JP2010115035A - Battery protection device - Google Patents

Battery protection device Download PDF

Info

Publication number
JP2010115035A
JP2010115035A JP2008286307A JP2008286307A JP2010115035A JP 2010115035 A JP2010115035 A JP 2010115035A JP 2008286307 A JP2008286307 A JP 2008286307A JP 2008286307 A JP2008286307 A JP 2008286307A JP 2010115035 A JP2010115035 A JP 2010115035A
Authority
JP
Japan
Prior art keywords
battery
power
ecu
power consumption
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286307A
Other languages
Japanese (ja)
Other versions
JP5347438B2 (en
Inventor
Sakaki Okamura
賢樹 岡村
Naoyoshi Takamatsu
直義 高松
Shigeki Kinomura
茂樹 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008286307A priority Critical patent/JP5347438B2/en
Publication of JP2010115035A publication Critical patent/JP2010115035A/en
Application granted granted Critical
Publication of JP5347438B2 publication Critical patent/JP5347438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/06Limiting the traction current under mechanical overload conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/06Dynamic electric resistor braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery protection device capable of preventing overvoltage of a battery by reliably consuming excessive power even if the excessive power is generated in regeneration. <P>SOLUTION: The battery protection device includes: a battery; an electric load; and a control means. The battery charges regenerative power to be supplied. The electric load consumes part of the regenerative power supplied to the battery to prevent overvoltage of the battery. The control means controls the regenerative power supplied to the battery and the electric load. The control means sets a target upper limit output value of the regenerative power at a value smaller by a predetermined value than the power consumption capability of the electric load. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、過電圧から電池を保護する技術に関する。   The present invention relates to a technique for protecting a battery from overvoltage.

従来から、ハイブリッド車両などにおいて、電池に充電しきれなかった回生電力を利用する技術が知られている。例えば、特許文献1には、回生による余剰電流を利用して2次電池を加熱する技術が記載されている。また、特許文献2には、蓄電池を昇温する補機負荷へ余剰電力を供給する技術が記載されている。   2. Description of the Related Art Conventionally, a technology that uses regenerative power that has not been able to fully charge a battery in a hybrid vehicle or the like is known. For example, Patent Document 1 describes a technique for heating a secondary battery using surplus current due to regeneration. Patent Document 2 describes a technique for supplying surplus power to an auxiliary load that raises the temperature of a storage battery.

特開平11−150885号公報Japanese Patent Laid-Open No. 11-150885 特開2008−117565号公報JP 2008-117565 A

一方、車両の走行状態等によっては、電池や上述の補機負荷へ意図的に供給する回生電力とは別の余剰電力が電池等に供給されてしまう場合がある。この場合、電池や補機負荷で消費可能な電力を目標上限値として回生電力を制御すると、余剰電力分を消費しきれない可能性がある。   On the other hand, depending on the running state of the vehicle, surplus power different from the regenerative power that is intentionally supplied to the battery or the auxiliary load described above may be supplied to the battery or the like. In this case, if the regenerative power is controlled using the power that can be consumed by the battery or the auxiliary load as the target upper limit value, it may not be possible to consume the surplus power.

本発明は、上記のような課題を解決するためになされたものであり、回生時において余剰電力が発生した場合であっても、確実にその余剰電力を消費し、電池の過電圧を防ぐことが可能な電池保護装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when surplus power is generated during regeneration, the surplus power is surely consumed and battery overvoltage is prevented. An object of the present invention is to provide a possible battery protection device.

本発明の1つの観点では、電池保護装置は、回生電力を充電する電池と、回生電力を消費する電気負荷と、前記電池及び前記電気負荷に供給する回生電力を制御する制御手段と、を備え、前記制御手段は、回生電力の目標上限出力値を、前記電気負荷の電力消費能力から所定値だけ小さく設定する。   In one aspect of the present invention, a battery protection device includes a battery that charges regenerative power, an electric load that consumes regenerative power, and a control unit that controls regenerative power supplied to the battery and the electric load. The control means sets a target upper limit output value of regenerative power smaller by a predetermined value from the power consumption capability of the electric load.

上記の電池保護装置は、ハイブリッド車両等に好適に適用される。電池保護装置は、電池と、電気負荷と、制御手段と、を備える。電池は、例えば2次電池であり、供給される回生電力を充電する。電気負荷は、電池に供給される回生電力の一部を消費することで、電池の過電圧を防ぐ。制御手段は、例えばECU(Electronic Control Unit)であり、電池及び電気負荷に供給する回生電力を制御する。制御手段は、回生電力の目標上限出力値を、電気負荷の電力消費能力から所定値だけ小さく設定する。所定値は、例えば、想定される余剰電力の上限値に設定される。   The above battery protection device is suitably applied to a hybrid vehicle or the like. The battery protection device includes a battery, an electrical load, and control means. A battery is a secondary battery, for example, and charges the supplied regenerative electric power. The electric load consumes part of the regenerative power supplied to the battery, thereby preventing overvoltage of the battery. The control means is, for example, an ECU (Electronic Control Unit), and controls regenerative power supplied to the battery and the electric load. The control means sets the target upper limit output value of the regenerative power by a predetermined value smaller than the power consumption capability of the electric load. The predetermined value is set to, for example, an assumed upper limit value of surplus power.

一般に、電池が低温の場合、電池の充電性能(充電許容電力)は低くなる。また、車両の走行状態等により、余剰電力が電池及び電気負荷に供給される場合がある。しかし、このような場合であっても、制御手段は、目標上限出力値を電気負荷の電力消費能力より所定値だけ小さい値に設定することで、電力供給多過に基づく電池の過電圧を防ぐことができる。   Generally, when the battery is at a low temperature, the charging performance (chargeable power) of the battery is low. Further, surplus power may be supplied to the battery and the electric load depending on the traveling state of the vehicle. However, even in such a case, the control means sets the target upper limit output value to a value that is smaller by a predetermined value than the power consumption capacity of the electric load, thereby preventing overvoltage of the battery based on excessive power supply. Can do.

上記の電池保護装置の他の一態様では、前記制御手段は、前記電池の過電圧の起こりやすさに基づき前記所定値を設定する。この態様では、制御手段は、電池が過電圧を起こしやすい状況では、所定値を大きい値に設定し、電池の過電圧を防ぐ。一方、制御手段は、電池が過電圧を起こしにくい状況では、所定値を小さい値に設定し、多くの回生電力を電池または電気負荷で消費させる。即ち、この態様では、電池温度調節装置は、電池の過電圧を防ぎつつ、不要に回生電力を制限するのを防ぐことができる。   In another aspect of the battery protection device, the control unit sets the predetermined value based on the likelihood of overvoltage of the battery. In this aspect, the control means sets the predetermined value to a large value in a situation where the battery is likely to cause an overvoltage to prevent the battery from being overvoltage. On the other hand, the control means sets the predetermined value to a small value in a situation where the battery is unlikely to cause overvoltage, and consumes a large amount of regenerative power by the battery or the electric load. That is, in this aspect, the battery temperature adjusting device can prevent the regenerative power from being unnecessarily limited while preventing the battery from overvoltage.

上記の電池保護装置の他の一態様では、前記電池の状態に基づき前記所定値を設定する。電池の過電圧は、電池が高電圧の状態であったり、電池の充電状態が飽和に近い場合などに起こりやすい。即ち、電池の過電圧の起こりやすさは電池の状態によって異なる。従って、制御手段は、この態様により、所定値を適切に設定することができる。   In another aspect of the battery protection device, the predetermined value is set based on a state of the battery. The overvoltage of the battery is likely to occur when the battery is in a high voltage state or when the state of charge of the battery is close to saturation. That is, the likelihood of battery overvoltage varies depending on the battery condition. Therefore, the control means can appropriately set the predetermined value according to this aspect.

上記の電池保護装置の他の一態様では、電池保護装置は車両に搭載され、前記回生電力制御手段は、前記車両の走行状態に基づき前記所定値を設定する。車両の走行状態によって余剰電力の大きさや発生の起こりやすさが異なる。従って、電池保護措置は、この態様によっても適切に所定値を設定することができる。   In another aspect of the battery protection device described above, the battery protection device is mounted on a vehicle, and the regenerative power control unit sets the predetermined value based on a running state of the vehicle. The amount of surplus power and the likelihood of occurrence vary depending on the running state of the vehicle. Therefore, the battery protection measure can appropriately set a predetermined value also by this aspect.

上記の電池保護装置の他の一態様では、前記電気負荷は、前記電池を加熱するヒータである。これにより、電池保護装置は、電気負荷で消費した回生電力を電池の加熱に利用することができる。従って、電池保護装置は、電池の暖機を促進し、電池の充電性能や放電性能を向上させることができる。   In another aspect of the battery protection device, the electrical load is a heater that heats the battery. Thereby, the battery protection apparatus can utilize the regenerative power consumed by the electric load for heating the battery. Therefore, the battery protection device can promote warm-up of the battery and improve the charging performance and discharging performance of the battery.

上記の電池保護装置の他の一態様では、前記制御手段は、前記電池の充電許容電力が前記電力消費能力よりも小さい場合、回生電力の目標上限出力値を、前記電気負荷の電力消費能力から前記所定値だけ小さく設定し、前記電池の充電許容電力が前記電力消費能力以上の場合、電力の目標上限出力値を、前記充電許容電力から前記所定値だけ小さく設定する。電池が十分に暖機され、充電許容電力が電気負荷の電力消費能力以上の場合、電池保護装置は、目標上限出力値を電気負荷の電力消費能力に合わせると不要に回生電力の消費を抑えてしまう可能性がある。従って、この態様により、電池保護装置は、より有効に回生電力を消費することができる。   In another aspect of the battery protection device described above, the control means determines a target upper limit output value of regenerative power from the power consumption capability of the electric load when the charge allowable power of the battery is smaller than the power consumption capability. When the charging allowable power of the battery is equal to or higher than the power consumption capacity, the target upper limit output value of power is set smaller than the charging allowable power by the predetermined value. When the battery is sufficiently warmed up and the allowable charging power is equal to or greater than the power consumption capacity of the electrical load, the battery protection device can reduce the regenerative power consumption unnecessarily by adjusting the target upper limit output value to the power consumption capacity of the electrical load. There is a possibility. Therefore, according to this aspect, the battery protection device can consume regenerative power more effectively.

以下、図面を参照して本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[概略構成]
図1は、本発明の各実施形態に係る電池保護装置100の構成を示す模式的な図である。電池保護装置100は、ハイブリッド車両や電気自動車など(以下、「車両」と呼ぶ。)に好適に適用される。電池保護装置100は、電池1と、余剰電力消費部2と、負荷部3とを含む。電池保護装置100は、電池1から負荷部3へ供給される電力により生じる駆動力を車輪(不図示)に伝達する。これにより、電池保護装置100を搭載した車両が走行する。また、電池保護装置100は、回生時において、負荷部3によって運動エネルギーから電力を生じさせて電池1に回収する。
[Schematic configuration]
FIG. 1 is a schematic diagram showing a configuration of a battery protection device 100 according to each embodiment of the present invention. The battery protection device 100 is preferably applied to a hybrid vehicle, an electric vehicle, and the like (hereinafter referred to as “vehicle”). Battery protection device 100 includes a battery 1, a surplus power consumption unit 2, and a load unit 3. The battery protection device 100 transmits a driving force generated by electric power supplied from the battery 1 to the load unit 3 to wheels (not shown). Thereby, the vehicle carrying the battery protection device 100 travels. Further, the battery protection device 100 generates electric power from the kinetic energy by the load unit 3 and collects it in the battery 1 during regeneration.

負荷部3は、ECU10の制御に基づき、駆動及び回生を行う。負荷部3は、コンバータ31と、インバータ32、33と、モータジェネレータMG1、MG2と、を含む。   The load unit 3 performs driving and regeneration based on the control of the ECU 10. Load unit 3 includes a converter 31, inverters 32 and 33, and motor generators MG1 and MG2.

電池1は、放電及び充電を行う。電池1は、余剰電力消費部2と接続されている。電池1は、例えば、ニッケル水素電池やリチウムイオン電池などの充放電可能に構成された二次電池などが該当する。以後、電池1が充電可能な電力の上限値を「充電許容電力Win」と呼び、電池1が放電可能な電力の下限値を「放電許容電力Wout」と呼ぶ。電池1は、回生時にコンバータ31から供給される回生電力によって充電を行う。   The battery 1 performs discharging and charging. The battery 1 is connected to the surplus power consumption unit 2. The battery 1 corresponds to, for example, a secondary battery configured to be chargeable / dischargeable, such as a nickel metal hydride battery or a lithium ion battery. Hereinafter, the upper limit value of the power that can be charged by the battery 1 is referred to as “charge allowable power Win”, and the lower limit value of the power that can be discharged by the battery 1 is referred to as “discharge allowable power Wout”. Battery 1 is charged by regenerative power supplied from converter 31 during regeneration.

余剰電力消費部2は、コンバータ31から供給された回生電力を消費する。そして、余剰電力消費部2は、回生電力を消費することで発生した熱により、電池1の加熱を行う。余剰電力消費部2は、ECU10から送信される制御信号(スイッチング信号)S1により制御される。余剰電力消費部2は、本発明における電気負荷の一例である。   The surplus power consumption unit 2 consumes the regenerative power supplied from the converter 31. And the surplus power consumption part 2 heats the battery 1 with the heat generated by consuming the regenerative power. The surplus power consumption unit 2 is controlled by a control signal (switching signal) S1 transmitted from the ECU 10. The surplus power consumption unit 2 is an example of an electric load in the present invention.

コンバータ31は、電池1及び余剰電力消費部2と、インバータ32、33との間に設置され、それらの間で電力の授受を行う。具体的には、コンバータ31は、電池1からの放電電力を所定の電圧に昇圧して駆動電力としてインバータ32、33に供給する一方、モータジェネレータMG1及びMG2からの回生電力を所定の電圧に降圧して電池1または余剰電力消費部2へ供給する。   The converter 31 is installed between the battery 1 and the surplus power consumption unit 2 and the inverters 32 and 33, and exchanges power between them. Specifically, converter 31 boosts the discharge power from battery 1 to a predetermined voltage and supplies it as drive power to inverters 32 and 33, while reducing the regenerative power from motor generators MG1 and MG2 to a predetermined voltage. Then, the battery 1 or the surplus power consumption unit 2 is supplied.

インバータ32、33は、コンバータ31と並列接続し、コンバータ31との間で電力の授受を行なう。即ち、インバータ32、33は、それぞれコンバータ31から受ける駆動電力(直流電力)を交流電力に変換してモータジェネレータMG1、MG2へ供給する一方、モータジェネレータMG1、MG2が発電する交流電力を直流電力に変換して回生電力としてコンバータ31へ供給する。   Inverters 32 and 33 are connected in parallel to converter 31 and exchange power with converter 31. In other words, inverters 32 and 33 convert driving power (DC power) received from converter 31 into AC power and supply it to motor generators MG1 and MG2, respectively, while AC power generated by motor generators MG1 and MG2 is converted to DC power. Converted and supplied to the converter 31 as regenerative power.

モータジェネレータMG1、MG2は、それぞれインバータ32、33から供給される交流電力を受けて回転駆動力を発生させるとともに、外部からの回転駆動力を受けて回生電力を発電する。一例として、モータジェネレータMG1、MG2は、永久磁石が埋設されたロータを備える三相交流回転電機とすることができる。モータジェネレータMG1、MG2は、それぞれ動力伝達機構36と連結されており、発生した駆動力を駆動軸38によって車輪(図示せず)へ伝達する。   Motor generators MG1 and MG2 receive AC power supplied from inverters 32 and 33, respectively, to generate rotational driving force, and generate regenerative power by receiving external rotational driving force. As an example, motor generators MG1 and MG2 may be three-phase AC rotating electric machines including a rotor in which permanent magnets are embedded. Motor generators MG1 and MG2 are each connected to power transmission mechanism 36, and transmit the generated driving force to wheels (not shown) by driving shaft 38.

なお、電池保護装置100がハイブリッド車両に適用される場合には、モータジェネレータMG1、MG2は、動力伝達機構36または駆動軸38を介して図示しないエンジンとも連結される。そして、ECU10によって、エンジンの発生する駆動力とモータジェネレータMG1、MG2の発生する駆動力とが最適な比率となるように制御が実行される。この場合、モータジェネレータMG1は専ら発電機として機能し、モータジェネレータMG2は専ら電動機として機能する。   When battery protection device 100 is applied to a hybrid vehicle, motor generators MG1 and MG2 are also connected to an engine (not shown) via power transmission mechanism 36 or drive shaft 38. Then, the ECU 10 performs control so that the driving force generated by the engine and the driving force generated by the motor generators MG1 and MG2 have an optimal ratio. In this case, motor generator MG1 functions exclusively as a generator, and motor generator MG2 functions exclusively as an electric motor.

電圧検出部14は、電池1と余剰電力消費部2とを接続する電力線間に接続され、電池1にかかる電圧値Vbを検出し、その検出結果をECU10へ出力する。   The voltage detection unit 14 is connected between the power lines connecting the battery 1 and the surplus power consumption unit 2, detects the voltage value Vb applied to the battery 1, and outputs the detection result to the ECU 10.

温度検出部12は、電池1を構成する電池セルなどに近接して配置され、電池1の内部温度である電池温度Tbを検出し、その検出結果をECU10へ出力する。なお、温度検出部12は、電池1を構成する複数の電池セルに対応付けて配置された複数の検出素子の検出結果に基づいて、平均化処理などにより代表値を出力するように構成してもよい。   The temperature detection unit 12 is disposed in the vicinity of the battery cells constituting the battery 1, detects the battery temperature Tb that is the internal temperature of the battery 1, and outputs the detection result to the ECU 10. Note that the temperature detection unit 12 is configured to output a representative value by an averaging process or the like based on detection results of a plurality of detection elements arranged in association with a plurality of battery cells constituting the battery 1. Also good.

平滑コンデンサC1は、コンバータ31とインバータ32、33とを接続する電力線間に接続され、コンバータ31から出力される駆動電力およびインバータ32、33から出力される回生電力に含まれる変動成分を低減する。   Smoothing capacitor C <b> 1 is connected between power lines connecting converter 31 and inverters 32 and 33, and reduces fluctuation components included in drive power output from converter 31 and regenerative power output from inverters 32 and 33.

ECU(Electronic Control Unit)10は、図示しないCPU、ROM、RAM、A/D変換器及び入出力インターフェイスなどを有し、各種センサからの検出信号に基づいて、モータジェネレータMG1、MG2の駆動制御を行う。より具体的には、ECU10は、モータジェネレータMG1、MG2の発生トルクおよび回転数がそれぞれトルク目標値および回転数目標値となるように、制御信号S3、S4を生成してインバータ32、33を制御する。また、ECU10は、後述するように、充電許容電力Winや、余剰電力消費部2が消費可能な電力の上限値(以後、「電力消費能力Wr」と呼ぶ。)などに基づき、回生電力を制御する。従って、ECU10は、本発明における制御手段の一例である。   The ECU (Electronic Control Unit) 10 has a CPU, ROM, RAM, A / D converter, input / output interface, and the like (not shown), and controls driving of the motor generators MG1 and MG2 based on detection signals from various sensors. Do. More specifically, ECU 10 generates control signals S3 and S4 to control inverters 32 and 33 so that the generated torque and rotational speed of motor generators MG1 and MG2 become the torque target value and the rotational speed target value, respectively. To do. Further, as will be described later, the ECU 10 controls the regenerative power based on the allowable charging power Win, the upper limit value of power that can be consumed by the surplus power consumption unit 2 (hereinafter referred to as “power consumption capacity Wr”), and the like. To do. Therefore, ECU10 is an example of the control means in this invention.

図2は、電池保護装置100の回路図の一例である。図2に示すように、インバータ32、33は、三相分のスイッチング素子を含むブリッジ回路で構成されており、ECU10からの制御信号S3、S4に基づき三相交流電力を発生する。   FIG. 2 is an example of a circuit diagram of the battery protection device 100. As shown in FIG. 2, the inverters 32 and 33 are configured by a bridge circuit including switching elements for three phases, and generate three-phase AC power based on control signals S3 and S4 from the ECU 10.

また、コンバータ31は、昇降圧チョッパ回路により構成される。コンバータ31は、スイッチング素子であるトランジスタTR1、TR2と、ダイオードD1、D2と、インダクタLと、平滑コンデンサC2と、を含む。   Converter 31 is configured by a step-up / down chopper circuit. Converter 31 includes transistors TR1 and TR2 that are switching elements, diodes D1 and D2, an inductor L, and a smoothing capacitor C2.

また、図2において、電池保護装置100は、図1において図示しないシステムメインリレー19x、19yを有する。システムメインリレー19x、19yは、電池1へ流れる電流を中継したり、遮断したりする。そして、車両衝突時等では、システムメインリレー19x、19yは、搭乗者の安全を確保するため、高電圧を完全に遮断する。   In FIG. 2, the battery protection device 100 includes system main relays 19x and 19y (not shown in FIG. 1). The system main relays 19x and 19y relay or interrupt the current flowing to the battery 1. In a vehicle collision or the like, the system main relays 19x and 19y completely cut off the high voltage in order to ensure the safety of the passenger.

余剰電力消費部2は、抵抗Rと、ダイオードD3と、トランジスタTR3と、を含む。抵抗RとダイオードD3とは、電池1の正極側と接続する電力線とトランジスタTR3のコレクタとの間に並列に接続されている。抵抗Rは、例えば電池1に隣接するヒータであり、抵抗Rで発生した熱によって電池1を加熱する。ダイオードD3は、トランジスタTR3のコレクタ側から電池1の正極と接続する電力線側へ電流を流す。トランジスタTR3は、例えば、IGBT(Insulated Gate Bipolar Transistor)であり、ECU10から送信されるスイッチング信号S1に基づき制御されるスイッチング素子である。トランジスタTR3は、そのコレクタが抵抗RとダイオードD3とに接続し、そのエミッタが電池1の負極側と接続している。以後、ECU10がトランジスタTR3にスイッチング信号S1を送信し抵抗Rに電流が流れる状態を「余剰電力消費部がオン」であると表現し、ECU10からスイッチング信号S1が送信されず、抵抗Rに電流が流れない状態を「余剰電力消費部がオフ」であると表現する。   Surplus power consumption unit 2 includes a resistor R, a diode D3, and a transistor TR3. The resistor R and the diode D3 are connected in parallel between the power line connected to the positive electrode side of the battery 1 and the collector of the transistor TR3. The resistor R is, for example, a heater adjacent to the battery 1 and heats the battery 1 with heat generated by the resistor R. Diode D3 allows current to flow from the collector side of transistor TR3 to the power line side connected to the positive electrode of battery 1. The transistor TR3 is, for example, an IGBT (Insulated Gate Bipolar Transistor), and is a switching element controlled based on a switching signal S1 transmitted from the ECU 10. The transistor TR3 has a collector connected to the resistor R and the diode D3, and an emitter connected to the negative electrode side of the battery 1. Hereinafter, the state in which the ECU 10 transmits the switching signal S1 to the transistor TR3 and the current flows through the resistor R is expressed as “the surplus power consumption unit is on”, and the switching signal S1 is not transmitted from the ECU 10 and the current flows through the resistor R. The state of not flowing is expressed as “the surplus power consumption unit is off”.

次に、図2を用いて、ECU10が送信する制御信号S1、S2に基づき余剰電力消費部2と、コンバータ31とが実現する機能について説明する。   Next, functions realized by the surplus power consumption unit 2 and the converter 31 based on the control signals S1 and S2 transmitted by the ECU 10 will be described with reference to FIG.

ECU10は、制御信号S2に含まれるスイッチング信号S2aとスイッチング信号S2bとに基づきコンバータ31に昇圧動作または降圧動作を実行させる。具体的には、ECU10は、スイッチング信号S2aによりトランジスタTR1のオン、オフを制御するとともに、スイッチング信号S2bによりトランジスタTR2のオン、オフを制御する。昇圧動作時では、ECU10は、トランジスタTR1をオフ状態に維持し、かつ、トランジスタTR2を所定のデューティー比でオン/オフさせる。これにより、インダクタLに蓄積される電磁エネルギーに起因して、コンバータ31がインバータ32、33へ供給する直流電力の平均電圧は、デューティー比に応じて昇圧される。また、降圧動作時において、ECU10は、トランジスタTR1を所定のデューティー比でオン/オフさせ、かつ、トランジスタTR2をオフ状態に維持させる。これにより、コンバータ31から電池1または余剰電力消費部2へ供給される直流電力の平均電圧は、デューティー比に応じて降圧される。   ECU 10 causes converter 31 to perform a step-up operation or a step-down operation based on switching signal S2a and switching signal S2b included in control signal S2. Specifically, the ECU 10 controls on / off of the transistor TR1 by the switching signal S2a, and controls on / off of the transistor TR2 by the switching signal S2b. During the boosting operation, the ECU 10 maintains the transistor TR1 in the off state and turns on / off the transistor TR2 at a predetermined duty ratio. Thereby, due to the electromagnetic energy accumulated in inductor L, the average voltage of the DC power that converter 31 supplies to inverters 32 and 33 is boosted according to the duty ratio. Further, during the step-down operation, the ECU 10 turns on / off the transistor TR1 with a predetermined duty ratio and maintains the transistor TR2 in an off state. As a result, the average voltage of the DC power supplied from converter 31 to battery 1 or surplus power consumption unit 2 is stepped down according to the duty ratio.

また、ECU10は、スイッチング信号S1に基づき余剰電力消費部2で消費する電力を調整する。余剰電力消費部2の電力消費能力Wrは、電圧値Vbの二乗を抵抗Rの抵抗値で除した値となる。また、余剰電力消費部2で消費する電力は、スイッチング信号S1のデューティー比と電力消費能力Wrとの積となる。よって、ECU10は、実際に余剰電力消費部2で消費する電力を、スイッチング信号S1のデューティー制御により調整する。一例として、ECU10は、電圧検出部14から検出された電圧値Vbを監視し、電圧値Vbが電池1の所定の許容電圧またはその近傍に達した場合に余剰電力消費部2を所定時間オンにする。これにより、ECU10は、余剰電力消費部2に電力を消費させることで電池1の電圧を下げ、電池1が許容電圧以上の過電圧になるのを防ぐ。   Moreover, ECU10 adjusts the electric power consumed in the surplus power consumption part 2 based on switching signal S1. The power consumption capability Wr of the surplus power consumption unit 2 is a value obtained by dividing the square of the voltage value Vb by the resistance value of the resistor R. Further, the power consumed by the surplus power consumption unit 2 is the product of the duty ratio of the switching signal S1 and the power consumption capability Wr. Therefore, the ECU 10 adjusts the power actually consumed by the surplus power consumption unit 2 by the duty control of the switching signal S1. As an example, the ECU 10 monitors the voltage value Vb detected from the voltage detection unit 14 and turns on the surplus power consumption unit 2 for a predetermined time when the voltage value Vb reaches a predetermined allowable voltage of the battery 1 or the vicinity thereof. To do. Thereby, ECU10 reduces the voltage of the battery 1 by making the surplus power consumption part 2 consume electric power, and prevents that the battery 1 becomes an overvoltage more than an allowable voltage.

なお、上述の電池保護装置100の構成は一例であり、本発明が適用可能な構成は必ずしもこれに限定されない。例えば、モータジェネレータは1つであってもよい。図3は、モータジェネレータを1つ備える電池保護装置100aの構成例を示す。図3に示すように、電池保護装置100aは、モータジェネレータMGを備える。モータジェネレータMGは、駆動時には電池1の電力により電動機として動作し、制動時には発電機として動作する。この場合であっても、ECU10は、後述するように、制御信号S1により余剰電力消費部2のオンオフを制御するとともに、制御信号S2によりコンバータ31が供給する回生電力を制御することで、電池1の過電圧等を防ぐ。   In addition, the structure of the above-mentioned battery protection apparatus 100 is an example, and the structure to which the present invention can be applied is not necessarily limited thereto. For example, there may be one motor generator. FIG. 3 shows a configuration example of a battery protection device 100a including one motor generator. As shown in FIG. 3, battery protection device 100a includes a motor generator MG. Motor generator MG operates as an electric motor by the electric power of battery 1 when driven, and operates as a generator during braking. Even in this case, the ECU 10 controls the on / off of the surplus power consumption unit 2 by the control signal S1, and controls the regenerative power supplied by the converter 31 by the control signal S2, as will be described later. Prevent overvoltage etc.

[第1実施形態における制御]
次に、第1実施形態においてECU10が行う回生制御について説明する。第1実施形態では、ECU10は、電池1が低温で充電許容電力Winが小さい場合であっても、コンバータ31が供給する回生電力の上限値を余剰電力消費部2の電力消費能力Wrに設定する。これにより、ECU10は、電池1の過電圧を防ぎつつ回生電力を有効に活用する。以後、モータジェネレータMG1、MG2で発生した回生電力のうち、ECU10の制御に基づきコンバータ31から電池1及び余剰電力消費部2へ供給される回生電力を「回生出力」と呼ぶ。
[Control in the first embodiment]
Next, regenerative control performed by the ECU 10 in the first embodiment will be described. In the first embodiment, the ECU 10 sets the upper limit value of the regenerative power supplied by the converter 31 to the power consumption capability Wr of the surplus power consumption unit 2 even when the battery 1 is at a low temperature and the charge allowable power Win is small. . Thereby, the ECU 10 effectively uses the regenerative power while preventing the overvoltage of the battery 1. Hereinafter, of the regenerative power generated by the motor generators MG1 and MG2, the regenerative power supplied from the converter 31 to the battery 1 and the surplus power consumption unit 2 based on the control of the ECU 10 is referred to as “regenerative output”.

まず、第1実施形態における回生出力の制御について説明する。ECU10は、回生出力の制御上の目標上限値(以後、「目標上限出力値Wmax」と呼ぶ。)を電力消費能力Wrまたは充電許容電力Winのいずれか大きい値に設定する。これについて図4を用いて説明する。   First, regenerative output control in the first embodiment will be described. The ECU 10 sets the target upper limit value (hereinafter referred to as “target upper limit output value Wmax”) for controlling the regenerative output to a value that is larger of the power consumption capacity Wr or the charge allowable power Win. This will be described with reference to FIG.

図4は、第1実施形態における、充電許容電力Win、放電許容電力Wout、及び目標上限出力値Wmaxの関係を示すグラフの一例である。図4では、縦軸の電力は正の方向が放電の電力を示し、負の方向が充電の電力を示す。図4に示すように、充電許容電力Winと放電許容電力Woutは、電池温度Tbが上昇すると、その絶対値がそれぞれ上昇する。そして、電池温度Tbが所定温度Tb1以下の場合、充電許容電力Winは、電力消費能力Wrよりも小さい。従って、ECU10は、電池温度Tbが温度Tb1以下の場合、回生出力の目標上限出力値Wmaxを電力消費能力Wrに設定する。そして、充電許容電力Winを超えた分の回生出力は、ECU10の制御信号S1に基づき、余剰電力消費部2の抵抗Rに供給され、抵抗Rによって消費される。このとき、充電許容電力Winを超えた分の回生出力は、電池温度Tbが低く充電許容電力Winが小さい場合であっても、電力消費能力Wr以下となる。よって、抵抗Rは、供給された電力を確実に消費することができる。従って、電池保護装置100は、電池1への電力過供給による電池1の過電圧の発生を防ぐことができる。さらに、抵抗Rを電池1に隣接させたヒータとして機能させることで、電池保護装置100は、抵抗Rの電力消費に起因して発生した熱で電池1を加熱することができる。これにより電池1は昇温により充電許容電力Winや放電許容電力Woutが上がるため、電池保護装置100は、結果として燃費を向上させることができ、回生電力を有効に活用することができる。   FIG. 4 is an example of a graph showing the relationship between the allowable charging power Win, the allowable discharging power Wout, and the target upper limit output value Wmax in the first embodiment. In FIG. 4, in the power on the vertical axis, the positive direction indicates the discharge power, and the negative direction indicates the charge power. As shown in FIG. 4, the absolute values of the allowable charging power Win and the allowable discharging power Wout increase as the battery temperature Tb increases. When the battery temperature Tb is equal to or lower than the predetermined temperature Tb1, the charge allowable power Win is smaller than the power consumption capability Wr. Therefore, when the battery temperature Tb is equal to or lower than the temperature Tb1, the ECU 10 sets the target upper limit output value Wmax of the regenerative output to the power consumption capability Wr. Then, the regenerative output exceeding the charge allowable power Win is supplied to the resistor R of the surplus power consumption unit 2 based on the control signal S1 of the ECU 10 and consumed by the resistor R. At this time, the regenerative output exceeding the allowable charging power Win is equal to or less than the power consumption capacity Wr even when the battery temperature Tb is low and the allowable charging power Win is small. Therefore, the resistor R can reliably consume the supplied power. Therefore, the battery protection device 100 can prevent the occurrence of an overvoltage of the battery 1 due to the excessive supply of power to the battery 1. Furthermore, by causing the resistor R to function as a heater adjacent to the battery 1, the battery protection device 100 can heat the battery 1 with heat generated due to the power consumption of the resistor R. As a result, the battery 1 increases the allowable charging power Win and the allowable discharge power Wout as the temperature rises, so that the battery protection device 100 can improve the fuel consumption as a result and can effectively utilize the regenerative power.

次に、第1実施形態における走行中の回生出力についての具体例を示す。図5は、電池1が低温の場合における、回生出力の時間変化のグラフを示す。破線で示されるグラフ91は、目標上限出力値Wmaxを常に充電許容電力Winに設定した場合(以後、「比較例」と呼ぶ。)における、回生出力の変化のグラフである。実線で示されるグラフ92は、目標上限出力値Wmaxを電力消費能力Wrまたは充電許容電力Winのいずれか大きい方に設定した場合、即ち本実施形態における回生出力を表すグラフである。また、充電許容電力Winが破線で示されている。充電許容電力Winは、時間経過による電池温度Tbの上昇に起因して緩やかに絶対値が上昇している。   Next, a specific example of the regenerative output during traveling in the first embodiment will be shown. FIG. 5 shows a graph of the time variation of the regenerative output when the battery 1 is at a low temperature. A graph 91 indicated by a broken line is a graph of a change in regenerative output when the target upper limit output value Wmax is always set to the charge allowable power Win (hereinafter referred to as “comparative example”). A graph 92 indicated by a solid line is a graph representing the regenerative output when the target upper limit output value Wmax is set to the larger one of the power consumption capacity Wr and the charge allowable power Win, that is, the present embodiment. Further, the allowable charging power Win is indicated by a broken line. The absolute value of the chargeable power Win gradually increases due to the increase in the battery temperature Tb over time.

図5に示すように、期間A乃至期間Dにおいて、制動制御により回生電力が発生している。比較例では、いずれの期間においても、回生出力は、充電許容電力Win以下に留まる(グラフ91参照。)。これに対し、グラフ92が示す回生出力は、期間A乃至期間Dのいずれの期間においても、電力消費能力Wrを上限として充電許容電力Winを超える。この場合であっても、充電許容電力Winを超過する分の回生出力は、電力消費能力Wr以下になり、余剰電力消費部2によって消費される。このように、本実施形態における電池保護装置100は、比較例と比べ、電池1への充電許容電力の供給が過多とならならない範囲でより多くの回生電力を消費する。   As shown in FIG. 5, regenerative power is generated by braking control in the periods A to D. In the comparative example, the regenerative output remains below the allowable charging power Win in any period (see graph 91). On the other hand, the regenerative output indicated by the graph 92 exceeds the allowable charging power Win with the power consumption capability Wr as the upper limit in any of the periods A to D. Even in this case, the regenerative output in excess of the allowable charging power Win becomes equal to or less than the power consumption capability Wr and is consumed by the surplus power consumption unit 2. As described above, the battery protection device 100 according to the present embodiment consumes more regenerative power in a range in which the supply of chargeable power to the battery 1 does not become excessive as compared with the comparative example.

(処理フロー)
次に、第1実施形態における処理の手順について説明する。図6は、第1実施形態においてECU10が行う制御の一例を示すフローチャートである。図6に示す処理は、回生が行われる際、または所定の周期ごとにECU10によって繰り返し実行される。
(Processing flow)
Next, a processing procedure in the first embodiment will be described. FIG. 6 is a flowchart illustrating an example of control performed by the ECU 10 in the first embodiment. The process shown in FIG. 6 is repeatedly executed by the ECU 10 when regeneration is performed or at predetermined intervals.

まず、ECU10は、充電許容電力Win及び電力消費能力Wrを取得する(ステップS1)。例えば、ECU10は、温度検出部12から検出される電池温度Tbに基づき、予めメモリに保持する図4に示すようなマップを参照することで、充電許容電力Winを推定する。また、ECU10は、抵抗Rの抵抗値に基づき事前に算出された電力消費能力Wrを予めメモリに保持しておくことで、電力消費能力Wrを取得する。   First, the ECU 10 acquires the charge allowable power Win and the power consumption capability Wr (step S1). For example, the ECU 10 estimates the allowable charging power Win by referring to a map as shown in FIG. 4 stored in advance in the memory based on the battery temperature Tb detected from the temperature detection unit 12. In addition, the ECU 10 acquires the power consumption capability Wr by holding the power consumption capability Wr calculated in advance based on the resistance value of the resistor R in a memory in advance.

次に、ECU10は、充電許容電力Winが電力消費能力Wrより小さいか否か判定する(ステップS2)。   Next, the ECU 10 determines whether or not the allowable charging power Win is smaller than the power consumption capability Wr (step S2).

そして、充電許容電力Winが電力消費能力Wrより大きい場合(ステップS2;Yes)、ECU10は、目標上限出力値Wmaxを充電許容電力Winに設定する(ステップS3)。即ち、充電許容電力Winが電力消費能力Wrより大きい場合、ECU10は、充電許容電力Winを目標上限出力値Wmaxに設定しても、回生電力を十分に消費でき、かつ電池1の過電圧は生じないと判断する。   When the allowable charging power Win is greater than the power consumption capacity Wr (step S2; Yes), the ECU 10 sets the target upper limit output value Wmax to the allowable charging power Win (step S3). In other words, when the allowable charging power Win is larger than the power consumption capacity Wr, the ECU 10 can sufficiently consume the regenerative power and the overvoltage of the battery 1 does not occur even if the allowable charging power Win is set to the target upper limit output value Wmax. Judge.

一方、充電許容電力Winよりも電力消費能力Wrが小さい場合(ステップS2;No)、ECU10は、目標上限出力値Wmaxを電力消費能力Wrに設定する(ステップS4)。即ち、この場合、ECU10は、充電許容電力Winが小さいことから、電池1の充電のみでは回生電力を十分に消費できないと判断し、回生出力の上限を電力消費能力Wrに設定する。これにより、ECU10は、余剰電力消費部2にて回生電力を消費させることができ、かつ電池1の過電圧を防ぐことができる。   On the other hand, when the power consumption capability Wr is smaller than the charge allowable power Win (step S2; No), the ECU 10 sets the target upper limit output value Wmax to the power consumption capability Wr (step S4). That is, in this case, since the allowable charging power Win is small, the ECU 10 determines that the regenerative power cannot be sufficiently consumed only by charging the battery 1, and sets the upper limit of the regenerative output to the power consumption capacity Wr. Thereby, ECU10 can consume the regenerative power in the surplus power consumption part 2, and can prevent the overvoltage of the battery 1. FIG.

次に、ECU10は、ステップS3またはステップS4で定めた目標上限出力値Wmaxに基づき回生出力を制御する(ステップS5)。具体的には、ECU10は、目標上限出力値Wmaxを超えないようにコンバータ31を制御する。また、ECU10は、電池1が過電圧にならないように、電圧値Vbなどを監視しつつ、スイッチング信号S1のデューティー制御を行う。   Next, the ECU 10 controls the regenerative output based on the target upper limit output value Wmax determined in step S3 or step S4 (step S5). Specifically, ECU 10 controls converter 31 so as not to exceed target upper limit output value Wmax. Further, the ECU 10 performs duty control of the switching signal S1 while monitoring the voltage value Vb and the like so that the battery 1 does not become overvoltage.

(変形例)
上述の説明では、ECU10は、目標上限出力値Wmaxを電力消費能力Wr又は充電許容電力Winに設定したが、これに代わり、目標上限出力値Wmaxを充電許容電力Winと電力消費能力Wrとの和に設定してもよい。この場合、このようにすることで、電池保護装置100は、電池1への電力過供給が発生しない範囲で、モータジェネレータMG1、MG2で発生した回生電力を最大限活用することができる。
(Modification)
In the above description, the ECU 10 sets the target upper limit output value Wmax to the power consumption capability Wr or the charge allowable power Win. Instead, the ECU 10 sets the target upper limit output value Wmax to the sum of the charge allowable power Win and the power consumption capability Wr. May be set. In this case, by doing in this way, the battery protection device 100 can make maximum use of the regenerative power generated by the motor generators MG1 and MG2 within a range in which no excessive power supply to the battery 1 occurs.

他の例として、ECU10は、目標上限出力値Wmaxを電力消費能力Wrに固定してもよい。即ち、ECU10は、充電許容電力Winによらず、電力消費能力Wrを目標上限出力値Wmaxとしてもよい。このように目標上限出力値Wmaxを固定値である電力消費能力Wrにすることで、ECU10の制御が簡便化される。また、電力消費能力Wrが比較的大きい値になるように抵抗Rが設計されることで、この場合であっても、ECU10は、回生電力を十分に活用することができる。   As another example, the ECU 10 may fix the target upper limit output value Wmax to the power consumption capability Wr. That is, the ECU 10 may set the power consumption capability Wr as the target upper limit output value Wmax regardless of the charge allowable power Win. Thus, control of ECU10 is simplified by making target upper limit output value Wmax into the power consumption capability Wr which is a fixed value. Further, by designing the resistor R so that the power consumption capability Wr becomes a relatively large value, the ECU 10 can fully utilize the regenerative power even in this case.

[第2実施形態]
第1実施形態では、ECU10は、回生出力の目標上限出力値Wmaxを電力消費能力Wrと充電許容電力Winのうち大きい方に設定し、目標上限出力値Wmaxに基づき回生出力を制御した。一方、車両の走行中において車輪がスリップ後にグリップした場合など、回生電力が大きい場合には、ECU10に制御された回生出力とは別の余剰電力、即ち、ECU10が制御(把握)しきれていない突発的な電力(以後、「余剰電力We」と呼ぶ。)が電池1及び余剰電力消費部2に供給される恐れがある。この場合、余剰電力Weに起因して目標上限出力値Wmax以上の電力が電池1及び余剰電力消費部2に供給されて電池1の過電圧が生じる恐れがある。従って、第2実施形態では、ECU10は、回生出力の目標上限出力値Wmaxを第1実施形態で用いた目標上限出力値Wmaxより所定値だけ下げる。これにより、ECU10は、電池1の過電圧を防ぐ。
[Second Embodiment]
In the first embodiment, the ECU 10 sets the target upper limit output value Wmax of the regenerative output to the larger one of the power consumption capacity Wr and the charge allowable power Win, and controls the regenerative output based on the target upper limit output value Wmax. On the other hand, when the regenerative power is large, such as when the wheel grips after slipping while the vehicle is running, surplus power different from the regenerative output controlled by the ECU 10, that is, the ECU 10 has not been fully controlled (understood). Sudden power (hereinafter referred to as “surplus power We”) may be supplied to the battery 1 and the surplus power consumption unit 2. In this case, there is a concern that the battery 1 and the surplus power consumption unit 2 are supplied with power that is equal to or higher than the target upper limit output value Wmax due to the surplus power We and an overvoltage of the battery 1 is generated. Therefore, in the second embodiment, the ECU 10 lowers the target upper limit output value Wmax of the regenerative output by a predetermined value from the target upper limit output value Wmax used in the first embodiment. Thereby, the ECU 10 prevents overvoltage of the battery 1.

図7は、第2実施形態における、充電許容電力Win、放電許容電力Wout、及び目標上限出力値Wmaxの関係を示すグラフの一例である。図7に示すように、充電許容電力Winは、温度Tb2のとき電力消費能力Wrより定数ΔPだけ小さい値をとる。そして、目標上限出力値Wmaxは、温度Tb2以下の場合、電力消費能力Wrより定数ΔPだけ小さい値に設定されている。ここで、定数「ΔP」は、電力消費能力Wrより小さい値であり、余剰電力We以上の値に実験等によって予め設定される。例えば、定数ΔPは発生し得る余剰電力Weの上限値に設定される。従って、目標上限出力値Wmaxは、温度Tb2以下では、電力消費能力Wrから定数ΔPを除した値に設定される。   FIG. 7 is an example of a graph showing the relationship between the allowable charging power Win, the allowable discharging power Wout, and the target upper limit output value Wmax in the second embodiment. As shown in FIG. 7, the charge allowable power Win takes a value that is smaller by a constant ΔP than the power consumption capability Wr at the temperature Tb2. The target upper limit output value Wmax is set to a value that is smaller than the power consumption capability Wr by a constant ΔP when the temperature is equal to or lower than the temperature Tb2. Here, the constant “ΔP” is a value smaller than the power consumption capability Wr, and is set in advance by experiments or the like to a value equal to or greater than the surplus power We. For example, the constant ΔP is set to the upper limit value of the surplus power We that can be generated. Therefore, the target upper limit output value Wmax is set to a value obtained by dividing the power consumption capability Wr by the constant ΔP at the temperature Tb2 or lower.

このように、電池温度Tbが温度Tb2以下の場合、ECU10は、目標上限出力値Wmaxを電力消費能力Wrから定数ΔPだけ小さい値、即ち、
Wmax=Wr−ΔP
に設定することで、余剰電力Weに起因した電池1の過電圧を防ぐ。即ち、目標上限出力値Wmaxが電力消費能力Wrから定数ΔPを減算した値に設定され、かつ定数ΔPが余剰電力We以上に設定された場合、余剰電力Weを含めた回生出力の最大値は電力消費能力Wr以下となる。従って、電池保護装置100は、余剰電力Weが発生した場合であっても、余剰電力Weを含めた回生出力を適切に消費することができる。
Thus, when the battery temperature Tb is equal to or lower than the temperature Tb2, the ECU 10 reduces the target upper limit output value Wmax by a constant ΔP from the power consumption capability Wr, that is,
Wmax = Wr−ΔP
By setting to, the overvoltage of the battery 1 due to the surplus power We is prevented. That is, when the target upper limit output value Wmax is set to a value obtained by subtracting the constant ΔP from the power consumption capacity Wr and the constant ΔP is set to be equal to or greater than the surplus power We, the maximum value of the regenerative output including the surplus power We is the power It becomes below the consumption capacity Wr. Therefore, the battery protection device 100 can appropriately consume the regenerative output including the surplus power We even when the surplus power We is generated.

(処理フロー)
次に、第2実施形態における処理の手順について図8を用いて説明する。第2実施形態に係るステップS101乃至S105の処理は、第1実施形態における処理とステップS103及びステップS104を除き同一である。
(Processing flow)
Next, a processing procedure in the second embodiment will be described with reference to FIG. The processes in steps S101 to S105 according to the second embodiment are the same as those in the first embodiment except for steps S103 and S104.

ECU10は、充電許容電力Winと電力消費能力Wrを取得し(ステップS101)、これらを比較する(ステップS102)。そして、充電許容電力Winが電力消費能力Wrより大きい場合(ステップS102;Yes)、ECU10は、目標上限出力値Wmaxを充電許容電力Winから定数ΔPを減じた値に設定する(ステップS103)。なお、定数ΔPは、事前の実験等により、予想される余剰電力Weよりも大きい値に設定され、ECU10のメモリに保持されている。   The ECU 10 acquires the allowable charging power Win and the power consumption capability Wr (step S101) and compares them (step S102). When the allowable charging power Win is greater than the power consumption capacity Wr (step S102; Yes), the ECU 10 sets the target upper limit output value Wmax to a value obtained by subtracting the constant ΔP from the allowable charging power Win (step S103). The constant ΔP is set to a value larger than the expected surplus electric power We by a prior experiment or the like, and is held in the memory of the ECU 10.

一方、充電許容電力Winが電力消費能力Wrより小さい場合(ステップS102;No)、ECU10は、目標上限出力値Wmaxを電力消費能力Wrから定数ΔPを減じた値に設定する(ステップS104)。そして、ECU10は、目標上限出力値Wmaxに基づき回生出力の制御を行う(ステップS105)。以上により、余剰電力Weが発生した場合であっても、定数ΔPを余剰電力Weよりも大きい値に設定することで、ECU10は、電池1の過電圧を防ぐことができる。   On the other hand, when the allowable charging power Win is smaller than the power consumption capability Wr (step S102; No), the ECU 10 sets the target upper limit output value Wmax to a value obtained by subtracting the constant ΔP from the power consumption capability Wr (step S104). Then, the ECU 10 controls the regenerative output based on the target upper limit output value Wmax (step S105). As described above, even if the surplus power We is generated, the ECU 10 can prevent the overvoltage of the battery 1 by setting the constant ΔP to a value larger than the surplus power We.

なお、第1実施形態における変形例は、第2実施形態にも適用することができる。即ち、ECU10は、目標上限出力値Wmaxを、充電許容電力Winと電力消費能力Wrとの和よりも定数ΔPだけ小さい値に設定してもよい。その代わりに、目標上限出力値Wmaxを充電許容電力Winによらず常に電力消費能力Wrよりも定数ΔPだけ小さい値に設定してもよい。   The modification in the first embodiment can also be applied to the second embodiment. That is, the ECU 10 may set the target upper limit output value Wmax to a value that is smaller by a constant ΔP than the sum of the charge allowable power Win and the power consumption capability Wr. Instead, the target upper limit output value Wmax may always be set to a value smaller than the power consumption capacity Wr by a constant ΔP regardless of the charge allowable power Win.

[第3実施形態]
第2実施形態では、ECU10は、余剰電力Weを考慮して、事前にメモリ等に保持した定数ΔPだけ目標上限出力Wmaxを小さく設定した。これに対し、第3実施形態では、ECU10は、定数ΔPに相当する変数「ΔPh」を走行中に適切な値に定め、目標上限出力値Wmaxを変数ΔPhだけ小さく設定する。これにより、ECU10は、電池1の過電圧を防ぎつつ、回生出力を増加させる。
[Third Embodiment]
In the second embodiment, the ECU 10 sets the target upper limit output Wmax small by a constant ΔP previously stored in a memory or the like in consideration of the surplus power We. On the other hand, in the third embodiment, the ECU 10 sets the variable “ΔPh” corresponding to the constant ΔP to an appropriate value during traveling, and sets the target upper limit output value Wmax to be smaller by the variable ΔPh. Thereby, the ECU 10 increases the regenerative output while preventing the overvoltage of the battery 1.

以下、変数ΔPhの決定方法について説明する。ECU10は、電池1の過電圧の起こりやすさを指標として変数ΔPhを決定する。即ち、過電圧が起こりやすいと判断した場合、ECU10は、過電圧を防ぐため目標上限出力値Wmaxを小さく設定する。一方、過電圧が起こりにくいと判断した場合、ECU10は回生電力の消費を優先するため目標上限出力値Wmaxを大きく設定する。   Hereinafter, a method for determining the variable ΔPh will be described. The ECU 10 determines the variable ΔPh using the likelihood of overvoltage of the battery 1 as an index. That is, when it is determined that overvoltage is likely to occur, the ECU 10 sets the target upper limit output value Wmax to be small in order to prevent overvoltage. On the other hand, when it is determined that overvoltage is unlikely to occur, the ECU 10 sets the target upper limit output value Wmax to be large in order to prioritize the consumption of regenerative power.

また、電池1の過電圧の起こりやすさは、電池1の状態、または車両の走行状態と相関がある。ここで、電池1の状態は、例えば、電池1の充電状態(SOC:State of Charge)、電池1の電圧、電池1の劣化度合い、及び過去一定時間における電池1の負荷等である。一般に、電池SOCが飽和に近い場合、電池1は、許容電圧が小さく過電圧になりやすい。また、電池1の電圧が回生制御前から高い場合であっても、過電圧が生じやすい。さらに、電池1が劣化している場合でも、電池1は許容電圧が小さく過電圧になりやすい。また、過去一定時間にわたり電池1の充放電負荷を多くした場合、ECU10の制御上の誤差等に起因して電池1は過電圧になりやすい。   Further, the likelihood of overvoltage of the battery 1 correlates with the state of the battery 1 or the running state of the vehicle. Here, the state of the battery 1 is, for example, a state of charge (SOC) of the battery 1, a voltage of the battery 1, a degree of deterioration of the battery 1, a load of the battery 1 in a past fixed time, and the like. Generally, when the battery SOC is close to saturation, the battery 1 has a small allowable voltage and is likely to be overvoltage. Moreover, even when the voltage of the battery 1 is high before the regeneration control, overvoltage is likely to occur. Furthermore, even when the battery 1 is deteriorated, the battery 1 has a small allowable voltage and is likely to be overvoltage. Further, when the charging / discharging load of the battery 1 is increased over a certain period of time in the past, the battery 1 tends to be overvoltage due to an error in control of the ECU 10 or the like.

また、余剰電力Weが発生する車両の走行状態では、電池1の過電圧が生じやすい。ここで、余剰電力Weが発生する車両の走行状態とは、例えば、車両が備える車輪がスリップした後グリップした場合、エンジンのイナーシャを大きく変えるアクセルのオン、オフがあった場合、及びアクセルとブレーキが両方有効になった場合等が該当する。このような車両の走行状態では、ブレーキ時において、比較的大きな車輪の動力が動力伝達機構36や駆動軸38を介してモータジェネレータMG1またはモータジェネレータMG2に伝達され、大きな回生電力が発生する。その結果、目標上限出力値Wmax以上の電力、即ち余剰電力Weが電池1及び余剰電力消費部2へ供給され、電池1の過電圧が発生しやすくなる。   In addition, overvoltage of the battery 1 is likely to occur when the vehicle is in a traveling state where surplus power We is generated. Here, the traveling state of the vehicle in which the surplus power We is generated is, for example, when the wheel provided in the vehicle grips after slipping, when the accelerator that changes engine inertia greatly is turned on or off, and when the accelerator and brake This applies when both are enabled. In such a running state of the vehicle, during braking, a relatively large wheel power is transmitted to the motor generator MG1 or the motor generator MG2 via the power transmission mechanism 36 and the drive shaft 38, and a large regenerative electric power is generated. As a result, power that is equal to or higher than the target upper limit output value Wmax, that is, surplus power We is supplied to the battery 1 and the surplus power consumption unit 2, and overvoltage of the battery 1 is likely to occur.

従って、ECU10は、所定の間隔ごとに、または回生制御が行われる際に、電池1の状態や車両の走行状態を各種のセンサから取得し、変数ΔPhを設定する。例えば、ECU10は、上述した電池1の状態や車両の走行状態を判定する各要素を複数選定し、それらの要素と余剰電力の大きさとの関係を示すマップを実験等により予め作成し、メモリに保持しておく。そして、ECU10は、選定した各要素を回生制御が行われる際等にセンサから取得し、上述したマップに基づき変数ΔPhを設定する。   Therefore, the ECU 10 acquires the state of the battery 1 and the traveling state of the vehicle from various sensors at predetermined intervals or when regenerative control is performed, and sets the variable ΔPh. For example, the ECU 10 selects a plurality of elements for determining the state of the battery 1 and the traveling state of the vehicle described above, creates a map indicating the relationship between these elements and the amount of surplus power in advance by experiment or the like, and stores it in the memory. Keep it. Then, the ECU 10 acquires each selected element from the sensor when regenerative control is performed, and sets the variable ΔPh based on the map described above.

以上のように、変数ΔPhを電池1の過電圧の起こりやすさに基づき決定することで、ECU10は、電池1の過電圧が起こりにくい状況では、変数ΔPhを小さく設定し、より多くの回生電力を電池1または余剰電力消費部2で消費させる。従って、ECU10は、回生電力を有効に活用することができ、結果として燃費を向上させることができる。また、ECU10は、電池1の過電圧が起こりやすい状況では、変数ΔPhを大きく設定し、目標上限出力値Wmaxを小さい値に設定する。これにより、ECU10は、電池1の過電圧を抑制することができる。   As described above, by determining the variable ΔPh based on the likelihood of overvoltage of the battery 1, the ECU 10 sets the variable ΔPh to be small in a situation where the overvoltage of the battery 1 is unlikely to occur, so that more regenerative power is supplied to the battery. 1 or surplus power consumption unit 2 consumes. Therefore, the ECU 10 can effectively use the regenerative power, and as a result, can improve fuel efficiency. Further, the ECU 10 sets the variable ΔPh to a large value and sets the target upper limit output value Wmax to a small value when the overvoltage of the battery 1 is likely to occur. Thereby, the ECU 10 can suppress the overvoltage of the battery 1.

(処理フロー)
次に、第3実施形態における処理手順の一例について図9を用いて説明する。なお、この処理は、所定の周期ごとに、または回生制御が行われる際にECU10により実行される。
(Processing flow)
Next, an example of a processing procedure in the third embodiment will be described with reference to FIG. This process is executed by the ECU 10 at predetermined intervals or when regenerative control is performed.

まず、ECU10は、充電許容電力Win、電力消費能力Wr、及び電池1の状態、車両の走行状態について各種のセンサから取得する(ステップS201)。例えば、ECU10は、電圧検出部14から電圧値Vbを取得することで電池1の電圧を把握し、図示しないアクセルセンサやブレーキポジションセンサからの検出信号に基づきアクセル、ブレーキの踏み込み量等を把握することで、車両の走行状態を把握する。   First, the ECU 10 obtains charge allowable power Win, power consumption capability Wr, battery 1 state, and vehicle running state from various sensors (step S201). For example, the ECU 10 obtains the voltage value Vb from the voltage detection unit 14 to grasp the voltage of the battery 1 and grasps the accelerator and brake depression amount based on detection signals from an accelerator sensor and a brake position sensor (not shown). Thus, the traveling state of the vehicle is grasped.

次に、ECU10は、取得した電池1の状態や車両の走行状態に基づき変数ΔPhを算出する(ステップS202)。例えば、ECU10は、予め実験等により作成した電池1の状態及び車両の走行状態と余剰電力とのマップを参照することで、変数ΔPhを設定する。   Next, the ECU 10 calculates a variable ΔPh based on the acquired state of the battery 1 and the traveling state of the vehicle (step S202). For example, the ECU 10 sets the variable ΔPh by referring to a map of the state of the battery 1 and the running state of the vehicle and surplus power that is created in advance through experiments or the like.

次に、ECU10は、充電許容電力Winと電力消費能力Wrとを比較し(ステップS203)、充電許容電力Winが電力消費能力Wrより大きい場合(ステップS203;Yes)、目標上限出力値Wmaxを充電許容電力Winから変数ΔPhを減じた値に設定する(ステップS204)。一方、充電許容電力Winが電力消費能力Wrより小さい場合(ステップS203;No)、ECU10は、目標上限出力値Wmaxを電力消費能力Wrから変数ΔPhを減じた値に設定する(ステップS205)。   Next, the ECU 10 compares the allowable charging power Win with the power consumption capability Wr (step S203). If the allowable charging power Win is greater than the power consumption capability Wr (step S203; Yes), the target upper limit output value Wmax is charged. A value obtained by subtracting the variable ΔPh from the allowable power Win is set (step S204). On the other hand, when the charge allowable power Win is smaller than the power consumption capability Wr (step S203; No), the ECU 10 sets the target upper limit output value Wmax to a value obtained by subtracting the variable ΔPh from the power consumption capability Wr (step S205).

そして、ECU10は、設定した目標上限出力値Wmaxに基づき回生出力を制御する(ステップS206)。   Then, the ECU 10 controls the regenerative output based on the set target upper limit output value Wmax (step S206).

なお、第1実施形態における変形例は、第3実施形態にも適用することができる。即ち、ECU10は、目標上限出力値Wmaxを充電許容電力Winと電力消費能力Wrとの和よりも変数ΔPhだけ小さい値に設定してもよい。その代わりに、目標上限出力値Wmaxを充電許容電力Winによらず常に電力消費能力Wrよりも変数ΔPhだけ小さい値に設定してもよい。   Note that the modification in the first embodiment can also be applied to the third embodiment. That is, the ECU 10 may set the target upper limit output value Wmax to a value that is smaller by the variable ΔPh than the sum of the allowable charging power Win and the power consumption capability Wr. Instead, the target upper limit output value Wmax may always be set to a value smaller than the power consumption capability Wr by the variable ΔPh regardless of the allowable charging power Win.

電池保護装置の模式的な平面図を示す図の一例である。It is an example of the figure which shows the typical top view of a battery protection apparatus. 電池保護装置の回路図の一例である。It is an example of the circuit diagram of a battery protection apparatus. モータジェネレータを1つ備える電池保護装置の回路図の一例である。It is an example of the circuit diagram of a battery protection apparatus provided with one motor generator. 第1実施形態における、電池温度に対する充電許容電力、放電許容電力、及び目標上限出力値のグラフの一例である。It is an example of the graph of charge allowable power with respect to battery temperature, discharge allowable power, and target upper limit output value in 1st Embodiment. 時間変化に伴う回生出力の変化のグラフの一例である。It is an example of the graph of the change of the regenerative output accompanying a time change. 第1実施形態に係る処理手順の一例を表すフローチャートである。It is a flowchart showing an example of the process sequence which concerns on 1st Embodiment. 第2実施形態における、電池温度に対する充電許容電力、放電許容電力、及び目標上限出力値のグラフの一例である。It is an example of the graph of charge allowable power with respect to battery temperature, discharge allowable power, and target upper limit output value in 2nd Embodiment. 第2実施形態に係る処理手順の一例を表すフローチャートである。It is a flowchart showing an example of the process sequence which concerns on 2nd Embodiment. 第3実施形態に係る処理手順の一例を表すフローチャートである。It is a flowchart showing an example of the process sequence which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

1 電池
2 余剰電力消費部
3 負荷部
10 ECU
12 温度検出部
14 電圧検出部
31 コンバータ
32、33 インバータ
36 動力伝達機構
38 駆動軸
MG1、MG2 モータジェネレータ
100 電池保護装置
DESCRIPTION OF SYMBOLS 1 Battery 2 Surplus power consumption part 3 Load part 10 ECU
DESCRIPTION OF SYMBOLS 12 Temperature detection part 14 Voltage detection part 31 Converter 32, 33 Inverter 36 Power transmission mechanism 38 Drive shaft MG1, MG2 Motor generator 100 Battery protection apparatus

Claims (6)

回生電力を充電する電池と、
回生電力を消費する電気負荷と、
前記電池及び前記電気負荷に供給する回生電力を制御する制御手段と、を備え、
前記制御手段は、回生電力の目標上限出力値を、前記電気負荷の電力消費能力から所定値だけ小さく設定することを特徴とする電池保護装置。
A battery that charges regenerative power;
An electrical load that consumes regenerative power;
Control means for controlling regenerative power supplied to the battery and the electric load,
The battery protection device according to claim 1, wherein the control means sets a target upper limit output value of regenerative power by a predetermined value smaller than a power consumption capability of the electric load.
前記制御手段は、前記電池の過電圧の起こりやすさに基づき前記所定値を設定する請求項1に記載の電池保護装置。   The battery protection device according to claim 1, wherein the control unit sets the predetermined value based on the likelihood of overvoltage of the battery. 前記制御手段は、電池の状態に基づき前記所定値を設定する請求項2に記載の電池保護装置。   The battery protection device according to claim 2, wherein the control unit sets the predetermined value based on a state of the battery. 車両に搭載され、
前記制御手段は、前記車両の走行状態に基づき前記所定値を設定する請求項2または3に記載の電池保護装置。
Mounted on the vehicle,
The battery protection device according to claim 2, wherein the control unit sets the predetermined value based on a traveling state of the vehicle.
前記電気負荷は、前記電池を加熱するヒータである請求項1乃至4のいずれか一項に記載の電池保護装置。   The battery protection device according to any one of claims 1 to 4, wherein the electrical load is a heater that heats the battery. 前記制御手段は、前記電池の充電許容電力が前記電力消費能力よりも小さい場合、回生電力の目標上限出力値を、前記電気負荷の電力消費能力から前記所定値だけ小さく設定し、前記電池の充電許容電力が前記電力消費能力以上の場合、電力の目標上限出力値を、前記充電許容電力から前記所定値だけ小さく設定する請求項1乃至5のいずれか一項に記載の電池保護装置。   When the allowable charging power of the battery is smaller than the power consumption capacity, the control means sets a target upper limit output value of regenerative power smaller by the predetermined value than the power consumption capacity of the electric load, and charges the battery The battery protection device according to any one of claims 1 to 5, wherein when the allowable power is equal to or greater than the power consumption capacity, a target upper limit output value of power is set smaller than the charge allowable power by the predetermined value.
JP2008286307A 2008-11-07 2008-11-07 Battery protection device Active JP5347438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286307A JP5347438B2 (en) 2008-11-07 2008-11-07 Battery protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286307A JP5347438B2 (en) 2008-11-07 2008-11-07 Battery protection device

Publications (2)

Publication Number Publication Date
JP2010115035A true JP2010115035A (en) 2010-05-20
JP5347438B2 JP5347438B2 (en) 2013-11-20

Family

ID=42303136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286307A Active JP5347438B2 (en) 2008-11-07 2008-11-07 Battery protection device

Country Status (1)

Country Link
JP (1) JP5347438B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005179A (en) * 2010-06-14 2012-01-05 Honda Motor Co Ltd Overvoltage suppression device and motor driving device
JP2014068471A (en) * 2012-09-26 2014-04-17 Rohm Co Ltd Wireless power receiving/supplying device, wireless power receiving device, and wireless power supplying device
WO2014125519A1 (en) * 2013-02-18 2014-08-21 三洋電機株式会社 Power storage system
JP2015082914A (en) * 2013-10-23 2015-04-27 株式会社豊田自動織機 Protection device of battery pack to be mounted on vehicle
FR3126665A1 (en) * 2021-09-07 2023-03-10 Psa Automobiles Sa MONITORING VOLTAGES IN A MODE 2 OR 3 CHARGING BATTERY VEHICLE
WO2024060122A1 (en) * 2022-09-22 2024-03-28 宁德时代新能源科技股份有限公司 Adjusting method for adjusting circuit of battery, control method for battery, and monitoring method for battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021212921A1 (en) 2021-11-17 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Device for preventing overvoltages in an electrical energy storage system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057709A (en) * 1999-08-17 2001-02-27 Honda Motor Co Ltd Controller for hybrid vehicle
JP2001238303A (en) * 2000-02-24 2001-08-31 Mitsubishi Motors Corp Regenerative controller of hybrid electric vehicle
JP2003018709A (en) * 2001-07-03 2003-01-17 Nissan Motor Co Ltd Control device for fuel battery powered vehicle
JP2006081300A (en) * 2004-09-09 2006-03-23 Toyota Motor Corp Hybrid vehicle and apparatus and method for controlling battery therefor
JP2007165211A (en) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd Secondary battery management device
JP2007236151A (en) * 2006-03-03 2007-09-13 Panasonic Ev Energy Co Ltd Charging/discharging control system for secondary battery, battery control apparatus, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057709A (en) * 1999-08-17 2001-02-27 Honda Motor Co Ltd Controller for hybrid vehicle
JP2001238303A (en) * 2000-02-24 2001-08-31 Mitsubishi Motors Corp Regenerative controller of hybrid electric vehicle
JP2003018709A (en) * 2001-07-03 2003-01-17 Nissan Motor Co Ltd Control device for fuel battery powered vehicle
JP2006081300A (en) * 2004-09-09 2006-03-23 Toyota Motor Corp Hybrid vehicle and apparatus and method for controlling battery therefor
JP2007165211A (en) * 2005-12-16 2007-06-28 Hitachi Vehicle Energy Ltd Secondary battery management device
JP2007236151A (en) * 2006-03-03 2007-09-13 Panasonic Ev Energy Co Ltd Charging/discharging control system for secondary battery, battery control apparatus, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005179A (en) * 2010-06-14 2012-01-05 Honda Motor Co Ltd Overvoltage suppression device and motor driving device
JP2014068471A (en) * 2012-09-26 2014-04-17 Rohm Co Ltd Wireless power receiving/supplying device, wireless power receiving device, and wireless power supplying device
US9806824B2 (en) 2012-09-26 2017-10-31 Rohm Co., Ltd. Wireless power supply receiver-transmitter device, wireless power supply receiver and wireless power supply transmitter
WO2014125519A1 (en) * 2013-02-18 2014-08-21 三洋電機株式会社 Power storage system
JP2015082914A (en) * 2013-10-23 2015-04-27 株式会社豊田自動織機 Protection device of battery pack to be mounted on vehicle
FR3126665A1 (en) * 2021-09-07 2023-03-10 Psa Automobiles Sa MONITORING VOLTAGES IN A MODE 2 OR 3 CHARGING BATTERY VEHICLE
WO2024060122A1 (en) * 2022-09-22 2024-03-28 宁德时代新能源科技股份有限公司 Adjusting method for adjusting circuit of battery, control method for battery, and monitoring method for battery

Also Published As

Publication number Publication date
JP5347438B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
US7221064B2 (en) Power circuit for battery
US8847544B2 (en) Power supply device for electric powered vehicle, control method thereof, and electric powered vehicle
JP6693446B2 (en) Drive
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
US10507735B2 (en) Power supply system, transportation device, and power transmission method
JP4941595B2 (en) Power system
US10538167B2 (en) Power supply system, transportation device, and power transmission method
JP5347438B2 (en) Battery protection device
US11203274B2 (en) Electrically driven vehicle
CN110316019B (en) Vehicle power supply system
US11180050B2 (en) Power supply system, transportation device, and power transmission method
EP3342624A1 (en) Drive unit, vehicle, and control method for drive unit
JP2019180124A (en) Power supply system for vehicle
US20170151888A1 (en) Power supply system, transportation device, and power transmission method
JP2010273428A (en) Vehicle drive power supply unit
JP2019180211A (en) Vehicle power supply system
JP2019180206A (en) Power supply system for vehicle
US11070156B2 (en) Power system
JP2019180210A (en) Vehicle power supply system
JP5514459B2 (en) Charging system
JP3991942B2 (en) Vehicle regeneration control device and regeneration control method
JP6104637B2 (en) Dual power load drive system and fuel cell vehicle
JP2019180213A (en) Power supply system for vehicle
KR100579298B1 (en) Auxiliary battery charge control method for environment car
KR20090054915A (en) Power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5347438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151