JP2010114948A - Pulse motor and method of manufacturing the same - Google Patents

Pulse motor and method of manufacturing the same Download PDF

Info

Publication number
JP2010114948A
JP2010114948A JP2008282745A JP2008282745A JP2010114948A JP 2010114948 A JP2010114948 A JP 2010114948A JP 2008282745 A JP2008282745 A JP 2008282745A JP 2008282745 A JP2008282745 A JP 2008282745A JP 2010114948 A JP2010114948 A JP 2010114948A
Authority
JP
Japan
Prior art keywords
stator
pulse motor
eddy current
mover
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282745A
Other languages
Japanese (ja)
Inventor
Toshihiro Kanehara
利宏 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008282745A priority Critical patent/JP2010114948A/en
Publication of JP2010114948A publication Critical patent/JP2010114948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve kinematical performance in drive or power efficiency, etc. by solving the problem of an eddy current in a pulse motor. <P>SOLUTION: Stator cores 10 are stacked and they are fixed to a fixing board 3 via electric insulators 4 without grinding their end faces. Hereby, the fellow end faces of the stator cores 10 contact with each other in grinding, which can avoid the formation of an electric conductive path. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータおよびその製造方法に関する。   The present invention relates to a pulse motor in which a stator is formed by laminating a magnetic body having an insulating layer provided on the surface, and a mover is driven on a plane along the stator, and a manufacturing method thereof.

可動子をプラテン(固定子)上で水平方向に駆動するパルスモータが知られている。   There is known a pulse motor that drives a mover horizontally on a platen (stator).

図11(a)は、従来のパルスモータにおける固定子を示す平面図、図11(b)は従来のパルスモータにおける可動子のY方向駆動部のYZ平面における断面図、図11(c)は上記Y方向駆動部のXZ平面における断面図、図12(a)は従来のパルスモータにおける可動子のX方向駆動部のYZ平面における断面図、図12(b)は上記X方向駆動部のXZ平面における断面図である。   11A is a plan view showing a stator in a conventional pulse motor, FIG. 11B is a cross-sectional view in the YZ plane of the Y-direction drive portion of the mover in the conventional pulse motor, and FIG. 12A is a cross-sectional view of the Y-direction drive unit in the XZ plane, FIG. 12A is a cross-sectional view of the X-direction drive unit of the mover in the conventional pulse motor, and FIG. 12B is a cross-sectional view of the X-direction drive unit. It is sectional drawing in a plane.

図11および図12に示すように、パルスモータは水平に設置された固定子1と、空隙δgを介して固定子1に沿って水平面内(XY平面内)を2次元運動する可動子2とを備える。   As shown in FIGS. 11 and 12, the pulse motor includes a stator 1 installed horizontally, and a mover 2 that moves two-dimensionally in a horizontal plane (in the XY plane) along the stator 1 via a gap δg. Is provided.

固定子1には格子歯11が形成され、格子歯11の間の歯溝には非磁性体12が埋め込まれている。格子歯11の磁極歯ピッチPに対し歯溝幅比τは任意に選択される。格子歯11及び非磁性体12の空隙δgに面する表面は滑らかに仕上げられている。   A lattice tooth 11 is formed on the stator 1, and a nonmagnetic material 12 is embedded in a tooth gap between the lattice teeth 11. The tooth gap width ratio τ is arbitrarily selected with respect to the magnetic pole tooth pitch P of the lattice teeth 11. The surfaces of the lattice teeth 11 and the nonmagnetic material 12 facing the gap δg are finished smoothly.

図11〜図12に示すように、固定子1はY方向を長手方向とする固定子鉄心10をX方向に積層することで構成される。一般に電磁力を利用するモータは運動する際に発生する渦電流(鉄損)を抑制する為、固定子鉄心10として表面を絶縁処理した電磁軟鉄鋼板を用い、積層構成が採用される。この場合、格子歯11は積層された固定子鉄心10に溝加工を施すことで形成される。その詳細は下記特許文献1に示されている。   As shown in FIGS. 11-12, the stator 1 is comprised by laminating | stacking the stator core 10 which makes a Y direction a longitudinal direction in a X direction. In general, a motor using electromagnetic force employs a laminated structure using an electromagnetic soft iron steel plate whose surface is insulated as the stator core 10 in order to suppress eddy current (iron loss) generated during movement. In this case, the lattice teeth 11 are formed by grooving the laminated stator core 10. The details are shown in Patent Document 1 below.

図11に示すように、Y方向駆動部は図11(b)に示されるユニットをX方向に複数配列することで、また、図12に示すように、X方向駆動部は図12(b)に示されるユニットをY方向に複数配列することで、それぞれ構成される。
なお、各軸の駆動部の配列はX方向、Y方向のどちらでもよい。さらに、各軸の駆動部の配列は、推力発生方向が一致していればどのような配列でもよい。
As shown in FIG. 11, the Y-direction drive unit is formed by arranging a plurality of units shown in FIG. 11B in the X-direction, and as shown in FIG. 12, the X-direction drive unit is shown in FIG. Each unit is configured by arranging a plurality of units shown in the Y direction.
Note that the arrangement of the driving units on each axis may be in either the X direction or the Y direction. Furthermore, the arrangement of the drive units for each axis may be any arrangement as long as the thrust generation directions match.

可動子2は突極21を複数持ち、突極21には励磁コイル22が巻かれている。図11および図12に示すように、可動子2の突極21にバイアス永久磁石23が設けられる。   The mover 2 has a plurality of salient poles 21 around which an exciting coil 22 is wound. As shown in FIGS. 11 and 12, a bias permanent magnet 23 is provided on the salient pole 21 of the mover 2.

突極21の空隙δgに面する部分には鉄心歯24が形成されている。鉄心歯24に隣接する歯溝は非磁性体25で埋められ、空隙面δgに面する表面は滑らかに仕上げられている。一般に固定子1に対し、鉄心歯24が励磁相数に応じて相対位置が異なる様に、隣接する突極21の間隔が設定され、可動子2と固定子1は空隙δgを介して対向配置されている。可動子2は固定子1に対し、空隙δgを隔て運動できる様に支えられている。図11には、空気軸受によって可動子2が空隙δgを維持して浮上している様子を示しており、空気の流れが矢印で示される。この空隙δgを維持する構造として、他に、直線軸受、磁気軸受、および流体軸受もある。   Iron core teeth 24 are formed in the portion of the salient pole 21 facing the gap δg. The tooth gap adjacent to the iron core teeth 24 is filled with a nonmagnetic material 25, and the surface facing the gap surface δg is smoothly finished. In general, the interval between the adjacent salient poles 21 is set so that the relative position of the iron core teeth 24 differs from the stator 1 in accordance with the number of excitation phases, and the movable element 2 and the stator 1 are arranged to face each other with a gap δg. Has been. The mover 2 is supported relative to the stator 1 so as to be able to move with a gap δg. FIG. 11 shows a state in which the mover 2 floats while maintaining the gap δg by the air bearing, and the air flow is indicated by arrows. Other structures that maintain this gap δg include linear bearings, magnetic bearings, and fluid bearings.

次に、本実施形態のパルスモータの動作を説明する。   Next, the operation of the pulse motor of this embodiment will be described.

図11(b)および図12(b)に示すように、可動子2の励磁コイル22が発生する励磁コイル磁束φCが突極21及び鉄心歯24から空隙δgを介して固定子鉄心10の格子歯11を通り、固定子鉄心10内を通過して再び可動子2に帰還する。この際、互いに隣接する突極21の鉄心歯24が格子歯11と相対する位置が異なる様に構成される為、鉄心歯24と格子歯11の磁気吸引力(以下、推力とする)Fの強い方向に可動子2は移動する。この様にして励磁コイル磁束φCを制御する事で可動子を運動させる事が出来る。また、バイアス永久磁石磁束φMを加える事で合成磁束φに因る推力Fは鉄心歯24と格子歯11の対抗位置の位相Δθが変化する間の磁束変化Δφの大きさおよび入力起磁力にそれぞれ比例した線形推力Fを発生する(後述する式1,式2参照)。下記特許文献2には、このような推力発生原理が示されている。 As shown in FIG. 11B and FIG. 12B, the exciting coil magnetic flux φ C generated by the exciting coil 22 of the mover 2 is applied to the stator core 10 from the salient poles 21 and the iron core teeth 24 via the gap δg. It passes through the lattice teeth 11, passes through the stator core 10, and returns to the mover 2 again. At this time, since the iron core teeth 24 of the salient poles 21 adjacent to each other are configured so that the positions facing the lattice teeth 11 are different, the magnetic attraction force (hereinafter referred to as thrust) F of the iron core teeth 24 and the lattice teeth 11 is reduced. The mover 2 moves in a strong direction. By controlling the excitation coil magnetic flux φ C in this way, the mover can be moved. Further, by adding the bias permanent magnet magnetic flux φ M , the thrust F due to the composite magnetic flux φ is influenced by the magnitude of the magnetic flux change Δφ and the input magnetomotive force while the phase Δθ of the opposing position of the iron core teeth 24 and the lattice teeth 11 changes. A linear thrust F proportional to each other is generated (see equations 1 and 2 described later). Patent Document 2 below shows such a principle of thrust generation.

特開2007−221950号公報JP 2007-221950 A 特開2006−353074号公報JP 2006-353074 A

図13に一般的な渦電流Ieを示す。表面を絶縁処理された電磁軟鉄鋼板製の固定子鉄心10に可動子2の合成磁束φによって誘導される渦電流Ieを示している。図13(a)は板厚dの固定子鉄心10の板厚方向断面内(X−Z面)に合成磁束φが貫流した場合に誘導される渦電流Ieを示し、図13(b)は固定子鉄心10の長手方向面(Y−Z面)を合成磁束φが貫流した場合に誘導される渦電流Ieを示し、図13(c)は固定子鉄心10がユニット積層体10Aとして積層され、板厚方向断面内に合成磁束φが貫流した場合に誘導される渦電流Ieを示している。   FIG. 13 shows a general eddy current Ie. The eddy current Ie induced | guided | derived by the synthetic | combination magnetic flux (phi) of the needle | mover 2 is shown in the stator core 10 made from the electromagnetic soft iron steel plate by which the surface was insulated. FIG. 13A shows the eddy current Ie induced when the composite magnetic flux φ passes through the cross section (XZ plane) in the thickness direction of the stator core 10 having the thickness d, and FIG. FIG. 13C shows the eddy current Ie induced when the synthetic magnetic flux φ flows through the longitudinal direction surface (YZ plane) of the stator core 10, and FIG. 13C shows the stator core 10 being laminated as a unit laminate 10A. The eddy current Ie induced when the composite magnetic flux φ flows through the cross section in the plate thickness direction is shown.

各固定子鉄心10間は絶縁層16によって電気絶縁されており、積層しただけでは固定子鉄心10の板厚方向断面内の渦電流Ieは隣接する固定子鉄心10へは流れない。可動子2が誘導する渦電流Ieは「磁束密度」と「移動速度」の積に比例し、渦電流の流れる経路の総電気抵抗に逆比例する。   The stator cores 10 are electrically insulated by the insulating layer 16, and the eddy current Ie in the cross section in the plate thickness direction of the stator core 10 does not flow to the adjacent stator cores 10 simply by stacking. The eddy current Ie induced by the mover 2 is proportional to the product of “magnetic flux density” and “moving speed”, and inversely proportional to the total electrical resistance of the path through which the eddy current flows.

固定子鉄心10を積層し、ユニット積層体10Aを構成する場合、ユニット積層体10Aは複数の固定子鉄心10を積層接着して製作される際、残留応力等で湾曲する。可動子2が複数ユニット積層体10A上を滑らかに移動する為には高精度な平行度と平面度(幾何公差)が要求される。したがって、この湾曲を修正する為に、図14(a)に示すように、格子歯11の形成面側及び固定盤3側の両面に対し研削加工が施される。この研削が施されたユニット積層体10Aの断面を図14(b)に示す。   When the stator cores 10 are stacked to form the unit stacked body 10A, the unit stacked body 10A is bent by residual stress or the like when the plurality of stator cores 10 are stacked and bonded. Highly accurate parallelism and flatness (geometric tolerance) are required for the mover 2 to move smoothly on the multiple unit laminate 10A. Therefore, in order to correct this curvature, as shown in FIG. 14A, grinding is performed on both the surface on which the lattice teeth 11 are formed and on the fixed platen 3 side. FIG. 14B shows a cross section of the unit laminated body 10A subjected to this grinding.

図14(b)に示す様に、ユニット積層体10Aの両研削面は固定子鉄心10間を電気絶縁していた絶縁層を研削時の橋渡し(バリ)に因り破壊し、この橋渡しが固定子鉄心10板厚方向断面内の渦電流Ieが隣接する固定子鉄心10へは流れる電気伝導路15,17となる。橋渡し電気伝導路15,17を流れる渦電流Ie'と図13に示した渦電流Ieの関係はIe'>Ieの関係にある、これは電磁軟鉄鋼板製の固定子鉄心10の固有抵抗値ρが大きく、且つ板厚断面内の領域は狭く渦電流経路の総抵抗値が大きいのに対し、研削加工に因って形成された橋渡し電気伝導路15,17は表面積が大きい為、総電気抵抗値が小さい事に因る。   As shown in FIG. 14 (b), both ground surfaces of the unit laminate 10A break the insulating layer that is electrically insulated between the stator cores 10 due to bridging (burrs) during grinding, and this bridging is the stator. The eddy current Ie in the cross section in the thickness direction of the iron core 10 becomes the electric conduction paths 15 and 17 that flow to the adjacent stator iron core 10. The relationship between the eddy current Ie ′ flowing through the bridging electrical conduction paths 15 and 17 and the eddy current Ie shown in FIG. 13 is Ie ′> Ie, which is the specific resistance value ρ of the stator core 10 made of an electromagnetic soft iron steel plate. Is large, and the region in the cross section of the plate thickness is narrow and the total resistance value of the eddy current path is large. On the other hand, the bridging electrical conduction paths 15 and 17 formed by grinding process have a large surface area. Due to the small value.

図15および図16にX方向可動子及びY方向可動子がユニット積層体10Aに誘導する渦電流と電磁制動力を示した。図15(a)および図15(b)は速度Vxでユニット積層体10A上をX方向に移動する際のXZ断面図及びYZ断面図であり、図16(a)および図16(b)は速度−Vyでユニット積層体10A上をY方向に移動する際のXZ断面図及びYZ断面図である。   15 and 16 show the eddy current and electromagnetic braking force induced by the X-direction mover and the Y-direction mover on the unit laminate 10A. 15A and 15B are an XZ sectional view and a YZ sectional view when moving in the X direction on the unit laminated body 10A at the speed Vx, and FIGS. 16A and 16B are It is XZ sectional drawing and YZ sectional drawing at the time of moving on 10 A of unit laminated bodies in the Y direction at speed-Vy.

まず、図15において、速度Vxで移動する可動子2のバイアス永久磁石磁束φMが移動方向前後に相異なる向きに渦電流Iemxを誘導する。この渦電流Iemxは突極21直下で同一方向電流となり、バイアス永久磁石磁束φMと相互作用してユニット積層体10Aを移動方向に押す力としてFbmxを発生させる。しかし、ユニット積層体10Aは固定盤3に固定されている為、その反作用として可動子2は電磁制動力−Fbmx (電磁制動力は「磁束密度」と「渦電流」の積に比例し、運動を妨げる方向に作用する)を受け、減速させられる。図11に示した励磁コイル磁束φCが誘導する渦電流Iecxは図12で示した様に固定子鉄心10の長手方向面内を貫流するが、可動子2が移動している場合は励磁コイル磁束φCが交流励磁電流による交番磁束であるので一定方向の電磁制動力を生じない。しかし橋渡し電気伝導路15,17に因る低電気抵抗な渦電流回路に因り図13(c)よりも大きい渦電流Ie'となり、渦電流損(鉄損)として固定子鉄心10の発熱量を増大させる。 First, in FIG. 15, the bias permanent magnet magnetic flux φ M of the mover 2 moving at the speed Vx induces eddy currents I emx in different directions before and after the moving direction. The eddy current I emx becomes a current in the same direction immediately below the salient pole 21 and interacts with the bias permanent magnet magnetic flux φ M to generate F bmx as a force that pushes the unit laminated body 10A in the moving direction. However, since the unit laminated body 10A is fixed to the stationary platen 3, as a reaction, the mover 2 has an electromagnetic braking force −F bmx (the electromagnetic braking force is proportional to the product of “magnetic flux density” and “eddy current” Acting in a direction that impedes movement) and is decelerated. The eddy current I ecx induced by the excitation coil magnetic flux φ C shown in FIG. 11 flows in the longitudinal plane of the stator core 10 as shown in FIG. 12, but excitation occurs when the mover 2 is moving. Since the coil magnetic flux φ C is an alternating magnetic flux generated by an AC exciting current, no electromagnetic braking force is generated in a certain direction. However, due to the low electrical resistance eddy current circuit caused by the bridging electric conduction paths 15 and 17, the eddy current Ie ′ is larger than that in FIG. 13C, and the amount of heat generated in the stator core 10 is calculated as eddy current loss (iron loss). Increase.

次に図16においてY方向に速度−Vyで移動する可動子2のバイアス永久磁石磁束φMが同様にユニット積層体10Aに移動方向前後に相異なる向きに渦電流Iemyを誘導し、反作用として電磁制動力Fbmyを受け、減速させられる。この渦電流Iemyは固定子鉄心10の高電気抵抗な板厚方向断面内を流れるので小さく、電磁制動力Fbmyは|Fbmy|< |−Fbmx|となる。また、励磁コイル磁束φCが誘導する渦電流Iecyは図14(b)で示した様に橋渡し電気伝導路15,17を流れる渦電流Ie'であるが、可動子2が移動している場合は励磁コイルの励磁電流は交流と成るので電磁制動力を生じない。橋渡し電気伝導路15,17に因る低電気抵抗な渦電流回路に因り図13(c)よりも大きい渦電流Ie'となり、渦電流損(鉄損)として固定子鉄心10の発熱量を増大させる。 Next, in FIG. 16, the bias permanent magnet magnetic flux φ M of the mover 2 moving in the Y direction at the speed −Vy similarly induces eddy current I emy in the unit stack 10 </ b> A in different directions before and after the moving direction. Upon receiving the electromagnetic braking force F bmy , the vehicle is decelerated. Since this eddy current I emy flows in the cross section in the thickness direction of the stator core 10 with high electrical resistance, the electromagnetic braking force F bmy becomes | F bmy | <| −F bmx |. The eddy current I ecy induced by the exciting coil magnetic flux φ C is the eddy current Ie ′ flowing through the bridging electrical conduction paths 15 and 17 as shown in FIG. 14B, but the mover 2 is moving. In this case, since the exciting current of the exciting coil is alternating current, no electromagnetic braking force is generated. Due to the low electrical resistance eddy current circuit caused by the bridging electrical conduction paths 15 and 17, the eddy current Ie ′ is larger than that in FIG. 13C, and the heating value of the stator core 10 is increased as eddy current loss (iron loss). Let

従って、可動子2が等速運動する場合では一定の速度Vを維持する為に電磁制動力Fbに拮抗する推力Fv(Fv=Fb)を加えなければならない。その為に余計な電力損出が発生する。更に加速運動させる場合には一定の加速度Accを維持する為に加速推力Faccに加え、電磁制動力Fbに拮抗する推力Fa(Fa=Fb)を加え続けなければならない。更に運動を制御する為に必要な励磁コイル磁束φCに因る大きな電力損出を生じさせる。 Therefore, when the mover 2 moves at a constant speed, a thrust F v (F v = F b ) that antagonizes the electromagnetic braking force F b must be applied in order to maintain a constant speed V. This causes extra power loss. Further, in the case of accelerating motion, in order to maintain a constant acceleration Acc, in addition to the acceleration thrust F acc , a thrust F a (F a = F b ) that antagonizes the electromagnetic braking force F b must be continuously applied. Furthermore, a large power loss is caused by the excitation coil magnetic flux φ C necessary for controlling the motion.

この様に従来は高速な移動時の運動特性及び電力効率が悪化し、特にX方向移動時には大きな損失を生じていた。   Thus, conventionally, the motion characteristics and power efficiency during high-speed movement deteriorate, and a large loss occurs particularly during movement in the X direction.

本発明の目的は、パルスモータの渦電流問題を解決し、駆動時の運動性能および電力効率等の改善を図ることにある。   An object of the present invention is to solve the eddy current problem of a pulse motor and improve the motion performance and power efficiency during driving.

本発明のパルスモータは、表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータにおいて、前記可動子が誘導する渦電流が流れる、前記固定子外周面の渦電流回路を遮断したことを特徴とする。
このパルスモータによれば、固定子外周面の渦電流回路を遮断したので、駆動時の運動性能および電力効率等の改善を図ることができる。
The pulse motor of the present invention is a pulse motor in which a stator is formed by laminating a magnetic body having an insulating layer provided on a surface thereof, and the mover is driven on a plane along the stator. The eddy current circuit on the outer peripheral surface of the stator, through which the eddy current induced by the current flows, is cut off.
According to this pulse motor, since the eddy current circuit on the outer peripheral surface of the stator is cut off, it is possible to improve the motion performance and power efficiency during driving.

前記渦電流回路は、積層された前記磁性体の端面の非研削面において遮断されてもよい。   The eddy current circuit may be interrupted at a non-ground surface of the end surface of the laminated magnetic body.

前記渦電流回路は、積層された前記磁性体の端面に設けられた電気絶縁層により遮断されてもよい。   The eddy current circuit may be interrupted by an electrical insulating layer provided on an end face of the laminated magnetic body.

前記端面は、前記可動子と反対側の面であってもよい。   The end surface may be a surface opposite to the mover.

本発明のパルスモータの製造方法は、表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータの製造方法において、前記磁性体を積層するステップと、積層された前記磁性体の端面を研削せずに前記固定子を組み立てるステップと、を備えることを特徴とする。
このパルスモータの製造方法によれば、積層された磁性体の端面を研削せずに固定子を組み立てるので、磁性体の端面に電気伝導路が形成されることを回避できる。
The method of manufacturing a pulse motor according to the present invention is a method of manufacturing a pulse motor in which a stator is formed by laminating a magnetic material having an insulating layer on the surface, and a mover is driven on a plane along the stator. The method includes the steps of laminating the magnetic bodies and assembling the stator without grinding the end faces of the laminated magnetic bodies.
According to this method for manufacturing a pulse motor, since the stator is assembled without grinding the end surfaces of the laminated magnetic bodies, it is possible to avoid the formation of an electric conduction path on the end surfaces of the magnetic bodies.

本発明のパルスモータの製造方法は、表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータの製造方法において、前記磁性体を積層するステップと、積層された前記磁性体の端面に絶縁層を設けるステップと、積層された前記磁性体の前記絶縁層と反対側の端面を研削するステップと、を備えることを特徴とする。
このパルスモータの製造方法によれば、絶縁層と反対側の端面を研削するので、磁性体の積層体の端面の少なくとも一方は絶縁状態が保たれ、磁性体の積層体の表面全体にわたって電気伝導路が形成されることを回避できる。
The method of manufacturing a pulse motor according to the present invention is a method of manufacturing a pulse motor in which a stator is formed by laminating a magnetic material having an insulating layer on the surface, and a mover is driven on a plane along the stator. In the method, the step of laminating the magnetic body, the step of providing an insulating layer on the end surface of the laminated magnetic body, and the step of grinding the end surface opposite to the insulating layer of the laminated magnetic body, It is characterized by providing.
According to this method of manufacturing a pulse motor, since the end face opposite to the insulating layer is ground, at least one of the end faces of the magnetic laminate is kept in an insulating state, and the entire surface of the magnetic laminate is electrically conductive. The formation of a path can be avoided.

本発明のパルスモータによれば、固定子外周面の渦電流回路を遮断したので、駆動時の運動性能および電力効率等の改善を図ることができる。   According to the pulse motor of the present invention, since the eddy current circuit on the outer peripheral surface of the stator is cut off, it is possible to improve the motion performance and power efficiency during driving.

本発明のパルスモータの製造方法によれば、積層された磁性体の端面を研削せずに固定子を組み立てるので、磁性体の端面に電気伝導路が形成されることを回避できる。   According to the method for manufacturing a pulse motor of the present invention, since the stator is assembled without grinding the end faces of the laminated magnetic bodies, it is possible to avoid the formation of an electric conduction path on the end faces of the magnetic bodies.

本発明のパルスモータの製造方法によれば、絶縁層と反対側の端面を研削するので、磁性体の積層体の表面全体にわたって電気伝導路が形成されることを回避できる。   According to the method for manufacturing a pulse motor of the present invention, since the end surface opposite to the insulating layer is ground, it is possible to avoid the formation of an electric conduction path over the entire surface of the magnetic laminate.

以下、本発明によるパルスモータの一実施形態について説明する。   Hereinafter, an embodiment of a pulse motor according to the present invention will be described.

本実施形態のパルスモータでは、従来のパルスモータとは異なり、固定子鉄心(磁性体)をユニット積層体として積層した後、研磨加工を行わずに固定盤に固定することで製造されることを特徴としている。   Unlike the conventional pulse motor, the pulse motor of this embodiment is manufactured by laminating a stator core (magnetic body) as a unit laminated body and then fixing it to a stationary platen without performing polishing. It is a feature.

図1(a)は、本実施形態のパルスモータにおける固定子を示す平面図、図1(b)は本実施形態のパルスモータにおける可動子のY方向駆動部のYZ平面における断面図、図1(c)は上記Y方向駆動部のXZ平面における断面図、図2(a)は本実施形態のパルスモータにおける可動子のX方向駆動部のYZ平面における断面図、図2(b)は上記X方向駆動部のXZ平面における断面図である。   FIG. 1A is a plan view showing a stator in the pulse motor of this embodiment, FIG. 1B is a cross-sectional view in the YZ plane of the Y-direction drive portion of the mover in the pulse motor of this embodiment, and FIG. FIG. 2C is a cross-sectional view of the Y-direction drive unit in the XZ plane, FIG. 2A is a cross-sectional view of the X-direction drive unit of the mover in the pulse motor of this embodiment, and FIG. It is sectional drawing in the XZ plane of a X direction drive part.

図1および図2に示すように、本実施形態のパルスモータは水平に設置された固定子1と、空隙δgを介して固定子1に沿って水平面内(XY平面内)を2次元運動する可動子2とを備える。図1に示すように、固定子1は電気絶縁層4を介して固定盤3に固定される。   As shown in FIGS. 1 and 2, the pulse motor according to the present embodiment performs two-dimensional motion in the horizontal plane (in the XY plane) along the stator 1 and the stator 1 through the gap δg. A mover 2 is provided. As shown in FIG. 1, the stator 1 is fixed to the stationary platen 3 through an electric insulating layer 4.

固定子1には格子歯11が形成され、格子歯11の間の歯溝には非磁性体12が埋め込まれている。格子歯11の磁極歯ピッチPに対し歯溝幅比τは任意に選択される。格子歯11及び非磁性体12の空隙δgに面する表面は滑らかに仕上げられている。   A lattice tooth 11 is formed on the stator 1, and a nonmagnetic material 12 is embedded in a tooth gap between the lattice teeth 11. The tooth gap width ratio τ is arbitrarily selected with respect to the magnetic pole tooth pitch P of the lattice teeth 11. The surfaces of the lattice teeth 11 and the nonmagnetic material 12 facing the gap δg are finished smoothly.

図1〜図2に示すように、固定子1はY方向を長手方向とする固定子鉄心10をX方向に積層することで構成される。一般に電磁力を利用するモータは運動する際に発生する渦電流(鉄損)を抑制する為、固定子鉄心10として表面を絶縁処理した電磁軟鉄鋼板を用い、積層構成が採用される。この場合、格子歯11は積層された固定子鉄心10に溝加工を施すことで形成される。その詳細は特許文献1に示されている。   As shown in FIGS. 1 to 2, the stator 1 is configured by laminating a stator core 10 whose longitudinal direction is the Y direction in the X direction. In general, a motor using electromagnetic force employs a laminated structure using an electromagnetic soft iron steel plate whose surface is insulated as the stator core 10 in order to suppress eddy current (iron loss) generated during movement. In this case, the lattice teeth 11 are formed by grooving the laminated stator core 10. The details are shown in Patent Document 1.

図1に示すように、Y方向駆動部は図1(b)に示されるユニットをX方向に複数配列することで、また、図2に示すように、X方向駆動部は図2(b)に示されるユニットをY方向に複数配列することで、それぞれ構成される。
なお、各軸の駆動部の配列はX方向、Y方向のどちらでもよい。さらに、各軸の駆動部の配列は、推力発生方向が一致していればどのような配列でもよい。
As shown in FIG. 1, the Y-direction drive unit is formed by arranging a plurality of units shown in FIG. 1B in the X direction. As shown in FIG. 2, the X-direction drive unit is shown in FIG. Each unit is configured by arranging a plurality of units shown in the Y direction.
Note that the arrangement of the driving units on each axis may be in either the X direction or the Y direction. Furthermore, the arrangement of the drive units for each axis may be any arrangement as long as the thrust generation directions match.

可動子2は突極21を複数持ち、突極21には励磁コイル22が巻かれている。図1および図2に示すように、可動子2の突極21にバイアス永久磁石23が設けられる。可動子2の他の部分にバイアス永久磁石を設けてもよい。   The mover 2 has a plurality of salient poles 21 around which an exciting coil 22 is wound. As shown in FIGS. 1 and 2, a bias permanent magnet 23 is provided on the salient pole 21 of the mover 2. A bias permanent magnet may be provided in another part of the mover 2.

突極21の空隙δgに面する部分には鉄心歯24が形成されている。鉄心歯24に隣接する歯溝は非磁性体25で埋められ、空隙面δgに面する表面は滑らかに仕上げられている。この鉄心歯24に隣接する歯溝には歯先磁石を挿入してもよい。一般に固定子1に対し、鉄心歯24が励磁相数に応じて相対位置が異なる様に、隣接する突極21の間隔が設定され、可動子2と固定子1は空隙δgを介して対向配置されている。可動子2は固定子1に対し、空隙δgを隔て運動できる様に支えられている。図1には、空気軸受によって可動子2が空隙δgを維持して浮上している様子を示しており、空気の流れが矢印で示される。この空隙δgを維持する構造として、他に、直線軸受、磁気軸受、および流体軸受もある。   Iron core teeth 24 are formed in the portion of the salient pole 21 facing the gap δg. The tooth gap adjacent to the iron core teeth 24 is filled with a nonmagnetic material 25, and the surface facing the gap surface δg is smoothly finished. A tooth tip magnet may be inserted into the tooth gap adjacent to the iron core tooth 24. In general, the interval between the adjacent salient poles 21 is set so that the relative position of the iron core teeth 24 differs from the stator 1 in accordance with the number of excitation phases, and the movable element 2 and the stator 1 are arranged to face each other with a gap δg. Has been. The mover 2 is supported relative to the stator 1 so as to be able to move with a gap δg. FIG. 1 shows a state in which the mover 2 floats while maintaining the gap δg by the air bearing, and the air flow is indicated by arrows. Other structures that maintain this gap δg include linear bearings, magnetic bearings, and fluid bearings.

次に、本実施形態のパルスモータの動作を説明する。   Next, the operation of the pulse motor of this embodiment will be described.

図1(b)および図2(b)に示すように、可動子2の励磁コイル22が発生する励磁コイル磁束φCが突極21及び鉄心歯24から空隙δgを介して固定子鉄心10の格子歯11を通り、固定子鉄心10内を通過して再び可動子2に帰還する。この際、互いに隣接する突極21の鉄心歯24が格子歯11と相対する位置が異なる様に構成される為、鉄心歯24と格子歯11の磁気吸引力(以下、推力とする)Fの強い方向に可動子2は移動する。この様にして励磁コイル磁束φCを制御する事で可動子を運動させる事が出来る。また、バイアス永久磁石磁束φMを加える事で合成磁束φに因る推力Fは鉄心歯24と格子歯11の対抗位置の位相Δθが変化する間の磁束変化Δφの大きさおよび入力起磁力にそれぞれ比例した線形推力Fを発生する(式1,式2参照)。特許文献2には、このような推力発生原理が示されている。 As shown in FIGS. 1B and 2B, the exciting coil magnetic flux φ C generated by the exciting coil 22 of the mover 2 is applied to the stator core 10 from the salient poles 21 and the iron core teeth 24 via the gap δg. It passes through the lattice teeth 11, passes through the stator core 10, and returns to the mover 2 again. At this time, since the iron core teeth 24 of the salient poles 21 adjacent to each other are configured so that the positions facing the lattice teeth 11 are different, the magnetic attraction force (hereinafter referred to as thrust) F of the iron core teeth 24 and the lattice teeth 11 is reduced. The mover 2 moves in a strong direction. By controlling the excitation coil magnetic flux φ C in this way, the mover can be moved. Further, by adding the bias permanent magnet magnetic flux φ M , the thrust F due to the composite magnetic flux φ is influenced by the magnitude of the magnetic flux change Δφ and the input magnetomotive force while the phase Δθ of the opposing position of the iron core teeth 24 and the lattice teeth 11 changes. A linear thrust F proportional to each is generated (see Equations 1 and 2). Patent Document 2 discloses such a principle of thrust generation.

本実施形態のパルスモータでは、固定子1を作製する際に、固定子鉄心10を積層することで、ユニット積層体10Aを形成した後に、図14(a)に示す研削加工を行わず、固定盤3に固定する。この際、柔軟性をもつ電気絶縁物4を固定子鉄心10と固定盤3の間に挿入する構成としている。図3に示すように、固定子鉄心10の絶縁処理によって、固定子鉄心10の間には絶縁層16が存在する状態となっている。   In the pulse motor of the present embodiment, when the stator 1 is manufactured, the stator core 10 is laminated to form the unit laminated body 10A, and then the grinding process shown in FIG. Fix to board 3. At this time, a flexible electrical insulator 4 is inserted between the stator core 10 and the stationary platen 3. As shown in FIG. 3, the insulating layer 16 is present between the stator cores 10 due to the insulation treatment of the stator cores 10.

以下に具体的に説明する。従来技術で説明した理由によりユニット積層体は図14(a)に示したように、両面の研削加工が必要であった。これに対し、本実施形態の構成では研削加工を施さず、固定盤3に重ねた柔軟性持つ電気絶縁物4の上に無研削加工のユニット積層体10Aを固定する。この際、柔軟性をもつ電気絶縁体4が無研削加工ユニット積層体10Aの残留応力に因る湾曲を吸収する。その後、格子歯11を研削加工する。   This will be specifically described below. For the reason explained in the prior art, the unit laminate requires grinding on both sides as shown in FIG. On the other hand, in the configuration of the present embodiment, the grinding process is not performed, and the non-grinding unit laminated body 10 </ b> A is fixed on the flexible electrical insulator 4 stacked on the stationary platen 3. At this time, the flexible electrical insulator 4 absorbs the curvature caused by the residual stress of the non-grinding unit laminate 10A. Thereafter, the lattice teeth 11 are ground.

この構成を採用する事でユニット積層体10Aの固定盤3の側の面(図3における下面)では、図3に示す様に固定子鉄心10の絶縁層16が維持され、研削に因る橋渡し電気伝導路は生じない。格子歯11の形成面は研削加工に因り橋渡し電気伝導路15が生じるが固定盤3側に電気伝導路が無い為、図14(b)に示す渦電流回路が形成されない。したがって、ユニット積層体10A周辺を渦電流は環流出来ない。さらに固定盤3とユニット積層体10Aの間に挿入された電気絶縁体4が多数隣接配置されるユニット積層体10A間の電気絶縁を担う。   By adopting this configuration, the insulating layer 16 of the stator core 10 is maintained on the surface of the unit laminate 10A on the side of the stationary platen 3 (the lower surface in FIG. 3) as shown in FIG. There is no electrical conduction path. On the surface on which the lattice teeth 11 are formed, a bridging electric conduction path 15 is generated due to grinding, but there is no electric conduction path on the fixed platen 3 side, so the eddy current circuit shown in FIG. 14B is not formed. Therefore, eddy current cannot circulate around the unit laminate 10A. Furthermore, the electrical insulation between the unit laminated bodies 10A in which a large number of electrical insulators 4 inserted between the fixed platen 3 and the unit laminated body 10A are adjacently arranged is performed.

このように、本実施形態のパルスモータでは、可動子2の磁気変化や運動によって発生するユニット積層体10A及び固定子鉄心10の渦電流による電磁制動力及び鉄損を効果的に抑制出来る。   Thus, in the pulse motor of the present embodiment, the electromagnetic braking force and the iron loss due to the eddy currents of the unit laminated body 10A and the stator core 10 that are generated by the magnetic change and motion of the mover 2 can be effectively suppressed.

図4および図5は、本発明の電磁制動力の低減効果を示す図であり、図4(a)および図5(a)はXZ平面における断面を、図4(b)および図5(b)はXZ平面における断面を、それぞれ示している。   4 and 5 are diagrams showing the effect of reducing the electromagnetic braking force of the present invention. FIGS. 4 (a) and 5 (a) are cross-sectional views in the XZ plane, and FIGS. 4 (b) and 5 (b). ) Respectively indicate cross sections in the XZ plane.

図4(a)および図4(b)に示すように、X方向に速度Vxで移動する可動子2のバイアス永久磁石23が発生するバイアス永久磁石磁束φMに誘導される渦電流Iemxは無研削加工ユニット積層体10Aと電気絶縁体4に因る電気絶縁効果に因って流れない。したがって、電磁制動力−Fbmxは生じない。励磁コイル22の発生させる励磁コイル磁束φCが誘導する渦電流Iecxは、図13(b)で示した様に固定子鉄心10の長手方向面内を流れる渦電流Ieであるが、可動子2が移動している場合は励磁コイル磁束φCが交流励磁電流による交番磁束であるので一定方向の電磁制動力を生じない。この渦電流Iecxは渦電流損として固定子鉄心10を発熱させるが、電気絶縁物4に因って多数隣接配置される無研削加工のユニット積層体10A間は電気絶縁される為、渦電流回路は固定子鉄心10内のみとなり、これら固定子鉄心10間の渦電流回路が並列回路化されない。従って従来構成よりも渦電流経路の総電気抵抗は大きくなり、生じる渦電流は従来りも小さくなる。よって運動特性及び電力効率を向上させられる。 As shown in FIGS. 4A and 4B, there is no eddy current Iemx induced by the bias permanent magnet magnetic flux φ M generated by the bias permanent magnet 23 of the mover 2 moving in the X direction at the speed Vx. It does not flow due to the electrical insulation effect caused by the grinding unit laminate 10A and the electrical insulator 4. Therefore, the electromagnetic braking force -Fbmx does not occur. The eddy current Iecx induced by the exciting coil magnetic flux φ C generated by the exciting coil 22 is the eddy current Ie flowing in the longitudinal plane of the stator core 10 as shown in FIG. Is moving, the exciting coil magnetic flux φ C is an alternating magnetic flux generated by an AC exciting current, so that no electromagnetic braking force is generated in a certain direction. This eddy current Iecx causes the stator core 10 to generate heat as an eddy current loss. However, the eddy current circuit is electrically insulated between the ungrinded unit laminated bodies 10A arranged adjacent to each other due to the electrical insulator 4. Is only in the stator core 10, and the eddy current circuit between the stator cores 10 is not formed into a parallel circuit. Therefore, the total electrical resistance of the eddy current path is larger than that of the conventional configuration, and the eddy current generated is smaller than before. Thus, the motion characteristics and power efficiency can be improved.

また、図5(a)および図5(b)に示すように、Y方向に速度−Vyで移動する可動子2のバイアス永久磁石磁束φMが同様に渦電流Iemyを誘導し反作用として電磁制動力−Fbmyを生じる。しかし、無研削加工のユニット積層体10Aと電気絶縁物4に因って固定子鉄心10は相互に絶縁され渦電流回路が並列回路化されず、渦電流Iemyは図13(b)で示した高電気抵抗な固定子鉄心10の長手方向面内の渦電流回路のみを流れるので、従来構成よりも渦電流経路の総電気抵抗は大きくなり、誘導される渦電流Iemyは更に小さくなる。この結果、電磁制動力−Fbmyは従来よりも小さくなる。励磁コイル22の発生させる励磁コイル磁束φCが誘導する渦電流Iecyは図13(a)で示した固定子鉄心10の板厚方向断面内を流れる渦電流Ieである。可動子2が移動している場合は励磁コイル磁束φCが交流励磁電流による交番磁束であるので一定方向の電磁制動力を生じない。しかし、渦電流損として固定子鉄心10を発熱させる。無研削加工のユニット積層体10Aと電気絶縁物4に因って固定子鉄心10は相互に絶縁され渦電流回路が並列回路化されず、高電気抵抗な板厚方向断面内のみの渦電流回路を流れるので従来構成よりも渦電流経路の総電気抵抗は大きくなり、誘導される渦電流Iemyは従来よりも小さくなる。よって運動特性及び電力効率を向上させられる。また、ユニット積層体10A毎の高精度な研削工程を省く事により、低コスト化を図れる。 Further, as shown in FIGS. 5A and 5B, the bias permanent magnet magnetic flux φ M of the mover 2 moving in the Y direction at the speed −Vy similarly induces an eddy current Iemy and electromagnetically controls it as a reaction. Power -Fbmy is generated. However, the stator core 10 is insulated from each other due to the ungrinded unit laminate 10A and the electrical insulator 4, and the eddy current circuit is not parallelized. The eddy current Iemy is shown in FIG. Since only the eddy current circuit in the longitudinal plane of the stator core 10 having high electrical resistance flows, the total electrical resistance of the eddy current path is larger than that of the conventional configuration, and the induced eddy current Iemy is further reduced. As a result, the electromagnetic braking force -Fbmy becomes smaller than the conventional one. The eddy current Iecy induced by the exciting coil magnetic flux φ C generated by the exciting coil 22 is the eddy current Ie flowing in the cross section in the plate thickness direction of the stator core 10 shown in FIG. When the mover 2 is moving, the exciting coil magnetic flux φ C is an alternating magnetic flux generated by an AC exciting current, so that no electromagnetic braking force in a certain direction is generated. However, the stator core 10 is heated as eddy current loss. The stator core 10 is insulated from each other due to the ungrinded unit laminated body 10A and the electrical insulator 4, and the eddy current circuit is not parallelized. Therefore, the total electric resistance of the eddy current path is larger than in the conventional configuration, and the induced eddy current Iemy is smaller than in the conventional configuration. Thus, the motion characteristics and power efficiency can be improved. Further, the cost can be reduced by omitting a highly accurate grinding process for each unit laminate 10A.

以上に因り、本実施形態のパルスモータによれば、高速な移動時の運動特性及び電力効率を効果的に向上させる事が出来、且つ高性能なモータの低コスト化を図る事が出来る。   Based on the above, according to the pulse motor of this embodiment, it is possible to effectively improve the motion characteristics and power efficiency during high-speed movement, and to reduce the cost of a high-performance motor.

以下、固定子の構成例およびその製造方法について説明する。   Hereinafter, a configuration example of the stator and a manufacturing method thereof will be described.

図6は固定子の構成を示す図であり、図6(a)は平面図、図6(b)は図6(a)のB−B線断面図、図6(c)は図6(a)のC−C線断面図である。   6A and 6B are diagrams showing the configuration of the stator, FIG. 6A is a plan view, FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A, and FIG. It is CC sectional view taken on the line of a).

図6(a)〜図6(c)に示すように、固定盤3には固定子鉄心を位置決めするための突起31が形成されている。図6に示すように、固定盤3と固定子鉄心10との間には電気絶縁物4が挿入されている。   As shown in FIGS. 6A to 6C, the fixed platen 3 is formed with a protrusion 31 for positioning the stator core. As shown in FIG. 6, an electrical insulator 4 is inserted between the stationary platen 3 and the stator core 10.

図7は、固定子の構成を示す分解斜視図である。図7に示すように、固定子鉄心10には、突起31を収容する切欠き10aが形成されている。同一層を形成する固定子鉄心10は互いに突合せ部10cを挟んでY方向に並べられる。突合わせ部10cに適当な間隙を設けることで、熱応力や寸法及び形状誤差等に対処している。また、隣接する層を形成する固定子鉄心10は互い違いに接続部位10cをずらされた配置で互いにX方向に積層される。   FIG. 7 is an exploded perspective view showing the configuration of the stator. As shown in FIG. 7, the stator core 10 is formed with a notch 10 a that houses the protrusion 31. The stator cores 10 forming the same layer are arranged in the Y direction with the butted portion 10c interposed therebetween. By providing an appropriate gap in the butt portion 10c, thermal stress, dimensions, shape errors, etc. are dealt with. Further, the stator cores 10 forming the adjacent layers are stacked in the X direction with the connection portions 10c being alternately shifted.

固定子鉄心10は、突起31により正確に位置決めされる。すなわち、突起31の基準面R1(図6)に固定子鉄心10の当接部10b(図7)を突き当てることにより、固定子鉄心10がX方向について位置決めされる。また、突起31の基準面R2(図6)に固定子鉄心10の切欠き10a(図7)の端面を突き当てることにより、固定子鉄心10がY方向について位置決めされる。   The stator core 10 is accurately positioned by the protrusion 31. That is, the stator core 10 is positioned in the X direction by abutting the contact portion 10b (FIG. 7) of the stator core 10 against the reference surface R1 (FIG. 6) of the protrusion 31. Further, the stator core 10 is positioned in the Y direction by abutting the end surface of the notch 10a (FIG. 7) of the stator core 10 against the reference surface R2 (FIG. 6) of the protrusion 31.

このように、図6および図7の例では、ユニット積層体を形成せず、直接、固定盤3に固定子鉄心10を積層する構成をとる。   As described above, in the example of FIGS. 6 and 7, the unit core is not formed, and the stator core 10 is directly stacked on the stationary platen 3.

固定子鉄心10を積層後、研削加工により格子歯11を形成することができる。   After the stator cores 10 are stacked, the lattice teeth 11 can be formed by grinding.

この構成によれば、固定子鉄心10は電気絶縁物4の上に直接積層され、研削加工に因る橋渡し電気伝導路が生じないため、上記実施形態と同様の効果を得られる。また、ユニット積層体毎の高精度な研削工程を省く事により、低コスト化を図れる。   According to this configuration, the stator iron core 10 is directly laminated on the electric insulator 4, and a bridging electric conduction path due to grinding is not generated. Therefore, the same effect as in the above embodiment can be obtained. Further, the cost can be reduced by omitting a highly accurate grinding process for each unit laminate.

図8は、予め固定子鉄心に格子歯を形成するための加工を施した例を示す分解斜視図である。   FIG. 8 is an exploded perspective view showing an example in which processing for forming lattice teeth on the stator core is performed in advance.

図8に示すように、この例では、磁極歯10dが形成された固定子鉄心10Kと、磁極歯のない固定子鉄心10Lとが組み合わされる。固定子鉄心10Lの高さはその上端が固定子鉄心10Kの磁極歯10dの歯底と一致するように寸法が設定される。固定子鉄心10Kおよび固定子鉄心10Lは、それぞれ格子歯11のピッチPに一致する所定の枚数だけ重ね合わされた上で、交互に積層される。固定子鉄心10Kおよび固定子鉄心10Lのそれぞれの配置方法は、固定子鉄心10(図7)の場合と変わらない。   As shown in FIG. 8, in this example, the stator core 10K in which the magnetic pole teeth 10d are formed and the stator core 10L without the magnetic pole teeth are combined. The height of the stator core 10L is set such that its upper end coincides with the bottom of the magnetic pole teeth 10d of the stator core 10K. The stator cores 10K and the stator cores 10L are alternately stacked after being stacked by a predetermined number corresponding to the pitch P of the lattice teeth 11. The arrangement method of the stator core 10K and the stator core 10L is the same as that of the stator core 10 (FIG. 7).

この構成に因れば、表面を絶縁処理された電磁軟鉄鋼板製の固定子鉄心10Kおよび固定子鉄心10Lを電気絶縁物4の上に直接積層する為、固定盤3側の橋渡し電気伝導路が生じない。更に磁極歯10dが形成された固定子鉄心10Kと無磁極歯の固定子鉄心10Lを所定枚数ずつ繰り返し積層することにより格子歯11が形成される為、格子歯11を形成するための研削加工が不要であり、格子歯面の橋渡し電気伝導路も生じる事が無い。   According to this configuration, the stator iron core 10K and the stator iron core 10L made of electromagnetic soft steel sheets whose surfaces are insulated are directly laminated on the electric insulator 4, so that the bridging electric conduction path on the fixed platen 3 side is provided. Does not occur. Further, since the lattice teeth 11 are formed by repeatedly laminating a predetermined number of stator cores 10K with magnetic pole teeth 10d and stator cores 10L with no magnetic pole teeth, grinding processing for forming the lattice teeth 11 is performed. It is not necessary and no bridging electrical conduction path between the lattice teeth is generated.

この為、隣接する固定子鉄心10Kおよび固定子鉄心10L間の電気伝導路が全く無くなり、可動子2の合成磁束φに誘導される渦電流Ieは最小となる。したがって、実施形態で説明した効果を更に向上させる事が出来る。また、ユニット積層体毎の高精度な研削工程を省く事により、低コスト化を図れる。以上に因り、より一層、本発明は高速な移動時の運動特性及び電力効率を効果的に向上させる事が出来、且つ高性能な面モータの低コスト化を図る事が出来る。   For this reason, there is no electrical conduction path between the adjacent stator cores 10K and 10L, and the eddy current Ie induced in the combined magnetic flux φ of the mover 2 is minimized. Therefore, the effects described in the embodiment can be further improved. Further, the cost can be reduced by omitting a highly accurate grinding process for each unit laminate. Based on the above, the present invention can further improve the motion characteristics and power efficiency during high-speed movement, and can reduce the cost of a high-performance surface motor.

次に、図9〜図10を参照して、固定子の製造方法について説明する。   Next, a method for manufacturing the stator will be described with reference to FIGS.

図9は、図6および図7に示す構成における製造方法を示している。   FIG. 9 shows a manufacturing method in the configuration shown in FIGS.

図9(a)に示すように、X方向磁極歯加工では研削加工に因り橋渡し電気伝導路が生じる。また、図9(b)に示すように、Y方向磁極歯加工においても、研削加工に因り、橋渡し電気伝導路が生じる。   As shown in FIG. 9A, in the X-direction magnetic pole tooth machining, a bridging electric conduction path is generated due to grinding. Further, as shown in FIG. 9B, also in the Y-direction magnetic pole tooth machining, a bridging electric conduction path is generated due to the grinding process.

しかし、図9(c)に示すように、予め絶縁紙5を積層し、格子歯11を研削加工で形成することができる。このように、絶縁紙5を挿入した場合には、絶縁紙5が橋渡しを防ぎ電気伝導路を生じさせない。このため、可動子2の合成磁束φに誘導される渦電流Ieは更に減少する。したがって、高速な移動時の運動特性及び電力効率を効果的に向上させる事が出来る。   However, as shown in FIG. 9C, the insulating paper 5 can be laminated in advance and the lattice teeth 11 can be formed by grinding. In this way, when the insulating paper 5 is inserted, the insulating paper 5 prevents bridging and does not generate an electric conduction path. For this reason, the eddy current Ie induced by the combined magnetic flux φ of the mover 2 further decreases. Therefore, it is possible to effectively improve the motion characteristics and power efficiency during high-speed movement.

図10は、図8に示す構成における製造方法を示している。   FIG. 10 shows a manufacturing method in the configuration shown in FIG.

図8の構成では、固定子鉄心10Kおよび固定子鉄心10Lの積層のみに因って格子歯11を形成する為、固定子鉄心10Kが有する磁極歯寸法の誤差,固定子鉄心10K,10Lの板厚誤差及び固定子鉄心積層誤差等に因り格子歯11に寸法誤差が生じる。図10(a)および図10(b)に示すように、寸法誤差は、固定子鉄心10K,10Lの積層後に格子歯11を研削加工により形成することで解消できる。この研削加工によって生じる橋渡し電気伝導路が電磁制動力及び鉄損の増加させてしまう。すなわち、図10(a)に示すように、X方向磁極歯加工では研削加工に因り、磁極歯部に僅かに橋渡し電気伝導路が生じる。図1(b)に示すように、Y方向磁極歯加工においても研削加工に因り、同様に僅かに橋渡し電気伝導路が生じる。   In the configuration of FIG. 8, since the lattice teeth 11 are formed only due to the lamination of the stator core 10K and the stator core 10L, errors in the dimensions of the magnetic pole teeth of the stator core 10K, the plates of the stator cores 10K, 10L Due to the thickness error and the stator core stacking error, a dimensional error occurs in the lattice teeth 11. As shown in FIGS. 10A and 10B, the dimensional error can be eliminated by forming the lattice teeth 11 by grinding after the stator cores 10K and 10L are stacked. The bridging electrical conduction path generated by this grinding process increases electromagnetic braking force and iron loss. That is, as shown in FIG. 10A, in the X-direction magnetic pole tooth machining, a slight bridging electric conduction path is generated in the magnetic pole tooth portion due to grinding. As shown in FIG. 1B, a slight bridging electric conduction path is similarly generated in the Y-direction magnetic pole tooth machining due to grinding.

しかし、図10の構成では研削量を抑えることができるため、橋渡し電気伝導路を最小に抑えながら磁極歯11の寸法精度を向上させ、且つ研削加工量を最小にする事によって低コスト化を図る事が出来る。   However, since the grinding amount can be suppressed in the configuration of FIG. 10, the dimensional accuracy of the magnetic pole teeth 11 is improved while minimizing the bridging electric conduction path, and the cost is reduced by minimizing the grinding amount. I can do it.

また、高推力を得る為に使用される高飽和磁束密度材料(CoFe系)を使用する際の問題となる磁気特性劣化に対しても有効である。高飽和磁束密度材料(CoFe系)は機械加工によって磁気特性を損ない易く、従来では格子歯11の形成加工の際、研削加工量が多く、その加工影響に因り磁気特性の劣化が著しかった。しかし、図10の構成では、研削加工量が少ない為、磁気特性劣化を最小に抑制出来る。従って高飽和磁束密度材料(CoFe系)の持つ高性能な磁気特性を最大限に活用出来る。   It is also effective against magnetic property deterioration which becomes a problem when using a high saturation magnetic flux density material (CoFe system) used for obtaining a high thrust. A high saturation magnetic flux density material (CoFe type) is liable to lose its magnetic properties by machining, and conventionally, when the lattice teeth 11 are formed, the amount of grinding is large, and the magnetic properties are significantly deteriorated due to the processing effect. However, in the configuration of FIG. 10, since the amount of grinding is small, it is possible to suppress the deterioration of magnetic characteristics to the minimum. Therefore, the high-performance magnetic properties of the high saturation magnetic flux density material (CoFe series) can be utilized to the maximum.

図10(c)に示すように、絶縁紙5を予め積層し、研削加工した場合には絶縁紙5が橋渡しを防ぎ電気伝導路を生じさせない。この場合には、可動子2の合成磁束φに誘導される渦電流は更に減少する。従って、仕上げ研削加工に因り、磁極歯11の寸法精度の向上を図りながら、電磁制動力及び鉄損をより効果的に抑制出来る。   As shown in FIG. 10C, when the insulating paper 5 is laminated in advance and ground, the insulating paper 5 prevents bridging and does not generate an electric conduction path. In this case, the eddy current induced in the combined magnetic flux φ of the mover 2 further decreases. Therefore, the electromagnetic braking force and the iron loss can be more effectively suppressed while improving the dimensional accuracy of the magnetic pole teeth 11 due to the finish grinding.

以上説明したように、本発明のパルスモータによれば、固定子外周面の渦電流回路を遮断したので、駆動時の運動性能および電力効率等の改善を図ることができる。また、本発明のパルスモータの製造方法によれば、積層された磁性体の端面を研削せずに固定子を組み立てるので、磁性体の端面に電気伝導路が形成されることを回避できる。さらに、本発明のパルスモータの製造方法によれば、絶縁層と反対側の端面を研削するので、磁性体の積層体の表面全体にわたって電気伝導路が形成されることを回避できる。   As described above, according to the pulse motor of the present invention, since the eddy current circuit on the outer peripheral surface of the stator is cut off, it is possible to improve the motion performance and power efficiency during driving. Further, according to the method for manufacturing a pulse motor of the present invention, the stator is assembled without grinding the end faces of the laminated magnetic bodies, so that it is possible to avoid the formation of an electric conduction path on the end faces of the magnetic bodies. Furthermore, according to the method for manufacturing a pulse motor of the present invention, since the end surface opposite to the insulating layer is ground, it is possible to avoid the formation of an electric conduction path over the entire surface of the magnetic laminate.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータおよびその製造方法に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention is widely applied to a pulse motor in which a stator is formed by laminating a magnetic body having an insulating layer provided on the surface, and a movable element is driven on a plane along the stator, and a method for manufacturing the same. Can be applied.

パルスモータの構成を示す図であり、(a)は、パルスモータにおける固定子を示す平面図、(b)はパルスモータにおける可動子のY方向駆動部のYZ平面における断面図、(c)はY方向駆動部のXZ平面における断面図である。It is a figure which shows the structure of a pulse motor, (a) is a top view which shows the stator in a pulse motor, (b) is sectional drawing in the YZ plane of the Y direction drive part of the needle | mover in a pulse motor, (c) is a figure. It is sectional drawing in the XZ plane of a Y direction drive part. パルスモータの構成を示す図であり、(a)はパルスモータにおける可動子のX方向駆動部のYZ平面における断面図、(b)はX方向駆動部のXZ平面における断面図。It is a figure which shows the structure of a pulse motor, (a) is sectional drawing in the YZ plane of the X direction drive part of the needle | mover in a pulse motor, (b) is sectional drawing in the XZ plane of an X direction drive part. 固定子鉄心を積層した状態を示す断面図。Sectional drawing which shows the state which laminated | stacked the stator core. 電磁制動力の低減効果を示す図であり、(a)はXZ平面における断面を、(b)はXZ平面における断面を、それぞれ示す断面図。It is a figure which shows the reduction effect of electromagnetic braking force, (a) is sectional drawing which shows the cross section in a XZ plane, (b) is a cross section which shows the cross section in a XZ plane, respectively. 電磁制動力の低減効果を示す図であり、(a)はXZ平面における断面を、(b)はXZ平面における断面を、それぞれ示す断面図。It is a figure which shows the reduction effect of electromagnetic braking force, (a) is sectional drawing which shows the cross section in a XZ plane, (b) is a cross section which shows the cross section in a XZ plane, respectively. 固定子の構成を示す図であり、(a)は平面図、(b)は(a)のB−B線断面図、(c)は(a)のC−C線断面図。It is a figure which shows the structure of a stator, (a) is a top view, (b) is the BB sectional view taken on the line (a), (c) is the CC sectional view taken on the line (a). 固定子の構成を示す分解斜視図。The disassembled perspective view which shows the structure of a stator. 固定子の構成を示す分解斜視図。The disassembled perspective view which shows the structure of a stator. 固定子の製造方法を示す図であり、(a)はX方向磁極歯加工を示す図、(b)はY方向磁極歯加工を示す図、(c)は絶縁紙を積層後、格子歯を研削加工で形成する例を示す図。It is a figure which shows the manufacturing method of a stator, (a) is a figure which shows X direction magnetic pole tooth processing, (b) is a figure which shows Y direction magnetic pole tooth processing, (c) is a lattice tooth after laminating | stacking insulating paper. The figure which shows the example formed by grinding. 固定子の製造方法を示す図であり、(a)はX方向磁極歯加工を示す図、(b)はY方向磁極歯加工を示す図、(c)は絶縁紙を積層後、格子歯を研削加工で形成する例を示す図。It is a figure which shows the manufacturing method of a stator, (a) is a figure which shows X direction magnetic pole tooth processing, (b) is a figure which shows Y direction magnetic pole tooth processing, (c) is a lattice tooth after laminating | stacking insulating paper. The figure which shows the example formed by grinding. 従来のパルスモータを示す図であり、(a)は、従来のパルスモータにおける固定子を示す平面図、(b)は従来のパルスモータにおける可動子のY方向駆動部のYZ平面における断面図、(c)はY方向駆動部のXZ平面における断面図。It is a figure which shows the conventional pulse motor, (a) is a top view which shows the stator in the conventional pulse motor, (b) is sectional drawing in the YZ plane of the Y direction drive part of the needle | mover in the conventional pulse motor, (C) is sectional drawing in the XZ plane of a Y direction drive part. 従来のパルスモータの構成を示す図であり、(a)は従来のパルスモータにおける可動子のX方向駆動部のYZ平面における断面図、(b)はX方向駆動部のXZ平面における断面図。It is a figure which shows the structure of the conventional pulse motor, (a) is sectional drawing in the YZ plane of the X direction drive part of the needle | mover in the conventional pulse motor, (b) is sectional drawing in the XZ plane of an X direction drive part. 一般的な渦電流Ieを示す図であり、(a)は固定子鉄心の板厚方向断面内の渦電流Ieを示す図、(b)は固定子鉄心の長手方向面内の渦電流Ieを示す図、(c)はユニット積層体内の渦電流Ieを示す図。It is a figure which shows the general eddy current Ie, (a) is a figure which shows the eddy current Ie in the cross section of the thickness direction of a stator core, (b) is the figure which shows the eddy current Ie in the longitudinal direction surface of a stator core. The figure to show, (c) is a figure which shows the eddy current Ie in a unit laminated body. 研削工程等を示す図であり、(a)は研削加工の様子を示す図、(b)は研削が施されたユニット積層体の断面図。It is a figure which shows a grinding process etc., (a) is a figure which shows the mode of a grinding process, (b) is sectional drawing of the unit laminated body to which grinding was given. 渦電流と電磁制動力を示す図であり、(a)はXZ断面図、(b)はYZ断面図。It is a figure which shows an eddy current and electromagnetic braking force, (a) is XZ sectional drawing, (b) is YZ sectional drawing. 渦電流と電磁制動力を示す図であり、(a)はXZ断面図、(b)はYZ断面図。It is a figure which shows an eddy current and electromagnetic braking force, (a) is XZ sectional drawing, (b) is YZ sectional drawing.

符号の説明Explanation of symbols

1 固定子
2 可動子
4 電気絶縁物(絶縁層)
5 絶縁紙(絶縁層)
10 固定子鉄心(磁性体)
1 Stator 2 Movable Element 4 Electric Insulator (Insulating Layer)
5 Insulating paper (insulating layer)
10 Stator core (magnetic material)

Claims (6)

表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータにおいて、
前記可動子が誘導する渦電流が流れる、前記固定子外周面の渦電流回路を遮断したことを特徴とするパルスモータ。
In a pulse motor in which a stator is formed by laminating a magnetic body provided with an insulating layer on the surface, and a mover is driven on a plane along the stator.
A pulse motor characterized in that an eddy current circuit on an outer peripheral surface of the stator through which an eddy current induced by the mover flows is cut off.
前記渦電流回路は、積層された前記磁性体の端面の非研削面において遮断されることを特徴とする請求項1に記載のパルスモータ。 2. The pulse motor according to claim 1, wherein the eddy current circuit is cut off at a non-ground surface of an end face of the laminated magnetic body. 前記渦電流回路は、積層された前記磁性体の端面に設けられた電気絶縁層により遮断されることを特徴とする請求項1に記載のパルスモータ。 2. The pulse motor according to claim 1, wherein the eddy current circuit is interrupted by an electrical insulating layer provided on an end face of the laminated magnetic body. 前記端面は、前記可動子と反対側の面であることを特徴とする請求項2または3に記載のパルスモータ。 The pulse motor according to claim 2, wherein the end surface is a surface opposite to the movable element. 表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータの製造方法において、
前記磁性体を積層するステップと、
積層された前記磁性体の端面を研削せずに前記固定子を組み立てるステップと、
を備えることを特徴とするパルスモータの製造方法。
In the method of manufacturing a pulse motor, a stator is formed by laminating a magnetic body provided with an insulating layer on the surface, and a mover is driven on a plane along the stator.
Laminating the magnetic material;
Assembling the stator without grinding the end faces of the laminated magnetic bodies;
A method for manufacturing a pulse motor, comprising:
表面に絶縁層が設けられた磁性体を積層することで固定子が形成され、可動子が前記固定子に沿って平面上を駆動されるパルスモータの製造方法において、
前記磁性体を積層するステップと、
積層された前記磁性体の端面に絶縁層を設けるステップと、
積層された前記磁性体の前記絶縁層と反対側の端面を研削するステップと、
を備えることを特徴とするパルスモータの製造方法。
In the method of manufacturing a pulse motor, a stator is formed by laminating a magnetic body provided with an insulating layer on the surface, and a mover is driven on a plane along the stator.
Laminating the magnetic material;
Providing an insulating layer on the end face of the laminated magnetic body;
Grinding the end surface of the laminated magnetic body opposite to the insulating layer;
A method for manufacturing a pulse motor, comprising:
JP2008282745A 2008-11-04 2008-11-04 Pulse motor and method of manufacturing the same Pending JP2010114948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282745A JP2010114948A (en) 2008-11-04 2008-11-04 Pulse motor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282745A JP2010114948A (en) 2008-11-04 2008-11-04 Pulse motor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010114948A true JP2010114948A (en) 2010-05-20

Family

ID=42303065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282745A Pending JP2010114948A (en) 2008-11-04 2008-11-04 Pulse motor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010114948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173578A (en) * 2014-03-12 2015-10-01 独立行政法人国立高等専門学校機構 linear motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173578A (en) * 2014-03-12 2015-10-01 独立行政法人国立高等専門学校機構 linear motor

Similar Documents

Publication Publication Date Title
JP4102708B2 (en) Motor using permanent magnet
JP5655071B2 (en) Linear motor
JP2009545940A (en) Force ripple compensation linear motor
JP2003339128A (en) Motor, stator core and rotor core, and manufacturing methods of motor, stator core and rotor core
KR20120075428A (en) Reluctance motor
JP5826369B2 (en) Linear motor
JPS6111521B2 (en)
TWI664795B (en) Linear motor
US6800968B1 (en) Linear motor
JP5678025B2 (en) Thrust generating mechanism
JP2010114948A (en) Pulse motor and method of manufacturing the same
JP5589507B2 (en) Mover and stator of linear drive unit
JP2004328819A (en) Embedded magnet type motor
JP5083893B2 (en) Electromagnet actuator and planar motor
JP2010068548A (en) Motor
JP4504123B2 (en) Motor using permanent magnet
JP6001828B2 (en) Linear motor stator
JP2018139496A (en) Coil and manufacturing method of coil
JP6947340B1 (en) Field magnet and motor with field magnet
US20240006973A1 (en) Permanent field magnet and linear motor
JP3793874B2 (en) Permanent magnet type linear motor
JP4740211B2 (en) Motor using permanent magnet
JP6631102B2 (en) Rotating electric machine
JP2001095226A (en) Coreless linear motor
JP2010239747A (en) Surface motor