)Japanese Patent Laid-Open No. 11-247790 (FIG. 3)

最近ではポンプのダウンサイジングの要求から分子ポンプの高さ寸法を小さくする必要がある。   Recently, it is necessary to reduce the height of the molecular pump due to the demand for pump downsizing.

このため、分子ポンプの吸入口がロータの先端部に近接して配置されるようになり、保護金網がロータの前端部に近接して設置されるようになった。   For this reason, the suction port of the molecular pump is arranged close to the front end of the rotor, and the protective wire mesh is installed close to the front end of the rotor.

前記分子ポンプが取付けられる装置は、しばしば高温状態でプロセスを行なうため、高温ガスの流入や輻射熱の影響により、前記保護金網自体が高温になることがあった。   Since the device to which the molecular pump is attached often performs a process at a high temperature, the protective metal mesh itself may become high temperature due to the inflow of high temperature gas or radiant heat.

この時、保護金網に伝わる熱は均一ではなく、特にプロセス開始直後は保護金網に温度勾配が発生して、この温度勾配による熱膨張の差により、前記保護金網に局所的な伸びを生じるが、保護金網は上下方向にたわむことによりこの伸びを逃がすので、この結果、保護金網に座屈を生ずることがあった。この保護金網の座屈が該保護金網の下方へ向かって発生した場合には、該保護金網と前記ロータの前端部との距離が近いため、該保護金網と前記ロータの前端部とが接触事故を起こすことがあるという問題点があった。   At this time, the heat transmitted to the protective wire mesh is not uniform, and a temperature gradient occurs in the protective wire mesh immediately after the start of the process, and due to the difference in thermal expansion due to this temperature gradient, local elongation occurs in the protective wire mesh, Since the protective wire mesh is released from this elongation when it is bent in the vertical direction, the protective wire mesh may be buckled. When the buckling of the protection wire mesh occurs downward, the contact between the protection wire mesh and the front end portion of the rotor is short because the distance between the protection wire mesh and the front end portion of the rotor is short. There was a problem that it might cause.

前記ロータは高速で回転しているため、一瞬でも接触事故が起こると、保護金網の破損やロータの破損につながった。   Since the rotor rotates at a high speed, if a contact accident occurs even for a moment, the protection wire mesh is broken or the rotor is broken.

本発明は前記の問題点を解消し、保護金網自体に温度勾配が生じても、該保護金網とロータとが接触事故を起こさないような構造の保護金網を有する分子ポンプを提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a molecular pump having a protective wire mesh having a structure that prevents a contact accident between the protective wire mesh and the rotor even if a temperature gradient occurs in the protective wire mesh itself. And

本発明は上記の目的を達成すべく、第1発明としてロータに近接して排気の吸入口を配置した構造の分子ポンプにおいて、外周の丸いつば部と該つば部の内側の多数の小孔を有する網目部とからなり、前記つば部の内周を絞り加工により少許上方へ折り曲げて前記金網部に上向きのストレスを有する保護金網を形成し、該網目部は該網目部の膨張により上方に凸状に変形可能に形成され、前記保護金網を前記分子ポンプの吸入口部に設置したことを特徴としており、又第2発明としてロータに近接して排気の吸入口を配置した構造の分子ポンプにおいて、線膨張率の大きい金属からなる薄板の下面に線膨張率の小さい金属からなる薄板を重ねて張り合わせた複合板に多数のパンチ孔を設けて保護金網を形成し、該保護金網は該保護金網の熱膨張により上方に凸状に変形可能に形成され、該保護金網を前記分子ポンプの吸入口部に設置したことを特徴とする。   In order to achieve the above-mentioned object, the present invention provides a molecular pump having a structure in which an exhaust suction port is arranged close to a rotor as a first invention, and has a rounded outer peripheral portion and a large number of small holes inside the flange portion. And forming a protective wire mesh having upward stress on the wire mesh portion by drawing the inner periphery of the collar portion by drawing, and the mesh portion protrudes upward due to expansion of the mesh portion. In the molecular pump having the structure in which the protective wire mesh is installed in the suction port portion of the molecular pump, and the exhaust suction port is arranged close to the rotor as a second invention. A protective wire mesh is formed by providing a plurality of punch holes in a composite plate in which a thin plate made of a metal having a low linear expansion coefficient is laminated and bonded to the lower surface of a thin plate made of a metal having a high linear expansion coefficient. Thermal expansion By being deformably formed in a convex shape upwards, characterized in that the protective wire net was placed in the suction port of the molecular pump.

本発明によれば、分子ポンプの吸入口部に設置した保護金網が直近にあるロータ側に向かって曲がったり又は座屈して突出したりすることがないので、異物がロータ側に流入するのを防止すると共に該保護金網とロータとが接触するのを防止できる効果を有する。   According to the present invention, the protective metal mesh installed at the suction port of the molecular pump does not bend or buckle and protrude toward the nearest rotor, thus preventing foreign matter from flowing into the rotor. In addition, the protective wire mesh and the rotor can be prevented from coming into contact with each other.

実施例1のターボ分子ポンプの縦断面図である。1 is a longitudinal sectional view of a turbo molecular pump of Example 1. FIG. 前記実施例1の一部保護金網の平面図である。It is a top view of the partial protection wire mesh of the said Example 1. FIG. 前記実施例1の保護金網の作用の説明図である。It is explanatory drawing of an effect | action of the protection wire mesh of the said Example 1. FIG. 実施例2のターボ分子ポンプの一部保護金網の一部斜視図である。It is a partial perspective view of the partial protection metal mesh of the turbo-molecular pump of Example 2. 前記実施例2の保護金網の作用の説明図である。It is explanatory drawing of an effect | action of the protection wire mesh of the said Example 2. FIG. 実施例3のターボ分子ポンプの一部保護金網の平面図である。6 is a plan view of a partially protective wire mesh of a turbo molecular pump of Example 3. FIG. 前記実施例3の保護金網の前記図6におけるA−A線截断面図である。FIG. 7 is a cross-sectional view taken along line AA in FIG. 6 of the protective wire mesh of Example 3. 実施例4の保護金網の1部縦断面図である。It is 1 part longitudinal cross-sectional view of the protection wire mesh of Example 4. 従来の複合分子ポンプの一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the conventional complex molecular pump. 従来の保護金網の一例の平面図である。It is a top view of an example of the conventional protection wire mesh.

本発明の実施例を以下に示す。   Examples of the present invention are shown below.

図1は第1発明の実施例のターボ分子ポンプ1の縦断面図であり、4はロータで、該ロータ4の外周部には多数の動翼4aが放射状に且つ多段に設置されている。   FIG. 1 is a longitudinal sectional view of a turbo molecular pump 1 according to an embodiment of the first invention. Reference numeral 4 denotes a rotor, and a large number of rotor blades 4 a are radially arranged in multiple stages on the outer periphery of the rotor 4.

5はケーシングで、該ケーシング5の上端部には排気の吸入口5aがあり、該吸入口5aにおいて排気が行なわれる側の装置と接続するようになっている。   Reference numeral 5 denotes a casing, which has an exhaust suction port 5a at the upper end of the casing 5 and is connected to a device on the side where exhaust is performed at the suction port 5a.

本実施例では、該吸入口5aを前記ロータ4の1段目の動翼4aに近接して配置して、分子ポンプ1の全長が短くなるようにしている。   In the present embodiment, the suction port 5a is disposed close to the first stage moving blade 4a of the rotor 4 so that the total length of the molecular pump 1 is shortened.

6は保護金網で、該保護金網6は、ボルト、ナットや金属片等の異物が飛び込んできてロータ4や動翼4aを破損するのを防止する役割を有して、前記吸入口5aの部分に嵌入設置されている。   6 is a protective wire mesh, and the protective wire mesh 6 has a function of preventing foreign matter such as bolts, nuts, and metal pieces from jumping in and damaging the rotor 4 and the moving blade 4a. It is inserted and installed.

尚、5bは排気出口で、該排気出口5bは前記ケーシング5の下方部に設置されている。   In addition, 5b is an exhaust outlet and this exhaust outlet 5b is installed in the lower part of the said casing 5. FIG.

前記保護金網6の構造を示す平面図を図2に示した。   A plan view showing the structure of the protective wire mesh 6 is shown in FIG.

即ち、保護金網6は短い針金の線素6aの組み合せからなる長方形の網目6cを交互に縦向き、横向きに連接して稲妻形の網目模様を形成しており、各網目6cの長方形の長辺の中央部には、隣接する網目6cの長方形の長辺の先端部がT字状に直交している。   That is, the protective wire mesh 6 is formed by connecting rectangular meshes 6c composed of short wire elements 6a alternately vertically and horizontally to form a lightning-like mesh pattern, and the long side of the rectangle of each mesh 6c. In the central part, the front end part of the rectangular long side of the adjacent mesh 6c is orthogonal to the T-shape.

該保護金網6は、外周のつば部6dを前記吸入口部5aに嵌入して係止されている。   The protective wire mesh 6 is locked by fitting the outer flange portion 6d into the suction port portion 5a.

次に本実施例の保護金網6の作用及び効果について説明する。   Next, the operation and effect of the protective metal mesh 6 of this embodiment will be described.

該保護金網6はターボ分子ポンプ1の吸入口5d部にあって、異物がロータ4側に飛び込んでくるのを防止する役目をしている。   The protective wire mesh 6 is provided at the suction port 5d of the turbo molecular pump 1 and serves to prevent foreign matter from jumping into the rotor 4 side.

該保護金網6は、網目6cを構成する縦横の線素6aの長さが短いため、各線素での熱膨張の絶対量が小さく、また熱膨張による伸びは、各線素6aがT字形に交叉する部位において、網目の長辺側が図3に示す如く「く」の字形に変形して逃げることができるので、保護金網6全体としては上下方向の変形を殆んど生じない。   The protective wire mesh 6 has a short length of vertical and horizontal line elements 6a constituting the mesh 6c, so that the absolute amount of thermal expansion in each line element is small, and the elongation due to the thermal expansion crosses each line element 6a in a T-shape. The long side of the mesh can be deformed into a “<” shape as shown in FIG. 3 to escape, so that the protective metal mesh 6 as a whole hardly deforms in the vertical direction.

このように保護金網6がロータ4や動翼4aと接触するような膨出をすることがないので、安全である。   In this way, the protective wire mesh 6 does not bulge out so as to come into contact with the rotor 4 or the moving blade 4a, which is safe.

図4は第2発明の実施例のターボ分子ポンプの吸入口部に設置されている保護金網7の一部の斜視図である。   FIG. 4 is a perspective view of a part of the protective wire mesh 7 installed at the suction port of the turbo molecular pump according to the embodiment of the second invention.

尚、該複合分子ポンプは、前記実施例1における複合分子ポンプ1の保護金網6の代りに保護金網7を用いるようにした以外は、前記複合分子ポンプ1と同様の構造である。   The complex molecular pump has the same structure as the complex molecular pump 1 except that a protective wire mesh 7 is used instead of the protective wire mesh 6 of the complex molecular pump 1 in Example 1.

該保護金網7は、互いに交差する板状の囲壁7aを所定ピッチで連設して、該囲壁7aの壁厚7a1よりも高い囲壁の高さ7a2で形成した四角形の升目7bからなる構造とし、その外周部を丸いつば部7cで囲んで、円形に形成した。   The protective wire mesh 7 has a structure comprising a rectangular mesh 7b formed by connecting plate-like surrounding walls 7a intersecting each other at a predetermined pitch and having a height 7a2 of the surrounding wall higher than the wall thickness 7a1 of the surrounding wall 7a. The outer peripheral portion was surrounded by a round rib portion 7c to form a circle.

このように保護金網7は升目7bの高さ方向に強い剛性を持つ構造としたので、高さ方向への座屈は起き難く、囲壁7aの熱膨張による伸びは図5に示す如く囲壁7aがくの字状に変形して逃げることができる。   Since the protective mesh 7 has a structure having strong rigidity in the height direction of the mesh 7b, buckling in the height direction is unlikely to occur, and the expansion due to the thermal expansion of the surrounding wall 7a is caused by the surrounding wall 7a as shown in FIG. It can be deformed into a letter shape and escape.

このように、本実施例の保護金網7がロータ4や動翼4aと接触するような膨出をすることがないので、安全である。   In this way, the protective wire mesh 7 of this embodiment does not bulge out so as to come into contact with the rotor 4 or the moving blade 4a, so that it is safe.

第3発明の実施例を図6及び図7により説明する。   An embodiment of the third invention will be described with reference to FIGS.

図6は実施例3の保護金網8の平面図であり、該保護金網8のA−A線截断面図を図7に示した。   FIG. 6 is a plan view of the protective wire mesh 8 of Example 3, and FIG. 7 shows a cross-sectional view of the protective wire mesh 8 taken along line AA.

前記保護金網8は、外周の丸いつば部8aと該つば部8aの内側の網目部8bとをエッチング等で一体形成した後、前記つば部8aの内周8cを絞り加工により図7に示すように少許上方へ折り曲げて、前記網目部8bに上向きのストレスを発生させて膨出させ、中心部が少許上方へ円弧状に膨らんだ形状に形成されている。   As shown in FIG. 7, the protective wire mesh 8 is formed by integrally forming the outer peripheral round edge portion 8a and the inner mesh portion 8b of the collar portion 8a by etching or the like, and then drawing the inner circumference 8c of the collar portion 8a. The mesh portion 8b is bent upwards to generate upward stress and bulge, and the central portion is formed in a shape swelled in an arc shape upwards.

前記保護金網8も、前記実施例1におけるターボ分子ポンプ1の保護金網6の代りに用いることができる。   The protective wire mesh 8 can also be used in place of the protective wire mesh 6 of the turbo molecular pump 1 in the first embodiment.

前記保護金網8の網目部8bには、常に上方へのストレスがかかっているため、該網目部8bに熱膨張量の差により発生する座屈は上方へのストレスに促されて常に上方に凸の方向に起きることになる。   Since the mesh portion 8b of the protective wire mesh 8 is always stressed upward, the buckling caused by the difference in the amount of thermal expansion of the mesh portion 8b is urged by the upward stress and always protrudes upward. Will happen in the direction of.

かくて、前記保護金網8は前記ロータ4や動翼4aに接近することがなく、安全である。   Thus, the protective wire mesh 8 is safe without approaching the rotor 4 or the moving blade 4a.

第4発明の実施例について図8により説明する。   An embodiment of the fourth invention will be described with reference to FIG.

本実施例の保護金網9は、線膨張率の大きい金属からなる薄板9aの下面に線膨張率の小さい金属からなる薄板9bを重ねて貼り合わせた複合板に、多数のパンチ孔9cを設けて形成されている。   The protective wire mesh 9 of this embodiment is provided with a number of punch holes 9c in a composite plate in which a thin plate 9b made of a metal having a low linear expansion coefficient is laminated and bonded to the lower surface of a thin plate 9a made of a metal having a high linear expansion coefficient. Is formed.

保護金網9の形状は、例えば図6に示す如き角孔を有するものであってもよい。 The shape of the protective wire mesh 9 may have a square hole as shown in FIG.

保護金網9を前記ターボ分子ポンプ1に使用した場合、加熱による膨張は、常に線膨張率の大きな上面側金属の方へ凸に膨張するので、該保護金網9が前記ロータ4や動翼4aと接近することがなく、安全である。   When the protective wire mesh 9 is used for the turbo molecular pump 1, the expansion due to heating always expands in a convex manner toward the upper surface side metal having a large linear expansion coefficient. Therefore, the protective wire mesh 9 is connected to the rotor 4 and the rotor blade 4a. It is safe without approaching.

尚、前記実施例はいずれもターボ分子ポンプの場合を示したが、これは複合分子ポンプであってもよい。   In addition, although the said Example showed the case of the turbo molecular pump, this may be a composite molecular pump.

本発明はターボ分子ポンプや複合分子ポンプ等の分子ポンプにおいて、特にダウンサイジングの要求から、ロータに近接して排気の吸入口を配置した構造の分子ポンプに有効である。   The present invention is effective for molecular pumps such as turbo molecular pumps and complex molecular pumps, particularly for molecular pumps having a structure in which an exhaust inlet is disposed close to the rotor because of the demand for downsizing.

1 ターボ分子ポンプ
4 ロータ
5a 吸入口
6、7、8、9 保護金網
1 Turbo molecular pump 4 Rotor 5a Suction port 6, 7, 8, 9 Protective wire mesh

Claims (2)

ロータに近接して排気の吸入口を配置した構造の分子ポンプにおいて、外周の丸いつば部と該つば部の内側の多数の小孔を有する網目部とからなり、前記つば部の内周を絞り加工により少許上方へ折り曲げて前記金網部に上向きのストレスを有する保護金網を形成し、該網目部は該網目部の膨張により上方に凸状に変形可能に形成され、前記保護金網を前記分子ポンプの吸入口部に設置したことを特徴とする分子ポンプ。   In a molecular pump having a structure in which an exhaust suction port is arranged close to a rotor, it is composed of an outer peripheral round brim part and a mesh part having a large number of small holes inside the brim part. A protective wire mesh having upward stress is formed on the wire mesh portion by bending upwards by processing, and the mesh portion is formed to be deformable upward by expansion of the mesh portion, and the protective wire mesh is formed into the molecular pump. A molecular pump characterized in that it is installed at the suction port. ロータに近接して排気の吸入口を配置した構造の分子ポンプにおいて、線膨張率の大きい金属からなる薄板の下面に線膨張率の小さい金属からなる薄板を重ねて張り合わせた複合板に多数のパンチ孔を設けて保護金網を形成し、該保護金網は該保護金網の熱膨張により上方に凸状に変形可能に形成され、該保護金網を前記分子ポンプの吸入口部に設置したことを特徴とする分子ポンプ。   In a molecular pump with a structure in which an exhaust suction port is arranged close to the rotor, a number of punches are attached to a composite plate in which a thin plate made of a metal having a low linear expansion coefficient is laminated on the lower surface of a thin plate made of a metal having a high linear expansion coefficient. A protective wire mesh is formed by providing a hole, and the protective wire mesh is formed so as to be deformable upwardly by thermal expansion of the protective wire mesh, and the protective wire mesh is installed at the suction port portion of the molecular pump. Molecular pump to do.
JP2010046247A 2010-03-03 2010-03-03 Molecular pump Expired - Lifetime JP4892621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046247A JP4892621B2 (en) 2010-03-03 2010-03-03 Molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046247A JP4892621B2 (en) 2010-03-03 2010-03-03 Molecular pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004161484A Division JP4504102B2 (en) 2004-05-31 2004-05-31 Molecular pump

Publications (2)

Publication Number Publication Date
JP2010116926A true JP2010116926A (en) 2010-05-27
JP4892621B2 JP4892621B2 (en) 2012-03-07

Family

ID=42304730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046247A Expired - Lifetime JP4892621B2 (en) 2010-03-03 2010-03-03 Molecular pump

Country Status (1)

Country Link
JP (1) JP4892621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201520A (en) * 2010-11-24 2013-07-10 埃地沃兹日本有限公司 Protective mesh for vacuum pump and vacuum pump with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261507B2 (en) * 2012-09-26 2018-01-17 株式会社島津製作所 Protective net for vacuum pump, manufacturing method thereof, and vacuum pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129976A (en) * 1975-05-07 1976-11-11 Hitachi Cable Ltd Filter wire-netting for fluid or the like
JPS56130545A (en) * 1980-03-17 1981-10-13 Hitachi Ltd Filter for use in air blower
JPH11247790A (en) * 1998-03-04 1999-09-14 Shimadzu Corp Vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129976A (en) * 1975-05-07 1976-11-11 Hitachi Cable Ltd Filter wire-netting for fluid or the like
JPS56130545A (en) * 1980-03-17 1981-10-13 Hitachi Ltd Filter for use in air blower
JPH11247790A (en) * 1998-03-04 1999-09-14 Shimadzu Corp Vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201520A (en) * 2010-11-24 2013-07-10 埃地沃兹日本有限公司 Protective mesh for vacuum pump and vacuum pump with same
US9816530B2 (en) 2010-11-24 2017-11-14 Edwards Japan Limited Splinter shield for vacuum pump, and vacuum pump with the splinter shield

Also Published As

Publication number Publication date
JP4892621B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
KR101819240B1 (en) Airfoil shape for compressor
JP2008002464A (en) Turbine engine component
JP2014139431A (en) Method of manufacturing turbo machine blade including shaped channel by lamination molding, turbo machine blade, and turbo machine
JP5668080B2 (en) Protective net for vacuum pump and vacuum pump provided with the same
JP2010112379A (en) System and method for reducing bucket tip loss
JP2008002465A (en) Turbine engine component
KR20080037586A (en) Airfoil shape for a turbine nozzle
JP4892621B2 (en) Molecular pump
US10132178B2 (en) Steam turbine stationary blade
EP2476908A1 (en) Cross-flow fan, molding die, and fluid feed device
US10400605B2 (en) Turbofan and indoor unit for air conditioning apparatus
WO2010064321A1 (en) Vacuum pump, turbo-molecular pump, and protection net
JP6380859B2 (en) Multistage sealing structure of turbine
JP4504102B2 (en) Molecular pump
CN109209980B (en) Guide plate for axial flow compressor
US7972116B2 (en) Blade for a gas turbine engine
JP2016142687A (en) Nuclear reactor containment structure
US10161403B2 (en) Vacuum pump
KR20140066715A (en) An axial blower
KR102621756B1 (en) Cooled gas turbine blade with lattice structure
EP3367009B1 (en) Centrifugal fan
JP2010185367A (en) Fixing structure of turbine blade and turbine
US20140072433A1 (en) Method of clocking a turbine by reshaping the turbine&#39;s downstream airfoils
JP2006215218A (en) Flat display device
CN109779730B (en) Exhaust gas guide device for construction machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4892621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250