JP2010115173A - Method of manufacturing (s)-3-quinuclidinol - Google Patents

Method of manufacturing (s)-3-quinuclidinol Download PDF

Info

Publication number
JP2010115173A
JP2010115173A JP2008292088A JP2008292088A JP2010115173A JP 2010115173 A JP2010115173 A JP 2010115173A JP 2008292088 A JP2008292088 A JP 2008292088A JP 2008292088 A JP2008292088 A JP 2008292088A JP 2010115173 A JP2010115173 A JP 2010115173A
Authority
JP
Japan
Prior art keywords
quinuclidinol
reaction
quinuclidinone
culture
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008292088A
Other languages
Japanese (ja)
Other versions
JP5333966B2 (en
Inventor
Tetsuji Noda
哲治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKI GOSEI YAKUHIN KOGYO KK
Yuki Gosei Kogyo Co Ltd
Original Assignee
YUKI GOSEI YAKUHIN KOGYO KK
Yuki Gosei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKI GOSEI YAKUHIN KOGYO KK, Yuki Gosei Kogyo Co Ltd filed Critical YUKI GOSEI YAKUHIN KOGYO KK
Priority to JP2008292088A priority Critical patent/JP5333966B2/en
Publication of JP2010115173A publication Critical patent/JP2010115173A/en
Application granted granted Critical
Publication of JP5333966B2 publication Critical patent/JP5333966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of microbiologically manufacturing (S)-3-quinuclidinol. <P>SOLUTION: The (S)-3-quinuclidinol is microbiologically manufactured by treating a micro-organism belonging to the Rhodococcus group or the Pseudoclavibacter group or its treated substance react with 3-quinuclidinone. The (S)-3-quinuclidinol can be obtained from 3-quinuclidinone selectively at a high concentration. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、(S)−3−キヌクリジノールを選択的に製造する方法に関する。(S)−3−キヌクリジノールは、医農薬中間体を始め、各種ファインケミカルの中間体として用いられ、産業上有用な化合物である。   The present invention relates to a method for selectively producing (S) -3-quinuclidinol. (S) -3-quinuclidinol is an industrially useful compound that is used as an intermediate for various fine chemicals including pharmaceutical and agrochemical intermediates.

微生物学的方法により不斉還元酵素を利用して、3−キヌクリジノンから(S)−3−キヌクリジノールを製造する方法としては次の方法が知られている。
アルスロバクター(Arthrobacter)属、シュードモナス(Pseudomonas)属、ロドスポリディウム(Rhodosporidium)属に属する微生物からなる群から選ばれる微生物を作用させる方法(特許文献1)がある。この方法では、光学純度は4%eeから最高95%ee、蓄積濃度は1.2g/L〜1.6g/Lで(S)−3−キヌクリジノールを得ている(25mLの培養液を集菌し、0.5%の3−キヌクリジノンを含む反応液を2mL添加して、30℃、3日間反応した結果)が、光学純度と蓄積濃度がともに低いという問題点がある。
The following method is known as a method for producing (S) -3-quinuclidinol from 3-quinuclidinone using an asymmetric reductase by a microbiological method.
There is a method (Patent Document 1) in which a microorganism selected from the group consisting of microorganisms belonging to the genus Arthrobacter, Pseudomonas, and Rhodospodium is used. In this method, (S) -3-quinuclidinol is obtained with an optical purity of 4% ee up to 95% ee and an accumulation concentration of 1.2 g / L to 1.6 g / L (collecting 25 mL of the culture solution). However, 2 mL of a reaction solution containing 0.5% 3-quinuclidinone was added and reacted at 30 ° C. for 3 days), but there was a problem that both optical purity and accumulated concentration were low.

キャンディダ(Candida)属、ピチア(Pichia)属などに属する微生物からなる群から選ばれる微生物を作用させる方法(特許文献2)がある。この方法では、光学純度は18%eeから最高100%eeであり、光学純度が100%eeの微生物で蓄積濃度は0.3g/L(100mL培養液に、3−キヌクリジノンを808mg添加し、25℃で5日間培養を継続し、反応を行った結果)で、(S)−3−キヌクリジノールを得ているが、蓄積濃度が低いという問題点がある。   There is a method (Patent Document 2) in which a microorganism selected from the group consisting of microorganisms belonging to the genus Candida, the genus Pichia and the like is allowed to act. In this method, the optical purity is 18% ee up to 100% ee, the microorganism has an optical purity of 100% ee, and the accumulated concentration is 0.3 g / L (808 mg of 3-quinuclidinone is added to 100 mL culture solution, 25 (S) -3-quinuclidinol is obtained as a result of continuing the culture at 5 ° C. for 5 days and performing the reaction), but there is a problem that the accumulated concentration is low.

ミクロコッカス(Micrococcus)属に属する微生物を作用させる方法(特許文献3)がある。この方法では、光学純度は最高100%eeで、蓄積濃度は0.03g/L(100mL培養液を集菌し、0.5%の3−キヌクリジノンを含む反応液を15mL添加して、30℃、48時間反応した結果)で得ているが、蓄積濃度が低いという問題点がある。   There is a method (Patent Document 3) in which a microorganism belonging to the genus Micrococcus is allowed to act. In this method, the optical purity is a maximum of 100% ee, the accumulated concentration is 0.03 g / L (100 mL culture solution is collected, 15 mL of a reaction solution containing 0.5% 3-quinuclidinone is added, and 30 ° C. As a result of 48 hours reaction), the accumulated concentration is low.

特開平10−243795号Japanese Patent Laid-Open No. 10-243795 特開平11−196890号JP-A-11-196890 特開2002−153293号JP 2002-153293 A

前述のように、3−キヌクリジノンから(S)−3−キヌクリジノールを生産することのできる微生物が報告されているが、光学純度や蓄積濃度が低いという問題点を有していた。   As described above, a microorganism capable of producing (S) -3-quinuclidinol from 3-quinuclidinone has been reported, but has a problem of low optical purity and accumulated concentration.

本発明者らは、上記問題点を解決すべき鋭意検討を重ねた結果、ロドコッカス(Rhodococcus)属、又はシュードクラビバクター(Pseudoclavibacter)属に属する微生物が、3−キヌクリジノンから(S)−3−キヌクリジノールを選択的に著量生成し、蓄積する能力を有していることを見い出し、本発明を完成するに至った。
本発明は、こうした知見に基づくものである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that microorganisms belonging to the genus Rhodococcus or the genus Pseudoclavibacter are changed from 3-quinuclidinone to (S) -3-quinuclidinol. As a result, the inventors have found that they have the ability to selectively generate and accumulate a significant amount of the material, thereby completing the present invention.
The present invention is based on these findings.

本発明は、3−キヌクリジノンに、ロドコッカス属、若しくはシュードクラビバクター属に属する微生物、又はその処理物を作用させることにより(S)−3−キヌクリジノールを得ることを特徴とする、(S)−3−キヌクリジノールの製造方法に関する。
また、本発明は、受託番号FERM P−21643であるロドコッカス クウィングシェンギ(Rhodococcus qingshengii) YGK−514、及び、受託番号FERM P−21642であるシュードクラビバクター エスピー(Pseudoclavibacter sp) YGK−032にも関する。
The present invention is characterized in that (S) -3-quinuclidinol is obtained by reacting 3-quinuclidinone with a microorganism belonging to the genus Rhodococcus or Pseudoclavibacter or a processed product thereof, (S) -3 -It relates to a method for producing quinuclidinol.
The present invention also applies to Rhodococcus kingshengii YGK-514, which has accession number FERM P-21634, and Pseudoclavacter sp2 Y2 to Pseudoclavacter sp2 Y, which has accession number FERM P-21642. Related.

本発明によれば、3−キヌクリジノンから(S)−3−キヌクリジノールを選択的にかつ高濃度で得ることができる。   According to the present invention, (S) -3-quinuclidinol can be selectively obtained at a high concentration from 3-quinuclidinone.

以下、本発明について詳細に説明する。
3−キヌクリジノンに、ロドコッカス属、若しくはシュードクラビバクター属に属する微生物、又はその処理物を作用させることにより(S)−3−キヌクリジノールを選択的にかつ高濃度で製造することができる。
本発明における微生物としては、3−キヌクリジノンから(R)−3−キヌクリジノールを著量生成し、蓄積する能力を有する、ロドコッカス属、又はシュードクラビバクター属に属する微生物であればその種及びその起源は何ら問わない。
Hereinafter, the present invention will be described in detail.
By reacting 3-quinuclidinone with a microorganism belonging to the genus Rhodococcus or Pseudoclavibacter or a treated product thereof, (S) -3-quinuclidinol can be selectively produced at a high concentration.
As a microorganism in the present invention, if it is a microorganism belonging to the genus Rhodococcus or Pseudoclavibacter having the ability to produce and accumulate significant amounts of (R) -3-quinuclidinol from 3-quinuclidinone, its species and its origin are No matter what.

本発明における微生物として好ましくは、ロドコッカス クウィングシェンギ(Rhodococcus qingshengii)、シュードクラビバクター エスピーを挙げることができる。更に好ましくは、ロドコッカス クウィングシェンギ YGK−514(FERM P−21643)、シュードクラビバクター エスピー YGK−032(FERM P−21642)を挙げることができる。本菌株は平成20年8月7日付けで、独立行政法人産業技術総合研究所特許生物寄託センター(あて名:〒305−8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に上記受託番号で国内寄託されている。   Preferred microorganisms in the present invention include Rhodococcus kingshengii and Pseudoclavibacter sp. More preferable examples include Rhodococcus wingshengi YGK-514 (FERM P-21634) and Pseudoclaviacter SP YGK-032 (FERM P-21642). This strain is dated August 7, 2008, and is entrusted to the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center (address: 1st, 1st, 1st East, 1-chome, Tsukuba, Ibaraki 305-8586, Japan) Deposited domestically by number.

本発明において使用することのできるロドコッカス クウィングシェンギ YGK−514(FERM P−21643)の菌学的性質は次のとおりである。

1−1.形態的性質
(1)細胞形態:不規則桿菌
(2)幅:0.8μm
(3)長さ:2.0〜3.0μm
(4)細胞多形成の有無:−
(5)運動性:−
(6)胞子形成:−

1−2.培養的性質
培養条件:Nutrient agar培地 30℃
(1)色:オレンジ色
(2)光沢:+
(3)色素生産:+
(4)表面発育の有無:+
(5)培地の混濁の有無:+
培養条件:ゼラチン穿刺培養 30℃
(6)生育状態:+
(7)ゼラチン液化:−
培養条件:リトマス・ミルク 30℃
(8)凝固:−
(9)液化:−

1−3.生理学的性質(+wは弱い反応を表す)
(1)グラム染色:+
(2)硝酸塩の還元:−
(3)脱窒反応:−
(4)MRテスト:−
(5)VPテスト:−
(6)インドール生産:−
(7)硫化水素の生成:−
(8)デンプンの加水分解:−
(9)クエン酸の利用
Koser:−
Christensen:+
(10)無機窒素の利用
硝酸塩:+
アンモニウム塩:+
(11)ウレアーゼ活性:−
(12)カタラーゼ活性:+
(13)オキシダーゼ活性:−
(14)生育の範囲 pH
5:+
8:+
9:+
(15)生育の範囲 温度
20℃:+
30℃:+
37℃:+
45℃:−
(16)嫌気的生育性:+w
(17)O−Fテスト(酸化/発酵):+/−

1−4.糖類からの酸生産/ガス生産(+wは弱い反応を表す)
(1)L−アラビノース:−/−
(2)D−グルコース:+w/−
(3)D−フラクトース:−/−
(4)マルトース:−/−
(5)ラクトース:−/−
(6)D−ソルビトール:−/−
(7)イノシトール:−/−
(8)D−キシロース:−/−
(9)D−マンノース:−/−
(10)D−ガラクトース:−/−
(11)サッカロース:−/−
(12)トレハロース:−/−
(13)D−マンニトール:−/−
(14)グリセリン:−/−

1−5.その他生理学的性質
(1)β−ガラクトシダーゼ活性:−
(2)アルギニンジヒドロラーゼ活性:−
(3)リジンデカルボキシラーゼ活性:−
(4)トリプトファンデアミナーゼ活性:−
(5)ゼラチナーゼ活性:−
The bacteriological properties of Rhodococcus wingshengi YGK-514 (FERM P-21643) that can be used in the present invention are as follows.

1-1. Morphological properties (1) Cell morphology: irregular gonococci (2) Width: 0.8 μm
(3) Length: 2.0-3.0 μm
(4) Presence or absence of cell polyplasia:-
(5) Motility:-
(6) Sporulation:-

1-2. Culture properties Culture conditions: Nutrient agar medium 30 ° C
(1) Color: Orange (2) Gloss: +
(3) Dye production: +
(4) Presence or absence of surface growth: +
(5) Presence or absence of medium turbidity: +
Culture conditions: gelatin puncture culture 30 ° C
(6) Growth state: +
(7) Gelatin liquefaction:-
Culture conditions: Litmus milk 30 ° C
(8) Coagulation:-
(9) Liquefaction:-

1-3. Physiological properties (+ w represents a weak response)
(1) Gram staining: +
(2) Reduction of nitrate:
(3) Denitrification reaction:-
(4) MR test:-
(5) VP test:-
(6) Indole production:-
(7) Production of hydrogen sulfide:-
(8) Starch hydrolysis:-
(9) Utilization of citric acid Koser:-
Christensen: +
(10) Use of inorganic nitrogen Nitrate: +
Ammonium salt: +
(11) Urease activity: −
(12) Catalase activity: +
(13) Oxidase activity: −
(14) Range of growth pH
5: +
8: +
9: +
(15) Growth range Temperature 20 ° C: +
30 ° C: +
37 ° C: +
45 ° C:-
(16) Anaerobic growth: + w
(17) OF test (oxidation / fermentation): +/-

1-4. Acid / gas production from sugars (+ w represents a weak reaction)
(1) L-arabinose:-/-
(2) D-glucose: + w /-
(3) D-fructose:-/-
(4) Maltose:-/-
(5) Lactose:-/-
(6) D-sorbitol:-/-
(7) Inositol:-/-
(8) D-xylose:-/-
(9) D-mannose: − / −
(10) D-galactose: − / −
(11) Saccharose:-/-
(12) Trehalose:-/-
(13) D-mannitol: − / −
(14) Glycerin: − / −

1-5. Other physiological properties (1) β-galactosidase activity:
(2) Arginine dihydrolase activity:-
(3) Lysine decarboxylase activity:
(4) Tryptophan deaminase activity: −
(5) Gelatinase activity: −

1−6.化学分類学的性質
本菌株よりゲノムDNAを抽出し、16S rRNA遺伝子(16S rDNA)の配列を解析した。決定された1478bpの塩基配列を配列表の配列番号1に示す。こうして得られた本菌株の16S rDNA塩基配列(配列番号1)を用いて、DNA塩基配列データベース(アポロンDB−BA4.0)に対する相同性検索の結果、ロドコッカス由来の16S rDNAに対し高い相同性を示し、ロドコッカス クウィングシェンギdjl−6株〔Accession No.DQ090961〕の16S rDNAに対し100%の最も高い相同性を示し、ついで、ロドコッカス バイコヌレンシス(Rhodococcus baikonurensis)GTC1041株〔Accession No.AB071951〕の16S rDNAに対し99.8%の相同性を示した。近縁菌群と系統樹を作製した結果、本菌株は、ロドコッカス クウィングシェンギ及び、ロドコッカス バイコヌレンシス(Rhodococcus baikonurensis)の16S rDNAとクラスターを形成し近縁であることが示され、さらに、ロドコッカス クウィングシェンギと同一の分子系統学的位置を示した。
以上の結果より、本菌株は、ロドコッカス クウィングシェンギであると判定した。
1-6. Chemical taxonomic properties Genomic DNA was extracted from this strain, and the sequence of 16S rRNA gene (16S rDNA) was analyzed. The determined base sequence of 1478 bp is shown in SEQ ID NO: 1 in the sequence listing. Using the 16S rDNA base sequence (SEQ ID NO: 1) of the present strain thus obtained, as a result of homology search against the DNA base sequence database (Apollon DB-BA4.0), it showed high homology to 16S rDNA derived from Rhodococcus. Rhodococcus wingshengi djl-6 strain [Accession No. DQ090961] shows 100% highest homology to 16S rDNA, followed by Rhodococcus baikorenensis GTC1041 strain [Accession No. AB071951] showed 99.8% homology to 16S rDNA. As a result of producing a phylogenetic tree with related fungal groups, it was shown that this strain formed a cluster with 16S rDNA of Rhodococcus baichenrensis and Rhodococcus baikonurensis, and was also closely related. It showed the same molecular phylogenetic position as Wingshengi.
From the above results, this strain was determined to be Rhodococcus wingshengi.

本発明において使用することのできるシュードクラビバクター エスピー YGK−032(FERM P−21642)の菌学的性質は次のとおりである。

1−1.形態的性質
(1)細胞形態:桿菌
(2)幅:0.7−0.8μm
(3)長さ:1.0〜1.5μm
(4)細胞多形成の有無:−
(5)運動性:−
(6)胞子形成:−

1−2.培養的性質
培養条件:Nutrient agar培地 30℃
(1)色:黄色
(2)光沢:+
(3)色素生産:+
(4)表面発育の有無:−
(5)培地の混濁の有無:+
培養条件:ゼラチン穿刺培養 30℃
(6)生育状態:+
(7)ゼラチン液化:−
培養条件:リトマス・ミルク 30℃
(8)凝固:−
(9)液化:−

1−3.生理学的性質(+wは弱い反応を表す)
(1)グラム染色:+
(2)硝酸塩の還元:−
(3)脱窒反応:−
(4)MRテスト:−
(5)VPテスト:−
(6)インドール生産:−
(7)硫化水素の生成:−
(8)デンプンの加水分解:−
(9)クエン酸の利用
Koser:−
Christensen:+
(10)無機窒素の利用
硝酸塩:−
アンモニウム塩:−
(11)ウレアーゼ活性:−
(12)カタラーゼ活性:+
(13)オキシダーゼ活性:−
(14)生育の範囲 pH
5:−
8:+
9:+
(15)生育の範囲 温度
20℃:+
30℃:+
37℃:−
45℃:−
(16)嫌気的生育性:+w
(17)O−Fテスト(酸化/発酵):+/−

1−4.糖類からの酸生産/ガス生産
(1)L−アラビノース:−/−
(2)D−グルコース:+/−
(3)D−フラクトース:+/−
(4)マルトース:−/−
(5)ラクトース:−/−
(6)D−ソルビトール:−/−
(7)イノシトール:−/−
(8)D−キシロース:−/−
(9)D−マンノース:+/−
(10)D−ガラクトース:−/−
(11)サッカロース:+/−
(12)トレハロース:−/−
(13)D−マンニトール:−/−
(14)グリセリン:+/−

1−5.その他生理学的性質
(1)β−ガラクトシダーゼ活性:+
(2)アルギニンジヒドロラーゼ活性:−
(3)リジンデカルボキシラーゼ活性:−
(4)トリプトファンデアミナーゼ活性:−
(5)ゼラチナーゼ活性:−
The mycological properties of Pseudoclavibacter sp. YGK-032 (FERM P-21642) that can be used in the present invention are as follows.

1-1. Morphological properties (1) Cell morphology: Neisseria gonorrhoeae (2) Width: 0.7-0.8 μm
(3) Length: 1.0 to 1.5 μm
(4) Presence or absence of cell polyplasia:-
(5) Motility:-
(6) Sporulation:-

1-2. Culture properties Culture conditions: Nutrient agar medium 30 ° C
(1) Color: Yellow (2) Gloss: +
(3) Dye production: +
(4) Presence or absence of surface growth:-
(5) Presence or absence of medium turbidity: +
Culture conditions: gelatin puncture culture 30 ° C
(6) Growth state: +
(7) Gelatin liquefaction:-
Culture conditions: Litmus milk 30 ° C
(8) Coagulation:-
(9) Liquefaction:-

1-3. Physiological properties (+ w represents a weak response)
(1) Gram staining: +
(2) Reduction of nitrate:
(3) Denitrification reaction:-
(4) MR test:-
(5) VP test:-
(6) Indole production:-
(7) Production of hydrogen sulfide:-
(8) Starch hydrolysis:-
(9) Utilization of citric acid Koser:-
Christensen: +
(10) Use of inorganic nitrogen Nitrate:-
Ammonium salt:-
(11) Urease activity: −
(12) Catalase activity: +
(13) Oxidase activity: −
(14) Range of growth pH
5:-
8: +
9: +
(15) Growth range Temperature 20 ° C: +
30 ° C: +
37 ° C .: −
45 ° C:-
(16) Anaerobic growth: + w
(17) OF test (oxidation / fermentation): +/-

1-4. Acid production from sugars / gas production (1) L-arabinose:-/-
(2) D-glucose: +/-
(3) D-fructose: +/-
(4) Maltose:-/-
(5) Lactose:-/-
(6) D-sorbitol:-/-
(7) Inositol:-/-
(8) D-xylose:-/-
(9) D-mannose: +/-
(10) D-galactose: − / −
(11) Saccharose: +/-
(12) Trehalose:-/-
(13) D-mannitol: − / −
(14) Glycerin: +/-

1-5. Other physiological properties (1) β-galactosidase activity: +
(2) Arginine dihydrolase activity:-
(3) Lysine decarboxylase activity:
(4) Tryptophan deaminase activity: −
(5) Gelatinase activity: −

1−6.化学分類学的性質
本菌株よりゲノムDNAを抽出し、16S rRNA遺伝子(16S rDNA)の配列を解析した。決定された1481bpの塩基配列を配列表の配列番号2に示す。こうし
て得られた本菌株の16S rDNA塩基配列(配列番号2)を用いて、DNA塩基配列データベース(アポロンDB−BA4.0)に対して相同性を検索し、近縁菌群と系統樹を作製した結果、本菌株はシュードクラビバクター属に属すると推定された。最も近縁であった基準株はシュードクラビバクター ヘルボラス(Pseudoclavibacter helvolus)DSM20419株〔Accession No.X77440〕であり、99.7%の相同性を示した。以上の結果より、本菌株は、シュードクラビバクター属に含まれ、既知種では、シュードクラビバクター ヘルボラス(Pseudoclavibacter helvolus)に最も近縁と考えられる。しかし、両者の16S rDNAは完全に一致しておらず、本菌株とシュードクラビバクター ヘルボラス(Pseudoclavibacter helvolus)は種として異なる菌株である可能性も否定できない。これらのことから、本菌株をシュードクラビバクター エスピーであると判定した。
1-6. Chemical taxonomic properties Genomic DNA was extracted from this strain, and the sequence of 16S rRNA gene (16S rDNA) was analyzed. The determined base sequence of 1481 bp is shown in SEQ ID NO: 2 in the sequence listing. Using the 16S rDNA base sequence (SEQ ID NO: 2) of this strain thus obtained, homology is searched against the DNA base sequence database (Apollon DB-BA4.0), and related bacterial groups and phylogenetic trees are prepared. As a result, this strain was estimated to belong to the genus Pseudoclavibacter. The most closely related reference strain was Pseudoclavacter helvolus DSM 20419 strain [Accession No. X77440] and showed 99.7% homology. From the above results, this strain is included in the genus Pseudoclavibacter, and among the known species, it is considered to be most closely related to Pseudoclavacter helbolus. However, both 16S rDNAs do not completely match, and it cannot be denied that the present strain and Pseudoclavibacter helbolus are different strains as species. From these things, this strain was determined to be Pseudoclavibacter sp.

次に、本発明方法において使用するロドコッカス属、及びシュードクラビバクター属に属する微生物の培養方法について説明する。
前記微生物の培養液の調整方法としては、(ア)炭素源及び窒素源を適宜添加した培地に微生物の菌体を接種して同一の該培地中で増殖させて培養液を得る方法、(イ)培養を段階的に行って培養液を得る方法、すなわち、前培養と本培養を組み合わせて培養液を得る方法が挙げられるが、好ましくは(イ)の方法である。(イ)の方法は、まず、前培養として、炭素源及び窒素源を適宜添加した培地に前記微生物の菌体を接種して微生物を増殖させて、本培養で使用する微生物の確保を目的として第一段階の培養液(以下、前培養液という。)を得た後、次に本培養として、容量を増大させた培地に前培養液を加えて、炭素源及び窒素源を適宜添加して微生物を培養することで蓄積反応に十分な酵素の産生を目的として第二段階の培養液(以下、本培養液という。)を得る方法である。しかしながら、前記微生物の菌体を含む培養液の調製方法は、これらの方法に限定されるものではなく、更に、3回以上の培養を組み合わせて行うことも可能である。
Next, a method for culturing microorganisms belonging to the genus Rhodococcus and Pseudoclavibacter used in the method of the present invention will be described.
As a method for preparing the microorganism culture solution, (a) a method of obtaining a culture solution by inoculating microorganism cells in a medium to which a carbon source and a nitrogen source are appropriately added and allowing them to grow in the same medium; ) A method of performing culture stepwise to obtain a culture solution, that is, a method of obtaining a culture solution by combining pre-culture and main culture, preferably method (a). The method (a) is for the purpose of securing microorganisms to be used in the main culture by pre-culturing as a preculture, inoculating the cells of the microorganisms in a medium appropriately supplemented with a carbon source and a nitrogen source, and growing the microorganisms. After obtaining the first stage culture solution (hereinafter referred to as pre-culture solution), the main culture is then added to the medium with an increased volume, and the carbon source and nitrogen source are added appropriately. This is a method for obtaining a second-stage culture solution (hereinafter referred to as a main culture solution) for the purpose of producing an enzyme sufficient for an accumulation reaction by culturing microorganisms. However, the method for preparing a culture solution containing the cells of the microorganism is not limited to these methods, and it is also possible to carry out a combination of three or more cultures.

前記微生物を培養するための培地は、通常これらの微生物が生育可能な培地であれば特に制限はなく、一般的な微生物用の任意の公知培地を用いることができる。培地の炭素源及び窒素源としては、酵母エキス、ペプトン、肉エキス、アミノ酸、無機窒素、有機酸、糖類などを使用することができる。また、必要に応じて、微量金属塩、ビタミン類、核酸関連物質、無機塩類などを添加することもできる。   The medium for culturing the microorganism is not particularly limited as long as it is a medium in which these microorganisms can usually grow, and any known medium for general microorganisms can be used. As the carbon source and nitrogen source of the medium, yeast extract, peptone, meat extract, amino acid, inorganic nitrogen, organic acid, saccharide and the like can be used. If necessary, trace metal salts, vitamins, nucleic acid-related substances, inorganic salts, and the like can be added.

炭素源及び窒素源の供給方法としては、(1)培地作製時にあらかじめ添加しておく方法、(2)微生物の増殖にあわせて、炭素源及び窒素源を連続又は間欠的に供給していく方法を挙げることができる。前記(2)の方法は、微生物の増殖により消費した炭素源及び窒素源を追加していくため、高濃度の炭素源及び窒素源により微生物の生育阻害がある場合でも、微生物の濃度を高くすることができる利点がある。前記(2)の方法を更に具体的に説明すると、微生物が炭素源及び窒素源を消費する速度に合わせて炭素源及び窒素源を添加する方法などがある。例えば、微生物が生育するとともにpHが上昇し、かつ、炭素源及び窒素源を含む水溶液が酸性である場合、pHコントローラーを用いて、培養液のpHが一定になるように、炭素源及び窒素源を含む酸性の水溶液を添加すると、微生物の増殖の進行とともに、炭素源及び窒素源を少しずつ添加する方法を用いることができる。   As a supply method of the carbon source and the nitrogen source, (1) a method of adding in advance when the medium is prepared, and (2) a method of supplying the carbon source and the nitrogen source continuously or intermittently according to the growth of the microorganism. Can be mentioned. In the method (2), since the carbon source and nitrogen source consumed by the growth of microorganisms are added, the microorganism concentration is increased even when the growth of microorganisms is inhibited by a high concentration of carbon source and nitrogen source. There are advantages that can be made. More specifically, the method (2) includes a method of adding a carbon source and a nitrogen source in accordance with the rate at which a microorganism consumes the carbon source and the nitrogen source. For example, when the pH of the microorganism increases and the aqueous solution containing the carbon source and the nitrogen source is acidic, the pH source is used to adjust the carbon source and the nitrogen source so that the pH of the culture solution becomes constant. When an acidic aqueous solution containing is added, a method of adding a carbon source and a nitrogen source little by little as the growth of microorganisms proceeds.

更に、培養の際に、前記微生物が有する、3−キヌクリジノンから(S)−3−キヌクリジノールを生成する能力を最大限に引き出すために、糖類、有機酸又はアミノ酸を添加して培養することもできる。特に効果が得られる物質は、D−グルコース、D−フルクトース、スクロース、D−リボース、マンニトール、グリセロール、D−キシロース、ソルビトール、D−ラクトース、マルトース、L−リンゴ酸、フマル酸、コハク酸、グルコン酸、L−グルタミン酸、L−グルタミンなどであり、培地に対して0.1〜5.0w/v%、好ましくは0.5〜2.0w/v%である。なお、本明細書において、w/vは質量/容積を、v/vは容積/容積を意味する。   Furthermore, in culturing, in order to maximize the ability of the microorganism to produce (S) -3-quinuclidinol from 3-quinuclidinone, saccharides, organic acids or amino acids can be added and cultured. . Particularly effective substances are D-glucose, D-fructose, sucrose, D-ribose, mannitol, glycerol, D-xylose, sorbitol, D-lactose, maltose, L-malic acid, fumaric acid, succinic acid, glucone Acid, L-glutamic acid, L-glutamine and the like, and is 0.1 to 5.0 w / v%, preferably 0.5 to 2.0 w / v% based on the medium. In this specification, w / v means mass / volume, and v / v means volume / volume.

前記微生物の培養温度は10〜37℃、好ましくは23〜32℃である。培養時の培地のpHは6.0〜10.0であり、好ましくはpH6.5〜9.0である。培養は、好気的条件下で行うことが好ましく、液体培養時には通気及び撹拌を行うことが望ましい。培養時間は10時間〜1週間であり、好ましくは1〜3日間であり、より好ましくは1〜2日である。
培養の進行とともに、酵素生産量も増加していくが、培養の後半には、生育速度の低下とともに、炭素源及び窒素源の消費速度、酵素生産速度も低下し、培養を終了する。炭素源及び窒素源の総添加量、培養時間、菌体の濃度、酵素生産量などから本培養の終了を判断することもできる。
The culture temperature of the microorganism is 10 to 37 ° C, preferably 23 to 32 ° C. The pH of the medium during the culture is 6.0 to 10.0, preferably 6.5 to 9.0. Cultivation is preferably performed under aerobic conditions, and it is desirable to perform aeration and agitation during liquid culture. The culture time is 10 hours to 1 week, preferably 1 to 3 days, more preferably 1 to 2 days.
As the culture proceeds, the amount of enzyme production increases, but in the latter half of the culture, the growth rate decreases, the consumption rate of the carbon source and nitrogen source, and the enzyme production rate also decrease, and the culture is terminated. The end of the main culture can also be determined from the total amount of carbon source and nitrogen source added, the culture time, the concentration of the bacterial cells, the amount of enzyme produced, and the like.

以上のようにして、前記微生物の培養菌体を培養液中に蓄積させ、3−キヌクリジノンから(S)−3−キヌクリジノールの蓄積反応に用いることができる。
[i]得られた培養液はそのまま以下に述べる蓄積反応に使用してもよいし、
[ii]微生物を培養液から回収して反応に使用したり、更に
[iii]微生物の処理物、例えば、破砕物、粗酵素、精製酵素などを反応に使用することもできる。
続いて、前記微生物又はその処理物により、3−キヌクリジノンから(S)−3−キヌクリジノールを生成する反応を行うことができる。この蓄積反応は、バッチ式でも、バイオリアクターなどを用いた連続式でも可能である。バッチ式反応の場合には、数時間から10日間で行うことができる。
As described above, the cultured cells of the microorganism can be accumulated in the culture solution and used for the accumulation reaction of (S) -3-quinuclidinol from 3-quinuclidinone.
[I] The obtained culture solution may be used as it is for the accumulation reaction described below,
[Ii] Microorganisms can be collected from the culture solution and used for the reaction, and [iii] microorganism processed products such as crushed materials, crude enzymes, purified enzymes, etc. can also be used for the reaction.
Then, the reaction which produces | generates (S) -3-quinuclidinol from 3-quinuclidinone can be performed with the said microorganisms or its processed material. This accumulation reaction can be performed either batchwise or continuously using a bioreactor. In the case of a batch type reaction, it can be carried out in several hours to 10 days.

上述の[i]の場合を具体的に説明すると、上記の培養方法で増殖させた前記微生物を含む培養液に、直接、3−キヌクリジノンと糖類、有機酸、アルコール類などを加え、(S)−3−キヌクリジノールを系内に蓄積させる反応を開始させることができる。
蓄積反応のpHは5.0〜10.0、好ましくはpH5.0〜8.0である。反応温度は10〜50℃、好ましくは20〜40℃である。基質の3−キヌクリジノンの添加量は、反応液に対して0.1〜10.0w/v%、好ましくは0.3〜5.0w/v%である。3−キヌクリジノンの添加は一度に行ってもよいが、高濃度の3−キヌクリジノンによる反応阻害が見られる場合には分割して添加してもよい。
The case of the above [i] will be specifically described. To the culture solution containing the microorganisms grown by the above culture method, 3-quinuclidinone and saccharides, organic acids, alcohols and the like are added directly, (S) Reaction to accumulate -3-quinuclidinol in the system can be initiated.
The pH of the accumulation reaction is 5.0 to 10.0, preferably pH 5.0 to 8.0. The reaction temperature is 10-50 ° C, preferably 20-40 ° C. The addition amount of the substrate 3-quinuclidinone is 0.1 to 10.0 w / v%, preferably 0.3 to 5.0 w / v%, based on the reaction solution. Addition of 3-quinuclidinone may be performed at once, but when reaction inhibition by high concentration of 3-quinuclidinone is observed, it may be added in divided portions.

一般的に、3−キヌクリジノン不斉還元酵素は、3−キヌクリジノンの不斉還元反応において、3−キヌクリジノンと等量の還元型補酵素(還元型ニコチンアデニンジヌクレオチド(NADH)、又は還元型ニコチンアデニンジヌクレオチドリン酸(NADPH)を還元剤として要求するとされている。3−キヌクリジノンの還元反応後は、補酵素はそれぞれ酸化型ニコチンアデニンジヌクレオチド(NAD)又は酸化型ニコチンアデニンジヌクレオチド(NADP)へと変換される。
触媒量の補酵素で3−キヌクリジノンの不斉還元反応を進行させるためには、酸化型補酵素のNAD又はNADPをそれぞれ還元型補酵素のNADH又はNADPHへと再生する反応が必要であり、一般的に、この補酵素再生反応には、グルコースデヒドロゲナーゼを用いたグルコースの酸化反応が利用されている。
In general, 3-quinuclidinone asymmetric reductase is used in the asymmetric reduction reaction of 3-quinuclidinone in the amount of reduced coenzyme (reduced nicotine adenine dinucleotide (NADH) or reduced nicotine adenine) equivalent to 3-quinuclidinone. It is said that dinucleotide phosphate (NADPH) is required as a reducing agent.After the reduction reaction of 3-quinuclidinone, the coenzymes are oxidized nicotine adenine dinucleotide (NAD + ) or oxidized nicotine adenine dinucleotide (NADP +), respectively. ).
In order to proceed with the asymmetric reduction reaction of 3-quinuclidinone with a catalytic amount of coenzyme, a reaction for regenerating the oxidized coenzyme NAD + or NADP + to the reduced coenzyme NADH or NADPH is required. In general, the coenzyme regeneration reaction uses an oxidation reaction of glucose using glucose dehydrogenase.

また、一般的に、グルコースデヒドロゲナーゼなどの補酵素を再生する酵素の供給源として、市販酵素を使用したり、遺伝子組み替えにより補酵素を再生する酵素を生産させることが行われるが、本発明において、補酵素を再生する酵素を添加することなく、糖類、有機酸、アルコール類などを添加するのみで、効率よく3−キヌクリジノンから(S)−3−キヌクリジノールへの変換を行うことができる。   In general, as a source of an enzyme that regenerates a coenzyme such as glucose dehydrogenase, a commercially available enzyme is used, or an enzyme that regenerates a coenzyme is produced by gene recombination. It is possible to efficiently convert 3-quinuclidinone to (S) -3-quinuclidinol only by adding saccharides, organic acids, alcohols and the like without adding an enzyme that regenerates the coenzyme.

糖類、有機酸、アルコール類などとしては、D−グルコース、D−フルクトース、スクロース、D−リボース、D−キシロース、ソルビトール、D−ラクトース、マルトースなどの糖類、クエン酸などの有機酸、エタノールなどのアルコール類などを挙げることができる。糖類、有機酸、アルコール類などの添加量は、3−キヌクリジノンを還元して(S)−3−キヌクリジノールを生成する反応液に対して0.1〜15.0w/v%、好ましくは0.3〜10.0w/v%である。糖類、有機酸、アルコール類などの添加は一度に行ってもよいが、高濃度の糖類、有機酸、アルコール類などによる反応阻害が見られる場合には分割して添加してもよい。
(S)−3−キヌクリジノールの蓄積反応は、前記微生物が十分に増殖して、変換能力が十分となった時点から開始することができるが、前記微生物の増殖が十分でない培養初期段階でも、生育阻害が起こらない濃度範囲で培地に3−キヌクリジノンを添加して、微生物の増殖と(S)−3−キヌクリジノールの蓄積反応を同時に行うことができる。
Examples of saccharides, organic acids, alcohols include saccharides such as D-glucose, D-fructose, sucrose, D-ribose, D-xylose, sorbitol, D-lactose, maltose, organic acids such as citric acid, ethanol, etc. Examples include alcohols. The addition amount of saccharides, organic acids, alcohols and the like is 0.1 to 15.0 w / v%, preferably 0. 0 to the reaction solution in which 3-quinuclidinone is reduced to produce (S) -3-quinuclidinol. 3 to 10.0 w / v%. Addition of saccharides, organic acids, alcohols and the like may be performed at once, but when reaction inhibition by high concentrations of saccharides, organic acids, alcohols, etc. is observed, they may be added separately.
The accumulation reaction of (S) -3-quinuclidinol can be started from the time when the microorganism is sufficiently grown and the conversion ability becomes sufficient. By adding 3-quinuclidinone to the medium in a concentration range where inhibition does not occur, microbial growth and (S) -3-quinuclidinol accumulation reaction can be performed simultaneously.

また、上述の[ii]の場合には、上記の培養方法で増殖させた微生物をろ過又は遠心分離により培養液から回収して蓄積反応に使用することができる。すなわち、得られた微生物は3−キヌクリジノンと糖類、有機酸、アルコール類などを含む生理食塩水、リン酸カリウム緩衝液、トリス−塩酸緩衝液、グリシン−水酸化ナトリウム緩衝液、ホウ酸−水酸化ナトリウム緩衝液などの水性溶媒に懸濁して反応に使用することができる。反応条件(pH、温度、3−キヌクリジノンと糖類、有機酸、アルコール類などの添加量)は[i]の場合と同じである。   In the case of the above [ii], the microorganisms grown by the above culture method can be recovered from the culture solution by filtration or centrifugation and used for the accumulation reaction. That is, the obtained microorganisms are physiological saline containing 3-quinuclidinone and saccharides, organic acids, alcohols, potassium phosphate buffer, Tris-hydrochloric acid buffer, glycine-sodium hydroxide buffer, boric acid-hydroxylized. It can be suspended in an aqueous solvent such as sodium buffer and used for the reaction. The reaction conditions (pH, temperature, addition amount of 3-quinuclidinone and saccharides, organic acid, alcohol, etc.) are the same as in [i].

更に、上述の[iii]の場合には、前記培養方法で増殖させ、回収した微生物の処理物(例えば、破砕物、粗酵素、精製酵素)は、3−キヌクリジノンと糖類、有機酸、アルコール類などを含む水性溶媒に懸濁して反応に使用することができる。あるいは、微生物又はその処理物を公知の方法で適当な担体に固定化し、その固定化物を水性溶媒と接触させて反応に使用してもよい。前記微生物又はその処理物を使用した蓄積反応に用いる水性溶媒としては、生理食塩水、リン酸カリウム緩衝液、トリス−塩酸緩衝液、グリシン−水酸化ナトリウム緩衝液、ホウ酸−水酸化ナトリウム緩衝液などを挙げることができる。反応条件は[i]の場合と同様である。   Furthermore, in the case of the above-mentioned [iii], the processed product (for example, crushed material, crude enzyme, purified enzyme) grown and recovered by the culture method is 3-quinuclidinone, saccharides, organic acid, alcohols. It can be used in the reaction by suspending in an aqueous solvent containing the above. Alternatively, the microorganism or a processed product thereof may be immobilized on a suitable carrier by a known method, and the immobilized product may be used in the reaction by contacting with an aqueous solvent. Examples of the aqueous solvent used for the accumulation reaction using the microorganism or a processed product thereof include physiological saline, potassium phosphate buffer, Tris-hydrochloric acid buffer, glycine-sodium hydroxide buffer, boric acid-sodium hydroxide buffer. And so on. The reaction conditions are the same as in [i].

以上のようにして得られた蓄積反応後の反応液から、必要に応じて、ろ過、遠心分離などにより微生物を除去した後、溶媒で(S)−3−キヌクリジノールを抽出して、(S)−3−キヌクリジノールを回収することができる。粗酵素、精製酵素などの処理物を使用した場合などでは微生物除去操作を省略することができる。また、クロマトグラフィーなどの公知の精製方法により(S)−3−キヌクリジノールを回収することもできる。   From the reaction solution after the accumulation reaction obtained as described above, if necessary, microorganisms are removed by filtration, centrifugation, etc., and then (S) -3-quinuclidinol is extracted with a solvent, and (S) -3-Quinuclidinol can be recovered. When a processed product such as a crude enzyme or a purified enzyme is used, the microorganism removing operation can be omitted. In addition, (S) -3-quinuclidinol can also be recovered by a known purification method such as chromatography.

以下に代表的な実施例を示し、本発明の具体的な説明を行うが、これらの実施例は本発明の範囲を限定するものではない。
実施例において使用する培地組成を以下に記載する。
(1)培地[A]
脱塩水1.0L中に酵母エキス5.0g、トリプトン2g、D−グルコース1.0g、リン酸水素二ナトリウム十二水和物1.0g、リン酸二水素カリウム1.0g、硫酸マグネシウム七水和物0.05gを含み、水酸化ナトリウム水溶液によりpHを7.5に調整した培地。
Representative examples will be shown below and the present invention will be described in detail. However, these examples do not limit the scope of the present invention.
The medium composition used in the examples is described below.
(1) Medium [A]
Yeast extract 5.0 g, tryptone 2 g, D-glucose 1.0 g, disodium hydrogen phosphate dodecahydrate 1.0 g, potassium dihydrogen phosphate 1.0 g, magnesium sulfate hemihydrate in 1.0 L of desalted water A medium containing 0.05 g of a Japanese product and having a pH adjusted to 7.5 with an aqueous sodium hydroxide solution.

(2)培地[B]
脱塩水1.0L中に酵母エキス15.0g、D−グルコース10.0g、リン酸水素二ナトリウム十二水和物1.0g、リン酸二水素カリウム1.0g、硫酸マグネシウム七水和物0.2g、塩化カルシウム0.1g、塩化亜鉛0.1g、硫酸鉄七水和物0.1g、塩化マンガン(II)四水和物0.05gを含み、水酸化ナトリウム水溶液によりpHを7.0に調整した培地。
(2) Medium [B]
Yeast extract 15.0 g, D-glucose 10.0 g, Disodium hydrogen phosphate dodecahydrate 1.0 g, Potassium dihydrogen phosphate 1.0 g, Magnesium sulfate heptahydrate 0 0.2 g, calcium chloride 0.1 g, zinc chloride 0.1 g, iron sulfate heptahydrate 0.1 g, manganese (II) chloride tetrahydrate 0.05 g, and pH is 7.0 with sodium hydroxide aqueous solution Medium adjusted to

(3)培地[C]
脱塩水1.0L中に酵母エキス2.0g、D−グルコース10.0g、リン酸水素二ナトリウム十二水和物1.0g、リン酸二水素カリウム1.0g、硫酸マグネシウム七水和物0.2g、塩化マンガン(II)四水和物0.2g、塩化カルシウム0.1gを含み、水酸化ナトリウム水溶液によりpHを7.5に調整した培地。
(3) Medium [C]
In 1.0 L of demineralized water, yeast extract 2.0 g, D-glucose 10.0 g, disodium hydrogen phosphate dodecahydrate 1.0 g, potassium dihydrogen phosphate 1.0 g, magnesium sulfate heptahydrate 0 Medium containing 0.2 g, manganese (II) chloride tetrahydrate 0.2 g, calcium chloride 0.1 g, and adjusted to pH 7.5 with an aqueous sodium hydroxide solution.

次に、実施例で使用するGCの分析条件を以下に記載する。
[GCの分析条件]
カラム;CP−CHIRASIL−DEX CB(Varian社製) 25m×0.25mm、
流速;1mL/分、
カラム温度;140℃、
インジェクション温度;220℃、
検出;FID、220℃、
保持時間;3−キヌクリジノン6.9分、(S)−3−キヌクリジノール13.9分、(R)−3−キヌクリジノール14.4分
Next, GC analysis conditions used in the examples are described below.
[GC analysis conditions]
Column; CP-CHIRASIL-DEX CB (manufactured by Varian) 25 m × 0.25 mm,
N 2 flow rate; 1 mL / min,
Column temperature; 140 ° C.
Injection temperature: 220 ° C.
Detection; FID, 220 ° C.
Retention time: 3-quinuclidinone 6.9 minutes, (S) -3-quinuclidinol 13.9 minutes, (R) -3-quinuclidinol 14.4 minutes

《実施例1:ロドコッカス クウィングシェンギ YGK−514の静止菌体を用いた(S)−3−キヌクリジノールの蓄積反応》
(1)培養
培地[A]100mLを500mL容の三角フラスコに入れ、121℃で20分間、オートクレーブ滅菌を実施した。この三角フラスコに、栄養寒天培地に維持したロドコッカス クウィングシェンギ YGK−514の菌体を1白金耳接種し、27℃で24時間振とう培養し、前培養液とした。
一方、撹拌、通気、温度及びpH調整が可能な2L容のジャーファーメンターに培地[B]1Lを入れ、121℃で20分間、オートクレーブ滅菌を実施した。このジャーファーメンターに、上記前培養液10mLを加え、撹拌及び通気を実施しながら27℃及びpH7.0で、22時間、培養を行い本培養液を得た。
<< Example 1: Accumulation reaction of (S) -3-quinuclidinol using static bacteria of Rhodococcus kingshengi YGK-514 >>
(1) Culture Medium (A) 100 mL was placed in a 500 mL Erlenmeyer flask and autoclaved at 121 ° C. for 20 minutes. This Erlenmeyer flask was inoculated with one platinum loop of Rhodococcus wingshengi YGK-514 maintained in a nutrient agar medium and cultured with shaking at 27 ° C. for 24 hours to prepare a preculture solution.
On the other hand, 1 L of the medium [B] was placed in a 2 L jar fermenter capable of stirring, aeration, temperature and pH adjustment, and autoclaved at 121 ° C. for 20 minutes. To this jar fermenter, 10 mL of the above pre-culture solution was added, and the mixture was cultured at 27 ° C. and pH 7.0 for 22 hours while stirring and aeration to obtain a main culture solution.

(2)蓄積反応
上記本培養液250mLを遠心分離により集菌し静止菌体を得た。これに、3−キヌクリジノン塩酸塩3.0w/v%とD−グルコース10.0w/v%を含む、pH5.5の100mMリン酸カリウム緩衝液50mLを加えて懸濁した。この懸濁液を撹拌下27℃で反応を開始した。119時間後、反応速度が低下したため、反応を終了した。その後、遠心分離により、菌体を除去し、得られた上澄み液0.25mLに、50w/v%水酸化ナトリウム水溶液0.25mL、クロロホルム1mLを加え、抽出を行った。得られたクロロホルム層をGC分析した結果、(S)−3−キヌクリジノールを蓄積濃度2.16%、収率96%([反応後の(S)−3−キヌクリジノールのモル濃度]÷[添加した3−キヌクリジノンのモル濃度])で取得した。また、GC分析では(R)−3−キヌクリジノールは検出されず、光学純度は100%eeであった。
(2) Accumulation reaction 250 mL of the main culture solution was collected by centrifugation to obtain static cells. To this, 50 mL of a 100 mM potassium phosphate buffer having a pH of 5.5 containing 3.0 w / v% 3-quinuclidinone hydrochloride and 10.0 w / v% D-glucose was added and suspended. The reaction was started at 27 ° C. with stirring. After 119 hours, the reaction was terminated because the reaction rate decreased. Thereafter, the cells were removed by centrifugation, and 0.25 mL of a 50 w / v% aqueous sodium hydroxide solution and 1 mL of chloroform were added to 0.25 mL of the obtained supernatant to perform extraction. As a result of GC analysis of the obtained chloroform layer, (S) -3-quinuclidinol was accumulated at a concentration of 2.16% and a yield of 96% ([molar concentration of (S) -3-quinuclidinol after reaction] ÷ [added]. 3-quinuclidinone molar concentration]). Further, (R) -3-quinuclidinol was not detected by GC analysis, and the optical purity was 100% ee.

《実施例2:シュードクラビバクター エスピー YGK−032の静止菌体を用いた(S)−3−キヌクリジノールの蓄積反応》
(1)培養
培地[A]100mLを500mL容の三角フラスコに入れ、121℃で20分間、オートクレーブ滅菌を実施した。この三角フラスコに、栄養寒天培地に維持したシュードクラビバクター エスピー YGK−032の菌体を1白金耳接種し、27℃で24時間振とう培養し、前培養液とした。
一方、撹拌、通気、温度及びpH調整が可能な2L容のジャーファーメンターに培地[C]1Lを入れ、121℃で20分間、オートクレーブ滅菌を実施した。このジャーファーメンターに、上記前培養液10mLを加え、撹拌及び通気を実施しながら27℃及びpH7.5で、23時間、培養を行い本培養液を得た。
Example 2: Accumulation reaction of (S) -3-quinuclidinol using a stationary cell of Pseudoclavibacter sp. YGK-032
(1) Culture Medium (A) 100 mL was placed in a 500 mL Erlenmeyer flask and autoclaved at 121 ° C. for 20 minutes. Into this Erlenmeyer flask, 1 platinum loop of Pseudoclavibacter sp. YGK-032 cells maintained in a nutrient agar medium was inoculated, and cultured with shaking at 27 ° C. for 24 hours to prepare a preculture solution.
On the other hand, 1 L of the medium [C] was placed in a 2 L jar fermenter capable of stirring, aeration, temperature and pH adjustment, and autoclaved at 121 ° C. for 20 minutes. To this jar fermenter, 10 mL of the above pre-culture solution was added, and the mixture was cultured at 27 ° C. and pH 7.5 for 23 hours while stirring and aeration to obtain a main culture solution.

(2)蓄積反応
上記本培養液500mLを遠心分離により集菌し静止菌体を得た。これに、3−キヌクリジノン塩酸塩5.0w/v%とD−グルコース10.0w/v%、NADH0.06%、NADPH0.06%を含む、pH7.5の100mMリン酸カリウム緩衝液50mLを加えて懸濁した。この懸濁液を撹拌下27℃で反応を開始した。
反応50時間後、3−キヌクリジノン塩酸塩の濃度が0.9%まで低下し、さらに、反応が進行していたことから、25w/v%の3−キヌクリジノン塩酸塩水溶液を6mL(3−キヌクリジノン塩酸塩として1.5g)とD−グルコース2.5gを追加し、反応を継続させた。反応215時間後、反応速度が低下したため、反応を終了した。その後、遠心分離により、菌体を除去し、得られた上澄み液0.25mLに、50w/v%水酸化ナトリウム水溶液0.25mL、クロロホルム1mLを加え、抽出を行った。得られたクロロホルム層をGC分析した結果、(S)−3−キヌクリジノールを蓄積濃度5.46%、収率100%([反応後の(S)−3−キヌクリジノールのモル濃度]÷[反応前と追加分の3−キヌクリジノンのモル濃度])で取得した。また、GC分析では(R)−3−キヌクリジノールは検出されず、光学純度は100%eeであった。
(2) Accumulation reaction 500 mL of the above main culture solution was collected by centrifugation to obtain a stationary cell. To this was added 50 mL of 100 mM potassium phosphate buffer at pH 7.5, containing 5.0 w / v% 3-quinuclidinone hydrochloride and 10.0 w / v% D-glucose, 0.06% NADH and 0.06% NADPH. And suspended. The reaction was started at 27 ° C. with stirring.
50 hours after the reaction, the concentration of 3-quinuclidinone hydrochloride was reduced to 0.9%, and the reaction was further progressed. Therefore, 6 mL of 25 w / v% 3-quinuclidinone hydrochloride aqueous solution (3-quinuclidinone hydrochloride 1.5 g) as salt and 2.5 g of D-glucose were added and the reaction was continued. After 215 hours of reaction, the reaction was terminated because the reaction rate decreased. Thereafter, the cells were removed by centrifugation, and 0.25 mL of a 50 w / v% aqueous sodium hydroxide solution and 1 mL of chloroform were added to 0.25 mL of the obtained supernatant to perform extraction. As a result of GC analysis of the obtained chloroform layer, (S) -3-quinuclidinol accumulated 5.46%, yield 100% ([molar concentration of (S) -3-quinuclidinol after reaction] ÷ [before reaction And the additional 3-quinuclidinone molar concentration]). Further, (R) -3-quinuclidinol was not detected by GC analysis, and the optical purity was 100% ee.

Claims (5)

3−キヌクリジノンに、ロドコッカス(Rhodococcus)属、若しくはシュードクラビバクター(Pseudoclavibacter)属に属する微生物、又はその処理物を作用させることにより、(S)−3−キヌクリジノールを得ることを特徴とする、(S)−3−キヌクリジノールの製造方法。   (S) -3-quinuclidinol is obtained by reacting 3-quinuclidinone with a microorganism belonging to the genus Rhodococcus or the genus Pseudoclavibacter or a treated product thereof (S). ) -3-Producing method of quinuclidinol. 前記微生物がロドコッカス クウィングシェンギ(Rhodococcus qingshengii) YGK−514(FERM P−21643)である、請求項1記載の(S)−3−キヌクリジノールの製造方法。   The method for producing (S) -3-quinuclidinol according to claim 1, wherein the microorganism is Rhodococcus kingshengii YGK-514 (FERM P-21634). 前記微生物がシュードクラビバクター エスピー(Pseudoclavibacter sp) YGK−032(FERM P−21642)である、請求項1記載の(S)−3−キヌクリジノールの製造方法。   The method for producing (S) -3-quinuclidinol according to claim 1, wherein the microorganism is Pseudoclavibacter sp YGK-032 (FERM P-21642). 受託番号FERM P−21643である、ロドコッカス クウィングシェンギ(Rhodococcus qingshengii) YGK−514。   Rhodococcus kingshengii YGK-514, with accession number FERM P-21643. 受託番号FERM P−21642である、シュードクラビバクター エスピー(Pseudoclavibacter sp) YGK−032。   Pseudoclavibacter sp YGK-032, accession number FERM P-21642.
JP2008292088A 2008-11-14 2008-11-14 Method for producing (S) -3-quinuclidinol Active JP5333966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292088A JP5333966B2 (en) 2008-11-14 2008-11-14 Method for producing (S) -3-quinuclidinol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292088A JP5333966B2 (en) 2008-11-14 2008-11-14 Method for producing (S) -3-quinuclidinol

Publications (2)

Publication Number Publication Date
JP2010115173A true JP2010115173A (en) 2010-05-27
JP5333966B2 JP5333966B2 (en) 2013-11-06

Family

ID=42303253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292088A Active JP5333966B2 (en) 2008-11-14 2008-11-14 Method for producing (S) -3-quinuclidinol

Country Status (1)

Country Link
JP (1) JP5333966B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243795A (en) * 1997-03-04 1998-09-14 Daicel Chem Ind Ltd Production of optically active quinuclidinol
JPH11196890A (en) * 1998-01-07 1999-07-27 Nagase & Co Ltd Production of optically active 3-quinuclidinol
JP2002153293A (en) * 2000-11-21 2002-05-28 Mitsubishi Rayon Co Ltd Method for producing optically active 3-quinuclidinol
JP2004159587A (en) * 2002-11-14 2004-06-10 Mitsubishi Rayon Co Ltd Recombinant of rhodococcus bacterium and method for producing optically active body by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243795A (en) * 1997-03-04 1998-09-14 Daicel Chem Ind Ltd Production of optically active quinuclidinol
JPH11196890A (en) * 1998-01-07 1999-07-27 Nagase & Co Ltd Production of optically active 3-quinuclidinol
JP2002153293A (en) * 2000-11-21 2002-05-28 Mitsubishi Rayon Co Ltd Method for producing optically active 3-quinuclidinol
JP2004159587A (en) * 2002-11-14 2004-06-10 Mitsubishi Rayon Co Ltd Recombinant of rhodococcus bacterium and method for producing optically active body by using the same

Also Published As

Publication number Publication date
JP5333966B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Ueno et al. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost
US7432091B2 (en) Highly efficient hydrogen production method using microorganism
CN110655198B (en) Method for treating nitrogen-containing wastewater by using heterotrophic nitrification-aerobic denitrification paracoccus strain
JPS5886093A (en) Biological preparation of amide
US20100086980A1 (en) Method for producing lactic acid
JP2001037469A (en) Biodegradation of epichlorohydrin
JP6521243B2 (en) Method for aerobically producing 3-hydroxybutyric acid or a salt thereof
JP5403498B2 (en) Method for producing (R) -3-quinuclidinol
JP4857114B2 (en) Method for producing 2-hydroxy-4-substituted pyridine
JP5333966B2 (en) Method for producing (S) -3-quinuclidinol
JP2005261239A (en) Method for producing lower alcohol
JP6269076B2 (en) Method for producing (S) -1-benzyl-3-aminopiperidine
JP5126707B2 (en) Method for producing α-hydroxyacylpyridine
JP2011182778A (en) Method for producing l-homoserine and l-homoserine lactone
JPH02227069A (en) Culture of bacteria
JP2005211042A (en) Method for producing fumaric acid
JP3011472B2 (en) Production method of indigo by enzymatic method
JP4982164B2 (en) Method for producing 2-hydroxy-4-substituted pyridine
JP3090761B2 (en) Production method of optically active lactic acid
JP5954539B2 (en) Method for producing 1-benzyl-4-hydroxy-3-piperidinecarboxylic acid alkyl ester
CN115818847A (en) Method for realizing efficient denitrification of aquaculture water body through ammonia assimilation
JP4547983B2 (en) Method for producing 6-hydroxypicolinic acid
JP2980333B2 (en) New microorganism and method for removing ascent
JP2012213405A (en) Method for producing lactic acid
JP2002191357A (en) Novel microbial biomass having glycine dehydrogenase activity, and method for producing glycine by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5333966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250