JP2010115012A - Stator core and power generator - Google Patents

Stator core and power generator Download PDF

Info

Publication number
JP2010115012A
JP2010115012A JP2008285487A JP2008285487A JP2010115012A JP 2010115012 A JP2010115012 A JP 2010115012A JP 2008285487 A JP2008285487 A JP 2008285487A JP 2008285487 A JP2008285487 A JP 2008285487A JP 2010115012 A JP2010115012 A JP 2010115012A
Authority
JP
Japan
Prior art keywords
core
casing
axial direction
stator core
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008285487A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
弘之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2008285487A priority Critical patent/JP2010115012A/en
Publication of JP2010115012A publication Critical patent/JP2010115012A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stator core which requires no machining in such a state that many core plates are stacked, and suppresses or prevents the saturation of magnetic flux for smooth rotational operation. <P>SOLUTION: The stator core includes a first core plate 31 having flat portions 31a at parts facing each other, and a circular second core plate 32 having a diameter 32x identical or similar to the shortest distance 31x connecting the flat portions 31a to each other through the center of the first core plate 31. A bundle 31T of the first core plates 31 and a bundle of the second core plates 32 are alternately stacked along the axial direction of a casing 2. The first core plates 31 are arrayed in an axial direction while being displaced in the circumferential direction by each constant rotational angle. A flat surface region 3A formed with the flat portion 31a of the first core plates 31 has a skewed shape tilted at a predetermined angle with respect to the axial direction of the casing 2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ステータコア及び発電機に関するものである。   The present invention relates to a stator core and a generator.

円筒状のケーシングと、ケーシング内に配置されるステータコアとを備えた発電機として、過剰な発熱を防止すべくステータコアの外面に軸方向に沿って延びる平面領域を形成し、この平面領域とケーシングの外面との間に形成される隙間を、冷媒が流通可能な冷媒流路として機能させる態様が考えられている(特許文献1参照)。   As a generator having a cylindrical casing and a stator core disposed in the casing, a planar region extending along the axial direction is formed on the outer surface of the stator core to prevent excessive heat generation. An aspect is considered in which a gap formed between the outer surface and the outer surface functions as a refrigerant flow path through which the refrigerant can flow (see Patent Document 1).

同文献には、ほぼ円盤形状をなし中心を挟んで対向する外周部に扁平部分を形成したコア板(鋼板)を、各扁平部分が面一となるように軸方向に積層することによって、ステータコアの外面に、軸方向に平行な平面領域を形成した構成が開示されている。
特開2007−209134号公報
In this document, a core plate (steel plate) having a substantially disc shape and having flat portions formed on the outer periphery facing each other across the center is laminated in the axial direction so that the flat portions are flush with each other. The structure which formed the planar area | region parallel to an axial direction on the outer surface of this is disclosed.
JP 2007-209134 A

ところで、第1コア板の中心から扁平部分までの距離は、中心から円弧状の外周部までの距離よりも当然のことながら短く、その分、磁束の通り道(磁路)も狭くなる。   By the way, the distance from the center of the first core plate to the flat portion is naturally shorter than the distance from the center to the arcuate outer peripheral portion, and accordingly, the path of magnetic flux (magnetic path) is also narrowed.

しかしながら、上述した態様のように、平面領域を軸方向に対して平行に形成し、ステータコアの軸方向に直交する何れの断面においても扁平部分が同じ方向を向く態様であれば、磁路の狭い部分が軸方向に沿って同一箇所に連続することになり、磁束が飽和し易くなるという問題があった。また、磁束が飽和した部位では鉄損も増大することが知られており、このような点においても上述した態様には改善の余地があった。   However, the magnetic path is narrow as long as the flat area is formed in parallel to the axial direction and the flat portion faces the same direction in any cross section orthogonal to the axial direction of the stator core as in the above-described aspect. There is a problem that the portion is continuous in the same place along the axial direction, and the magnetic flux is easily saturated. Further, it is known that the iron loss increases at the portion where the magnetic flux is saturated, and there is room for improvement in the above-described aspect also in this respect.

さらに、扁平部分を有さない円盤形状のコア板を軸方向に積層してなる周知のステータコアは、作動時にコギング現象が発生しないように、コア板を周方向に一定の回転角度ずつずらして積層し、各コア板の中心部に形成したスロットが、ステータコアの軸方向に沿って捻れた形状(スキュー形状)に設定されている。このようにスロットをスキュー形状にした態様と、上述した平面領域を軸方向に対して平行に形成した態様とを組み合わせた場合、スロットがスキュー形状であるのに対して、平面領域によって形成される冷媒流路が軸方向に平行であるため、この冷媒流路によってコギングトルクが増大し、スムーズな回転動作を妨げるという問題があった。   Furthermore, the well-known stator core, which is formed by laminating disk-shaped core plates that do not have a flat portion in the axial direction, is laminated by shifting the core plate by a certain rotation angle in the circumferential direction so that no cogging phenomenon occurs during operation. And the slot formed in the center part of each core board is set to the shape (skew shape) twisted along the axial direction of the stator core. When the aspect in which the slot is skewed in this manner and the aspect in which the above-described planar area is formed in parallel to the axial direction are combined, the slot is formed in the planar area, whereas the slot is in the skew shape. Since the refrigerant flow path is parallel to the axial direction, the cogging torque is increased by the refrigerant flow path, and there is a problem in that smooth rotation operation is hindered.

一方で、扁平部分を有さない円盤形状のコア板を軸方向に積層した後に、機械加工(切除加工)により軸方向に対して所定角度傾斜させた平面領域を成形する態様も考えられる。しかしながら、このような態様は、高度な加工技術が要求されるのみならず、機械加工によって生じる屑がステータコアの外面に形成された周方向に延びる溝に詰まる等の問題が発生する。   On the other hand, after laminating a disk-shaped core plate that does not have a flat portion in the axial direction, it is also conceivable to form a planar region that is inclined by a predetermined angle with respect to the axial direction by machining (cutting). However, such a mode not only requires advanced machining techniques, but also causes problems such as scraps generated by machining clogging in circumferentially extending grooves formed on the outer surface of the stator core.

本発明は、このような課題に着目してなされたものであって、主たる目的は、多数のコア板を積層した状態での機械加工が不要であり、磁束の飽和を抑制又は防止し、スムーズに回転動作し得るステータコア、及びこのようなステータコアを備えた発電機を提供することにある。   The present invention has been made paying attention to such a problem, and the main object is that machining in a state in which a large number of core plates are laminated is unnecessary, and the saturation of magnetic flux is suppressed or prevented. It is another object of the present invention to provide a stator core that can rotate and a generator including such a stator core.

すなわち本発明のステータコアは、発電機における円筒状のケーシング内に配置されるステータコアであって、ほぼ円盤形状をなし中心を挟んで対向する外周部にそれぞれ扁平部分を形成した第1コア板と、第1コア板の中心を通って扁平部分同士を結ぶ最短距離と同一又はほぼ同一の直径に設定した円盤形状の第2コア板とを備えたものである。そして、本発明のステータコアは、複数枚の第1コア板の束と複数枚の第2コア板の束とをケーシングの軸方向に沿って交互に配置し、軸方向に並ぶ各第1コア板の扁平部分によって、ケーシングの内周面との間に冷媒流路を形成する流路形成領域を形成するものであり、ケーシングの軸方向に第2のコア板の束を挟んで隣り合う少なくとも第1コア板の束を周方向に一定の回転角度ずつずらして軸方向に並べることにより流路形成領域を、ケーシングの軸方向に対して所定角度傾斜させていることを特徴とする。   That is, the stator core of the present invention is a stator core disposed in a cylindrical casing in a generator, and has a substantially disk shape and a first core plate formed with flat portions on the outer peripheral portions facing each other across the center, And a disk-shaped second core plate having the same or substantially the same diameter as the shortest distance connecting the flat portions through the center of the first core plate. In the stator core of the present invention, a plurality of first core plates and a plurality of second core plates are alternately arranged along the axial direction of the casing, and the first core plates are arranged in the axial direction. The flat portion forms a flow path forming region for forming a refrigerant flow path between the inner peripheral surface of the casing and at least the second core plate adjacent to the second core plate in the axial direction of the casing. The flow path forming region is inclined by a predetermined angle with respect to the axial direction of the casing by shifting the bundle of one core plate in the axial direction while shifting the bundle of one core plate by a certain rotation angle.

ここで、「扁平部分」とは、直線的で平坦な部分はもちろんのこと、湾曲した部分又は若干湾曲した部分、これら何れをも包含する概念である。また、「ケーシングの軸方向に第2のコア板の束を挟んで少なくとも隣り合う第1コア板の束を周方向に一定の回転角度ずつずらす」とは、「第1コア板の束単位における各第1コア板を周方向に一定の回転角度ずつずらすとともに、ケーシングの軸方向に第2のコア板の束を挟んで隣り合う第1コア板の束を周方向に一定の回転角度ずつずらす」態様及び、「第1コア板の束単位における各第1コア板は周方向に同一回転角度であるが、ケーシングの軸方向に第2のコア板の束を挟んで隣り合う第1コア板の束を周方向に一定の回転角度ずつずらす」態様、これら何れも含む概念である。   Here, the “flat portion” is a concept including not only a straight and flat portion but also a curved portion or a slightly curved portion. In addition, “shifting at least a bundle of first core plates adjacent to each other across the bundle of second core plates in the axial direction of the casing in the circumferential direction by a certain rotation angle” means “in a bundle unit of the first core plates. Each first core plate is shifted by a certain rotation angle in the circumferential direction, and the bundle of adjacent first core plates is shifted by a certain rotation angle in the circumferential direction across the bundle of second core plates in the axial direction of the casing. And the first core plates adjacent to each other with the first core plates in the bundle unit of the first core plates having the same rotation angle in the circumferential direction with the second core plate bundle sandwiched in the axial direction of the casing. This is a concept including both of these modes, in which the bundle is shifted by a certain rotation angle in the circumferential direction.

このようなものであれば、ステータコアの軸方向に沿って並ぶ第1コア板の各扁平部分が少なくとも第1のコア板の束単位でそれぞれ異なる方向を向くことになり、磁路の狭い部分がステータコアの軸方向に沿って同一箇所に連続することはなく、磁束が飽和し難く、鉄損の軽減を図ることができる。   If it is such, each flat part of the 1st core board arranged along the axial direction of a stator core will face a different direction at least by the bundle unit of the 1st core board, and a narrow part of a magnetic path It does not continue to the same location along the axial direction of the stator core, so that the magnetic flux is not easily saturated and iron loss can be reduced.

さらに、本発明のステータコアは、中央部にスロットを有するコア板を周方向に一定の角度位相をずらして軸方向に積層することにより、軸方向に沿って連続するスロット及び平面領域が共に捻り形状(スキュー形状)になり、スロットのみが捻り形状であって平面領域がケーシングの軸方向に平行なものであれば増大するコギングトルクを軽減することができ、スムーズな回転動作を確保することができる。   Furthermore, the stator core according to the present invention is formed by laminating a core plate having a slot at the center portion in the axial direction with a constant angular phase shifted in the circumferential direction, so that both the continuous slot and the planar region along the axial direction are twisted. (Skew shape), if only the slot is twisted and the plane area is parallel to the axial direction of the casing, the cogging torque that increases can be reduced, and a smooth rotation operation can be secured. .

加えて、本発明のステータコアは、流路形成領域を軸方向に対して所定角度傾斜させるにあたって、多数のコア板を積層した後に機械加工を必要としないため、機械加工によって生じる屑が、軸方向に隣り合う第1コア板の束同士の間に存在する第2コア板の束により形成される溝に詰まるおそれもなく、また、コア板を積層した後におけるステータコアの外面形状の変形や損傷を回避することができる。   In addition, the stator core of the present invention does not require machining after laminating a large number of core plates when the flow path forming region is inclined at a predetermined angle with respect to the axial direction. There is no risk of clogging a groove formed by the bundle of the second core plates existing between the bundles of the first core plates adjacent to each other, and deformation or damage of the outer shape of the stator core after the core plates are laminated. It can be avoided.

さらに、本発明のステータコアにおいては、最もケーシングの軸方向端部側に配置される第1のコア板の束に隣り合う位置に、冷媒流路を塞ぐ封止部を配置することで、冷媒が冷媒流路外へ流出することを防止又は抑制することができる。   Furthermore, in the stator core according to the present invention, the sealing portion that closes the refrigerant flow path is arranged at a position adjacent to the bundle of the first core plates arranged closest to the axial end of the casing, so that the refrigerant is It is possible to prevent or suppress the flow out of the refrigerant flow path.

特に、本発明のステータコアは、第1コア板の直径と同一又はほぼ同一の直径を有する第3コア板をさらに備え、一枚または複数枚の第3コア板により封止部を構成することができるため、封止部を簡単な構成によって実現できる。   In particular, the stator core of the present invention may further include a third core plate having a diameter that is the same as or substantially the same as the diameter of the first core plate, and the sealing portion may be configured by one or a plurality of third core plates. Therefore, the sealing part can be realized with a simple configuration.

また、本発明の発電機は、円筒状のケーシングと、上述した構成を有するステータコアとを備えたものである。このようなものであれば、上述した種々の作用効果、つまり、磁束の飽和を回避し、鉄損の軽減を図ることが可能な発電機となる。   Moreover, the generator of this invention is equipped with the cylindrical casing and the stator core which has the structure mentioned above. If it is such, it will become a generator which can aim at the reduction of an iron loss which avoids the various effect mentioned above, ie, saturation of magnetic flux.

本発明によれば、多数のコア板を積層した状態における機械加工を必要とせず、磁束の飽和を抑制又は防止し、スムーズな回転動作が可能なステータコア、及びこのようなステータコアを備えた発電機を提供することができる。   According to the present invention, there is no need for machining in a state in which a large number of core plates are laminated, and the stator core capable of suppressing or preventing the saturation of magnetic flux and performing a smooth rotational operation, and a generator including such a stator core are provided. Can be provided.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る発電機1は、例えば自動車試験装置の1つであるエンジンを模したダイナモ装置(ダイナモメータ)として適用可能なものであり、図1に示すように、円筒状のケーシング2と、ケーシング2内に配置されるステータコア3とを備え、ケーシング2とステータコア3との間に冷媒を流通させる構造に特徴を有するものである。   The generator 1 according to the present embodiment can be applied as a dynamo device (dynamometer) imitating an engine which is one of automobile test apparatuses, for example, and as shown in FIG. And a stator core 3 disposed in the casing 2, and has a feature in a structure in which a refrigerant is circulated between the casing 2 and the stator core 3.

ケーシング2は、図9及び図10(図9及び図10はそれぞれ図3のa−a線端面、b−b線端面の模式図である)に示すように、軸芯を挟んで対向する位置に、冷媒を供給するための供給口21と、冷媒を排出するための排出口22とを設けたものである。本実施形態では、冷媒として油を用いている。供給口21及び排出口22は、それぞれケーシング2の厚み方向に貫通するものである。図9及び図10では供給口21及び排出口22をそれぞれ1つずつ設けた態様を例示しているが、供給口21及び排出口22をそれぞれ周方向に所定間隔離間させて複数設けてもよい。なお、供給口21及び排出口22は、ケーシング2の軸方向に沿った全域に連続して設けられるものではなく、ケーシング2の軸方向に沿って所定ピッチで設けた例えば筒状の開口である。   As shown in FIGS. 9 and 10 (FIGS. 9 and 10 are schematic views of the end surface along the line aa and the end of the line bb in FIG. 3), the casing 2 is positioned facing the shaft core. Further, a supply port 21 for supplying the refrigerant and a discharge port 22 for discharging the refrigerant are provided. In this embodiment, oil is used as the refrigerant. The supply port 21 and the discharge port 22 each penetrate in the thickness direction of the casing 2. 9 and 10 illustrate an embodiment in which one supply port 21 and one discharge port 22 are provided, but a plurality of supply ports 21 and discharge ports 22 may be provided at predetermined intervals in the circumferential direction. . The supply port 21 and the discharge port 22 are not provided continuously over the entire area along the axial direction of the casing 2, but are, for example, cylindrical openings provided at a predetermined pitch along the axial direction of the casing 2. .

ステータコア3は、図2図5に示すように、ほぼ円盤形状をなし中心を挟んで対向する部位に扁平部分31aを有する第1コア板31と、第1コア板31よりも直径を小さく設定した円盤形状をなす第2コア板32とを備えたものである。そして、複数枚の第1コア板31の束と、複数毎の第2コア板32の束とを、ケーシング2の軸方向に沿って交互に積層したものである。   As shown in FIG. 2 and FIG. 5, the stator core 3 has a substantially disk shape, a first core plate 31 having a flat portion 31 a at a portion facing the center, and a diameter smaller than that of the first core plate 31. A second core plate 32 having a disk shape is provided. A bundle of a plurality of first core plates 31 and a bundle of a plurality of second core plates 32 are alternately stacked along the axial direction of the casing 2.

第1コア板31は、図6に示すように、中央部に複数のスロット31sを放射状に形成したいわゆる珪素鋼板と呼ばれるものであり、ケーシング2の内周面と対向する外周部に一対の扁平部分31aを有するものである。つまり、第1コア板31は、その外縁部に、対向する一対の扁平部分31aと、扁平部分31aの端部同士をつなぐ一対の円弧部分31bとを有するものである。中心を通って円弧部分31b同士を結ぶ距離、換言すれば円弧部分31bの直径31xを、ケーシング2の内法径よりも若干小さく設定している。このような第1コア板31は、例えば所定厚さの珪素鋼板を機械的に打ち抜く加工により、予め作製される。   As shown in FIG. 6, the first core plate 31 is a so-called silicon steel plate in which a plurality of slots 31 s are formed radially at the center, and a pair of flattened outer peripheral portions facing the inner peripheral surface of the casing 2. It has the part 31a. That is, the 1st core board 31 has a pair of flat part 31a which opposes the outer edge part, and a pair of circular arc part 31b which connects the edge parts of the flat part 31a. The distance connecting the arc portions 31 b through the center, in other words, the diameter 31 x of the arc portion 31 b is set slightly smaller than the inner diameter of the casing 2. Such a first core plate 31 is produced in advance, for example, by a process of mechanically punching a silicon steel plate having a predetermined thickness.

第2コア板32は、図7に示すように、中央部に第1コア板31と同一形状のスロット32sを有するいわゆる珪素鋼板と呼ばれる円板状のものである。第2コア板32の直径32xを、第1コア板31のうち中心を通って扁平部分31a同士を結ぶ最短距離31yと同一又はほぼ同一に設定している。第2コア板32も、第1コア板31と同様に予め作製される。   As shown in FIG. 7, the second core plate 32 has a disk-like shape called a so-called silicon steel plate having a slot 32 s having the same shape as the first core plate 31 at the center. The diameter 32x of the second core plate 32 is set to be the same or substantially the same as the shortest distance 31y that connects the flat portions 31a through the center of the first core plate 31. The second core plate 32 is also prepared in advance in the same manner as the first core plate 31.

このような第1コア板31を複数枚重ねた第1コア板31の束31Tと、第2コア板32を複数枚重ねた第2コア板32の束32Tとを、中心を一致させて交互に積層してなるステータコア3は、ケーシング2の内周面と対向する外面に、各第1コア板31の扁平部分31aによって形成される一対の平面領域3Aと、各第1コア板31の円弧部分31bによって形成される一対の曲面領域3Bとを有するものである。なお、図2乃至図5に示すように、ステータコア3を軸方向に3分割し得る位置に配置する第1コア板31の束31Tは、他の第1コア板31の束31Tよりも第1コア板31の枚数を多くしている。   A bundle 31T of first core plates 31 in which a plurality of such first core plates 31 are stacked and a bundle 32T of second core plates 32 in which a plurality of second core plates 32 are stacked are alternately aligned with each other at the center. The stator core 3 laminated on the outer surface facing the inner peripheral surface of the casing 2 has a pair of flat regions 3A formed by the flat portions 31a of the first core plates 31 and arcs of the first core plates 31. It has a pair of curved surface area | region 3B formed of the part 31b. 2 to 5, the bundle 31T of the first core plates 31 arranged at a position where the stator core 3 can be divided into three in the axial direction is first than the bundle 31T of the other first core plates 31. The number of core plates 31 is increased.

そして、本実施形態では、隣り合う第1コア板31、ひいては第2コア板32の束32Tを介して隣り合う第1コア板31の束31Tを、ステータコア3の周方向に一定の割合で角度位相を順次変えながら積層することにより、ほぼフラットな各平面領域3Aは、ステータコア3の軸方向に対して所定角度傾斜した形状(スキュー形状)となる。なお、本実施形態のステータコア3は、第1コア板31の束31T単位において、軸方向に隣り合う第1コア板31をステータコア3の周方向に一定の割合で角度位相を順次変えて積層しており、第2コア板32の束32Tを挟んで隣り合うこのような第1コア板31の束31Tをさらにステータコア3の周方向に一定の割合で角度位相を順次変えながら積層している。   In the present embodiment, the adjacent first core plates 31, and hence the adjacent first core plate 31 bundles 31 </ b> T via the bundle 32 </ b> T of the second core plates 32, are angled at a constant rate in the circumferential direction of the stator core 3. By laminating while sequentially changing the phase, each substantially flat planar region 3A has a shape (skew shape) inclined by a predetermined angle with respect to the axial direction of the stator core 3. In the stator core 3 of the present embodiment, in the bundle 31T unit of the first core plates 31, the first core plates 31 that are adjacent in the axial direction are stacked with the angular phase being sequentially changed at a constant rate in the circumferential direction of the stator core 3. The bundles 31T of the first core plates 31 that are adjacent to each other with the bundle 32T of the second core plates 32 interposed therebetween are further laminated in the circumferential direction of the stator core 3 while sequentially changing the angular phase.

このようなステータコア3をケーシング2内に配置した状態において、各平面領域3Aは、対向するケーシング2の内周面との間に断面視部分円形状の空間を形成し、各空間が、冷媒をケーシング2の軸方向に流通させ得るための冷媒流路(第1冷媒流路4A、第2冷媒流路4B)として機能する。すなわち、平面領域3Aが、ケーシング2の内周面との間に冷媒流路4A、4Bを形成する本発明の「流路形成領域」に相当するものである。各冷媒流路(第1冷媒流路4A、第2冷媒流路4B)は、それぞれケーシング2に形成した供給口21及び排出口22に連通し得るものである。以下の説明において、供給口21に連通し得る冷媒流路を第1冷媒流路4Aと称するとともに、排出口22に連通し得る冷媒流路を第2冷媒流路4Bと称するものとする。   In a state in which such a stator core 3 is disposed in the casing 2, each planar region 3A forms a partial circular space in cross-section in view of the inner peripheral surface of the opposing casing 2, and each space receives a refrigerant. It functions as a refrigerant flow path (first refrigerant flow path 4A, second refrigerant flow path 4B) for allowing the casing 2 to flow in the axial direction. That is, the flat area 3 </ b> A corresponds to the “flow path forming area” of the present invention in which the refrigerant flow paths 4 </ b> A, 4 </ b> B are formed between the inner peripheral surface of the casing 2. Each refrigerant channel (the first refrigerant channel 4A and the second refrigerant channel 4B) can communicate with the supply port 21 and the discharge port 22 formed in the casing 2, respectively. In the following description, the refrigerant channel that can communicate with the supply port 21 is referred to as a first refrigerant channel 4A, and the refrigerant channel that can communicate with the discharge port 22 is referred to as a second refrigerant channel 4B.

ステータコア3における各曲面領域3Bも、平面領域3Aと同様に、ステータコア3の軸方向に対して所定角度傾斜した形状となる。ステータコア3をケーシング2内に配置した状態において、各曲面領域3Bは、対向するケーシング2の内周面と若干離間している。つまり、ステータコア3は、全体として外面が捻り形状(スキュー形状)をなすものである。本実施形態では、多数のコア板31、32を積層する際に、ケーシング2の内周面に軸方向に対して所定角度傾斜させて設けた図示しないケーシング側キー係合部に、第1コア板31の外周面に設けたステータコア側キー係合部31k(図4参照)を順次係合させることによって、ステータコア3の外面が適切な捻り形状となるようにしている。なお、ステータコア3の軸方向に隣り合うコア板31、32は接着剤により相互に分離不能に接合している。   Each curved surface region 3B in the stator core 3 also has a shape inclined at a predetermined angle with respect to the axial direction of the stator core 3 in the same manner as the planar region 3A. In a state where the stator core 3 is disposed in the casing 2, each curved surface region 3 </ b> B is slightly separated from the inner peripheral surface of the facing casing 2. That is, the outer surface of the stator core 3 has a twisted shape (skew shape) as a whole. In the present embodiment, when a large number of core plates 31 and 32 are stacked, the first core is connected to a casing-side key engagement portion (not shown) provided on the inner peripheral surface of the casing 2 so as to be inclined at a predetermined angle with respect to the axial direction. By sequentially engaging the stator core side key engaging portions 31k (see FIG. 4) provided on the outer peripheral surface of the plate 31, the outer surface of the stator core 3 is formed in an appropriate twisted shape. In addition, the core plates 31 and 32 adjacent to each other in the axial direction of the stator core 3 are joined to each other by an adhesive so as not to be separated from each other.

また、本実施形態に係るステータコア3は、各曲面領域3Bに、隣り合う第1コア板31の束31T同士間に配される第2コア板32の束32Tによって周方向に延びる溝3Mを形成している。ステータコア3の軸方向に沿って同一ピッチ又はほぼ同一ピッチで形成される各溝3Mは、曲面領域3Bと平面領域3Aとの境界又は境界近傍で各冷媒流路(第1冷媒流路4A、第2冷媒流路4B)に連続し、冷媒流路(第1冷媒流路4A、第2冷媒流路4B)との間で冷媒の流通を許容する冷媒サブ流路5として機能する。   Further, the stator core 3 according to the present embodiment forms a groove 3M extending in the circumferential direction by a bundle 32T of second core plates 32 arranged between the bundles 31T of adjacent first core plates 31 in each curved surface region 3B. is doing. The grooves 3M formed at the same pitch or substantially the same pitch along the axial direction of the stator core 3 are formed at the boundary between the curved surface region 3B and the planar region 3A or in the vicinity of the boundary. 2 refrigerant flow paths 4B) and functions as a refrigerant sub-flow path 5 that allows refrigerant to flow between the refrigerant flow paths (first refrigerant flow path 4A, second refrigerant flow path 4B).

ステータコア3は、全体として概略筒状をなし、内周面にロータ7を設けている。なお、図9及び図10ではロータ7を想像線で示している。   The stator core 3 has a generally cylindrical shape as a whole, and a rotor 7 is provided on the inner peripheral surface. 9 and 10, the rotor 7 is indicated by an imaginary line.

また、本実施形態のステータコア3は、ケーシング2の軸方向両端部に、それぞれ冷媒の流出を防止又は抑制する封止部3Cとして機能する第3コア板33を配置している。第3コア板33は、図8に示すように、第1コア板31の直径31xと同一又は第1コア板31の直径31xよりも若干大きい直径33xを有するものである。本実施形態では、第3コア板33として、ほぼ円盤形状をなし、外周部に、第1コア板31と同一形状の扁平部分33aを1つだけ形成したものを適用している。なお、通常は、複数枚の第3のコア板33の束33Tによって封止部3Cを構成しているが、単数の第3のコア板33のみで封止部3Cを構成してもよい。このような第3コア板33も、第1コア板31や第2コア板32と同様に予め作製される。   Further, in the stator core 3 of the present embodiment, third core plates 33 that function as sealing portions 3 </ b> C that prevent or suppress the outflow of the refrigerant are disposed at both axial ends of the casing 2. As shown in FIG. 8, the third core plate 33 has a diameter 33 x that is the same as the diameter 31 x of the first core plate 31 or slightly larger than the diameter 31 x of the first core plate 31. In the present embodiment, as the third core plate 33, a plate having a substantially disk shape and having only one flat portion 33a having the same shape as the first core plate 31 is applied to the outer peripheral portion. Normally, the sealing portion 3C is configured by a bundle 33T of a plurality of third core plates 33, but the sealing portion 3C may be configured by only a single third core plate 33. Such a third core plate 33 is also produced in advance in the same manner as the first core plate 31 and the second core plate 32.

次に、このような構成を有する発電機1の動作及び作用について、冷媒の流れに沿って説明する。   Next, operation | movement and an effect | action of the generator 1 which has such a structure are demonstrated along the flow of a refrigerant | coolant.

先ず、冷媒が図示しない冷媒供給装置からケーシング2の供給口21を経由して、供給口21に連通する第1冷媒流路4Aに流れ込み、この第1冷媒流路4Aを満たす。なお、第1冷媒流路4Aの両端部を封止部3Cで封止することにより、第1冷媒流路4Aの両端部から冷媒が外部へ流出することを防止又は抑制している。第1冷媒流路4Aを満たした冷媒は、ステータコア3の曲面領域3Bに形成した各冷媒サブ流路5に流れ込み、第2冷媒流路4Bに向かってステータコア3の周方向に沿って流れる。本実施形態では、各冷媒サブ流路5の高さ、換言すれば円形領域における第1コア板31の外周部(円弧部分31b)と第2コア板32の外周部との高さ寸法の差を、数mmに設定するとともに、各冷媒サブ流路5の幅、換言すれば第2コア板32の束32Tの厚み寸法を、冷媒サブ流路5の高さの4分の1から5分の1に相当する寸法に設定している。このような冷媒サブ流路5をステータコア3の軸方向に沿って多数設けているため、ステータコア3の外面に対する冷媒の接触面積が大きく、冷媒による冷却効果を高めることができる。   First, the refrigerant flows from a refrigerant supply device (not shown) via the supply port 21 of the casing 2 into the first refrigerant channel 4A communicating with the supply port 21 to fill the first refrigerant channel 4A. In addition, by sealing both ends of the first refrigerant flow path 4A with the sealing portion 3C, the refrigerant is prevented or suppressed from flowing out from both the end parts of the first refrigerant flow path 4A. The refrigerant filling the first refrigerant flow path 4A flows into each refrigerant sub-flow path 5 formed in the curved surface region 3B of the stator core 3, and flows along the circumferential direction of the stator core 3 toward the second refrigerant flow path 4B. In the present embodiment, the height of each refrigerant sub-channel 5, in other words, the difference in height between the outer peripheral portion (arc portion 31 b) of the first core plate 31 and the outer peripheral portion of the second core plate 32 in a circular region. Is set to several mm, and the width of each refrigerant sub-flow channel 5, in other words, the thickness dimension of the bundle 32T of the second core plate 32 is changed from a quarter of the height of the refrigerant sub-channel 5 to 5 minutes. The dimension corresponding to 1 is set. Since a large number of such refrigerant sub-channels 5 are provided along the axial direction of the stator core 3, the contact area of the refrigerant with the outer surface of the stator core 3 is large, and the cooling effect by the refrigerant can be enhanced.

各冷媒サブ流路5を流れる冷媒は第2冷媒流路4Bに到達し、最終的にケーシング2の排出口22から排出される。   The refrigerant flowing through each refrigerant sub-channel 5 reaches the second refrigerant channel 4 </ b> B and is finally discharged from the discharge port 22 of the casing 2.

ところで、各第1コア板31において中心から扁平部分31aまでの最短距離31yは、中心から円弧部分31bまでの距離よりも当然のことながら短く、その分、磁束の通り道(磁路)も狭くなるが、本実施形態に係るステータコア3は、ケーシング2の軸方向に隣り合う各第1コア板31を所定角度ずつ周方向にずらして軸方向に並べているため、各扁平部分31aがそれぞれ異なる方向を向くことになる。したがって、磁路の狭い部分がステータコア3の軸方向に沿って同一箇所に連続することはなく、磁束が飽和し難く、鉄損の軽減を図ることができる。さらに、本実施形態に係るステータコア3は、ケーシング2の内周面との間で冷媒流路4A、4Bを形成し得る流路形成領域たる平面領域3Aを、軸方向に対して所定角度傾斜させている。これにより、軸方向に沿って連続する各スロット31s、32sと共に冷媒流路4A、4Bも軸方向に対して所定角度傾斜させたスキュー形状になり、スロットのみがスキュー形状であって冷媒流路が軸方向に平行な態様であれば増大するコギングトルクを効果的に軽減することができ、スムーズな回転動作を確保することができる。   By the way, the shortest distance 31y from the center to the flat portion 31a in each first core plate 31 is naturally shorter than the distance from the center to the arc portion 31b, and accordingly, the path of magnetic flux (magnetic path) is also narrowed. However, since the stator core 3 according to the present embodiment has the first core plates 31 adjacent in the axial direction of the casing 2 shifted in the circumferential direction by a predetermined angle and arranged in the axial direction, the flat portions 31a have different directions. It will turn. Therefore, the narrow part of the magnetic path does not continue to the same place along the axial direction of the stator core 3, the magnetic flux is hardly saturated, and iron loss can be reduced. Further, in the stator core 3 according to the present embodiment, the flat area 3A, which is a flow path forming area capable of forming the refrigerant flow paths 4A, 4B, with the inner peripheral surface of the casing 2 is inclined at a predetermined angle with respect to the axial direction. ing. As a result, the refrigerant flow paths 4A and 4B together with the slots 31s and 32s continuous along the axial direction also have a skew shape inclined at a predetermined angle with respect to the axial direction, and only the slot has a skew shape and the refrigerant flow path is If the mode is parallel to the axial direction, the increased cogging torque can be effectively reduced, and a smooth rotation operation can be ensured.

加えて、ステータコア3の平面領域3Aを軸方向に対して所定角度傾斜させるにあたって、本実施形態に係るステータコア3は、予め作製しておいた多数のコア板(第1コア板31、第2コア板32、第3コア板33)を積層することで形成されるものであるので、多数のコア板(第1コア板31、第2コア板32、第3コア板33)を積層した後に機械加工を必要とするものでなく、機械加工によって生じる屑が溝3M(冷媒サブ流路5)に詰まるおそれもなく、また、多数のコア板31、32を積層した後におけるステータコア3の外面形状の変形や損傷を回避することができる。   In addition, when the planar region 3A of the stator core 3 is inclined at a predetermined angle with respect to the axial direction, the stator core 3 according to the present embodiment has a large number of core plates (first core plate 31 and second core prepared in advance). Since the plate 32 and the third core plate 33) are laminated, the machine is formed after laminating a large number of core plates (first core plate 31, second core plate 32, third core plate 33). There is no need for processing, and there is no fear that clogs generated by machining are clogged in the groove 3M (refrigerant sub-channel 5), and the shape of the outer surface of the stator core 3 after a large number of core plates 31 and 32 are stacked. Deformation and damage can be avoided.

また、本実施形態のステータコア3は、最もケーシング2の軸方向端部側に配置される第1のコア板31の束に隣り合う位置に、冷媒流路を塞ぐ封止部3Cを配置して、冷媒が冷媒流路外へ流出することを防止又は抑制するようにしている。   Further, in the stator core 3 of the present embodiment, a sealing portion 3 </ b> C that closes the refrigerant flow path is disposed at a position adjacent to the bundle of the first core plates 31 that is disposed closest to the axial end portion of the casing 2. The refrigerant is prevented or suppressed from flowing out of the refrigerant flow path.

特に、本発明のステータコアは、第1コア板の直径と同一又はほぼ同一の直径を有する第3コア板を備え、複数枚の第3コア板により封止部3Cを構成しているため、封止部3Cを簡単な構成によって実現できる。   In particular, the stator core of the present invention includes a third core plate having a diameter that is the same as or substantially the same as the diameter of the first core plate, and the sealing portion 3C is configured by a plurality of third core plates. The stop portion 3C can be realized with a simple configuration.

なお、本発明は上述した実施形態に限定されるものではない。例えば、第1コア板に形成される扁平部分は、平坦な直線状をなす部分であることが好ましいが、第1コア板の中心に向かって湾曲又は若干湾曲した部分であってもよい。このように第1コア板の「扁平部分」が湾曲又は若干湾曲した部分であれば、ケーシングの軸方向に並ぶ各第1コア板の「湾曲又は若干湾曲した扁平部分」によって形成される冷媒形成領域は、ステータコアの中心側に窪んだ窪み領域(溝領域)となる。   In addition, this invention is not limited to embodiment mentioned above. For example, the flat portion formed on the first core plate is preferably a flat straight portion, but may be a portion curved or slightly curved toward the center of the first core plate. Thus, if the “flat portion” of the first core plate is a curved or slightly curved portion, the refrigerant formation formed by the “curved or slightly curved flat portion” of the first core plates arranged in the axial direction of the casing. The region is a recessed region (groove region) that is recessed toward the center side of the stator core.

また、ステータコアの軸方向に対する平面領域の傾斜角度(スキュー角度)は、発電機又はステータコアの用途や仕様に応じて適宜変更してもよく、冷媒流路や冷媒サブ流路の流路面積も、第1コア板や第2コア板の形状を適宜変更することにより調整すればよい。   Further, the inclination angle (skew angle) of the planar region with respect to the axial direction of the stator core may be appropriately changed according to the application or specification of the generator or the stator core, and the flow passage areas of the refrigerant flow passage and the refrigerant sub flow passage are also What is necessary is just to adjust by changing suitably the shape of a 1st core board or a 2nd core board.

また、第1コア板の束単位における各第1コア板は周方向に一定の回転角度ずつずらすことなく、周方向に同一角度で軸方向に並べる一方、第2コア板の束を挟んで隣り合う第1コア板の束を周方向に一定の回転角度ずつずらして軸方向に並べることにより流路形成領域を、ケーシングの軸方向に対して所定角度傾斜させた態様であってもよい。   Further, the first core plates in the bundle unit of the first core plates are arranged in the axial direction at the same angle in the circumferential direction without being shifted by a constant rotation angle in the circumferential direction, and adjacent to each other with the bundle of the second core plates interposed therebetween. A mode in which the flow path forming region is inclined at a predetermined angle with respect to the axial direction of the casing by shifting the bundles of the matching first core plates in the axial direction by shifting the bundles of the first core plates by a certain rotation angle in the circumferential direction.

複数のコア板を接続する態様として、溶接、かしめ等を適用しても構わない。   As an aspect for connecting a plurality of core plates, welding, caulking, or the like may be applied.

また、ケーシングの内周面に、周方向又は軸方向に延びる溝を形成し、これらの溝を冷媒流路として機能させても構わない。   Further, grooves extending in the circumferential direction or the axial direction may be formed on the inner peripheral surface of the casing, and these grooves may function as a refrigerant flow path.

ステータコアにおける封止部を、第1コア板の直径と同一又はほぼ同一の直径を有する一枚の第3コア板によって構成してもよい。   You may comprise the sealing part in a stator core with the 3rd core board of 1 sheet which has the same diameter as the diameter of a 1st core board, or substantially the same.

また、第1コア板の束単位における各第1コア板または第2コア板の何れか一方或いは両方のコア板を一定ではない回転角度ずつずらして積層してもよい。例えば各コア板のスロット(前述の実施形態におけるスロット31s、32sに相当する部分)の位置に応じて第1コア板または第2コア板の何れか一方或いは両方のコア板をずらして積層しても構わない。この場合、各スロットの位置が機械加工精度の誤差だけずれている場合でも、スロット同士の位置決めを優先しつつ第1コア板または第2コア板の何れか一方或いは両方のコア板をずらして積層することができるため、発電機の能力を損ねることなく、ステータコアの冷却が可能となる。   In addition, one or both of the first core plates and the second core plates in the bundle unit of the first core plates may be stacked while being shifted by a non-constant rotation angle. For example, depending on the position of the slot of each core plate (the portion corresponding to the slots 31 s and 32 s in the above-described embodiment), one or both of the first core plate and the second core plate are shifted and stacked. It doesn't matter. In this case, even when the position of each slot is shifted by an error in machining accuracy, one or both of the first core plate and the second core plate are shifted and laminated while giving priority to positioning of the slots. Therefore, the stator core can be cooled without impairing the capacity of the generator.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態に係る発電機の全体斜視図。1 is an overall perspective view of a generator according to an embodiment of the present invention. 同実施形態に係るステータコアの全体斜視図。The whole perspective view of the stator core which concerns on the same embodiment. 図2におけるX方向矢視図。The X direction arrow directional view in FIG. 図2におけるY方向矢視図。The Y direction arrow directional view in FIG. 図2におけるZ方向矢視図。FIG. 3 is a view in the direction of the arrow Z in FIG. 2. 同実施形態における第1コア板の全体図。The whole first core board in the embodiment. 同実施形態における第2コア板の全体図。The whole figure of the 2nd core board in the embodiment. 同実施形態における第3コア板の全体図。The whole third core board figure in the embodiment. 同実施形態に係る発電機を図2におけるa−a線端面を模式的に示す図。The figure which shows typically the aa line end surface in FIG. 2 of the generator which concerns on the same embodiment. 同実施形態に係る発電機を図2におけるb−b線端面を模式的に示す図。The figure which shows typically the bb line | wire end surface in FIG. 2 of the generator which concerns on the same embodiment.

符号の説明Explanation of symbols

1…発電機
2…ケーシング
3…ステータコア
31…第1コア板
31a…扁平部分
31T…第1コア板の束
32…第2コア板
32T…第2コア板の束
33…第3コア板
3A…流路形成領域(平面領域)
3C…封止部
3M…溝
4A、4B…冷媒流路(第1冷媒流路、第2冷媒流路)
5…冷媒サブ流路
DESCRIPTION OF SYMBOLS 1 ... Generator 2 ... Casing 3 ... Stator core 31 ... 1st core board 31a ... Flat part 31T ... Bundle of 1st core board 32 ... 2nd core board 32T ... Bundle of 2nd core board 33 ... 3rd core board 3A ... Channel formation area (planar area)
3C: Sealing portion 3M: Groove 4A, 4B ... Refrigerant flow path (first refrigerant flow path, second refrigerant flow path)
5 ... Refrigerant sub flow path

Claims (4)

発電機における円筒状のケーシング内に配置されるステータコアであって、
ほぼ円盤形状をなし中心を挟んで対向する外周部にそれぞれ扁平部分を形成した第1コア板と、
第1コア板の中心を通って扁平部分同士を結ぶ最短距離と同一又はほぼ同一の直径に設定した円盤形状の第2コア板とを具備し、
複数枚の前記第1コア板の束と複数枚の前記第2コア板の束とを前記ケーシングの軸方向に沿って交互に配置し、軸方向に並ぶ各第1コア板の扁平部分によって、前記ケーシングの内周面との間に冷媒流路を形成する流路形成領域を形成するものであり、
前記ケーシングの軸方向に前記第2のコア板の束を挟んで隣り合う少なくとも前記第1コア板の束を周方向に一定の回転角度ずつずらして軸方向に並べることにより前記流路形成領域を、前記ケーシングの軸方向に対して所定角度傾斜させていることを特徴とするステータコア。
A stator core disposed in a cylindrical casing in a generator,
A first core plate having a substantially disk shape and having flat portions formed on the outer peripheral portions facing each other across the center;
A disk-shaped second core plate set to the same or substantially the same diameter as the shortest distance connecting the flat portions through the center of the first core plate,
A plurality of bundles of the first core plates and a bundle of the plurality of second core plates are alternately arranged along the axial direction of the casing, and by the flat portions of the first core plates arranged in the axial direction, Forming a flow path forming region for forming a refrigerant flow path between the casing and the inner peripheral surface;
By arranging at least a bundle of the first core plates adjacent to each other across the bundle of the second core plates in the axial direction of the casing in the circumferential direction and arranging them in the axial direction by shifting them by a certain rotation angle. The stator core is inclined at a predetermined angle with respect to the axial direction of the casing.
最も前記ケーシングの軸方向端部側に配置される第1のコア板の束に隣り合う位置に、前記冷媒流路を塞ぐ封止部を配置している請求項1に記載のステータコア。 The stator core according to claim 1, wherein a sealing portion that closes the refrigerant flow path is disposed at a position adjacent to a bundle of first core plates that are disposed closest to the axial end portion of the casing. 前記第1コア板の直径と同一又はほぼ同一の直径を有する第3コア板を具備してなり、一枚または複数枚の前記第3コア板により前記封止部を構成している請求項2に記載のステータコア。 The third core plate having a diameter that is the same as or substantially the same as the diameter of the first core plate is provided, and the sealing portion is constituted by one or a plurality of the third core plates. The stator core described in 1. 円筒状のケーシングと、
ケーシング内に配置される請求項1乃至3の何れかに記載のステータコアとを具備してなることを特徴とする発電機。
A cylindrical casing;
A generator comprising the stator core according to any one of claims 1 to 3 disposed in a casing.
JP2008285487A 2008-11-06 2008-11-06 Stator core and power generator Pending JP2010115012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285487A JP2010115012A (en) 2008-11-06 2008-11-06 Stator core and power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285487A JP2010115012A (en) 2008-11-06 2008-11-06 Stator core and power generator

Publications (1)

Publication Number Publication Date
JP2010115012A true JP2010115012A (en) 2010-05-20

Family

ID=42303115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285487A Pending JP2010115012A (en) 2008-11-06 2008-11-06 Stator core and power generator

Country Status (1)

Country Link
JP (1) JP2010115012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046866A (en) * 2014-08-20 2016-04-04 オークマ株式会社 Stator for motor
CN111327163A (en) * 2018-12-14 2020-06-23 江苏联博精密科技有限公司 Double-layer laminated motor rotor design for automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333559A (en) * 2000-05-19 2001-11-30 Nissan Motor Co Ltd Motor stator
JP2006230087A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Electric motor, compressor, and air conditioner
JP2008101558A (en) * 2006-10-20 2008-05-01 Hitachi Appliances Inc Hermetic compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333559A (en) * 2000-05-19 2001-11-30 Nissan Motor Co Ltd Motor stator
JP2006230087A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Electric motor, compressor, and air conditioner
JP2008101558A (en) * 2006-10-20 2008-05-01 Hitachi Appliances Inc Hermetic compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046866A (en) * 2014-08-20 2016-04-04 オークマ株式会社 Stator for motor
CN111327163A (en) * 2018-12-14 2020-06-23 江苏联博精密科技有限公司 Double-layer laminated motor rotor design for automobile

Similar Documents

Publication Publication Date Title
JP5118920B2 (en) Rotor and rotating electric machine
US10199893B2 (en) Rotor of rotary electric machine
JP6269600B2 (en) Rotating electrical machine rotor
JP5806073B2 (en) Brushless motor
JP5412978B2 (en) Permanent magnet embedded rotary electric machine
JP5773196B2 (en) Rotating electric machine
JP5483048B2 (en) Stator unit and stator laminate
JP6098578B2 (en) Rotating electrical machine rotor
JP6079733B2 (en) Rotating electrical machine rotor
JP6269436B2 (en) Rotating electrical machine rotor
JP6366986B2 (en) Synchronous reluctance rotary electric machine
JP6083467B2 (en) Permanent magnet embedded rotary electric machine
JP6399205B2 (en) Rotating electrical machine rotor
JP4920359B2 (en) Electric motor
EP2658089B1 (en) Stator cooling channel tolerant to localized blockage
US11424651B2 (en) Rotor
US20190305615A1 (en) Stator frame, stator, and rotary electric machine
JP2008109726A (en) Rotor for rotary electric machine
JP2007209134A (en) Dynamo device
JP6315086B2 (en) Permanent magnet embedded rotary electric machine
US7893577B2 (en) Rotor for an electrodynamic machine
JP2010115012A (en) Stator core and power generator
JP2009303343A (en) Rotor for rotating electrical machine
US20140070641A1 (en) Induction motors including vent spacers, rotor core assemblies including vent spacers, and methods of operating same
JP6453091B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130215

A02 Decision of refusal

Effective date: 20130618

Free format text: JAPANESE INTERMEDIATE CODE: A02