JP2010115010A - Power supply control unit - Google Patents

Power supply control unit Download PDF

Info

Publication number
JP2010115010A
JP2010115010A JP2008285467A JP2008285467A JP2010115010A JP 2010115010 A JP2010115010 A JP 2010115010A JP 2008285467 A JP2008285467 A JP 2008285467A JP 2008285467 A JP2008285467 A JP 2008285467A JP 2010115010 A JP2010115010 A JP 2010115010A
Authority
JP
Japan
Prior art keywords
voltage
battery
power supply
boosting
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008285467A
Other languages
Japanese (ja)
Inventor
Toshio Goto
敏夫 後藤
Fumihiko Ito
文彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008285467A priority Critical patent/JP2010115010A/en
Publication of JP2010115010A publication Critical patent/JP2010115010A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply control unit for suppressing fluctuation in voltage after an engine is started. <P>SOLUTION: The power supply control unit supplies the power accumulated in a battery to a load of a vehicle. The power supply control unit includes a step-up means and a control means. The step-up means boosts the voltage of power supplied from the battery and supplies it to a load. The control means controls a voltage which is boosted by the step-up means. The control means controls the target voltage which the step-up means boosts to a first voltage before the engine of a vehicle is started, and after the engine of the vehicle is started, the target voltage is changed to a second voltage being lower than the first voltage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気負荷に電力を供給する電源制御装置に関し、特に、車両を停車する際に当該車両のエンジンを一時的に自動停止させるアイドルストップ車両に搭載される電源制御装置に関する。   The present invention relates to a power supply control device that supplies electric power to an electric load, and more particularly, to a power supply control device that is mounted on an idle stop vehicle that temporarily automatically stops an engine of the vehicle when the vehicle is stopped.

従来、車両のエンジンを始動するためのスタータが搭載されている。スタータは、車両に搭載されたバッテリから駆動のための電力が供給される。また、車両には、スタータ以外にも様々な電気負荷が設けられ、当該電気負荷に対してもバッテリまたは発電機からの電力が供給されている。   Conventionally, a starter for starting a vehicle engine is mounted. The starter is supplied with electric power for driving from a battery mounted on the vehicle. In addition to the starter, the vehicle is provided with various electric loads, and the electric load from the battery or the generator is also supplied to the electric load.

ここで、車両に搭載されるスタータは、停止状態にあるエンジンを回転させて始動させる電動機であり、エンジンを回転させるために大きな起動電流を有する。したがって、スタータの駆動の際にバッテリの電圧降下が大きくなり、他の電気負荷へ供給する電力の電圧も低下してしまう。ここで、車両が停車した際に自動的に車両のエンジンを停止させる、いわゆるアイドリングストップ機構付き車両においては、エンジンを始動させる回数も多いために上述した電圧降下が発生する回数も多くなる。   Here, the starter mounted on the vehicle is an electric motor that rotates and starts an engine in a stopped state, and has a large starting current for rotating the engine. Therefore, when the starter is driven, the voltage drop of the battery becomes large, and the voltage of the electric power supplied to other electric loads also decreases. Here, in a vehicle with an idling stop mechanism that automatically stops the engine of the vehicle when the vehicle stops, the number of times that the above-described voltage drop occurs increases because the engine is started a large number of times.

このようなバッテリ電圧の電圧降下を防止するために、電圧補償回路を作動させてバッテリ電圧を補償するアイドルストップ車両が開示されている(例えば、特許文献1参照)。上記特許文献1で開示されたアイドルストップ車両は、バッテリ電圧が予め定められた設定値以下に低下したときに、電圧補償回路(昇圧回路)を作動させることによって、バッテリ電圧を補償している。   In order to prevent such a voltage drop of the battery voltage, an idle stop vehicle is disclosed in which a voltage compensation circuit is operated to compensate the battery voltage (see, for example, Patent Document 1). The idle stop vehicle disclosed in Patent Document 1 compensates the battery voltage by operating a voltage compensation circuit (boost circuit) when the battery voltage falls below a predetermined set value.

例えば、図9に示すように、蓄電した電力を負荷900に電力を供給するバッテリ800が車両にそれぞれ備えられており、バッテリ800から負荷900へ電力を供給する電力供給ライン上に昇圧回路200が設けられている。昇圧回路200の昇圧動作は、制御部100によって制御されている。制御部100は、他の制御装置(例えば、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置)から得られる昇圧信号に基づいて、昇圧処理の開始/終了を制御する。そして、制御部100は、昇圧処理中において昇圧回路200から出力される出力電圧Voを監視しており、出力電圧Voが予め定められた目標電圧以上となるように昇圧回路200の昇圧動作を制御する。具体的には、制御部100は、昇圧処理中において、出力電圧Vo<目標電圧の場合に昇圧回路200に昇圧動作を開始させ、出力電圧Vo>目標電圧の場合に昇圧回路200に昇圧動作を停止する。
特開2002−38984号公報
For example, as shown in FIG. 9, the vehicle is provided with a battery 800 that supplies the stored power to the load 900, and the booster circuit 200 is provided on the power supply line that supplies the power from the battery 800 to the load 900. Is provided. The boosting operation of the booster circuit 200 is controlled by the control unit 100. The control unit 100 controls the start / end of the boosting process based on a boosting signal obtained from another control device (for example, a control device for an idling stop mechanism that controls starting and stopping of the engine). The control unit 100 monitors the output voltage Vo output from the booster circuit 200 during the boosting process, and controls the boosting operation of the booster circuit 200 so that the output voltage Vo becomes equal to or higher than a predetermined target voltage. To do. Specifically, during the boosting process, the control unit 100 causes the booster circuit 200 to start a boosting operation when the output voltage Vo <target voltage, and performs the boosting operation to the booster circuit 200 when the output voltage Vo> target voltage. Stop.
JP 2002-38984 A

しかしながら、上記特許文献1で開示されたアイドルストップ車両は、エンジン始動におけるクランキング終了後に昇圧動作が行われることによって、電圧変動(リップル)が発生する。このようなエンジン始動後の電圧変動によって、車両のライトやインストルメントパネルに設けられたランプ等が明滅したり、車両のオーディオ機器等にノイズが発生したりすることがある。   However, the idling stop vehicle disclosed in Patent Document 1 generates voltage fluctuation (ripple) by performing a boosting operation after cranking is completed at the start of the engine. Due to such voltage fluctuations after starting the engine, the light of the vehicle, the lamp provided on the instrument panel, etc. may blink, or noise may occur in the audio equipment of the vehicle.

例えば、図10に示すように、スタータの駆動の際にバッテリ電圧Vbが電圧降下した場合、昇圧回路による昇圧動作によってバッテリ電圧Vbが目標電圧まで昇圧された出力電圧Voの電力が出力される。そして、エンジン始動後にスタータの駆動が終了することによってバッテリ電圧Vbが上昇して、出力電圧Vo>目標電圧になると昇圧回路による昇圧動作を停止するが、エンジン始動後の出力電圧Voの微小な変化によって出力電圧Vo<目標電圧となると昇圧回路による昇圧動作が再開される。このとき、出力電圧Voと目標電圧との差が小さいこともあり、昇圧回路における再昇圧時のエネルギーによって電圧変動(リップル)が発生する。   For example, as shown in FIG. 10, when the battery voltage Vb drops when the starter is driven, power of the output voltage Vo obtained by boosting the battery voltage Vb to the target voltage by the boosting operation by the booster circuit is output. When the starter driving is finished after the engine is started, the battery voltage Vb rises, and when the output voltage Vo> the target voltage, the boosting operation by the booster circuit is stopped, but the minute change in the output voltage Vo after the engine is started. Therefore, when the output voltage Vo <target voltage, the boosting operation by the boosting circuit is resumed. At this time, the difference between the output voltage Vo and the target voltage may be small, and voltage fluctuation (ripple) occurs due to energy at the time of re-boosting in the booster circuit.

それ故に、本発明の目的は、エンジン始動後の電圧変動を抑制する電源制御装置を提供することである。   Therefore, an object of the present invention is to provide a power supply control device that suppresses voltage fluctuations after engine startup.

上記のような目的を達成するために、本発明は、以下に示すような特徴を有している。
第1の発明は、バッテリに蓄電された電力を車両の負荷に供給する電源制御装置である。電源制御装置は、昇圧手段および制御手段を備える。昇圧手段は、バッテリから供給される電力の電圧を昇圧して、負荷に供給する。制御手段は、昇圧手段が昇圧する電圧を制御する。制御手段は、車両のエンジン始動前に昇圧手段が昇圧する目標電圧を第1の電圧に制御し、車両のエンジン始動後に当該目標電圧を当該第1の電圧より低い第2の電圧に変更する。
In order to achieve the above object, the present invention has the following features.
1st invention is a power supply control apparatus which supplies the electric power accumulate | stored in the battery to the load of a vehicle. The power supply control device includes boosting means and control means. The booster boosts the voltage of power supplied from the battery and supplies the boosted voltage to the load. The control means controls the voltage boosted by the boosting means. The control means controls the target voltage boosted by the boosting means before starting the engine of the vehicle to the first voltage, and changes the target voltage to a second voltage lower than the first voltage after starting the engine of the vehicle.

第2の発明は、上記第1の発明において、バッテリ電圧監視手段を、さらに備える。バッテリ電圧監視手段は、バッテリから供給される電力の電圧を監視する。制御手段は、バッテリ電圧監視手段が監視している電圧が降下した後に閾値まで上昇した場合に目標電圧を第1の電圧から第2の電圧に変更する。   According to a second invention, in the first invention, the battery voltage monitoring means is further provided. The battery voltage monitoring means monitors the voltage of power supplied from the battery. The control means changes the target voltage from the first voltage to the second voltage when the voltage monitored by the battery voltage monitoring means rises to a threshold value after dropping.

第3の発明は、上記第2の発明において、バイパス回路を、さらに備える。バイパス回路は、昇圧手段と並列に接続される。制御手段は、第2の電圧にバイパス回路の電圧降下分を加算した値に閾値を設定する。   According to a third invention, in the second invention, further includes a bypass circuit. The bypass circuit is connected in parallel with the boosting means. The control means sets the threshold value to a value obtained by adding the voltage drop of the bypass circuit to the second voltage.

第4の発明は、上記第1の発明において、制御手段は、車両のエンジン始動前に昇圧手段の昇圧動作を開始した時点から、目標電圧を第1の電圧から第2の電圧に漸減的に変更する。   In a fourth aspect based on the first aspect, the control unit gradually decreases the target voltage from the first voltage to the second voltage from the time when the boosting operation of the boosting unit is started before the engine of the vehicle is started. change.

第5の発明は、上記第1の発明において、バイパス回路を、さらに備える。バイパス回路は、昇圧手段と並列に接続される。制御手段は、バイパス回路を介してバッテリから供給される電力を負荷に供給する前に、目標電圧を第1の電圧から第2の電圧に変更する。   In a fifth aspect based on the first aspect, the circuit further comprises a bypass circuit. The bypass circuit is connected in parallel with the boosting means. The control unit changes the target voltage from the first voltage to the second voltage before supplying the power supplied from the battery to the load via the bypass circuit.

第6の発明は、上記第5の発明において、制御手段は、電圧差監視手段を含む。電圧差監視手段は、バッテリから供給される電力の電圧と負荷へ供給する電力の電圧との差を監視する。バイパス回路は、スイッチング素子を含む。スイッチング素子は、制御手段の制御に応じてバッテリから負荷への回路を開閉する。制御手段は、電圧差監視手段が監視した電圧差が予め定められた値より小さい場合、スイッチング素子を閉動作させる。   In a sixth aspect based on the fifth aspect, the control means includes voltage difference monitoring means. The voltage difference monitoring means monitors the difference between the voltage of power supplied from the battery and the voltage of power supplied to the load. The bypass circuit includes a switching element. The switching element opens and closes a circuit from the battery to the load in accordance with the control of the control means. The control means closes the switching element when the voltage difference monitored by the voltage difference monitoring means is smaller than a predetermined value.

第7の発明は、上記第5の発明において、バイパス回路は、スイッチング素子を含む。スイッチング素子は、制御手段の制御に応じてバッテリから負荷への回路を開閉する。制御手段は、目標電圧を第1の電圧から第2の電圧に変更した後、さらに目標電圧を第2の電圧から第1の電圧に漸増的に変更し、目標電圧が第1の電圧に復帰した以降にスイッチング素子を閉動作させる。   In a seventh aspect based on the fifth aspect, the bypass circuit includes a switching element. The switching element opens and closes a circuit from the battery to the load in accordance with the control of the control means. The control means changes the target voltage from the first voltage to the second voltage, then gradually changes the target voltage from the second voltage to the first voltage, and the target voltage returns to the first voltage. Thereafter, the switching element is closed.

第8の発明は、上記第7の発明において、スイッチング素子は、ダイオードを含む。ダイオードは、バッテリから負荷への順方向へ電流を流す。制御手段は、バッテリから供給される電力の電圧からダイオードによる電圧降下分を減算した値より低く第2の電圧を設定する。   In an eighth aspect based on the seventh aspect, the switching element includes a diode. The diode conducts current in the forward direction from the battery to the load. The control means sets the second voltage lower than a value obtained by subtracting the voltage drop due to the diode from the voltage of the power supplied from the battery.

第9の発明は、上記第8の発明において、制御手段は、バッテリから供給される電力の電圧からスイッチング素子が閉状態における電圧降下分を減算した値に第1の電圧を設定する。   In a ninth aspect based on the eighth aspect, the control means sets the first voltage to a value obtained by subtracting a voltage drop in the closed state of the switching element from the voltage of the electric power supplied from the battery.

第10の発明は、上記第7の発明において、制御手段は、車両のエンジン始動を制御する他の装置から昇圧手段による昇圧要否を示す昇圧信号を取得する。制御手段は、昇圧信号が昇圧否から昇圧要を示す信号に変わった時点から目標電圧を第1の電圧から第2の電圧に漸減的に変更する。そして、制御手段は、昇圧信号が昇圧要から昇圧否を示す信号に変わった時点から目標電圧を第2の電圧から第1の電圧に漸増的に変更する。   In a tenth aspect based on the seventh aspect, the control means obtains a boost signal indicating whether or not boosting by the boosting means is necessary from another device that controls engine start of the vehicle. The control means gradually changes the target voltage from the first voltage to the second voltage from the time when the boost signal changes from a boost failure to a signal indicating that boost is required. Then, the control means gradually changes the target voltage from the second voltage to the first voltage from the time when the boost signal changes from the necessity of boost to a signal indicating that boost is not required.

第11の発明は、上記第1の発明において、バッテリ電圧監視手段を、さらに備える。バッテリ電圧監視手段は、バッテリから供給される電力の電圧を監視する。制御手段は、車両のエンジン始動を制御する他の装置から昇圧手段による昇圧要否を示す昇圧信号を取得する。制御手段は、昇圧信号が昇圧否から昇圧要を示す信号に変わった時点からカウントを開始するタイマーを含む。制御手段は、タイマーのカウントアップ後にバッテリ電圧監視手段が監視している電圧が閾値まで上昇した場合に目標電圧を第1の電圧から第2の電圧に変更する。   In an eleventh aspect based on the first aspect, battery voltage monitoring means is further provided. The battery voltage monitoring means monitors the voltage of power supplied from the battery. The control means obtains a boost signal indicating whether or not boosting by the boosting means is necessary from another device that controls engine start of the vehicle. The control means includes a timer that starts counting from when the boost signal changes from a boost failure to a signal indicating that boost is required. The control means changes the target voltage from the first voltage to the second voltage when the voltage monitored by the battery voltage monitoring means rises to the threshold after the timer counts up.

上記第1の発明によれば、エンジン始動後においては、第1の電圧より低い第2の電圧を目標電圧とした昇圧処理が行われるため、昇圧処理なしでバッテリから供給される出力電圧>目標電圧となり、間欠的な昇圧動作を防止することができる。つまり、エンジン始動後において、昇圧動作による再昇圧時のエネルギーによって生じる電圧変動(リップル)の発生を防止することができ、車両のライトやインストルメントパネルに設けられたランプ等が明滅したり、車両のオーディオ機器等にノイズが発生したりすることを抑制することができる。   According to the first aspect of the invention, after the engine is started, the boosting process using the second voltage lower than the first voltage as the target voltage is performed. Therefore, the output voltage supplied from the battery without boosting process> target It becomes a voltage, and intermittent boosting operation can be prevented. In other words, after the engine is started, voltage fluctuation (ripple) caused by the energy during re-boosting due to the boosting operation can be prevented, and the lights of the vehicle, the lamps provided on the instrument panel, etc. blink, It is possible to suppress the generation of noise in the audio equipment.

上記第2の発明によれば、エンジン始動時のクランキングによってバッテリ電圧が降下した後、当該クランキングが終了することによるバッテリ電圧の上昇を検知することができ、車両のエンジンが始動したことを容易に検出することができる。   According to the second aspect of the invention, after the battery voltage has dropped due to cranking at the time of engine start, it is possible to detect an increase in battery voltage due to the end of the cranking, and that the engine of the vehicle has started. It can be easily detected.

上記第3の発明によれば、閾値を判定基準として目標電圧を第1の電圧から第2の電圧に変更することによって、電圧変動を最小限にすることができる。   According to the third aspect of the invention, the voltage fluctuation can be minimized by changing the target voltage from the first voltage to the second voltage using the threshold value as a criterion.

上記第4の発明によれば、昇圧動作を開始した時点から目標電圧を第1の電圧から第2の電圧に漸減的に変更することによって、昇圧動作を終了した時点で昇圧処理なしでバッテリから供給される出力電圧>目標電圧となるため、間欠的な昇圧動作を防止することができる。   According to the fourth aspect of the invention, the target voltage is gradually changed from the first voltage to the second voltage from the time when the boosting operation is started, so that the boosting operation can be performed from the battery without the boosting process when the boosting operation is completed. Since the output voltage to be supplied is larger than the target voltage, intermittent boosting operation can be prevented.

上記第5の発明によれば、バイパス回路を介して電力を供給するまでの間、間欠的な昇圧動作を防止することができる。   According to the fifth aspect, intermittent boosting operation can be prevented until power is supplied via the bypass circuit.

上記第6の発明によれば、昇圧手段によって昇圧する電力供給からバイパス回路を介した電力供給に切り替える際の電圧変動を抑制することができる。また、バイパス回路を介した電力供給に切り替えられたときに、負荷側からバッテリ側へ電力が逆流することを防止することができる。   According to the sixth aspect, it is possible to suppress voltage fluctuation when switching from power supply boosted by the boosting means to power supply via the bypass circuit. In addition, when switching to power supply via the bypass circuit, it is possible to prevent power from flowing backward from the load side to the battery side.

上記第7の発明によれば、昇圧手段によって昇圧する電力供給からバイパス回路を介した電力供給に切り替える際の電圧変動を抑制することができる。また、バイパス回路を介した電力供給に切り替えられたときに、負荷側からバッテリ側へ電力が逆流することを防止することができる。   According to the seventh aspect, it is possible to suppress voltage fluctuation when switching from the power supply boosted by the boosting means to the power supply via the bypass circuit. In addition, when switching to power supply via the bypass circuit, it is possible to prevent power from flowing backward from the load side to the battery side.

上記第8および第9の発明によれば、ダイオードを介した電力供給からスイッチング素子を介した電力供給に切り替える際の電圧変動を抑制することができる。   According to the eighth and ninth aspects, voltage fluctuations when switching from power supply via the diode to power supply via the switching element can be suppressed.

上記第10の発明によれば、エンジン始動後において、昇圧動作による再昇圧時のエネルギーによって生じる電圧変動と昇圧手段によって昇圧する電力供給からバイパス回路を介した電力供給に切り替える際の電圧変動とを抑制することができる。   According to the tenth aspect of the present invention, the voltage fluctuation caused by the energy at the time of re-boosting by the boosting operation and the voltage fluctuation at the time of switching from the power supply boosted by the boosting means to the power supply via the bypass circuit after the engine start. Can be suppressed.

上記第11の発明によれば、タイマーのカウント値を用いることによって、車両のエンジン始動後を容易に検出することができる。   According to the eleventh aspect, by using the count value of the timer, it is possible to easily detect after the vehicle engine is started.

(第1の実施形態)
以下、図1〜図4を参照して、本発明の第1の実施形態に係る電源制御装置を含む電力供給システムについて説明する。典型的には、第1の実施形態に係る電源制御装置は、車両が停車した際に自動的に車両のエンジンを停止させる、いわゆるアイドリングストップ機構付き車両に搭載される。例えば、上記アイドリングストップ機構は、信号待ち等で車両が停車した際、ドライバがギアをニュートラルに入れてクラッチペダルから足を離すとエンジンを自動停止させ、ニュートラルで再びクラッチを踏むとエンジンを自動的に再始動させる。なお、図1は、本発明の第1の実施形態に係る電源制御装置を含む電力供給システムの構成の一例を示す概略ブロック図である。図2は、図1の電源制御装置に含まれる昇圧回路3の構成の一例を示す概略図である。図3は、図1の電源制御装置が昇圧動作を制御する動作の一例を示すフローチャートである。そして、図4は、図1の電源制御装置の昇圧動作と出力電圧、バッテリ電圧、および目標電圧との関係の一例を説明するための図である。
(First embodiment)
Hereinafter, with reference to FIGS. 1-4, the electric power supply system containing the power supply control device which concerns on the 1st Embodiment of this invention is demonstrated. Typically, the power supply control device according to the first embodiment is mounted on a vehicle with a so-called idling stop mechanism that automatically stops the engine of the vehicle when the vehicle stops. For example, the idling stop mechanism automatically stops the engine when the vehicle stops due to a signal, etc., when the driver puts the gear in neutral and lifts the foot from the clutch pedal. To restart. FIG. 1 is a schematic block diagram showing an example of the configuration of a power supply system including a power supply control device according to the first embodiment of the present invention. FIG. 2 is a schematic diagram showing an example of the configuration of the booster circuit 3 included in the power supply control device of FIG. FIG. 3 is a flowchart showing an example of an operation in which the power supply control device of FIG. 1 controls the boosting operation. FIG. 4 is a diagram for explaining an example of the relationship between the boosting operation of the power supply control device of FIG. 1 and the output voltage, battery voltage, and target voltage.

図1において、当該電源制御装置を含む電力供給システムは、制御部1a、昇圧回路3、単方向素子(ダイオード)4、バッテリ8、および負荷9を備えている。当該電力供給システムでは、バッテリ8に蓄電されている電力を負荷9に供給する。なお、制御部1a、昇圧回路3、および単方向素子(ダイオード)4が、本発明の電源制御装置の一例に相当する。   In FIG. 1, the power supply system including the power supply control device includes a control unit 1 a, a booster circuit 3, a unidirectional element (diode) 4, a battery 8, and a load 9. In the power supply system, the power stored in the battery 8 is supplied to the load 9. The control unit 1a, the booster circuit 3, and the unidirectional element (diode) 4 correspond to an example of the power supply control device of the present invention.

バッテリ8は、車両に設けられた発電機(例えば、オルタネータ)が発電した電力を蓄電し、蓄電した電力を負荷9に供給する蓄電装置である。バッテリ8は、例えば約12Vを定格電圧とする鉛蓄電池が用いられるが、他の二次電池(例えば、ニッケル水素電池、リチウムイオン電池)が用いられてもかまわない。バッテリ8の正極端子は、昇圧回路3またはダイオード4を介して、負荷9に接続される。   The battery 8 is a power storage device that stores electric power generated by a generator (for example, an alternator) provided in the vehicle and supplies the stored electric power to a load 9. For example, a lead storage battery having a rated voltage of about 12 V is used as the battery 8, but another secondary battery (for example, a nickel metal hydride battery or a lithium ion battery) may be used. The positive terminal of the battery 8 is connected to the load 9 via the booster circuit 3 or the diode 4.

負荷9は、昇圧回路3またはダイオード4を介して、バッテリ8の電力供給ラインと接続される。ダイオード4は、昇圧回路3と並列に上記電力供給ライン上に設けられる。そして、ダイオード4は、バッテリ8の正極端子にアノード側が接続され、負荷9にカソード側が接続される。つまり、上記電力供給ラインにおいてバッテリ8側の電位が高い場合、バッテリ8に蓄電されている電力がダイオード4を介して負荷9へ給電されることになる。   The load 9 is connected to the power supply line of the battery 8 via the booster circuit 3 or the diode 4. The diode 4 is provided on the power supply line in parallel with the booster circuit 3. The diode 4 has an anode connected to the positive terminal of the battery 8 and a cathode connected to the load 9. That is, when the potential on the battery 8 side is high in the power supply line, the power stored in the battery 8 is supplied to the load 9 via the diode 4.

昇圧回路3は、上記電力供給ラインを介して供給されるバッテリ8のバッテリ電圧Vbを、制御部1aの指示に応じて出力電圧Voまで昇圧させて負荷9へ出力する変圧回路を構成しており、ダイオード4と並列に上記電力供給ライン上に設けられる。したがって、上記電力供給ラインにおいてバッテリ8側の電位が低く、昇圧回路3が昇圧動作を開始した場合、バッテリ8に蓄電されている電力が昇圧回路3でバッテリ電圧Vbから出力電圧Voまで昇圧されて負荷9へ給電されることになる。例えば、昇圧回路3は、いわゆる昇圧DC−DCコンバータであり、シリーズ方式やスイッチング方式のコンバータが用いられる。なお、昇圧回路3の詳細な構成例については、後述する。   The booster circuit 3 constitutes a transformer circuit that boosts the battery voltage Vb of the battery 8 supplied via the power supply line to the output voltage Vo in accordance with an instruction from the controller 1a and outputs the boosted voltage to the load 9. The power supply line is provided in parallel with the diode 4. Therefore, when the potential on the battery 8 side is low in the power supply line and the booster circuit 3 starts the boosting operation, the power stored in the battery 8 is boosted from the battery voltage Vb to the output voltage Vo by the booster circuit 3. Power is supplied to the load 9. For example, the booster circuit 3 is a so-called boost DC-DC converter, and a series or switching converter is used. A detailed configuration example of the booster circuit 3 will be described later.

制御部1aは、昇圧回路3の動作を制御して、電力供給システム内の出力電圧Voを制御する。例えば、制御部1aは、電力供給システム全体を監視するECU(Electronic Control Unit:電子制御装置)で構成される。制御部1aは、電圧低下監視部11、電圧上昇監視部12、目標電圧設定部13、出力電圧監視部14、および昇圧回路制御部15を含んでいる。   The controller 1a controls the operation of the booster circuit 3 to control the output voltage Vo in the power supply system. For example, the control unit 1a includes an ECU (Electronic Control Unit) that monitors the entire power supply system. The control unit 1a includes a voltage drop monitoring unit 11, a voltage rise monitoring unit 12, a target voltage setting unit 13, an output voltage monitoring unit 14, and a booster circuit control unit 15.

電圧低下監視部11は、上記電力供給ラインに接続され、バッテリ8のバッテリ電圧Vbが予め定められた電圧(低下判定電圧VbL)以下まで低下したか否かを監視する。電圧上昇監視部12は、上記電力供給ラインに接続され、バッテリ8のバッテリ電圧Vbが電圧VbL以下まで低下した後に、再び予め定められた電圧(電圧Vl+Vf)以上まで上昇したか否かを監視する。目標電圧設定部13は、電圧低下監視部11および電圧上昇監視部12におけるバッテリ電圧Vbの監視状況に応じて、昇圧回路3が昇圧する目標電圧を設定する。出力電圧監視部14は、上記電力供給ラインに接続され、昇圧回路3から出力される出力電圧Voを監視する。昇圧回路制御部15は、昇圧処理の要否を示す昇圧信号において昇圧要を示す信号を他の装置(例えば、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置)から取得した場合、当該指示に応じて昇圧回路3を制御して昇圧処理を開始する。そして、昇圧回路制御部15は、バッテリ電圧Vbおよび出力電圧Voに応じて、目標電圧設定部13が設定した目標電圧に出力電圧Voがなるように、昇圧回路3の昇圧動作を制御する。   The voltage drop monitoring unit 11 is connected to the power supply line and monitors whether or not the battery voltage Vb of the battery 8 has dropped to a predetermined voltage (decrease determination voltage VbL) or less. The voltage rise monitoring unit 12 is connected to the power supply line and monitors whether or not the battery voltage Vb of the battery 8 has risen again to a predetermined voltage (voltage Vl + Vf) or more after the battery voltage Vb has dropped to the voltage VbL or less. . The target voltage setting unit 13 sets a target voltage to be boosted by the booster circuit 3 in accordance with the monitoring state of the battery voltage Vb in the voltage drop monitoring unit 11 and the voltage rise monitoring unit 12. The output voltage monitoring unit 14 is connected to the power supply line and monitors the output voltage Vo output from the booster circuit 3. When the boosting circuit control unit 15 obtains a signal indicating that boosting is required from a boosting signal indicating whether boosting processing is necessary or not from another device (for example, a control device for an idling stop mechanism that controls start and stop of the engine), In response to the instruction, the booster circuit 3 is controlled to start the boosting process. The booster circuit control unit 15 controls the boosting operation of the booster circuit 3 so that the output voltage Vo becomes the target voltage set by the target voltage setting unit 13 according to the battery voltage Vb and the output voltage Vo.

次に、図2を参照して、昇圧回路3の構成の一例について説明する。図2において、昇圧回路3は、バッテリ8のバッテリ電圧Vbを出力電圧Voまで昇圧する。   Next, an example of the configuration of the booster circuit 3 will be described with reference to FIG. In FIG. 2, the booster circuit 3 boosts the battery voltage Vb of the battery 8 to the output voltage Vo.

図2に示すように、昇圧回路3は、バッテリ8と負荷9との間を接続する入出力ライン上に、コイル32およびダイオード33を備えている。ダイオード33は、アノードをバッテリ8の電力供給ライン側(コイル32側)にし、カソードを負荷9側にして、コイル32と出力端子との間に挿入される。   As shown in FIG. 2, the booster circuit 3 includes a coil 32 and a diode 33 on an input / output line connecting the battery 8 and the load 9. The diode 33 is inserted between the coil 32 and the output terminal with the anode on the power supply line side (coil 32 side) of the battery 8 and the cathode on the load 9 side.

コイル32とダイオード33のアノード側との間の入出力ラインは、スイッチング素子31を介して接地される。スイッチング素子31は、例えばMOSFET(MOS Field Effect Transistor;MOS電界効果トランジスタ)で構成される。スイッチング素子31がMOSFETで構成される場合、ソースを接地し、ドレインを入出力ライン側にして挿入される。また、ダイオード33のカソード側と出力端子(負荷9側)との間の入出力ラインは、コンデンサ34を介して接地される。   The input / output line between the coil 32 and the anode side of the diode 33 is grounded via the switching element 31. The switching element 31 is composed of, for example, a MOSFET (MOS Field Effect Transistor). When the switching element 31 is composed of a MOSFET, it is inserted with the source grounded and the drain on the input / output line side. The input / output line between the cathode side of the diode 33 and the output terminal (load 9 side) is grounded via the capacitor 34.

スイッチング素子31のゲートに印加される出力電圧は、図示しないドライバによって制御される。当該ドライバは、制御部1a(図1参照)によって制御され、制御部1aから出力される駆動信号Duに応じて、スイッチング素子31を断続する。制御部1aは、目標電圧に応じた周波数でスイッチング素子31を断続することによって、出力電圧Voが当該目標電圧となるように昇圧回路3を昇圧動作させる。なお、具体的な断続動作については既知であるため、詳細な説明を省略する。   The output voltage applied to the gate of the switching element 31 is controlled by a driver (not shown). The driver is controlled by the control unit 1a (see FIG. 1) and intermittently switches the switching element 31 according to the drive signal Du output from the control unit 1a. The controller 1a operates the booster circuit 3 so that the output voltage Vo becomes the target voltage by intermittently switching the switching element 31 at a frequency corresponding to the target voltage. Since specific intermittent operation is known, detailed description is omitted.

次に、図3および図4を参照して、制御部1aによって制御される電源制御装置の動作について説明する。   Next, with reference to FIG. 3 and FIG. 4, operation | movement of the power supply control apparatus controlled by the control part 1a is demonstrated.

図3において、制御部1aは、後述する処理における初期設定を行って(ステップS51)、次のステップに処理を進める。例えば、制御部1aは、目標電圧を基準目標電圧Vh、電圧低下フラグFdをオフ(OFF)、電圧上昇フラグFuをオフ(OFF)にそれぞれ初期設定して、それぞれを示すデータを記憶領域に書き込んでデータを初期化する。例えば、基準目標電圧Vhは、現時点(エンジン始動前)の出力電圧Voに設定され、この場合、基準目標電圧Vh=現時点のバッテリ電圧Vb−ダイオード4による電圧降下分Vfとなる。   In FIG. 3, the control unit 1a performs initial setting in processing to be described later (step S51), and advances the processing to the next step. For example, the control unit 1a initially sets the target voltage to the reference target voltage Vh, the voltage drop flag Fd to OFF (OFF), and the voltage rise flag Fu to OFF (OFF), and writes the data indicating each to the storage area. To initialize the data. For example, the reference target voltage Vh is set to the output voltage Vo at the present time (before engine start). In this case, the reference target voltage Vh = the current battery voltage Vb−the voltage drop Vf due to the diode 4.

次に、制御部1aは、他の装置から得られる昇圧信号が昇圧要を示す信号か否かを判断する(ステップS52)。例えば、図4に示すように、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置は、車両のエンジンを始動する際、電圧降下に備えてバッテリ電圧Vbを昇圧することが必要であることを指示する昇圧信号(例えば、昇圧信号をハイ(Hi)レベルにしてオン(ON)する)を制御部1aへ出力する(図示矢印Aの時点)。そして、制御部1aは、昇圧信号が昇圧要を示す信号である場合、次のステップS53に処理を進める。一方、制御部1aは、昇圧信号が昇圧否、すなわち昇圧処理を行わないことを示す信号(例えば、昇圧信号がロー(Lo)レベルでオフ(OFF))である場合、次のステップS60に処理を進める。   Next, the control unit 1a determines whether or not the boost signal obtained from another device is a signal indicating the necessity of boost (step S52). For example, as shown in FIG. 4, the control device for the idling stop mechanism that controls the start and stop of the engine needs to boost the battery voltage Vb in preparation for a voltage drop when starting the engine of the vehicle. Is output to the controller 1a (at the time indicated by the arrow A in the drawing). Then, when the boost signal is a signal indicating the need for boost, the control unit 1a proceeds to the next step S53. On the other hand, when the boost signal is a signal indicating that the boost signal is not boosted, that is, the boost process is not performed (for example, the boost signal is low (OFF) at the low (Lo) level), the control unit 1a performs processing in the next step S60. To proceed.

ステップS53において、制御部1aは、現時点で設定されている目標電圧に応じて昇圧処理を行い、次のステップに処理を進める。上記ステップS53における昇圧処理においては、制御部1aは、現時点で設定されている目標電圧より出力電圧Voが低い場合、出力電圧Voが当該目標電圧となる駆動信号Duを昇圧回路3に出力して、昇圧回路3に昇圧動作を行わせる。一方、現時点で設定されている目標電圧より出力電圧Voが高い場合、昇圧動作を停止させる駆動信号Duを昇圧回路3に出力して、昇圧回路3の昇圧動作を停止させる。   In step S53, the control unit 1a performs a boosting process according to the target voltage set at the present time, and proceeds to the next step. In the step-up process in step S53, when the output voltage Vo is lower than the target voltage set at the present time, the control unit 1a outputs a drive signal Du at which the output voltage Vo becomes the target voltage to the booster circuit 3. The boosting circuit 3 is caused to perform a boosting operation. On the other hand, when the output voltage Vo is higher than the target voltage set at the present time, a drive signal Du for stopping the boosting operation is output to the booster circuit 3 to stop the boosting operation of the booster circuit 3.

次に、制御部1aは、現時点で設定されている電圧低下フラグFdがオン(ON)に設定されているか否かを判断する(ステップS54)。そして、制御部1aは、電圧低下フラグFdがオフ(OFF)に設定されている場合、次のステップS55に処理を進める。一方、制御部1aは、電圧低下フラグFdがオン(ON)に設定されている場合、次のステップS57に処理を進める。   Next, the control unit 1a determines whether or not the current voltage drop flag Fd is set to ON (step S54). And the control part 1a advances a process to following step S55, when the voltage fall flag Fd is set to OFF (OFF). On the other hand, when the voltage drop flag Fd is set to ON (ON), the controller 1a advances the process to the next step S57.

ステップS55において、制御部1aは、バッテリ電圧Vbが予め定められた電圧(低下判定電圧VbL)以下まで低下したか否かを判断する。そして、制御部1aは、バッテリ電圧Vbが低下判定電圧VbL以下まで低下した場合、次のステップS56に処理を進める。一方、制御部1aは、バッテリ電圧Vbが低下判定電圧VbLより高い場合、次のステップS59に処理を進める。ここで、低下判定電圧VbLは、車両のエンジンが始動する際に生じるバッテリ電圧Vbの電圧降下を検知するための判定電圧であり、例えばバッテリ8の定格電圧から所定の電圧だけ低い電圧に設定すればよい。例えば、図4に示すように、バッテリ電圧Vbが低下判定電圧VbLまで低下したことを検知することによって、エンジンのクランキングが開始されたことを知ることができる(図示矢印Bの時点)。   In step S55, the control unit 1a determines whether or not the battery voltage Vb has decreased to a predetermined voltage (decrease determination voltage VbL) or less. And the control part 1a advances a process to following step S56, when the battery voltage Vb falls to the fall determination voltage VbL or less. On the other hand, when the battery voltage Vb is higher than the decrease determination voltage VbL, the control unit 1a advances the process to the next step S59. Here, the decrease determination voltage VbL is a determination voltage for detecting a voltage drop of the battery voltage Vb generated when the engine of the vehicle is started. For example, the decrease determination voltage VbL is set to a voltage lower than the rated voltage of the battery 8 by a predetermined voltage. That's fine. For example, as shown in FIG. 4, it is possible to know that the cranking of the engine has started by detecting that the battery voltage Vb has decreased to the decrease determination voltage VbL (at the time indicated by the arrow B in the figure).

ステップS56において、制御部1aは、電圧低下フラグFdをオン(ON)に設定して、電圧低下フラグFdを示すデータを更新し、次のステップに処理を進める。このように、電圧低下フラグFdは、バッテリ電圧Vbが低下判定電圧VbL以下まで低下した際にオン(ON)に設定される。   In step S56, the control unit 1a sets the voltage drop flag Fd to ON, updates the data indicating the voltage drop flag Fd, and proceeds to the next step. Thus, the voltage drop flag Fd is set to ON when the battery voltage Vb drops below the drop determination voltage VbL.

次に、制御部1aは、バッテリ電圧Vbが予め定められた電圧(低目標電圧Vlにダイオード4の電圧降下分に相当する電圧Vfを加算した値)以上まで上昇したか否かを判断する(ステップS57)。そして、制御部1aは、バッテリ電圧Vbが電圧Vl+Vf以上まで上昇した場合、次のステップS58に処理を進める。一方、制御部1aは、バッテリ電圧Vbが電圧Vl+Vfより低い場合、次のステップS59に処理を進める。   Next, the controller 1a determines whether or not the battery voltage Vb has risen to a predetermined voltage (a value obtained by adding the voltage Vf corresponding to the voltage drop of the diode 4 to the low target voltage Vl) or more ( Step S57). And control part 1a advances processing to the following step S58, when battery voltage Vb rises to voltage Vl + Vf or more. On the other hand, when the battery voltage Vb is lower than the voltage Vl + Vf, the control unit 1a advances the process to the next step S59.

ここで、後述により明らかとなるが、低目標電圧Vlは、エンジン始動後に昇圧回路3が昇圧動作において昇圧目標とする電圧であり、エンジン始動前のバッテリ電圧Vbからダイオード4の電圧降下分に相当するVfを減算した値よりさらに所定の電圧だけ低い電圧に設定される。例えば、低目標電圧Vlは、上記ステップS52の判断において上記昇圧信号がロー(Lo)レベルからハイ(Hi)レベルに変化したとき、すなわち昇圧否から昇圧要に指示が変化したときのバッテリ電圧Vbからダイオード4の電圧降下分に相当するVfを減算した値よりさらに所定の電圧だけ低い(例えば、100mV〜200mV低い)電圧に設定され、結果的に基準目標電圧Vhより100mV〜200mV低い電圧に設定される。   Here, as will be apparent from the description below, the low target voltage Vl is a voltage that the booster circuit 3 sets as a boost target in the boosting operation after the engine starts, and corresponds to the voltage drop of the diode 4 from the battery voltage Vb before the engine start. It is set to a voltage lower by a predetermined voltage than the value obtained by subtracting Vf. For example, the low target voltage Vl is the battery voltage Vb when the boost signal changes from the low (Lo) level to the high (Hi) level in the determination of the step S52, that is, when the instruction changes from the boost failure to the need for boost. Is set to a voltage that is lower by a predetermined voltage (for example, 100 mV to 200 mV lower) than the value obtained by subtracting Vf corresponding to the voltage drop of the diode 4 from, and consequently set to a voltage that is 100 mV to 200 mV lower than the reference target voltage Vh. Is done.

なお、上記ステップS57で用いる閾値は、他の値を用いてもかまわない。例えば、バッテリ電圧Vbが基準目標電圧Vhにダイオード4の電圧降下分に相当するVfを加算した値(すなわち、エンジン始動前のバッテリ電圧Vbの電圧レベル)まで上昇したか否かを判断してもかまわない。   Note that other values may be used as the threshold value used in step S57. For example, even if it is determined whether or not the battery voltage Vb has increased to a value obtained by adding Vf corresponding to the voltage drop of the diode 4 to the reference target voltage Vh (that is, the voltage level of the battery voltage Vb before starting the engine). It doesn't matter.

ステップS58において、制御部1aは、目標電圧を低目標電圧Vlに設定し、電圧上昇フラグFuをオン(ON)に設定して、目標電圧および電圧上昇フラグFuを示すデータをそれぞれ更新し、次のステップに処理を進める。   In step S58, the control unit 1a sets the target voltage to the low target voltage Vl, sets the voltage increase flag Fu to ON, updates the data indicating the target voltage and the voltage increase flag Fu, and then Proceed to the next step.

ここで、上記ステップS57およびステップS58は、電圧低下フラグFdがオン(ON)に設定されている場合のみ行われる処理である。すなわち、上記ステップS57の判断においてバッテリ電圧Vbが電圧Vl+Vf以上まで上昇する状態とは、エンジン始動時のクランキングによってバッテリ電圧Vbの電圧降下が生じた後に、バッテリ電圧Vbが当該クランキング前の電圧付近まで再び上昇して復帰した状態である。つまり、上記ステップS57の処理によって、エンジン始動時のクランキングが終了したか否かを判定することができる。そして、上記ステップS58は、上記クランキングが終了した場合、すなわちエンジンが始動した場合の処理であり、エンジン始動後に昇圧回路3の目標電圧を低目標電圧Vlに変更することになる。したがって、エンジン始動後における上記ステップS53の昇圧処理においては、エンジン始動前の目標電圧(基準目標電圧Vh)より低い目標電圧(低目標電圧Vl)で昇圧動作を行うことになる(図4に示す図示矢印Cの時点)。   Here, step S57 and step S58 are processes performed only when the voltage drop flag Fd is set to ON. In other words, the state in which the battery voltage Vb increases to the voltage Vl + Vf or higher in the determination of step S57 is the voltage before the cranking after the battery voltage Vb has dropped due to the cranking at the time of engine start. It is in a state of rising again to the vicinity and returning. That is, it is possible to determine whether or not the cranking at the time of starting the engine has been completed by the process of step S57. The step S58 is processing when the cranking is completed, that is, when the engine is started, and the target voltage of the booster circuit 3 is changed to the low target voltage Vl after the engine is started. Therefore, in the step-up process in step S53 after the engine is started, the step-up operation is performed at a target voltage (low target voltage Vl) lower than the target voltage (reference target voltage Vh) before starting the engine (shown in FIG. 4). (Point of arrow C in the figure).

次に、制御部1aは、他の装置から得られる昇圧信号が昇圧否を示す信号か否かを判断する(ステップS59)。例えば、図4に示すように、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置は、車両のエンジンが始動した際、昇圧要から昇圧否に指示を変化させた信号、すなわちバッテリ電圧Vbの昇圧を停止することを指示する昇圧信号(例えば、昇圧信号をロー(Lo)レベルにしてオフ(OFF)する)を制御部1aへ出力する(図示矢印Dの時点)。そして、制御部1aは、昇圧信号が昇圧処理を引き続き行うことを示す信号(例えば、昇圧信号がハイ(Hi)レベルでオン(ON))である場合、次のステップS60に処理を進める。一方、制御部1aは、昇圧信号が昇圧処理を終了することを示す信号(例えば、昇圧信号がロー(Lo)レベルでオフ(OFF))である場合、昇圧処理を終了し(ステップS61)、上記ステップS51に戻って処理を繰り返す。したがって、制御部1aは、昇圧処理を終了することが指示された場合、昇圧処理を終了して上記ステップS51における初期設定を行って各設定を初期化する。   Next, the control unit 1a determines whether or not the boost signal obtained from another device is a signal indicating that boost is not performed (step S59). For example, as shown in FIG. 4, the control device for the idling stop mechanism that controls the start and stop of the engine, when the engine of the vehicle is started, is a signal that changes the instruction from the need for boost to the boost or not, that is, the battery voltage Vb. Is output to the control unit 1a (at the time indicated by the arrow D in the drawing). The boost signal (for example, the boost signal is set to low (Lo) level and turned off) is stopped. Then, when the boost signal is a signal indicating that the boost process is continuously performed (for example, the boost signal is on (ON) at a high (Hi) level), the control unit 1a proceeds to the next step S60. On the other hand, when the boosting signal is a signal indicating that the boosting process is finished (for example, the boosting signal is low (OFF) and off (OFF)), the control unit 1a finishes the boosting process (step S61). Returning to step S51, the process is repeated. Therefore, when instructed to end the boosting process, the control unit 1a ends the boosting process and performs the initial setting in step S51 to initialize each setting.

ステップS60において、制御部1aは、処理を終了するか否かを判断する。処理を終了する条件としては、例えば、車両のユーザがイグニッションキーをOFFしたり、車両の制御によって負荷9への電力供給が停止される状態になったりすること等がある。制御部1aは、処理を終了しない場合に上記ステップS52に戻って処理を繰り返し、処理を終了する場合に当該フローチャートによる処理を終了する。   In step S60, the control unit 1a determines whether or not to end the process. Conditions for terminating the process include, for example, that the user of the vehicle turns off the ignition key, or that the power supply to the load 9 is stopped by the control of the vehicle. When the process is not ended, the control unit 1a returns to step S52 and repeats the process. When the process is ended, the control unit 1a ends the process according to the flowchart.

このように、図3に示した電力供給制御によって、エンジン始動後の電圧変動が抑制される。例えば、図4に示すように、上記昇圧信号によって昇圧要が示された後(図示矢印A時点以降)のエンジンのクランキングによるバッテリ電圧Vbの電圧降下によって、昇圧回路3は、基準目標電圧Vhを昇圧目標とした昇圧動作が行われる(図4における昇圧動作「有」の期間)。そして、当該電圧降下によってバッテリ電圧Vbが低下判定電圧VbLまで低下すると(図示矢印B時点)、電圧低下フラグFdがオン(ON)に設定される(図4における電圧低下監視「ON」の期間)。   As described above, the power supply control shown in FIG. 3 suppresses the voltage fluctuation after the engine is started. For example, as shown in FIG. 4, after the necessity of boosting is indicated by the boosting signal (after the point of arrow A in the figure), the booster circuit 3 causes the reference target voltage Vh by the voltage drop of the battery voltage Vb due to engine cranking. The boosting operation is performed with the boosting target as the boosting target (period of the boosting operation “present” in FIG. 4). When the battery voltage Vb drops to the drop determination voltage VbL due to the voltage drop (at the time of the arrow B in the figure), the voltage drop flag Fd is set to ON (ON) (period of voltage drop monitoring “ON” in FIG. 4). .

そして、エンジンのクランキングが終了してバッテリ電圧Vbが電圧Vl+Vfまで上昇すると、電圧上昇フラグFuがオン(ON)に設定され(図4における電圧上昇監視「ON」の期間)、昇圧回路3による昇圧動作が基準目標電圧Vhより低い低目標電圧Vlを昇圧目標とした昇圧動作に切り替えられる(図示矢印C時点)。したがって、エンジン始動後においては、基準目標電圧Vhより低い低目標電圧Vlで昇圧処理するため、必ずダイオード4を介して出力される出力電圧Vo>低目標電圧Vlとなり、間欠的な昇圧動作を防止することができる。つまり、エンジン始動後において、昇圧回路3における再昇圧時のエネルギーによって生じる電圧変動(リップル)の発生を防止することができ、車両のライトやインストルメントパネルに設けられたランプ等が明滅したり、車両のオーディオ機器等にノイズが発生したりすることを抑制することができる。   When the engine cranking is completed and the battery voltage Vb rises to the voltage Vl + Vf, the voltage rise flag Fu is set to ON (ON period), and the booster circuit 3 The step-up operation is switched to the step-up operation with the low target voltage Vl lower than the reference target voltage Vh as the step-up target (at the time indicated by arrow C in the figure). Therefore, after the engine is started, the boosting process is performed with the low target voltage Vl lower than the reference target voltage Vh. Therefore, the output voltage Vo output via the diode 4 is always greater than the low target voltage Vl, and intermittent boosting operation is prevented. can do. That is, after the engine is started, it is possible to prevent the occurrence of voltage fluctuations (ripple) caused by the energy at the time of re-boosting in the booster circuit 3, and the lights on the vehicle and the lamps provided on the instrument panel flicker, It is possible to suppress the occurrence of noise in the audio equipment of the vehicle.

なお、上述した実施形態では、バッテリ電圧Vbが低下判定電圧VbL以下まで低下した後にバッテリ電圧Vbが電圧Vl+Vfまで上昇することによって、クランキング開始および終了を検知しているが、他の態様によってクランキング開始および終了を検知してもかまわない。   In the above-described embodiment, the start and end of cranking are detected by the battery voltage Vb rising to the voltage Vl + Vf after the battery voltage Vb has dropped to the drop determination voltage VbL or lower. It does not matter if the ranking starts and ends.

一例として、図5に示すように、昇圧信号による昇圧処理開始指示からエンジンが始動するまでの時間が決まっている場合、タイマー16によるカウント値を用いてクランキング開始を検知してもかまわない。例えば、制御部1bは、上述した制御部1aに設けられていた電圧低下監視部11に代えてタイマー16を設けている。タイマー16は、昇圧処理開始が指示されたとき、すなわち昇圧信号がロー(Lo)レベルからハイ(Hi)レベルに変化したとき、カウントを開始する。そして、タイマー16のカウント値がカウントアップしたときに、クランキングが開始されたと判断して電圧低下フラグFdをオフ(OFF)からオン(ON)に変更し、以降は図3に示した電力供給制御と同様の処理を行う。   As an example, as shown in FIG. 5, when the time from the boosting process start instruction by the boosting signal until the engine is started is determined, the start of cranking may be detected using the count value by the timer 16. For example, the control unit 1b includes a timer 16 instead of the voltage drop monitoring unit 11 provided in the control unit 1a. The timer 16 starts counting when an instruction to start boosting processing is given, that is, when the boosting signal changes from a low (Lo) level to a high (Hi) level. Then, when the count value of the timer 16 counts up, it is determined that cranking has started, and the voltage drop flag Fd is changed from OFF (OFF) to ON (ON). Thereafter, the power supply shown in FIG. Processing similar to control is performed.

ここで、タイマー16がカウント開始してからカウントアップするまでの時間は、上記昇圧処理開始指示時点からバッテリ電圧Vbが極小値を示すまでの時間において想定される最長時間以上で、かつ、上記昇圧処理開始指示時点からエンジンが始動してバッテリ電圧Vbが電圧Vl+Vfまで上昇するまでの時間において想定される最短時間未満に設定すればよい。   Here, the time from the start of counting by the timer 16 to the counting up is not less than the longest time assumed from the time when the boosting process start instruction is given until the battery voltage Vb shows the minimum value, and the boosting is performed. What is necessary is just to set to less than the shortest time assumed in the time from the engine start time to the battery voltage Vb rising to the voltage Vl + Vf from the processing start instruction point.

また、上述した実施形態では、昇圧回路3と並列にダイオード4を設けて、通常の電力供給ラインと昇圧電力供給ラインとを別に設けた電力供給システムを用いた。しかしながら、通常の電力供給ラインと昇圧電力供給ラインとが同一の電力供給システム(例えば、図2においてダイオード4が挿入された並列回路がないシステム)であっても、本発明は同様の効果が得られることは言うまでもない。   Further, in the above-described embodiment, the power supply system in which the diode 4 is provided in parallel with the booster circuit 3 and the normal power supply line and the boosted power supply line are separately provided is used. However, even if the normal power supply line and the boosted power supply line are the same power supply system (for example, a system without a parallel circuit in which the diode 4 is inserted in FIG. 2), the present invention has the same effect. Needless to say.

また、上述した実施形態では、所定の条件に基づいて、目標電圧を基準目標電圧Vhから低目標電圧Vlに即変更(図4に示す矢印C時点)する一例を用いたが、段階的に目標電圧を基準目標電圧Vhから低目標電圧Vlまで変更してもかまわない。例えば、バッテリ電圧Vbの電圧低下が検知されてからバッテリ電圧Vbが上昇したことが検知されるまでの間(図4に示す矢印B時点から矢印C地点までの間)に、目標電圧を基準目標電圧Vhから低目標電圧Vlまで漸減的に変化させてもかまわない。   In the above-described embodiment, an example in which the target voltage is immediately changed from the reference target voltage Vh to the low target voltage Vl based on a predetermined condition (at the time point indicated by arrow C in FIG. 4) is used. The voltage may be changed from the reference target voltage Vh to the low target voltage Vl. For example, the target voltage is set to the reference target between the time when the battery voltage Vb is detected and the time when it is detected that the battery voltage Vb is increased (from the time point B to the point C in FIG. 4). It may be changed gradually from the voltage Vh to the low target voltage Vl.

(第2の実施形態)
以下、図6〜図8を参照して、本発明の第2の実施形態に係る電源制御装置を含む電力供給システムについて説明する。典型的には、本発明の第2の実施形態に係る電源制御装置も、車両が停車した際に自動的に車両のエンジンを停止させる、いわゆるアイドリングストップ機構付き車両に搭載される。なお、図6は、本発明の第2の実施形態に係る電源制御装置を含む電力供給システムの構成の一例を示す概略ブロック図である。図7は、図6の電源制御装置が昇圧動作を制御する動作の一例を示すフローチャートである。そして、図8は、図6の電源制御装置の昇圧動作と出力電圧、バッテリ電圧、および目標電圧との関係の一例を説明するための図である。
(Second Embodiment)
Hereinafter, with reference to FIGS. 6-8, the electric power supply system containing the power supply control apparatus which concerns on the 2nd Embodiment of this invention is demonstrated. Typically, the power supply control device according to the second embodiment of the present invention is also mounted on a vehicle with a so-called idling stop mechanism that automatically stops the engine of the vehicle when the vehicle stops. FIG. 6 is a schematic block diagram showing an example of the configuration of a power supply system including a power supply control device according to the second embodiment of the present invention. FIG. 7 is a flowchart showing an example of an operation in which the power supply control device of FIG. 6 controls the boosting operation. FIG. 8 is a diagram for explaining an example of the relationship between the boost operation of the power supply control device of FIG. 6 and the output voltage, battery voltage, and target voltage.

図6において、当該電源制御装置を含む電力供給システムは、制御部1c、昇圧回路3、スイッチング素子5、ダイオード6、バッテリ8、および負荷9を備えている。当該電力供給システムでは、バッテリ8に蓄電されている電力を負荷9に供給する。なお、制御部1c、昇圧回路3、スイッチング素子5、およびダイオード6が、本発明の電源制御装置の一例に相当する。   In FIG. 6, the power supply system including the power supply control device includes a control unit 1 c, a booster circuit 3, a switching element 5, a diode 6, a battery 8, and a load 9. In the power supply system, the power stored in the battery 8 is supplied to the load 9. The control unit 1c, the booster circuit 3, the switching element 5, and the diode 6 correspond to an example of the power supply control device of the present invention.

図1に示した第1の実施形態に係る電源制御装置を含む電力供給システムと比較すると、第2の実施形態に係る電源制御装置を含む電力供給システムは、ダイオード4の代わりにスイッチング素子5およびダイオード6の組が用いられ、制御部1cの構成が異なる。第2の実施形態に係る電源制御装置を含む電力供給システムの他の構成については、第1の実施形態に係る電源制御装置を含む電力供給システムと同様であるため、同様の構成要素については同一の参照符号を付して、詳細な説明を省略する。   Compared with the power supply system including the power supply control device according to the first embodiment shown in FIG. 1, the power supply system including the power supply control device according to the second embodiment includes the switching element 5 and the diode 4 instead of the diode 4. A set of diodes 6 is used, and the configuration of the control unit 1c is different. Since the other configuration of the power supply system including the power supply control device according to the second embodiment is the same as that of the power supply system including the power supply control device according to the first embodiment, the same components are the same. The detailed description is abbreviate | omitted.

例えば、スイッチング素子5がMOSFETで構成される場合、ダイオード6はMOSFETの寄生ダイオードで構成される。そして、スイッチング素子5がMOSFETで構成され、ソースをバッテリ8の正極端子と接続しドレインを負荷9と接続した場合、ダイオード6のアノードがバッテリ8の正極端子側となり、カソードが負荷9側となる。このように、昇圧回路3と並列にスイッチング素子5を接続することによって、バッテリ8の電力を負荷9へ供給する際の電圧降下が少なくなる。   For example, when the switching element 5 is constituted by a MOSFET, the diode 6 is constituted by a parasitic diode of the MOSFET. When the switching element 5 is formed of a MOSFET, the source is connected to the positive terminal of the battery 8 and the drain is connected to the load 9, the anode of the diode 6 is on the positive terminal side of the battery 8, and the cathode is on the load 9 side. . Thus, by connecting the switching element 5 in parallel with the booster circuit 3, the voltage drop when supplying the power of the battery 8 to the load 9 is reduced.

例えば、第1の実施形態で用いた電力供給システムでダイオード4を介して電力供給すると、ダイオード4における電圧降下が約1.0V生じる。一方、第2の実施形態で用いた電力供給システムでスイッチング素子5を介して電力供給すると、スイッチング素子5における電圧降下が非常に小さいため、バッテリ8から負荷9へ電力を供給する条件が有利となる。   For example, when power is supplied through the diode 4 in the power supply system used in the first embodiment, a voltage drop in the diode 4 is about 1.0V. On the other hand, when power is supplied via the switching element 5 in the power supply system used in the second embodiment, the voltage drop in the switching element 5 is very small, so the condition for supplying power from the battery 8 to the load 9 is advantageous. Become.

ここで、昇圧回路3による昇圧動作を停止した後にスイッチング素子5をオン(閉)にする際、昇圧動作を停止した後にスイッチング素子5をオン(閉)にするまでの間に、ダイオード6を介して給電する期間を設けることが一般的である。これは、昇圧動作を停止して即時にスイッチング素子5をオン(閉)にすると、出力電圧Voがバッテリ電圧Vbより高い場合に負荷9側からバッテリ8側へ電力が逆流する可能性があるためであり、一旦ダイオード6を介して給電することによって当該逆流を防止している。   Here, when the switching element 5 is turned on (closed) after the boosting operation by the booster circuit 3 is stopped, the diode 6 is interposed between the stop of the boosting operation and the switching element 5 being turned on (closed). Generally, a period for supplying power is provided. This is because if the boosting operation is stopped and the switching element 5 is immediately turned on (closed), power may flow backward from the load 9 to the battery 8 when the output voltage Vo is higher than the battery voltage Vb. In this case, the backflow is prevented by supplying power through the diode 6 once.

しかしながら、ダイオード6を介してバッテリ8から負荷9へ給電する期間は、ダイオード6による電圧降下(例えば、電圧Vf低下)が生じているため、その状態でスイッチング素子5をオン(閉)すると出力電圧Voが電圧Vf分だけ上昇することになる。電圧降下となる電圧Vfは、ダイオード6を構成する素子により異なるが、通常電圧Vf=0.4V〜1.0Vである。したがって、スイッチング素子5をオン(閉)するときに、出力電圧Voに電圧変動が生じることになる。第2の実施形態に係る電源制御装置においては、エンジン始動後の間欠的な昇圧動作を防止すると共に、上述したスイッチング素子5をオン(閉)したときの電圧変動を防止する。   However, during the period when power is supplied from the battery 8 to the load 9 via the diode 6, a voltage drop (for example, the voltage Vf is reduced) due to the diode 6 occurs. Therefore, when the switching element 5 is turned on (closed) in this state, the output voltage Vo rises by the voltage Vf. The voltage Vf that causes a voltage drop varies depending on the elements constituting the diode 6, but is usually a voltage Vf = 0.4V to 1.0V. Therefore, when the switching element 5 is turned on (closed), a voltage fluctuation occurs in the output voltage Vo. In the power supply control device according to the second embodiment, intermittent boosting operation after engine startup is prevented, and voltage fluctuation when the switching element 5 described above is turned on (closed) is prevented.

制御部1aは、昇圧回路3の動作を制御して、電力供給システム内の出力電圧Voを制御する。例えば、制御部1cは、制御部1aと同様に電力供給システム全体を監視するECUで構成される。制御部1cは、バッテリ電圧監視部17、出力電圧監視部18、電圧比較部19、目標電圧設定部20、および昇圧回路制御部21を含んでいる。   The controller 1a controls the operation of the booster circuit 3 to control the output voltage Vo in the power supply system. For example, the control part 1c is comprised by ECU which monitors the whole electric power supply system similarly to the control part 1a. The control unit 1 c includes a battery voltage monitoring unit 17, an output voltage monitoring unit 18, a voltage comparison unit 19, a target voltage setting unit 20, and a booster circuit control unit 21.

バッテリ電圧監視部17は、バッテリ8から負荷9への電力供給ラインに接続され、バッテリ8のバッテリ電圧Vbを監視する。出力電圧監視部18は、上記電力供給ラインに接続され、負荷9への出力電圧Voを監視する。電圧比較部19は、バッテリ電圧監視部17が監視しているバッテリ電圧Vbと出力電圧監視部18が監視している出力電圧Voとを比較し、エンジン始動後にその差が一定値以下(例えば、その差がスイッチング素子5のオン(ON)抵抗による電圧降下分の差(例えば、電圧Vonの差))であるか否かを判定する。目標電圧設定部20は、他の装置(例えば、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置)から得られる昇圧信号に応じて、昇圧回路3が昇圧目標とする目標電圧を設定する。昇圧回路制御部21は、昇圧要を示す昇圧信号を取得した場合、当該昇圧要を示す指示に応じて昇圧回路3の昇圧動作およびスイッチング素子5の開閉動作を制御して昇圧処理を開始する。そして、昇圧回路制御部21は、目標電圧設定部20が設定した目標電圧に出力電圧Voがなるように昇圧回路3の昇圧動作を制御し、電圧比較部19の比較結果に基づいてスイッチング素子5の開閉動作を制御する。   The battery voltage monitoring unit 17 is connected to a power supply line from the battery 8 to the load 9 and monitors the battery voltage Vb of the battery 8. The output voltage monitoring unit 18 is connected to the power supply line and monitors the output voltage Vo to the load 9. The voltage comparison unit 19 compares the battery voltage Vb monitored by the battery voltage monitoring unit 17 with the output voltage Vo monitored by the output voltage monitoring unit 18, and the difference is less than a certain value after the engine is started (for example, It is determined whether or not the difference is a difference in voltage drop due to an ON resistance of the switching element 5 (for example, a difference in voltage Von). The target voltage setting unit 20 sets a target voltage to be boosted by the booster circuit 3 in accordance with a boost signal obtained from another device (for example, a control device for an idling stop mechanism that controls starting and stopping of the engine). . When the boosting circuit control unit 21 acquires a boosting signal indicating that boosting is required, the boosting circuit control unit 21 starts the boosting process by controlling the boosting operation of the boosting circuit 3 and the opening / closing operation of the switching element 5 according to the instruction indicating the need for boosting. Then, the booster circuit control unit 21 controls the boosting operation of the booster circuit 3 so that the output voltage Vo becomes the target voltage set by the target voltage setting unit 20, and the switching element 5 is based on the comparison result of the voltage comparison unit 19. Controls the opening and closing operation.

ここで、スイッチング素子5およびスイッチング素子31(図2参照)のゲートに印加される出力電圧は、それぞれ図示しないドライバによって制御される。当該ドライバは、制御部1cによって制御され、制御部1cから出力される駆動信号Dgに応じてスイッチング素子5を開閉し、制御部1cから出力される駆動信号Duに応じてスイッチング素子31を断続する。   Here, the output voltages applied to the gates of the switching element 5 and the switching element 31 (see FIG. 2) are controlled by drivers (not shown). The driver is controlled by the control unit 1c, opens and closes the switching element 5 according to the drive signal Dg output from the control unit 1c, and intermittently switches the switching element 31 according to the drive signal Du output from the control unit 1c. .

次に、図7および図8を参照して、制御部1cによって制御される電源制御装置の動作について説明する。   Next, with reference to FIG. 7 and FIG. 8, operation | movement of the power supply control apparatus controlled by the control part 1c is demonstrated.

図7において、制御部1cは、初期設定を行って(ステップS81)、次のステップに処理を進める。例えば、制御部1cは、目標電圧Vtを初期値Viに初期設定して、目標電圧Vtを示すデータを記憶領域に書き込んでデータを初期化する。   In FIG. 7, the control unit 1c performs initial setting (step S81), and proceeds to the next step. For example, the control unit 1c initializes the target voltage Vt to the initial value Vi, writes data indicating the target voltage Vt in the storage area, and initializes the data.

次に、制御部1cは、他の装置から得られる昇圧信号が昇圧要を示す信号か否かを判断する(ステップS82)。例えば、図8に示すように、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置は、車両のエンジンを始動する際、電圧降下に備えてバッテリ電圧Vbを昇圧することを指示する昇圧信号(例えば、昇圧信号をハイ(Hi)レベルにしてオン(ON)する)を制御部1cへ出力する(図示矢印Eの時点)。そして、制御部1cは、昇圧信号が昇圧要を示す信号である場合、次のステップS83に処理を進める。一方、制御部1cは、昇圧信号が昇圧否を示す信号、すなわち昇圧処理を行わないことを示す信号(例えば、昇圧信号がロー(Lo)レベルでオフ(OFF))である場合、次のステップS91に処理を進める。   Next, the controller 1c determines whether or not the boost signal obtained from another device is a signal indicating the need for boost (step S82). For example, as shown in FIG. 8, the control device for the idling stop mechanism that controls the start and stop of the engine, when starting the vehicle engine, boosts the battery voltage Vb in preparation for a voltage drop. (For example, the boost signal is set to high (Hi) level and turned on (ON)) is output to the control unit 1c (at the time indicated by an arrow E in the drawing). Then, when the boost signal is a signal indicating the need for boost, the control unit 1c advances the processing to the next step S83. On the other hand, when the boosting signal is a signal indicating that the boosting is not performed, that is, a signal indicating that the boosting process is not performed (for example, the boosting signal is low (Lo) level and off (OFF)), the next step is performed. The process proceeds to S91.

ステップS83において、制御部1cは、現時点で設定されている目標電圧Vt(初期値Vi)に応じて昇圧処理を行い、次のステップに処理を進める。例えば、初期値Viは、現時点(エンジン始動前)の出力電圧Voに設定され、その場合、初期値Vi=現時点のバッテリ電圧Vb−スイッチング素子5のオン(ON)抵抗による電圧降下(電圧Von)となる。   In step S83, the control unit 1c performs a boosting process according to the target voltage Vt (initial value Vi) set at the present time, and proceeds to the next step. For example, the initial value Vi is set to the current output voltage Vo (before the engine is started). In this case, the initial value Vi = current battery voltage Vb−voltage drop (voltage Von) due to the ON resistance of the switching element 5. It becomes.

なお、上記ステップS83で開始された昇圧処理においては後述するステップS90において昇圧処理が終了するまで継続して行われるとし、制御部1cは、各時点で設定されている目標電圧Vtより出力電圧Voが低い場合、出力電圧Voが目標電圧Vtとなる駆動信号Duを昇圧回路3に出力して、昇圧回路3に昇圧動作を行わせる。一方、各時点で設定されている目標電圧Vtより出力電圧Voが高い場合、昇圧動作を停止させる駆動信号Duを昇圧回路3に出力して、昇圧回路3の昇圧動作を停止させる。   It is assumed that the boosting process started in step S83 is continuously performed until the boosting process ends in step S90 described later, and the control unit 1c outputs the output voltage Vo from the target voltage Vt set at each time point. Is low, the drive signal Du at which the output voltage Vo becomes the target voltage Vt is output to the booster circuit 3 to cause the booster circuit 3 to perform a boost operation. On the other hand, when the output voltage Vo is higher than the target voltage Vt set at each time point, the drive signal Du for stopping the boosting operation is output to the boosting circuit 3 to stop the boosting operation of the boosting circuit 3.

次に、制御部1cは、スイッチング素子5をオフ(開)にしてゲート駆動をオフ(OFF)にし(ステップS84)、次のステップに処理を進める。例えば、制御部1cは、スイッチング素子5をオフ(開)にする駆動信号Dgをスイッチング素子5のドライバへ出力することによって、スイッチング素子5をオフ(開)にする。   Next, the controller 1c turns off (opens) the switching element 5 and turns off the gate drive (OFF) (step S84), and proceeds to the next step. For example, the control unit 1 c outputs the drive signal Dg that turns off (opens) the switching element 5 to the driver of the switching element 5, thereby turning off (opening) the switching element 5.

次に、制御部1cは、現在設定されている目標電圧Vtを予め定められた値(減算値ΔVd)だけ低く設定し(Vt−ΔVd)、新たに設定された目標電圧Vtを示すデータを用いて記憶領域に書き込まれたデータを更新して(ステップS85)、次のステップに処理を進める。目標電圧Vtから減算される減算値ΔVdは、車両のエンジンが始動した時点(クランキング終了時点)において目標電圧がVb−Vf−αとなるように漸減的に目標電圧Vtを低くする値に設定される(図8に示す矢印G時点)。ここで、Vfは、ダイオード6による電圧降下分を想定した電圧であり、例えば0.4V〜1.0Vに設定される。また、αは、出力電圧Voが電圧Vb−Vfとなった場合に目標電圧Vtを所定の電圧だけ出力電圧Voより低い値にするための値であり、例えば50mV〜200mVに設定される。   Next, the control unit 1c sets the currently set target voltage Vt lower by a predetermined value (subtraction value ΔVd) (Vt−ΔVd) and uses data indicating the newly set target voltage Vt. The data written in the storage area is updated (step S85), and the process proceeds to the next step. The subtraction value ΔVd subtracted from the target voltage Vt is set to a value that gradually decreases the target voltage Vt so that the target voltage becomes Vb−Vf−α when the engine of the vehicle starts (at the end of cranking). (Pointed to by arrow G in FIG. 8). Here, Vf is a voltage assuming a voltage drop due to the diode 6, and is set to 0.4 V to 1.0 V, for example. Α is a value for setting the target voltage Vt to a value lower than the output voltage Vo by a predetermined voltage when the output voltage Vo becomes the voltage Vb−Vf, and is set to, for example, 50 mV to 200 mV.

次に、制御部1cは、他の装置から得られる昇圧信号が昇圧否を示す信号か否かを判断する(ステップS86)。例えば、図8に示すように、エンジンの始動および停止を制御するアイドリングストップ機構の制御装置は、車両のエンジンが始動した際、昇圧否を示す信号、すなわちバッテリ電圧Vbの昇圧を停止することを指示する昇圧信号(例えば、昇圧信号をロー(Lo)レベルにしてオフ(OFF)する)を制御部1cへ出力する(図示矢印Gの時点)。そして、制御部1cは、昇圧信号が昇圧処理を引き続き行うことを示す信号(例えば、昇圧信号がハイ(Hi)レベルでオン(ON))である場合、上記ステップS85の処理を繰り返す。一方、制御部1cは、昇圧信号が昇圧処理を終了することを示す信号(例えば、昇圧信号がロー(Lo)レベルでオフ(OFF))である場合、次のステップS87に処理を進める。   Next, the control unit 1c determines whether or not the boost signal obtained from another device is a signal indicating that boost is not performed (step S86). For example, as shown in FIG. 8, the control device for the idling stop mechanism that controls the start and stop of the engine stops the boost of the battery voltage Vb, that is, a signal indicating that the boost is not performed when the engine of the vehicle is started. An instructed boost signal (for example, the boost signal is set to low (Lo) level and turned off) is output to the controller 1c (at the time indicated by an arrow G in the drawing). Then, when the boost signal is a signal indicating that the boost process is continuously performed (for example, the boost signal is on (ON) at the high (Hi) level), the control unit 1c repeats the process of step S85. On the other hand, when the boosting signal is a signal indicating that the boosting process ends (for example, the boosting signal is low (OFF) and off (OFF)), the control unit 1c proceeds to the next step S87.

ステップS87において、現在設定されている目標電圧Vtを予め定められた値(加算値ΔVu)だけ高く設定し(Vt+ΔVu)、新たに設定された目標電圧Vtを示すデータを用いて記憶領域に書き込まれたデータを更新して、次のステップに処理を進める。目標電圧Vtに加算される加算値ΔVuは、目標電圧Vtを電圧Vb−Vf−αから電圧Vb−Vonまで漸増的に上昇させる単位時間当たりの上昇値であり、目標電圧Vtを電圧Vb−Vonまで上昇させる時間(図8に示す矢印Gから矢印Iまで時間)に応じて設定される。ここで、Vonは、スイッチング素子5のオン(ON)抵抗による電圧降下分を想定した電圧である。   In step S87, the currently set target voltage Vt is set higher by a predetermined value (added value ΔVu) (Vt + ΔVu) and written to the storage area using data indicating the newly set target voltage Vt. Update the data and proceed to the next step. The added value ΔVu added to the target voltage Vt is an increase value per unit time for gradually increasing the target voltage Vt from the voltage Vb−Vf−α to the voltage Vb−Von, and the target voltage Vt is increased to the voltage Vb−Von. It is set in accordance with the time to increase to (the time from arrow G to arrow I shown in FIG. 8). Here, Von is a voltage assuming a voltage drop due to the ON resistance of the switching element 5.

次に、制御部1cは、バッテリ電圧Vbと出力電圧Voとの差が一定値以下であるか否かを判断する(ステップS88)。具体的には、制御部1cは、出力電圧Voがバッテリ電圧Vbよりスイッチング素子5のオン(ON)抵抗による電圧降下分(電圧Von)だけ低い場合、バッテリ電圧Vbと出力電圧Voとの差が一定値以下であると判断する。そして、制御部1cは、バッテリ電圧Vbと出力電圧Voとの差が一定値以下である場合、次のステップS89に処理を進める。一方、制御部1cは、バッテリ電圧Vbが出力電圧Voより上記一定値より大きな差を有して高い場合、上記ステップS87による処理を繰り返す。   Next, the controller 1c determines whether or not the difference between the battery voltage Vb and the output voltage Vo is equal to or less than a certain value (step S88). Specifically, when the output voltage Vo is lower than the battery voltage Vb by a voltage drop (voltage Von) due to the ON resistance of the switching element 5, the difference between the battery voltage Vb and the output voltage Vo is Judged to be below a certain value. And the control part 1c advances a process to following step S89, when the difference of the battery voltage Vb and the output voltage Vo is below a fixed value. On the other hand, when the battery voltage Vb is higher than the output voltage Vo with a difference larger than the certain value, the control unit 1c repeats the process of step S87.

ステップS89において、制御部1cは、スイッチング素子5をオン(閉)にしてゲート駆動をオン(ON)にし、次のステップに処理を進める。例えば、制御部1cは、スイッチング素子5をオン(閉)にする駆動信号Dgをスイッチング素子5のドライバへ出力することによって、スイッチング素子5をオン(閉)にする。これによって、バッテリ8からの電力がスイッチング素子5を介して負荷9に給電される。   In step S89, the control unit 1c turns on the switching element 5 to turn on the gate drive (ON), and proceeds to the next step. For example, the control unit 1 c outputs the drive signal Dg that turns on (closes) the switching element 5 to the driver of the switching element 5 to turn on (close) the switching element 5. As a result, power from the battery 8 is supplied to the load 9 via the switching element 5.

次に、制御部1cは、上記ステップS83から継続して行われていた昇圧処理を終了し(ステップS90)、次のステップに処理を進める。   Next, the control part 1c complete | finishes the pressure | voltage rise process performed continuously from said step S83 (step S90), and advances a process to the next step.

次に、制御部1cは、処理を終了するか否かを判断する。処理を終了する条件としては、例えば、車両のユーザがイグニッションキーをOFFしたり、車両の制御によって負荷9への電力供給が停止される状態になったりすること等がある。制御部1cは、処理を終了しない場合に上記ステップS81に戻って処理を繰り返し、処理を終了する場合に当該フローチャートによる処理を終了する。   Next, the control unit 1c determines whether or not to end the process. Conditions for terminating the process include, for example, that the user of the vehicle turns off the ignition key, or that the power supply to the load 9 is stopped by the control of the vehicle. The control unit 1c returns to step S81 when the process is not terminated, repeats the process, and terminates the process according to the flowchart when the process is terminated.

このように、図7に示した電力供給制御によって、エンジン始動後の電圧変動およびスイッチング素子5をオン(閉)する際の電圧変動がそれぞれ抑制される。例えば、図8に示すように、上記昇圧信号が昇圧否を示す指示から昇圧要を示す指示に変化した後、すなわち昇圧処理の開始が指示された後(図示矢印E時点以降)のエンジンのクランキングによるバッテリ電圧Vbの電圧降下によって、スイッチング素子5をオフ(開)すると共に、昇圧回路3は、目標電圧Vtを漸減的に低下させて昇圧動作を行う(図示矢印E時点〜矢印G時点の期間)。   In this way, the power supply control shown in FIG. 7 suppresses the voltage fluctuation after the engine is started and the voltage fluctuation when the switching element 5 is turned on (closed). For example, as shown in FIG. 8, after the boost signal has changed from an instruction indicating that boosting is not required to an instruction indicating that boosting is required, that is, after the start of boosting processing has been instructed (after the time point indicated by arrow E in the figure), The switching element 5 is turned off (opened) by the voltage drop of the battery voltage Vb due to the ranking, and the booster circuit 3 performs a boosting operation by gradually decreasing the target voltage Vt (from the time point indicated by arrows E to G). period).

一方、エンジンのクランキング動作によってバッテリ電圧Vbが大きく電圧降下した後、クランキング動作終了するとバッテリ電圧Vbがエンジン始動前の電圧まで上昇する。このバッテリ電圧Vbの上昇によってダイオード6を介して供給される電力の電圧がVb−Vfまで上昇するため、やがて漸減的に低下させている目標電圧Vtが電圧Vb−Vf以下となる状態が生じる(図示矢印F時点)。したがって、昇圧回路3が昇圧する電圧よりダイオード6を介して供給される電圧が高くなるため、出力電圧Voが電圧Vb−Vfで一定となる状態が続く。   On the other hand, after the battery voltage Vb largely drops due to the cranking operation of the engine, the battery voltage Vb rises to the voltage before starting the engine when the cranking operation ends. As the battery voltage Vb rises, the voltage of the electric power supplied via the diode 6 rises to Vb−Vf, so that the target voltage Vt, which is gradually decreasing, eventually becomes a voltage Vb−Vf or less (a state occurs). (Indicated by arrow F). Accordingly, since the voltage supplied via the diode 6 is higher than the voltage boosted by the booster circuit 3, the state where the output voltage Vo is constant at the voltage Vb−Vf continues.

上記昇圧信号が昇圧要を示す指示から昇圧否を示す指示に変化するとき、すなわち昇圧処理の終了が指示されるとき、目標電圧Vtは電圧Vb−Vf−αまで低下しており、出力電圧Voが電圧Vb−Vfで一定となる状態が続いている(図示矢印G時点)。そして、上記昇圧信号によって昇圧処理の終了が指示されると、昇圧回路3は、目標電圧Vtを電圧Vb−Vonまで漸増的に上昇させて昇圧動作を行う(図示矢印G時点〜矢印I時点の期間)。この目標電圧Vtの上昇によって、やがて漸増的に上昇させている目標電圧Vtがダイオード6を介して供給される電圧Vb−Vf以上となる状態が生じる(図示矢印H時点)。したがって、昇圧回路3が昇圧する電圧よりダイオード6を介して供給される電圧が低くなるため、出力電圧Voが目標電圧Vtの上昇に応じて漸増的に上昇していく(図示矢印H時点〜矢印I時点の期間)。   When the boost signal changes from an instruction indicating that boosting is required to an instruction indicating that boosting is not required, that is, when the end of the boosting process is instructed, the target voltage Vt is reduced to the voltage Vb−Vf−α, and the output voltage Vo Continues to be constant at the voltage Vb-Vf (at the time of the arrow G in the figure). When the end of the boosting process is instructed by the boosting signal, the boosting circuit 3 performs the boosting operation by gradually increasing the target voltage Vt to the voltage Vb-Von (from the time point indicated by the arrow G to the time point indicated by the arrow I). period). Due to the increase of the target voltage Vt, a state in which the target voltage Vt, which is gradually increased, becomes equal to or higher than the voltage Vb−Vf supplied via the diode 6 (at the time indicated by an arrow H in the drawing). Therefore, since the voltage supplied via the diode 6 is lower than the voltage boosted by the booster circuit 3, the output voltage Vo gradually increases as the target voltage Vt increases (from the time indicated by the arrow H to the arrow in the figure). Period of time I).

そして、目標電圧Vtが電圧Vb−Vonまで上昇することによって、出力電圧Voが電圧Vb−Vonまで上昇すると、バッテリ電圧Vbと出力電圧Voとの差が一定値以下であると判断される(図示矢印I時点)。バッテリ電圧Vbと出力電圧Voとの差が一定値以下であると判断されると、スイッチング素子5をオン(閉)することによって、バッテリ8に蓄電された電力がスイッチング素子5を介して負荷9へ供給される(矢印I時点以降)。   Then, when the target voltage Vt rises to the voltage Vb−Von and the output voltage Vo rises to the voltage Vb−Von, it is determined that the difference between the battery voltage Vb and the output voltage Vo is equal to or less than a certain value (illustrated). (Point of arrow I). When it is determined that the difference between the battery voltage Vb and the output voltage Vo is equal to or less than a certain value, the switching element 5 is turned on (closed), so that the electric power stored in the battery 8 passes through the switching element 5 via the load 9. (After the time point of arrow I).

したがって、エンジン始動後における図示矢印F時点から矢印H時点までの期間においては、必ずバッテリ電圧Vb−Vf>目標電圧Vtとなり、常にダイオード6を介した給電期間となる。また、エンジン始動後における図示矢印H時点から矢印I時点までの期間においては、必ずバッテリ電圧Vb−Vf<目標電圧Vtとなり、常に昇圧動作されている状態となる。つまり、エンジン始動後における図示矢印F時点から矢印I時点までの期間においては、間欠的な昇圧動作を防止することができ、昇圧回路3における再昇圧時のエネルギーによって生じる電圧変動(リップル)の発生を防止することができる。   Therefore, in the period from the time indicated by the arrow F to the time indicated by the arrow H after the engine is started, the battery voltage Vb−Vf> the target voltage Vt is always satisfied, and the power supply period via the diode 6 is always established. Further, during the period from the time indicated by the arrow H to the time indicated by the arrow I after the engine is started, the battery voltage Vb−Vf <the target voltage Vt is always satisfied, and the boost operation is always performed. That is, intermittent boosting operation can be prevented during the period from the arrow F point to the arrow I point after the engine is started, and voltage fluctuation (ripple) caused by energy at the time of re-boosting in the booster circuit 3 is generated. Can be prevented.

また、エンジン始動後にスイッチング素子5をオン(閉)する時点(矢印I時点)では、昇圧回路3の昇圧動作によって出力電圧Voが電圧Vb−Vonまで上昇している。したがって、スイッチング素子5をオン(閉)する時点においてスイッチング素子5の入力側と出力側との電圧差が電圧差Vonとなり、スイッチング素子5のオン(ON)抵抗による電圧降下分の差となる。つまり、この状態でスイッチング素子5をオン(閉)しても出力電圧Voに電圧変動が生じない。このように、バッテリ電圧Vbと出力電圧Voとの差が一定値以下になったことを検知して、スイッチング素子5をオン(閉)すると共に昇圧動作を停止することによって、スイッチング素子5をオン(閉)するときの電圧変動が生じることを防止することができる。このように、エンジン始動後に生じる各電圧変動を防止することによって、車両のライトやインストルメントパネルに設けられたランプ等が明滅したり、車両のオーディオ機器等にノイズが発生したりすることを抑制することができる。   Further, at the time when the switching element 5 is turned on (closed) after the engine is started (at the time of arrow I), the output voltage Vo rises to the voltage Vb−Von by the boosting operation of the booster circuit 3. Therefore, when the switching element 5 is turned on (closed), the voltage difference between the input side and the output side of the switching element 5 becomes the voltage difference Von, which is a difference in voltage drop due to the on (ON) resistance of the switching element 5. That is, even if the switching element 5 is turned on (closed) in this state, the output voltage Vo does not fluctuate. As described above, when the difference between the battery voltage Vb and the output voltage Vo is less than a certain value, the switching element 5 is turned on (closed) and the boosting operation is stopped to turn on the switching element 5. It is possible to prevent voltage fluctuations when closing. In this way, by preventing each voltage fluctuation that occurs after the engine is started, it is possible to prevent the lights on the vehicle and the lamps provided on the instrument panel from flickering or noise from being generated in the audio equipment of the vehicle. can do.

なお、上述した実施形態では、目標電圧Vtを漸減的に下げる際、および目標電圧Vtを漸増的に上げる際、目標電圧Vtを線形変化させたが、他の態様で目標電圧Vtを変化させてもかまわない。例えば、目標電圧Vtを下げるおよび目標電圧Vtを上げる処理の少なくとも一方において、目標電圧Vtを非線形変化させてもかまわない。一例として、コンデンサおよび抵抗(CR回路)等を利用することによって、容易に目標電圧Vtを非線形変化させることができる。   In the above-described embodiment, when the target voltage Vt is gradually decreased and when the target voltage Vt is gradually increased, the target voltage Vt is linearly changed. However, the target voltage Vt is changed in another manner. It doesn't matter. For example, the target voltage Vt may be changed nonlinearly in at least one of the process of lowering the target voltage Vt and raising the target voltage Vt. As an example, the target voltage Vt can be easily changed non-linearly by using a capacitor and a resistor (CR circuit).

また、目標電圧Vtを漸減的に下げる際に、目標電圧Vtの下限値(例えば、下限値=Vb−Vf−α)を設けてもかまわない。この場合、目標電圧Vtが下限値まで下げられた時点でまだ昇圧処理の終了を示す昇圧信号を取得していなくても、目標電圧Vtを下げる処理を終了して目標電圧Vtを上記下限値一定に設定する。これによって、エンジンを始動する際のクランキング動作が長い状態であっても、目標電圧Vtが極端に低下することがなく、その後に目標電圧Vtを上昇させる時間も一定となる。つまり、上述した昇圧制御処理全体の時間が長期化すること等を防止することができる。   Further, when the target voltage Vt is decreased gradually, a lower limit value (for example, lower limit value = Vb−Vf−α) of the target voltage Vt may be provided. In this case, even if the boost signal indicating the end of the boosting process is not yet acquired when the target voltage Vt is lowered to the lower limit value, the process of lowering the target voltage Vt is finished and the target voltage Vt is kept at the above lower limit value. Set to. As a result, even when the cranking operation at the time of starting the engine is long, the target voltage Vt does not extremely decrease, and the time for increasing the target voltage Vt thereafter becomes constant. That is, it is possible to prevent the time for the entire boost control process described above from being prolonged.

また、上述した実施形態では、所定の条件に基づいて、目標電圧Vtを初期値Viから電圧Vb−Vf−αまで漸減的に下げる一例を用いたが、初期値Viから電圧Vb−Vf−αに目標電圧Vtを即変更してもかまわない。例えば、バッテリ電圧Vbが予め定められた電圧以下まで低下したとき、目標電圧Vtを初期値Viから電圧Vb−Vf−αに即変更し、昇圧処理を終了することを示す昇圧信号が取得されるまで目標電圧Vtを電圧Vb−Vf−αに設定する。このように、目標電圧Vtを低く設定する際に即変更しても、同様にエンジン始動後の間欠的な昇圧動作を防止することができる。   In the above-described embodiment, an example in which the target voltage Vt is gradually decreased from the initial value Vi to the voltage Vb−Vf−α based on a predetermined condition is used. Alternatively, the target voltage Vt may be changed immediately. For example, when the battery voltage Vb drops below a predetermined voltage, the target voltage Vt is immediately changed from the initial value Vi to the voltage Vb-Vf-α, and a boost signal indicating that the boost process is terminated is acquired. Until the target voltage Vt is set to the voltage Vb−Vf−α. As described above, even if the target voltage Vt is set to be low immediately, the intermittent boosting operation after the engine start can be similarly prevented.

また、上述した各電圧設定値等は、単なる一例に過ぎず他の電圧であっても、本発明を実現できることは言うまでもない。また、上述した電力供給システムは、定格電圧12V、24V、42Vの電力供給するシステムであっても、本発明の電源制御装置が適用できることは言うまでもない。また、高電圧のニッケル水素電池等が蓄電装置に用いられるハイブリッドシステムを搭載した車両にも、本発明の電源制御装置が適用可能であることは言うまでもない。   Further, it is needless to say that the above-described voltage setting values and the like are merely examples, and the present invention can be realized even with other voltages. In addition, it goes without saying that the power supply system of the present invention can be applied to the above-described power supply system even if the power supply system has a rated voltage of 12V, 24V, or 42V. Needless to say, the power supply control device of the present invention can also be applied to a vehicle equipped with a hybrid system in which a high-voltage nickel-metal hydride battery or the like is used as a power storage device.

以上、本発明を詳細に説明してきたが、前述の説明はあらゆる点において本発明の例示にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。   Although the present invention has been described in detail above, the above description is merely illustrative of the present invention in all respects and is not intended to limit the scope thereof. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention.

本発明に係る電源制御装置は、エンジン始動後の電圧変動を抑制することができ、アイドリングストップ機構付き車両等に搭載される電力供給システム等に適用できる。   The power supply control device according to the present invention can suppress voltage fluctuation after the engine is started, and can be applied to a power supply system mounted on a vehicle with an idling stop mechanism.

本発明の第1の実施形態に係る電源制御装置を含む電力供給システムの構成の一例を示す概略ブロック図1 is a schematic block diagram showing an example of a configuration of a power supply system including a power supply control device according to a first embodiment of the present invention. 図1の電源制御装置に含まれる昇圧回路3の構成の一例を示す概略図Schematic showing an example of the configuration of the booster circuit 3 included in the power supply control device of FIG. 図1の電源制御装置が昇圧動作を制御する動作の一例を示すフローチャートThe flowchart which shows an example of the operation | movement which the power supply control apparatus of FIG. 1 controls pressure | voltage rise operation. 図1の電源制御装置の昇圧動作と出力電圧、バッテリ電圧、および目標電圧との関係の一例を説明するための図The figure for demonstrating an example of the relationship between the pressure | voltage rise operation of the power supply control device of FIG. 1, an output voltage, a battery voltage, and a target voltage. 図1の電源制御装置の他の例を含む電力供給システムの構成の一例を示す概略ブロック図The schematic block diagram which shows an example of a structure of the electric power supply system containing the other example of the power supply control apparatus of FIG. 本発明の第2の実施形態に係る電源制御装置を含む電力供給システムの構成の一例を示す概略ブロック図The schematic block diagram which shows an example of a structure of the electric power supply system containing the power supply control apparatus which concerns on the 2nd Embodiment of this invention. 図6の電源制御装置が昇圧動作を制御する動作の一例を示すフローチャートThe flowchart which shows an example of the operation | movement in which the power supply control device of FIG. 6 controls the boosting operation. 図6の電源制御装置の昇圧動作と出力電圧、バッテリ電圧、および目標電圧との関係の一例を説明するための図The figure for demonstrating an example of the relationship between the pressure | voltage rise operation of the power supply control device of FIG. 6, an output voltage, a battery voltage, and a target voltage. 従来の電力供給システムの構成の一例を示す概略ブロック図Schematic block diagram showing an example of the configuration of a conventional power supply system 従来の電力供給システムの昇圧動作と出力電圧およびバッテリ電圧との関係の一例を説明するための図The figure for demonstrating an example of the voltage boost operation | movement of the conventional power supply system, and the relationship between an output voltage and a battery voltage.

符号の説明Explanation of symbols

1…制御部
11…電圧低下監視部
12…電圧上昇監視部
13、20…目標電圧設定部
14…出力電圧監視部
15、21…昇圧回路制御部
16…タイマー
17…バッテリ電圧監視部
18…出力電圧監視部
19…電圧比較部
3…昇圧回路
5、31…スイッチング素子
32…コイル
34…コンデンサ
4、6、33…ダイオード
8…バッテリ
9…負荷
DESCRIPTION OF SYMBOLS 1 ... Control part 11 ... Voltage drop monitoring part 12 ... Voltage rise monitoring part 13, 20 ... Target voltage setting part 14 ... Output voltage monitoring part 15, 21 ... Booster circuit control part 16 ... Timer 17 ... Battery voltage monitoring part 18 ... Output Voltage monitoring unit 19 ... Voltage comparison unit 3 ... Boost circuit 5, 31 ... Switching element 32 ... Coil 34 ... Capacitor 4, 6, 33 ... Diode 8 ... Battery 9 ... Load

Claims (11)

バッテリに蓄電された電力を車両の負荷に供給する電源制御装置であって、
前記バッテリから供給される電力の電圧を昇圧して、前記負荷に供給する昇圧手段と、
前記昇圧手段が昇圧する電圧を制御する制御手段とを備え、
前記制御手段は、前記車両のエンジン始動前に前記昇圧手段が昇圧する目標電圧を第1の電圧に制御し、前記車両のエンジン始動後に当該目標電圧を当該第1の電圧より低い第2の電圧に変更する、電源制御装置。
A power supply control device for supplying electric power stored in a battery to a vehicle load,
Boosting means for boosting the voltage of power supplied from the battery and supplying the voltage to the load;
Control means for controlling the voltage boosted by the boosting means,
The control means controls the target voltage boosted by the boosting means before starting the engine of the vehicle to a first voltage, and the second voltage lower than the first voltage after starting the engine of the vehicle. Change the power control device.
前記バッテリから供給される電力の電圧を監視するバッテリ電圧監視手段を、さらに備え、
前記制御手段は、前記バッテリ電圧監視手段が監視している電圧が降下した後に閾値まで上昇した場合に前記目標電圧を前記第1の電圧から前記第2の電圧に変更する、請求項1に記載の電源制御装置。
Battery voltage monitoring means for monitoring the voltage of the electric power supplied from the battery;
2. The control unit according to claim 1, wherein the control unit changes the target voltage from the first voltage to the second voltage when the voltage monitored by the battery voltage monitoring unit rises to a threshold value after dropping. Power supply control device.
前記昇圧手段と並列に接続されたバイパス回路を、さらに備え、
前記制御手段は、前記第2の電圧に前記バイパス回路の電圧降下分を加算した値に前記閾値を設定する、請求項2に記載の電源制御装置。
A bypass circuit connected in parallel with the booster;
The power supply control device according to claim 2, wherein the control unit sets the threshold value to a value obtained by adding a voltage drop of the bypass circuit to the second voltage.
前記制御手段は、前記車両のエンジン始動前に前記昇圧手段の昇圧動作を開始した時点から、前記目標電圧を前記第1の電圧から前記第2の電圧に漸減的に変更する、請求項1に記載の電源制御装置。   2. The control unit according to claim 1, wherein the control unit gradually changes the target voltage from the first voltage to the second voltage from the time when the boosting operation of the boosting unit is started before the engine of the vehicle is started. The power supply control device described. 前記昇圧手段と並列に接続されたバイパス回路を、さらに備え、
前記制御手段は、前記バイパス回路を介して前記バッテリから供給される電力を前記負荷に供給する前に、前記目標電圧を前記第1の電圧から前記第2の電圧に変更する、請求項1に記載の電源制御装置。
A bypass circuit connected in parallel with the booster;
The control unit changes the target voltage from the first voltage to the second voltage before supplying the power supplied from the battery to the load via the bypass circuit. The power supply control device described.
前記制御手段は、前記バッテリから供給される電力の電圧と前記負荷へ供給する電力の電圧との差を監視する電圧差監視手段を含み、
前記バイパス回路は、前記制御手段の制御に応じて前記バッテリから前記負荷への回路を開閉するスイッチング素子を含み、
前記制御手段は、前記電圧差監視手段が監視した電圧差が予め定められた値より小さい場合、前記スイッチング素子を閉動作させる、請求項5に記載の電源制御装置。
The control means includes voltage difference monitoring means for monitoring a difference between a voltage of power supplied from the battery and a voltage of power supplied to the load,
The bypass circuit includes a switching element that opens and closes a circuit from the battery to the load in accordance with control of the control means,
The power supply control device according to claim 5, wherein the control unit closes the switching element when the voltage difference monitored by the voltage difference monitoring unit is smaller than a predetermined value.
前記バイパス回路は、前記制御手段の制御に応じて前記バッテリから前記負荷への回路を開閉するスイッチング素子を含み、
前記制御手段は、前記目標電圧を前記第1の電圧から前記第2の電圧に変更した後、さらに前記目標電圧を前記第2の電圧から前記第1の電圧に漸増的に変更し、前記目標電圧が前記第1の電圧に復帰した以降に前記スイッチング素子を閉動作させる、請求項5に記載の電源制御装置。
The bypass circuit includes a switching element that opens and closes a circuit from the battery to the load in accordance with control of the control means,
The control means changes the target voltage from the first voltage to the second voltage, and then gradually changes the target voltage from the second voltage to the first voltage. The power supply control device according to claim 5, wherein the switching element is closed after the voltage returns to the first voltage.
前記スイッチング素子は、前記バッテリから前記負荷への順方向へ電流を流すダイオードを含み、
前記制御手段は、前記バッテリから供給される電力の電圧から前記ダイオードによる電圧降下分を減算した値より低く前記第2の電圧を設定する、請求項7に記載の電源制御装置。
The switching element includes a diode that allows a current to flow in a forward direction from the battery to the load;
The power supply control device according to claim 7, wherein the control unit sets the second voltage lower than a value obtained by subtracting a voltage drop due to the diode from a voltage of electric power supplied from the battery.
前記制御手段は、前記バッテリから供給される電力の電圧から前記スイッチング素子が閉状態における電圧降下分を減算した値に前記第1の電圧を設定する、請求項8に記載の電源制御装置。   The power supply control device according to claim 8, wherein the control unit sets the first voltage to a value obtained by subtracting a voltage drop when the switching element is closed from a voltage of power supplied from the battery. 前記制御手段は、前記車両のエンジン始動を制御する他の装置から前記昇圧手段による昇圧要否を示す昇圧信号を取得し、
前記制御手段は、前記昇圧信号が昇圧否から昇圧要を示す信号に変わった時点から前記目標電圧を前記第1の電圧から前記第2の電圧に漸減的に変更し、
前記制御手段は、前記昇圧信号が昇圧要から昇圧否を示す信号に変わった時点から前記目標電圧を前記第2の電圧から前記第1の電圧に漸増的に変更する、請求項7に記載の電源制御装置。
The control means obtains a boost signal indicating whether or not boosting by the boosting means is necessary from another device that controls engine start of the vehicle,
The control means gradually changes the target voltage from the first voltage to the second voltage from the time when the boost signal is changed from a boost failure to a signal indicating the need for boost,
8. The control unit according to claim 7, wherein the control unit gradually changes the target voltage from the second voltage to the first voltage from a point in time when the boost signal is changed from a boost request to a signal indicating a boost failure. Power control device.
前記バッテリから供給される電力の電圧を監視するバッテリ電圧監視手段を、さらに備え、
前記制御手段は、前記車両のエンジン始動を制御する他の装置から前記昇圧手段による昇圧要否を示す昇圧信号を取得し、
前記制御手段は、前記昇圧信号が昇圧否から昇圧要を示す信号に変わった時点からカウントを開始するタイマーを含み、
前記制御手段は、前記タイマーのカウントアップ後に前記バッテリ電圧監視手段が監視している電圧が閾値まで上昇した場合に前記目標電圧を前記第1の電圧から前記第2の電圧に変更する、請求項1に記載の電源制御装置。
Battery voltage monitoring means for monitoring the voltage of the electric power supplied from the battery;
The control means obtains a boost signal indicating whether or not boosting by the boosting means is necessary from another device that controls engine start of the vehicle,
The control means includes a timer that starts counting from a point in time when the boost signal is changed from a boost failure to a signal indicating that boost is required.
The control means changes the target voltage from the first voltage to the second voltage when the voltage monitored by the battery voltage monitoring means rises to a threshold after the timer counts up. The power supply control device according to 1.
JP2008285467A 2008-11-06 2008-11-06 Power supply control unit Pending JP2010115010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285467A JP2010115010A (en) 2008-11-06 2008-11-06 Power supply control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285467A JP2010115010A (en) 2008-11-06 2008-11-06 Power supply control unit

Publications (1)

Publication Number Publication Date
JP2010115010A true JP2010115010A (en) 2010-05-20

Family

ID=42303113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285467A Pending JP2010115010A (en) 2008-11-06 2008-11-06 Power supply control unit

Country Status (1)

Country Link
JP (1) JP2010115010A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240901A (en) * 2010-05-21 2011-12-01 Mazda Motor Corp Device for control of electrical component of vehicle
JP2012065494A (en) * 2010-09-17 2012-03-29 Denso Corp Booster device
JP2012080676A (en) * 2010-10-01 2012-04-19 Denso Corp Booster
JP3175480U (en) * 2012-02-06 2012-05-17 インタープラン株式会社 Battery auxiliary device
WO2013018703A1 (en) 2011-07-29 2013-02-07 古河電気工業株式会社 Vehicular power source device
JP2013074741A (en) * 2011-09-28 2013-04-22 Toyota Industries Corp Power circuit
JP2015116047A (en) * 2013-12-11 2015-06-22 オムロン株式会社 Power supply device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240901A (en) * 2010-05-21 2011-12-01 Mazda Motor Corp Device for control of electrical component of vehicle
JP2012065494A (en) * 2010-09-17 2012-03-29 Denso Corp Booster device
JP2012080676A (en) * 2010-10-01 2012-04-19 Denso Corp Booster
WO2013018703A1 (en) 2011-07-29 2013-02-07 古河電気工業株式会社 Vehicular power source device
JP2013028295A (en) * 2011-07-29 2013-02-07 Furukawa Electric Co Ltd:The Onboard power supply device
CN103338976A (en) * 2011-07-29 2013-10-02 古河电气工业株式会社 Vehicular power source device
US9180826B2 (en) 2011-07-29 2015-11-10 Furukawa Electric Co., Ltd. In-vehicle power supply apparatus
JP2013074741A (en) * 2011-09-28 2013-04-22 Toyota Industries Corp Power circuit
JP3175480U (en) * 2012-02-06 2012-05-17 インタープラン株式会社 Battery auxiliary device
JP2015116047A (en) * 2013-12-11 2015-06-22 オムロン株式会社 Power supply device

Similar Documents

Publication Publication Date Title
JP4572774B2 (en) Vehicle power supply
CN109168326B (en) Power supply device
US8154262B2 (en) Control system provided with power supply unit operating based on operation modes including standby mode
JP2010115010A (en) Power supply control unit
JP4461824B2 (en) Vehicle, vehicle control method, and computer-readable recording medium recording a program for causing a computer to execute the control method
US9350238B2 (en) Power supply device for vehicle including a boosting converter circuit
US9843184B2 (en) Voltage conversion apparatus
US9762116B2 (en) Voltage conversion apparatus
JP4379396B2 (en) Buck-boost chopper type DC-DC converter
JP6751512B2 (en) In-vehicle power supply
US7742317B2 (en) Precharging boost converters in DC to DC power converters
CN105383420B (en) Providing boosted voltage using transient operation
JP4468708B2 (en) Power supply
WO2019239842A1 (en) In-vehicle power supply control device and in-vehicle power supply system
JP6112004B2 (en) Auxiliary power supply
JP5540876B2 (en) Power circuit
JP2009142089A (en) Power supply device for vehicle
JP2018082579A (en) Controller, on-vehicle device, control method and charge and discharge circuit
JP2016054628A (en) Power supply and power supply charging method
CN110168889B (en) In-vehicle control device and in-vehicle power supply device
JP6030335B2 (en) Power supply device, in-vehicle equipment, vehicle
JP6984274B2 (en) Injection control device
JP2010268641A (en) Driving device
WO2022124020A1 (en) On-vehicle power supply device
JPH08149704A (en) Power supply for electronic apparatus in car